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ABSTRACT

An entropy was introduced by A. Garsia to study certain infinitely convolved Bernoulli measures
(ICBMs) Up, and showed it was strictly less than 1 for /? the reciprocal of a Pisot-Vijayarghavan number.
However, it is impossible to estimate values from Garsia's work. The first author and J. A. Yorke have
shown this entropy is closely related to the 'information dimension' of the attractors of fat baker
transformations Tfi. When the entropy is strictly less than 1, the attractor is a type of strange attractor. In
this paper, the entropy of ^ is estimated for the case when /? = (jr1, where <f> is the golden ratio. The
estimate is fine enough to determine the entropy to several decimal places. The method of proof is totally
unlike usual methods for determining dimensions of attractors; rather a relation with the Euclidean
algorithm is exploited, and the proof has a number-theoretic flavour. It suggests that some interesting
features of the Euclidean algorithm remain to be explored.

1. Introduction

Consider the discrete probability density on the real line with measure \ at each
of the two points + 1. This is called the Bernoulli measure. We denote it by b(x). Let
ava2,...,aN>0. We can form the convolution

bix/aj * b{x/a2) * ... * b(x/aN).

This measure is supported on points

E ±an. (1.1)
n- l

The measure of each such point is 2~N times the number of representations of the
point as a sum (1.1). This measure is a finite probability measure and is called a
finitely convolved Bernoulli measure. If ax,a2,... is an infinite sequence of positive
numbers decreasing to zero sufficiently rapidly, the infinitely convolved Bernoulli
measure (ICBM)

bix/aj)*b(x/a2)*...

can be formed as a weak limit of finitely convolved Bernoulli measures.
These measures were studied extensively in the 1930s, largely because their

characteristic functions have interesting asymptotic properties. The ICBMs with
a{ = ft for P < 1 fixed, were singled out. We denote this measure ^. For example, if
P = | , the measure ^ is uniform on the interval [—1,1]. If /? = §, the measure /ip is
the classical Cantor measure on [—1,|]. The following were proved. For fi< 1,
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the measures /ip are well defined; that is, the limiting processes converge [8].
The ftp are continuous and are either absolutely continuous on the interval
[-(1 -py^, (1 -P)'1^] or totally singular [8]. For ft the «th root of §, ftp is absolutely
continuous (and indeed, progressively smoother as n is increased) [12]. For /? < \, it
is easy to see that the support of Up is a Cantor set and hence fip is totally singular.
However, for ft ^ \, the support of Up is the interval [ — (1 —/7)"1/?, (1 —p)'1^, and it
was generally supposed that these fip were absolutely continuous. Thus it was
somewhat surprising when Paul Erdos proved that for ft = 0"1, where <j> = KV5+ 1)
is the golden ratio, the measure fip is totally singular [4]. A year later he proved a result
in the opposite direction, namely there is y < 1 such that for almost all /? > y, the
measure pip is absolutely continuous [5]. Both of these results were proved by
considering the asymptotics of the characteristic function. Erdos's method was shown
to work whenever /? is the reciprocal of a Pisot-Vijayarghyavan (PV) number, that is,
whenever /? is an algebraic integer and all of its conjugates lie outside the unit disk in
the complex plane [11].

The question of which fip are totally singular for ft > \ remains open. The only
/? >\ for which nfi are known to be totally singular are the reciprocals of PV numbers,
and the only explicit /? for which fip is known to be absolutely continuous are roots
of | and a countable family of similar algebraic numbers [6]. For other work and
expositions, see [7, 9, 10, 11].

Garsia introduced a new concept in the study of the np [7]. He considered the finite
measure spaces Gp of the finitely convolved Bernoulli measures

b(x/0) * b{x/P) * b(x/P) *...* b(x/0N)

for N = 1,2,..., and defined a limiting entropy as follows. Suppose that x1 5x2, . . . ,xr

are the points of Gp with measures px,p2,... ,pr. The (base 2) entropy of Gf is given
by

H{GN
fi) = - £ A log, pf.

Then Hfi is defined as the limit

which he showed exists (note that Hp is independent of the choice of base of
logarithms). He also proved that if Hp < 1, then fip is totally singular. He also showed
that Hp < 1 if P is the reciprocal of a PV number (this did not give a new proof that
these tip are totally singular, since he used that fact in the argument). His argument
is non-constructive and it is impossible to estimate Hp.

The purpose here is to determine an explicit value for Hp for one ft, namely the one
Erdos first considered, p = 0"1. There are three reasons why such a computation
might be of interest.

1. It gives a direct proof that Hp < 1 for this /?. It may be possible to generalize
to other ft (even perhaps /? which are not the reciprocals of PV numbers ?). The general
approach is valid for any /? which satisfies a polynomial equation with all coefficients
0 or 1 (which is the case for PV numbers and their reciprocals), and it seems likely the
particulars will extend to the sequence of /? which satisfy the equations

(which are the reciprocals of PV numbers).
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2. James Yorke and the first author introduced dynamical systems Tp on a square
which are generalizations of the classical baker's transformation [1]. These
transformations have natural invariant measures which are products of the /xp with a
uniform measure. We considered a certain dimension of the attractor of Tp, and
showed that for ft the reciprocal of a PV number, this dimension is 1 + Hp. In
particular, since the dimension is not an integer, the attractor is some kind of strange
attractor. The motivation for the present paper was to give an explicit computation
of this dimension. In [1], an estimate for the dimension was given, but was not
rigorous. In the present paper, a rigorous estimate is given. The present method is
completely different from standard methods of estimating metric dimensions of
strange attractors. Indeed, one of the conclusions of [1] is that standard methods
cannot work very well for this particular map.

3. Since /? = 0"1, the structure of the Gp is related to representations of integers
in terms of Fibonacci numbers, and through them to the Euclidean algorithm. The
computation involves generating functions related to the Euclidean algorithm. In the
details, it becomes clear that there are some interesting new features of the Euclidean
algorithm to be explored. We do not pursue more than we need in this paper.

For the remainder of the paper, we fix ft = (jr1 and let A = 1/Iog20. We next
briefly state the final results. Consider the simple Euclidean algorithm, that is, the
Euclidean algorithm with a sequence of subtractions replacing the usual division.
Given two positive integers k and /, the length e(k, i) of the pair {k, i} is the number
of steps in the simple Euclidean algorithm applied to k and i (formally: e(i, i) = 0,
e(i+k, i) = e(i+k,k) = e

THEOREM 1. Let

Kn= £ k\og2k, (1.2)

and

k>i>0
gcd(fc,i)-l,e(fc,i)-n

The series (1.3) converges for \x\<\ and

1 E ^ ) (1.4)
k>i>0

gcd(*,i)-l

By determining the growth rate of the Kn, and making rearrangements in &~(x),
we can estimate truncation errors. In particular, by truncating one rearranged series
at the 20th term, we obtain the estimates

0.995570 < H^-i < 0.995736. (1.5)

Another rearrangement gives sharper estimates; however, we have not been able to
justify them rigorously. This series leads to the point estimate 0.995713126686.

We also show that (1.4) is equivalent to the following, somewhat different-
looking, formula for Hp.
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THEOREM 1'. There is a unique bounded function g{t) on [0,1] which satisfies the
functional equation

^ ( ^ ) ^ ( ) . (1.6)

This function is analytic on (0,1) and, moreover,

H, = Mi-Mi)) = A(l -fe (1.7)

It is possible to compute with (1.6), (1.7); the computations are identical to those
coming from (1.3).

2. The combinatorics

The spaces G% consist of sums

E ±Pn- (2-1)
n- l

Since fP+/3— 1 = 0, there are multiple sums representing one point and of course this
increases the measure at that point. For example /P+p—\ and —fP—fi+l both

Level

FIG. 1. The Fibonacci graph
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represent 0. The whole structure of the Gff can be represented graphically as in Figure
1. The space Gf is represented by the nodes of the graph at level N, constructed from
the top down. At level N, for each node, we consider the sequence of ± signs in (2.1)
corresponding to that point. From each node, beginning with the node corresponding
to the empty sequence at level 0, there are two descending edges. The left (respectively
right) edge descends to a node corresponding to appending a — (respectively + ) sign
to the sequence. Because of the relation fP+fl— 1 = 0, the graph is not a tree. Above
each node through level 3, we list the sequence(s) corresponding to each node. Below
the nodes through level 5, we list the number of sequences corresponding to that
node. We call this number the frequency. It is equal to the number of descending paths
from the top node to the node in question. Moreover, at level N, 2~N times the
frequency is the measure of the point in Gff. Thus the entropies H{G^) can be
computed from the frequencies. Let FN(k) denote the number of nodes at level N with
frequency k. Then

N log2 2~Nk = N-Z FN(k) 2~N log2 k. (2.2)
k

In fact, there is another simple interpretation of this graph and the entropies we
consider. Let ft be the rth element of the Fibonacci sequence 1, 2, 3, 5, 8, A
Fibonacci expansion of length N of a non-negative integer n is a representation
n = Yti^i aifi-> ai ~ 0> 1 • The graph of Figure 1 encodes Fibonacci representations of the
non-negative integers. If the nodes at level Ware labelled from 0 tofN+2 — 2 from left
to right, the frequency associated to a node is the number of Fibonacci expansions of
length N of the label. For this reason, we call the graph of Figure 1 the Fibonacci
graph. These frequencies have been studied; see for example [2]. The entropy H(Gjf)
measures the average redundancy of the Fibonacci representations of length N. There
is obvious redundancy since 2N words on symbols zero and one represent fN+2 — 1
numbers. If, asymptotically, the redundancy were more or less evenly distributed, the
entropies H(G%) would be asymptotic to N\og2fi+o(N). The fact that Hp is strictly
less than one implies that the redundancies in the representation are not evenly
distributed in some strong sense.

There is considerable and repeated structure in the Fibonacci graph. In particular,
suppose we erase from that graph the node at level 0 and all the nodes with frequency
1 and the edges descending from those nodes. The remainder is the disjoint union of
an infinite number of isomorphic graphs. Each of these has a 'top' node with
frequency 2 in the lowest level, two nodes with frequency 2 on the next level, two with
frequency 2 and two with frequency 3 two levels beyond, etc. There is one such top
at level 3, and two such tops at each succeeding level. Moreover, these subgraphs
themselves break apart into more basic subgraphs. In this section, we expose this
decomposition and develop the structure of the most basic subgraphs. To this end we
proceed through a succession of technical definitions and observations, some labelled
for future reference. The reader may find it convenient to illustrate the statements
with Figure 1, concentrating on the central node at level 3.

Any edge connects two nodes, one at level N and one at level N+1. We call the
one at level N the parent of the one at level N+1 and the one at level N+\ the child
of the one at level N. We extend the terminology to speak of grandchildren, etc. The
descendants of a node are its children, their children, etc. The ancestors of a node are
its parents, grandparents, etc.

The graph divides the plane into bounded regions we call diamonds. The diamonds
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are consequences of the relation —1+/7+/?2 = 1—/?—/?2 (or — + + = H in
terms of plus and minus signs). Each diamond is bounded by six edges and six nodes.
The nodes are at levels N, N+1, N+2, and N+3 for some N. There is one top node
at level N. There are two nodes at level N+1, two at level N+2, and a bottom node
at level N+3. The bottom node we call a relational node, since its position at the
bottom is a consequence of the relation above. The node at the top is called the
relational parent of the node at the bottom and the node at the bottom is called the
relational child of the.node at the top. A relational node has two parents; others have
one.

In addition to a frequency d, a relational node A'has a. frequency pair. A relational
node has two parents with frequencies a and b. The frequency pair of X is the
unordered pair {a, b). Clearly the frequency of A" is a + b. Finally, for purposes of
setting up inductions, we assign a depth to each node. This is done inductively. The
node at level 0 and all nodes with frequency 1 are assigned depth 0. If a node is not
relational, it is assigned the depth of its parent. If it is relational, it is assigned depth
1 plus the depth of its relational parent.

There are four edges emanating from a relational node; hence a relational node
is in the boundary of four diamonds—one above, one below, one left, and one right,
(a) If the top node of a diamond is at level N, neither of the boundary nodes at level
N+2 is relational, (b) Moreover, at most one of the nodes at level N+ 1 is relational,
since there is not enough room for two diamonds above two relational nodes in those
positions. On the other hand, a non-relational node which is not at the extreme left
or right of a level is in the boundary of three diamonds. It is the top of one diamond,
at level 1 below the top of another diamond, and at level 2 below the top of a third,
(c) Accordingly one of the children of a non-relational node is relational and one is
non-relational; the non-relational child has the same frequency and same depth as its
parent.

We next consider the structure of the graph below a relational node X. Say X has
frequency pair {a, b}, level N, and depth r. There are two children at level N+\,
neither of which is relational by statement (a) above. Accordingly, these two nodes
have frequency a + b and depth r. There are four grandchildren at level N+2. Two
of these are relational, being the relational children of the parents of X, and two are
not. The two which are not have frequency a + b and depth r. The two which are
relational have frequency pairs {a, a + b} and {b,a + b} and depth r, since their
relational parents are the parents of X. Finally the relational child of X has frequency
pair {a + b, a + b} and depth r+1. In the Fibonacci graph, all nodes through level 6
have depth 0 or 1 except the central node at level 6 which has depth 2. At level 7 there
are four nodes of depth 2.

The preceding paragraph describes the local structure near a relational node. We
turn to the global structure, (d) First note that from every relational node, two edge
paths descend; every node on these two paths has the same depth and the same
frequency as the parent relational node. This follows from (a) and (c) above. Consider
a relational node A'of depth r both of whose parents have depth less than r. Call such
a node a primary relational node. In the Fibonacci graph, there is one primary
relational node of depth 1 at level 3, and two at each succeeding level. There is a
primary relational node of depth 2 at level 6. There are two at level 7 and four at level
8. Consider the set D(X) of all descendants of X which are relational and have depth
r. Since each relational node has two relational grandchildren, if we insert edges in
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D(X) between each node and its two relational grandchildren, we make D(X) into a
binary tree. Note that if Xand Fare both relational nodes, D(X) 0D(Y) = 0 . This
follows from statements (b) and (c) above. We next note that the frequency pair of
X has the form {d, d}, where d = 1 if the depth of X is 1, or d is the frequency of the
relational parent of X if the depth of X is greater than 1. The frequency pair of X
determines the frequency pairs of all members of D(X), as we study next.

The simple Euclidean algorithm is the Euclidean algorithm without division. We
can describe one step of the algorithm as follows. For any pair of non-negative
integers {k, i} (possibly equal), let T{k, i} = {\k—i\, min (k, /)}. The length of {k, i} is the
greatest n such that 0^ Tn{k, /}. For example, if we use H-» to denote the effect of T,

(length 5). The length is denoted by e(k, i). This definition is clearly equivalent to the
one in the introduction.

Conversely, we can make a binary tree labelled with pairs of integers as follows.
Start with one node at level 0 labelled with the pair {1,1} and one node at level 1
labelled with the pair {2,1}. Inductively, given a node at level n labelled with the pair
{a, b}, there are two descending edges (left and right) top nodes at level n + 1 labelled
with pairs {a + b, a} and {a + b, b}. At level n, there are 2""1 nodes. For example, at level
3, the pairs are {5,3}, {5,2}, {4,3}, {4,1}. Start with any pair {a, b) at level n. The labels
on the nodes of the unique path up the tree to the node at level 1 are precisely those
of the simple Euclidean algorithm of {a, b}, up to the last step. The length of the pair
is n. Conversely, given the expansion of the simple Euclidean algorithm for any pair
of coprime integers {a, b), it is routine to locate the pair in the tree. Thus each pair of
coprime integers {a,b} appears exactly once in this tree at level e(a,b). We call this
tree the Euclidean tree. This tree has appeared in other contexts, see for example [3,
13]. We trivially form the d-Euclidean tree by multiplying all the labels involved in the
Euclidean tree by d.

We next observe that for any primary relational node X in the Fibonacci graph
with frequency pair {d, d}, the labelled tree structure of D(X) is a d-Euclidean tree.
This is immediate from the way frequency pairs of relational descendants are
determined. Thus the Euclidean tree is the irreducible kernel of the Fibonacci graph
and, in the end, all computations will be done in terms of the Euclidean graph. Note
that if a node at level L ^ 1 is labelled with {a, b) with a > b in the Euclidean tree, then
a is the sum of the two labels of the parent of the node. Thus it is essentially equivalent
to consider the maxima of the two integers of a label or the sum of the labels. For
minor technical reasons, we work below with the former.

We can reverse the above process and, starting from the Euclidean tree, build the
nodes of the Fibonacci graph. We construct a set of nodes; each node is assigned a
level, a frequency, and a depth. We can speak of appending a d-Euclidean tree of depth
r, starting at level N to an existing set. By this we mean making a disjoint union of
the existing set and the nodes of levels L ^ 1 of a copy of a d-Euclidean tree, so that
if a node in the d-Euclidean tree has length L, it is assigned level N+2L and depth
r in the set. If the node in the Euclidean tree is labelled with integers {a, b}, with
a > b, it is given frequency a in the set.

The discussion above proves the following lemma.
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LEMMA. The following process constructs a set of points (nodes) labelled with
levels, frequencies and depths, which is isomorphic to the set of nodes of the Fibonacci
graph in levels greater than 1.

(i) Begin with two nodes of frequency 1 and depth 0 at each level N^\.
(ii) Inductively append Euclidean trees to obtain relational nodes.

(a) Append one 1-Euclidean tree starting at level 3 and two \-Euclidean trees
starting at each level N > 3.

(b) Proceed by induction on depth. Assume that nodes up through depth r have
been assigned. For each node of depth r which has, say, level N and
frequency d, append a Id-Euclidean tree of depth r + 1 starting at level
N+3.

(iii) Append non-relational nodes. For each node of depth r, frequency d, and level
N, append two nodes at each level greater than N of depth r and frequency d.

As a consequence of this result, many of the results about Fibonacci
representations [2] can be deduced from known results about the Euclidean
algorithm. Particulars are left to the interested reader.

3. Generating functions

In this section we translate the construction of the previous lemma into the
language of generating functions. The object of the present section is to prove the
following result.

PROPOSITION. Let

N-0

be the generating function for the entropies of the finite spaces G$. Then

with & as in (1.3).

Proofs Let FN(k) be equal to the number of nodes at level N with frequency k.
Note that

t W =/™-1, t kF^) = 2", t 4/W*)loga^ = H(Gf).

Let fk(x) = Y^-IFNW) *N ( t m s a n d all further generating functions are to be
considered formal power series in x, although all in fact converge for |JC| small
enough). Let &k(N) be the number of times the integer k appears as the larger of the
two integers in the pairs associated to nodes of length N in the Euclidean tree, and
let &k(x) = Y*N-i&k(N)xN- From the description of the Euclidean tree in the previous
section, it is apparent that

a *W — L x

When the nodes of Euclidean trees are embedded in the nodes of the Fibonacci graph,
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TABLE 1. Components of generating functions

k <xk(x) lk(x)

1
x3

2xB

x6 + 2x7

1
2
3
4
5
6
7
8
9

1
X3

2x5

2x7

2x7 + 2x9

2xn

4x9 + 2x13

2x9 + 2x15

4 x u + 2x17

4x9 + 2x1

the levels of the nodes come from the lengths, up to a shift and a stretch; this leads
us to define w

«*(*) = E* 1 + 2 e ( * > 0 -
i-i

Starting from ^(JC) = 1, inductively define

(a short list of <xk(x) and /fc(x) is given in Table 1). Next, define functions of two
variables JC and s: »

fc-2

The formulae above imply that

Note also that

<D(x;l)= 1
AT-0

so that

By induction, it is seen that the sum of the maxima of the pairs associated to the nodes
of length JV in the Euclidean tree is 2-3""1. Thus

(\+xY(\ — 2x)
= 1 -2x £

A T - l

JLM44



130 J. C. ALEXANDER AND DON ZAGIER

The lemma of the previous section leads to the expression

AM =
M ii

To see this, note that lk(x) is the generating function for the set constructed in the
induction (ii)(b) of the lemma, starting from a single 1-Euclidean tree starting at level
0. By (ii)(a), the generating function for the set constructed in (ii) is

1+JC

\-x /*(*)•

By part (iii) of that lemma, to obtain the generating function for k > 1, this expression
is multiplied by another (1 +JC)/(1 —X). The count for k = 1 is handled separately,
giving the above expression. Hence

1+x2

*(*) =
l+x
\-x

2x

(\-xy
Thus

dQ>(x;s)

ds

On the other hand

ds 1 — J C ,

(l-3x2)2

;i)- ds

(1-JC 2 ) 2 (1-2X) 2 ds

ds k>i>0
gcd(fc,<)-l

£ k\nk)x2N+1.
fc>(>0

Hence

(\-xY
(4-3x2)2 « „

^2\2/1 ,A2 A J V Z J
Jfc>i>0

This completes the proof of the proposition.

The series (1.3), as written, converges too slowly at t = \ for useful estimates. It
is not hard to see that 2-3JV~Mog2(Ar+ 1) < KN < 2-3N~1N\og2<f>; that is, the Kn grow
faster than geometrically. It is possible to rearrange the series to obtain coefficients
which grow geometrically. Accordingly we define coefficients [iN and XN by the
formulae

\ —

(3.2)

(3.3)
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We can put useful rigorous bounds on the /iN; the A.N are used to make sharper, but
non-rigorous, estimates.

LEMMA.

0.585 ... = log21.5 < - ^ < | (3.4)

(in particular the fiN are positive and grow geometrically).

Proof. Consider a node of length N in the Euclidean tree associated to the pair
{a,b}, a > b. It has a 'sibling' pair {a,a — b) (both descending from the pair {a — b, a}.
These two spawn pairs labelled

{a + b, a}, {a-\-b,b}, {2a — b, a}, {2a — b,a — b}

of length N-\-1. Accordingly nN+1 = \(KN+1 - 3KN) can be written

£ K(« + b) \og2(a + b) + (2a - b) \og2(2a -b)-3a log2 a)
a>b>0

(a,b)-l,e(a,b)-N

(a,b)-l,e(a,b)-N

By the convexity of the function x i-> x log2 x for x > 0, this expression is greater than

E ^ l o g , 1.5 = 3" log, 1.5.
(o,6)=l,e(a,6)-iV

This proves the first inequality of (3.4). On the other hand, the function

x i > x log2 x + (3 — JC) Iog2(3 — x)

is convex on the interval [1,2] and thus takes its maximum at one (actually both) of
its end points. Letting x = (a + b)/a, we find that nN+1 is bounded by

o>6>0
(a,b)~l,e(a,b)-N

This proves the second inequality of (3.4) and completes the proof of the lemma.

The behaviour of 3^(x) as a meromorphic function depends on the rate of growth
of the coefficients. From (3.4) we see that YJN-IVN*" is dominated by 2x/3(l — 3JC),

so that (3.2) converges for |x| < |. Consequently, J^(x) is holomorphic for |JC| < VI
except for a double pole at x = 1. This is consistent with the known rate of growth
of 3^(Gf). Thus

for some numbers H_2 and H_v Equivalently, as N-+ oo,

j[) = NH_2 + H_x + O((|)^/2). (3.6)
5-2



132

Note, then, that

J. C. ALEXANDER AND DON ZAGIER

H. = AH_2. (3.7)

4. Numerical computations

In this section we prove Theorem 1 and make numerical computations. We
present some tables and derive the estimates (1.5). Recall that A = 1/Iog20.

To obtain (1.4), we multiply equation (3.1) by (1 - x ) 2 to obtain

-xfO{c-n).

This is convergent at x = 1, so setting x = 1, we obtain from (3.7) that

, (4.1)

Note that since 9~ converges for x < V | , this series converges. We can evaluate it in
several ways, depending on how we expand 2T. Thus we obtain

(4.2)

(4.3)

(4.4)

The series (4.2) converges too slowly for effective computation. We use series (4.3).

The partial sums of the series are exhibited in Table 2. Since each fin > 0, the values

TABLE 2. Evaluation of entropies at levels N from equation (4.3)

N

1
2
3
4

5
6
7
8

9
10
11
12

13
14
15
16

17
18
19
20

KN

2.00000000000
9.50977500433

39.2192809489
149.825218767
546.040935867

1927.86131506
6652.82922633

22566.2448165
75522.0214340

250035.936861
820517.437055

2672781.19736
8652030.25592

27857150.7635
89274632.281 1

284933436.818
906128930.379

2872372650.92
9079075532.09

28623099334.3

0.1111111111
00487468751
0.0371179026
0.0279230694
0.0209560069
0.0157193201
0.0117898937
0.0088424925
0.0066318825
0.0049739144
0.0037304362
0.0027978273
0.0020983705
0.0015737779
0.0011803334
0.0008852500
0.0006639375
0.0004979532
0.0003734649
0.0002800986

.2803734137

.2101574355

.1566920630

.1164711129

.0862856596

.0636432351

.0466608354

.0339239316

.0243712348

.0172067086

.0118333133

.0078032667

.0047807317

.0025138304

.0008136545
0.9995385225
0.9985821736
0.9978649119
0.9973269656
0.9969235058
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in the third column are upper bounds for Hp; hence Hp is clearly seen to be less than
1. However, we can bound truncation errors in Hp and thus compute. The following
result is immediate from (3.4).

LEMMA. If (4.3) is truncated at term N, the error EN is bounded by

Kf)*"1 A log21.5 < EN < K D ^ A . (4.5)

These bounds combined with the computations of Table 3 lead to the bounds
(1.5).

It is very interesting to consider the computations from (4.4). This series seems to
converge much more rapidly than (3.2); the results are exhibited in Table 3. There are

TABLE 3. Estimates using series (4.4)

N AV Ar i -y 1 * 4-M.i N x» Ari-F" 4-M.i

1 1.00000000000000
2 0.75488750216347
3 0.59009046578294
4 0.47404748549602
5 0.3895804093515

6 0.3264477118497
7 0.278194391272
8 0.240588130815
9 0.21076779308

10 0.18675016890

1.08031506780942
1.01235537255207
0.99907446376965
0.99640716876216
0.99585916148827

0.99574436123372
0.99571990342182
0.99571461551934
0.99571345739951
0.99571320086237

11 0.1671310135
12 0.1508973530
13 0.137306234
14 0.125804500
15 0.11597459

16 0.10749731
17 0.1001257
18 0.0936666
19 0.087967
20 0.082907

0.99571314346575
0.99571313051034
0.99571312756321
0.99571312688815
0.99571312673257

0.99571312669652
0.99571312668812
0.99571312668616
0.99571312668570
0.99571312668559

a couple of surprises in this table. The Xn are obtained by adding and subtracting large
numbers. There is no reason to expect them to be positive and decreasing to zero,
although the table indicates that they are. We can prove only that Xn is O((f)n/2). There
is evidently something more subtle going on in the Euclidean algorithm. If the kn are
bounded, the data in Table 3 converge at a rate no worse than O(4~N). From the
tabulations, the data are converging faster than 0(4.5"^). Equivalently, £A n ; t n

converges for \x\ < C for some C ~ 1.1. This is surprising since, from the form of
(3.3), Yu Xnx

n could have a pole at x = 1. We leave the investigation of this series to
the interested reader. Other calculations (higher precision) indicate that the exhibited
digits of Table 3 are uncontaminated by machine roundoff error. If the indicated
convergence is valid, the value of Hp is most likely between 0.995713126685 and
0.995713126686.

5. A functional relation

In this section we prove Theorem 1'. Define a sequence of functions gn(t)

gl(t) = (1 + 0 log,(l + 0 + (2 - 0 Iog2(2 - 0,

n\\+t n\2-t
in > 1).

An easy induction shows that
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Hence each gn is analytic on the set T= C\([l,oo)U(-oo,0]), and the identity
Z = 2 3 " implies that the series

converges absolutely and locally uniformly in Tx{x:\x\ < |} and therefore defines a
jointly analytic function of t and x there. The recurrence defining thegn translates into
the functional equation

Conversely, it is easily seen by the estimate just used that this functional equation has
a unique solution whenever |x| < | (the crucial point is that then the sum of the factors
x(\ +/) and x(2 — t) is uniformly bounded by a constant less than 1). For x = \ the
functional equation for g(t, x) reduces to (1.6), so the uniqueness implies that g(t) =
g(t, \). On the other hand, the closed formula for gn(t) implies that gn(\) = £/cn+1 - 3"
for every n ^ 1 with Kn as in (1.2). Thus (1.7) is indeed equivalent to (1.4), as asserted.
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