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Odd zeta motive and linear forms in odd zeta values

Clément Dupont

With a joint appendix with Don Zagier

Abstract

We study a family of mixed Tate motives over Z whose periods are linear forms in the
zeta values ζ(n). They naturally include the Beukers–Rhin–Viola integrals for ζ(2) and
the Ball–Rivoal linear forms in odd zeta values. We give a general integral formula for
the coefficients of the linear forms and a geometric interpretation of the vanishing of the
coefficients of a given parity. The main underlying result is a geometric construction of
a minimal ind-object in the category of mixed Tate motives over Z which contains all
the non-trivial extensions between simple objects. In a joint appendix with Don Zagier,
we prove the compatibility between the structure of the motives considered here and
the representations of their periods as sums of series.

1. Introduction

1.1 Constructing linear forms in zeta values
The study of the values at integers n > 2 of the Riemann zeta function

ζ(n) =
∑
k>1

1

kn

goes back to Euler, who showed that the even zeta value ζ(2n) is a rational multiple of π2n.
Lindemann’s theorem thus implies that the even zeta values are transcendental numbers. It is
conjectured that the odd zeta values ζ(3), ζ(5), ζ(7), . . . are algebraically independent over Q[π].

Many of the results in the direction of this conjecture use as a key ingredient certain families
of period integrals which evaluate to linear combinations of 1 and zeta values:∫

σ
ω = a0 + a2ζ(2) + · · ·+ anζ(n), (1)

with ak ∈ Q for every k. We can cite in particular the following results (see Fischler’s Bourbaki
talk [Fis04] for a more complete survey).

– Apéry’s proof [Apé79] of the irrationality of ζ(2) and ζ(3) was simplified by Beukers [Beu79]
by using a family of integrals evaluating to linear combinations a0 +a2ζ(2) and a0 +a3ζ(3).

– Ball and Rivoal’s proof [Riv00, BR01] that infinitely many odd zeta values are irrational
relies on a family of integrals evaluating to linear combinations (1) for which all the even
coefficients a2, a4, a6, . . . vanish.
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Odd zeta motive and linear forms in odd zeta values

– Rhin and Viola’s irrationality measures [RV96, RV01] for ζ(2) and ζ(3) are built on
generalizations of the Beukers integrals and precise estimates for the coefficients a2 and a3.

In view of diophantine applications, it is crucial to have some control over the coefficients ak
appearing in linear combinations (1), in particular to be able to predict the vanishing of certain
coefficients.

In the present article, we study the family of integrals∫
[0,1]n

ω with ω =
P (x1, . . . , xn)

(1− x1 · · ·xn)N
dx1 · · · dxn, (2)

where n > 1 and N > 0 are integers and P (x1, . . . , xn) is a polynomial with rational coefficients.
This family contains the Beukers–Rhin–Viola integrals for ζ(2) and the Ball–Rivoal integrals. We
say that an algebraic differential form ω as in (2) is integrable if the integral in (2) is absolutely
convergent. Our first result is that such integrals evaluate to linear combinations of 1 and zeta
values, with an integral formula for the coefficients.

Theorem 1.1. There exists a family (σ2, . . . , σn) of relative n-cycles with rational coefficients
in (C∗)n − {x1 · · ·xn = 1} such that for every integrable ω we have∫

[0,1]n
ω = a0(ω) + a2(ω)ζ(2) + · · ·+ an(ω)ζ(n),

with ak(ω) a rational number for every k, given for k = 2, . . . , n by the formula

ak(ω) = (2πi)−k
∫
σk

ω. (3)

The case n = k = 2 of this theorem is Rhin and Viola’s contour formula for ζ(2) [RV96,
Lemma 2.6]. We note that in Theorem 1.1, the relative homology classes of the n-cycles σk are
uniquely determined, see Theorem 4.9 for a precise statement. Furthermore, they are invariant,
up to a sign, by the involution

τ : (x1, . . . , xn) 7→ (x−1
1 , . . . , x−1

n ), (4)

which implies a general vanishing theorem for the coefficients ak(ω), as follows.

Theorem 1.2. For k = 2, . . . , n the relative cycle τ.σk is homologous to (−1)k−1σk. Thus, for
every integrable ω:

(i) if τ. ω = ω then ak(ω) = 0 for k 6= 0 even;

(ii) if τ. ω = −ω then ak(ω) = 0 for k odd.

This allows us to construct families of integrals (2) which evaluate to linear combinations of 1
and odd zeta values, or 1 and even zeta values. This is the case for the integrals (see Corollary 5.6)∫

[0,1]n

xu1−1
1 · · ·xun−1

n (1− x1)v1−1 · · · (1− xn)vn−1

(1− x1 · · ·xn)N
dx1 · · · dxn,

where the integers ui, vi > 1 satisfy 2ui + vi = N + 1 for every i. Depending on the parity of the
product (n + 1)(N + 1), the differential form is invariant or anti-invariant by τ and we get the
vanishing of even or odd coefficients. This gives a geometric interpretation of the vanishing of
the coefficients in the Ball–Rivoal integrals [Riv00, BR01], which correspond to special values of
the parameters ui, vi.
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C. Dupont

The fact that the vanishing of certain coefficients in the Ball–Rivoal integrals could be

explained by the existence of (anti-)invariant relative cycles was suggested to me by Rivoal

during a visit at Institut Fourier, Grenoble, in October 2015. The special role played by the

involution τ was first remarked by Deligne in a letter to Rivoal (17 February 2001, Princeton,

NJ).

In an appendix written jointly with Don Zagier, we give an interpretation of the

coefficients ak(ω) appearing in Theorem 1.1 in elementary terms, that is in terms of the natural

representations of the integrals in (2) as sums of series. This should be viewed as a geometric

version of the dictionary between integrals and sums of series which is used in [Riv00, BR01]. It

also gives an elementary proof of the vanishing properties of Theorem 1.2, which is essentially

already present in the literature, see e.g. [Riv00, BR01], [Zud04, § 8] and [CFR08b, § 3.1].

The existence of the integral formulas (3) follows from the computation of certain motives,

which are the central objects of the present article and that we now describe.

1.2 Constructing extensions in mixed Tate motives

Recall that the category MT(Z) of mixed Tate motives over Z is a (neutral) Q-linear tannakian

category defined in [DG05] and whose abstract structure is well understood. The only simple

objects in MT(Z) are the pure Tate objects Q(−k), for k an integer, and every object in MT(Z)

has a canonical weight filtration whose graded quotients are sums of pure Tate objects. The only

non-zero extension groups between the pure Tate objects are given by

Ext1
MT(Z)(Q(−(2n+ 1)),Q(0)) ∼= Q (n > 1). (5)

Furthermore, a period matrix of the (essentially unique) non-trivial extension of Q(−(2n + 1))

by Q(0) has the form (
1 ζ(2n+ 1)

0 (2πi)2n+1

)
.

The difficulty of constructing linear combinations (1) with many vanishing coefficients reflects the

difficulty of constructing objects of MT(Z) with many vanishing weight-graded quotients [Bro16,

§ 1.4]. In particular, the difficulty of constructing linear combinations involving only 1 and

ζ(2n+ 1) reflects the difficulty of giving a geometric construction of the extensions (5).

In this article, we construct a minimal ind-object Zodd in the category MT(Z) which contains

all the non-trivial extensions (5). The construction goes as follows. We first define, for every

integer n, an object Z(n) ∈ MT(Z) whose periods naturally include all the integrals (2). More

precisely, any integrable form ω defines a class in the de Rham realization Z(n)
dR , and the unit

n-cube [0, 1]n defines a class in the dual of the Betti realization Z(n),∨
B , the pairing between these

classes being the integral (2). The technical heart of this article is the computation of the full

period matrix of Z(n).

Theorem 1.3. We have a short exact sequence

0→ Q(0)→ Z(n)
→ Q(−2)⊕ · · · ⊕Q(−n)→ 0

and Z(n) has the following period matrix which is compatible with this short exact sequence:
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Odd zeta motive and linear forms in odd zeta values

1 ζ(2) ζ(3) · · · · · · ζ(n− 1) ζ(n)

(2πi)2

(2πi)3 0

. . .

. . .

0 (2πi)n−1

(2πi)n


.

Concretely, this theorem says that we can find a basis (v0, v2, . . . , vn) of the de Rham

realization Z(n)
dR (which we will compute explicitly in terms of a special family of integrable forms)

and a basis (ϕ0, ϕ2, . . . , ϕn) of the dual of the Betti realization Z(n),∨
B , such that the matrix of

the integrals 〈ϕi, vj〉 is the one given. The basis element ϕ0 is the class of the unit n-cube [0, 1]n.

Expressing the class [ω] ∈ Z(n)
dR of an integrable form ω in the basis (v0, v2, . . . , vn) as

[ω] = a0(ω)v0 + a2(ω)v2 + · · ·+ an(ω)vn

and pairing with the dual basis of the Betti realization gives the proof of Theorem 1.1, with the
cycles (σ2, . . . , σn) chosen as representatives of the classes (ϕ2, . . . , ϕn).

The involution (4) plays an important role in the proof of Theorem 1.3. It induces a natural
involution, still denoted by τ , on the quotient Z(n)/Q(0) ∼= Q(−2)⊕ · · · ⊕Q(−n).

Theorem 1.4. For k = 2, . . . , n, the involution τ acts on the direct summand Q(−k) of
Z(n)/Q(0) by multiplication by (−1)k−1.

This readily implies Theorem 1.2. Now if we write

Z(n)/Q(0) = (Z(n)/Q(0))+ ⊕ (Z(n)/Q(0))−

for the decomposition into invariant and anti-invariants with respect to τ and write p : Z(n)
→

Z(n)/Q(0) for the natural projection, we may set

Z(n),odd := p−1((Z(n)/Q(0))+)

whose period matrix only contains odd zeta values in the first row. The objects Z(n),odd ∈MT(Z)
form an inductive system, and the limit

Zodd := lim
−→
n

Z(n),odd

has an infinite period matrix

1 ζ(3) ζ(5) ζ(7) · · · · · · · · ·
(2πi)3

(2πi)5 0

(2πi)7

. . .

0
. . .

. . .


. (6)

We call Zodd the odd zeta motive.
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1.3 Related work and open questions

This article follows the program initiated by Brown [Bro16], which aims at explaining and

possibly producing irrationality proofs for zeta values by means of algebraic geometry. However,

the motives that we are considering are different from the general motives considered by Brown,

and in particular, easier to compute. It would be interesting to determine the precise relationship

between our motives and those defined in [Bro16] in terms of the moduli spaces M0,n+3.

In another direction, an explicit description of the relative cycles defined in Theorem 1.1

could prove helpful in proving quantitative results on the irrationality measures of zeta values,

in the spirit of [RV96, RV01].

It is also tempting to apply our methods to other families of integrals appearing in the

literature, such as the Beukers integrals for ζ(3) and their generalizations. One should be able,

for instance, to recover Rhin and Viola’s contour integrals for ζ(3) [RV01, Theorem 3.1]. The

symmetry properties studied by Cresson et al. [CFR08a] can probably be explained geometrically

via finite group actions as in the present article. The ad hoc long exact sequences appearing

here should be replaced by more systematic tools such as the Orlik–Solomon bi-complexes

from [Dup17].

Finally, it should be possible to extend our results to a functional version of the periods (2),

where one replaces 1−x1 · · ·xn in the denominator by 1−z x1 · · ·xn, with z a complex parameter.

Such functions have already been considered in [Riv00, BR01]. The relevant geometric objects are

variations of mixed Hodge–Tate structures on C−{0, 1}, or mixed Tate motives over A1
Q−{0, 1}.

1.4 Contents

In § 2 we recall some general facts about the categories in which the objects that we will be

considering live, and in particular the categories MT(Z) and MT(Q) of mixed Tate motives over Z
and Q. In § 3 we introduce the zeta motives and examine their Betti and de Rham realizations.

In § 4, which is more technical than the rest of the paper, we compute the full period matrix of

the zeta motives, which allows us to define the odd zeta motives. In § 5, we apply our results to

proving Theorems 1.1 and 1.2 on the coefficients of linear forms in zeta values.

2. Mixed Tate motives and their period matrices

We recall the construction of the categories MHTS, MT(Q) and MT(Z), which sit as full

subcategories of one another, as follows:

MT(Z) ↪→ MT(Q) ↪→ MHTS.

2.1 Mixed Hodge–Tate structures and their period matrices

Definition 2.1. A mixed Hodge–Tate structure is a triple H = (HdR, HB, α) consisting of:

– a finite-dimensional Q-vector space HB, together with a finite increasing filtration indexed

by even integers: · · · ⊂W2(n−1)HB ⊂W2nHB ⊂ · · · ⊂ HB;

– a finite-dimensional Q-vector space HdR, together with a grading indexed by even integers:

HdR =
⊕

n(HdR)2n;

– an isomorphism α : HdR ⊗Q C '−→ HB ⊗Q C;
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Odd zeta motive and linear forms in odd zeta values

which satisfy the following conditions.

– For every integer n, the isomorphism α sends (HdR)2n ⊗Q C to W2nHB ⊗Q C.

– For every integer n, it induces an isomorphism αn : (HdR)2n⊗QC '−→ (W2nHB/W2(n−1)HB)
⊗QC, which sends (HdR)2n to (W2nHB/W2(n−1)HB) ⊗Q (2πi)nQ.

We call HB and HdR the Betti realization and the de Rham realization of the mixed
Hodge–Tate structure, and α the comparison isomorphism. The filtration W on HB is called
the weight filtration. The grading on HdR is called the weight grading, and the corresponding
filtration W2nHdR :=

⊕
k6n(HdR)2k the weight filtration.

Remark 2.2. More classically, a mixed Hodge–Tate structure is defined to be a mixed Hodge
structure [Del71, Del74] whose weight-graded quotients are of Tate type, i.e., of type (p, p)
for some integer p. One passes from that classical definition to Definition 2.1 by setting
HB := H and HdR :=

⊕
nW2nH/W2(n−1)H. The isomorphism α is induced by the inverses

of the isomorphisms

(W2nH/W2(n−1)H)⊗Q C
∼=
←− (W2nH ⊗Q C) ∩ Fn(H ⊗Q C) (7)

(multiplied by (2πi)n) which express the fact that the weight-graded quotients are of Tate type.

It is convenient to view the comparison isomorphism α : HdR⊗QC '−→ HB⊗QC as a pairing

H∨B ⊗Q HdR −→ C, ϕ⊗ v 7→ 〈ϕ, v〉, (8)

where (·)∨ denotes the linear dual. The weight filtration on H∨B is defined by

W−2nH
∨
B := (HB/W2(n−1)HB)∨,

so that we have
W−2nH

∨
B/W−2(n+1)H

∨
B
∼= (W2nHB/W2(n−1)HB)∨.

The pairing (8) is compatible with the weight filtrations in that we have 〈ϕ, v〉 = 0 for ϕ ∈
W−2mH

∨
B , v ∈W2nHdR and m < n.

If we choose bases for the Q-vector spaces HdR and HB, then the matrix of α in these bases,
or equivalently the matrix of the pairing (8), is called a period matrix of the mixed Hodge–Tate
structure. We will always make the following assumptions on the choice of bases.

– The basis of HB is compatible with the weight filtration.

– The basis of HdR is compatible with the weight grading.

– For every n, the matrix of the comparison isomorphism αn in the corresponding basis
is (2πi)n times the identity.

This implies that any period matrix is block upper-triangular with successive blocks of (2πi)n Id
on the diagonal. Conversely, any block upper-triangular matrix with successive blocks of (2πi)n Id
on the diagonal is a period matrix of a mixed Hodge–Tate structure.

Example 2.3. Any matrix of the form
1 ∗ ∗ ∗ ∗
0 2πi 0 ∗ ∗
0 0 2πi ∗ ∗
0 0 0 (2πi)2 0

0 0 0 0 (2πi)2
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C. Dupont

defines a mixed Hodge–Tate structure H such that HdR = (HdR)0⊕ (HdR)2⊕ (HdR)4 has graded

dimension (1, 2, 2).

2.2 The category of mixed Hodge–Tate structures

We denote by MHTS the category of mixed Hodge–Tate structures. It is a neutral tannakian

category over Q, which means in particular that it is an abelian Q-linear category equipped with

a Q-linear tensor product ⊗. We note that an object H ∈ MHTS is endowed with a canonical

weight filtration W by subobjects such that the morphisms in MHTS are strictly compatible

with W . We have two natural fiber functors

ωB : MHTS→ VectQ and ωdR : MHTS→ VectQ (9)

from MHTS to the category of finite-dimensional vector spaces over Q, which only remember the

Betti realization HB and the de Rham realization HdR respectively. We note that the de Rham

realization functor ωdR factors through the category of finite-dimensional graded vector spaces.

The comparison isomorphisms α gives an isomorphism between the complexifications of the two

fiber functors:

ωdR ⊗Q C '−→ ωB ⊗Q C. (10)

For an integer n, we denote by Q(−n) the mixed Hodge–Tate structure whose period matrix

is the 1 × 1 matrix ((2πi)n). Its weight grading and filtration are concentrated in weight 2n,

hence we call it the pure Tate structure of weight 2n. For H a mixed Hodge–Tate structure, the

tensor product H ⊗Q(−n) is simply denoted by H(−n) and called the nth Tate twist of H. A

period matrix of H(−n) is obtained by multiplying a period matrix of H by (2πi)n. The weight

grading and filtration of H(−n) are those of H, shifted by 2n.

2.3 Extensions between pure Tate structures

The pure Tate structures Q(−n) are the only simple objects of the category MHTS. The

extensions between them are easily described. Up to a Tate twist, it is enough to describe

the extensions of Q(−n) by Q(0) for some integer n. The corresponding extension group is given

by

Ext1
MHTS(Q(−n),Q(0)) =

{
C/(2πi)nQ if n > 0,

0 otherwise.

More concretely, the extension corresponding to a number z ∈ C/(2πi)nQ has a period matrix(
1 z

0 (2πi)n

)
.

We note that the higher extension groups vanish: ExtrMHTS(H,H ′) = 0 for r > 2 and H, H ′ two

mixed Hodge–Tate structures.

Example 2.4. For a complex number a ∈ C− {0, 1}, the cohomology group H1(C∗, {1, a}) is an

extension of Q(−1) by Q(0) corresponding to z = log(a) ∈ C/(2πi)Q. It is called the Kummer

extension of parameter a.
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2.4 Mixed Tate motives over Q
Let DM(Q) denote Voevodsky’s triangulated category of motives over Q [Voe00]. It is a Q-linear
triangulated tensor category whose objects can be described in terms of complexes of varieties
and whose morphisms can be described in terms of algebraic cycles (in particular, in terms of
Bloch’s higher Chow groups). There are invertible objects Q(−n) ∈ DM(Q), where Q(−1) is
the reduced motive of the multiplicative group Gm, shifted by −1 (we work with cohomological
conventions). The triangulated subcategory of DM(Q) generated by these objects is denoted
by DMT(Q). By using the relation between higher Chow groups and rational K-theory [Blo86]
and Borel’s computation of the rational K-theory of number fields [Bor77], Levine defined a
natural t-structure on DMT(Q) [Lev93]. The heart of this t-structure is denoted by MT(Q) and
called the category of mixed Tate motives over Q. It is a (neutral) tannakian Q-linear category
which contains the objects Q(−n).

There is a faithful and exact functor

MT(Q)→ MHTS (11)

from MT(Q) to the category MHTS of mixed Hodge–Tate structures, which is called the Hodge
realization functor ([DG05, § 2.13], see also [Hub00, Hub04]). It sends the object Q(−n) ∈MT(Q)
to the object Q(−n) ∈ MHTS. Composing (11) with the fiber functors (9) gives the Betti and
de Rham realization functors, still denoted by

ωB : MT(Q)→ VectQ and ωdR : MT(Q)→ VectQ, (12)

and we still have a comparison isomorphism (10). We note that any object in MT(Q) is endowed
with a canonical weight filtration W by subobjects such that the morphisms in MT(Q) are strictly
compatible with W . The realization morphisms are compatible with the weight filtrations.

Remark 2.5. The functors (12) are fiber functors for the tannakian category MT(Q). In
particular, they are conservative.

The extension groups between the objects Q(−n) are computed by the rational K-theory
of Q [Lev93, § 4] and hence given, after Borel [Bor77], by

Ext1
MT(Q)(Q(−n),Q(0)) =


⊕

p prime Q if n = 1,

Q if n is odd > 3,

0 otherwise.

(13)

As in the category MHTS, the higher extension groups vanish in MT(Q). The morphisms

Ext1
MT(Q)(Q(−n),Q(0)) −→ Ext1

MHTS(Q(−n),Q(0)) ∼= C/(2πi)nQ (14)

induced by (11) are easy to describe. For n = 1, the image of the direct summand indexed
by a prime p is the line spanned by the class of the Kummer extension of parameter p, i.e.,
by log(p) ∈ C/(2πi)Q. For n > 3 odd, the image is the line spanned by ζ(n) ∈ C/(2πi)nQ. Thus,
the morphism (14) is injective for every n. This implies the following theorem [DG05, Proposition
2.14].

Theorem 2.6. The realization functor (11) is fully faithful.

This theorem is very helpful, since it allows one to compute in the category MT(Q) with
period matrices; in other words, a mixed Tate motive over Q is uniquely determined by its
period matrix.
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2.5 Mixed Tate motives over Z
Let MT(Z) denote the category of mixed Tate motives over Z, as defined in [DG05]. By definition,
it is a full tannakian subcategory

MT(Z) ↪→ MT(Q)

of the category of mixed Tate motives over Q, which contains the pure Tate motives Q(−n) for
every integer n. An object of MT(Q) is in MT(Z) if and only if it has no subquotient isomorphic
to a non-split extension of Q(−n) by Q(−n+ 1).

The extension groups in the category MT(Z) satisfy the following properties:

(1) Ext1
MT(Z)(Q(−1),Q(0)) = 0;

(2) the natural morphism Ext1
MT(Z)(Q(−n),Q(0))→ Ext1

MT(Q)(Q(−n),Q(0)) is an isomorphism
for n 6= 1.

As in the categories MHTS and MT(Q), the higher extension groups vanish in MT(Z).
For n > 3 odd, there is an essentially unique non-trivial extension of Q(−n) by Q(0) in the

category MT(Q), which actually lives in MT(Z). A period matrix for such an extension is(
1 ζ(n)

0 (2πi)n

)
.

Apart from the case n = 3 (see [Bro16, Corollary 11.3] or Proposition 4.11 below), we do not
know of any geometric construction of these extensions.

3. Definition of the zeta motives Z(n)

We define the zeta motives Z(n) and explain how to define elements of their Betti and de Rham
realizations. In particular, we define the classes of the Eulerian differential forms, which are

elements of the de Rham realization Z(n)
dR constructed out of the family of Eulerian polynomials.

We also note that the zeta motives fit into an inductive system · · · → Z(n−1)
→ Z(n)

→ · · ·
which is compatible with the Eulerian differential forms.

3.1 The definition
Let n > 1 be an integer. In the affine n-space Xn = AnQ we consider the hypersurfaces

An = {x1 · · ·xn = 1} and

Bn =
⋃

16i6n

{xi = 0} ∪
⋃

16i6n

{xi = 1}.

The union An ∪ Bn is almost a normal crossing divisor inside Xn: around the point Pn =
(1, . . . , 1), it looks like z1 · · · zn(z1 + · · ·+ zn) = 0 (set xi = exp(zi)). Let

πn : X̃n→ Xn

be the blow-up at Pn, and En = π−1
n (Pn) be the exceptional divisor. We denote respectively

by Ãn and B̃n the strict transforms of An and Bn along πn. The union Ãn ∪ B̃n ∪En is a simple
normal crossing divisor inside X̃n.

There is an object Z(n) ∈ MT(Q), which we may abusively denote by

Z(n) = Hn(X̃n − Ãn, (B̃n ∪ En)− (B̃n ∪ En) ∩ Ãn),
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Odd zeta motive and linear forms in odd zeta values

such that its Betti and de Rham realizations (12) are (? ∈ {B,dR})

Z(n)
? = Hn

? (X̃n − Ãn, (B̃n ∪ En)− (B̃n ∪ En) ∩ Ãn).

We now give the precise definition of Z(n), along the lines of [Gon02, Proposition 3.6]. Let us
write Y = X̃n− Ãn and ∂Y = (B̃n∪En)− (B̃n∪En)∩ Ãn, viewed as schemes defined over Q. We
have a decomposition into smooth irreducible components ∂Y =

⋃
i ∂iY , where i runs in a set

of cardinality 2n+ 1. For a set I = {i1, . . . , ir} of indices, we denote by ∂IY = ∂i1Y ∩ · · · ∩ ∂irY
the corresponding intersection; it is either empty or a smooth subvariety of X of codimension r.

We thus get an object

· · ·→
⊔
|I|=3

∂IY →
⊔
|I|=2

∂IY →
⊔
|I|=1

∂IY → Y → 0 (15)

in Voevodsky’s triangulated category DM(Q), see § 2.4. The differentials are the alternating
sums of the natural closed immersions. One readily checks that the complex (15) lives in
the triangulated subcategory DMT(Q). By definition, the object Z(n) in MT(Q) is the nth
cohomology group of the complex (15) with respect to the t-structure.

Definition 3.1. For n > 1, we call Z(n) ∈ MT(Q) the nth zeta motive.

Remark 3.2. For n = 1, the blow-up map π1 : X̃1→ X1 is an isomorphism and Ã1 = ∅, so that
we get Z(1) = H1(A1

Q, {0, 1}). We have a long exact sequence in relative cohomology

0→ H0(A1
Q, {0, 1})→ H0(A1

Q)→ H0({0})⊕H0({1})→ Z(1)
→ 0,

which shows that H0(A1
Q, {0, 1}) = 0 and that we have an isomorphism Z(1) ' Q(0).

Remark 3.3. We will prove in Proposition 4.12 that Z(n) is actually an object of the full
subcategory MT(Z) ↪→ MT(Q). It would be possible, but a little technical, to prove it directly
from the definition by using the criterion [GM04, Proposition 4.3] on some compactification
of X̃n − Ãn.

3.2 Betti and de Rham realizations, 1

We now give a first description of the Betti and de Rham realizations of the zeta motive Z(n).
We let C• denote the functor which assigns to a topological space the complex of singular

chains with rational coefficients. By definition, the dual of the Betti realization Z(n),∨
B is the nth

homology group of the total complex of the double complex

//
⊕
|I|=2

C0(∂IY (C)) //
⊕
|I|=1

C0(∂IY (C)) // C0(Y (C))

//

OO

⊕
|I|=1

C1(∂IY (C)) //

OO

C1(Y (C))

OO

//

OO

C2(Y (C))

OO

OO

(16)
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C. Dupont

obtained by applying the functor C• to the complex (15). One readily verifies that this complex
is quasi-isomorphic to the quotient complex C•(Y (C))/C•(∂Y (C)), classically used to define the
relative homology groups HB

• (Y, ∂Y ) = Hsing
• (Y (C), ∂Y (C)).

We let Ω•∂IY denote the complex of sheaves of algebraic differential forms on the smooth

variety ∂IY , extended by zero to Y . By definition, the de Rham realization Z(n)
dR is the

hypercohomology of the total complex of the double complex of sheaves⊕
|I|=2

Ω0
∂IY

oo

��

⊕
|I|=1

Ω0
∂IY

oo

��

Ω0
Y

oo

��⊕
|I|=1

Ω1
∂IY

oo

��

Ω1
Y

oo

��
Ω2
Y

oo

��

(17)

where the vertical arrows are the exterior derivatives and the horizontal arrows are the alternating
sums of the natural restriction maps as in the complex (15).

The comparison morphism between the Betti and de Rham realizations of Z(n) is induced,
after complexification, by the morphism from the double complex (17) to the double complex
(16) given by integration. Note that one first has to replace (16) by the double complex of sheaves
of singular cochains.

3.3 Betti and de Rham realizations, 2

We now give descriptions of the Betti and de Rham realizations of Z(n) that allow one to work
directly in the affine space Xn and do not require to work in the blow-up X̃n. The justification
of the blow-up process goes as follows. Suppose that one wants to find a motive whose periods
include all absolutely convergent integrals of the form∫

[0,1]n

P (x1, . . . , xn)

(1− x1 · · ·xn)N
dx1 · · · dxn, (18)

where P (x1, . . . , xn) is a polynomial with rational coefficients, and N > 0 is an integer. On
the Betti side, we note that the boundary of [0, 1]n intersects the divisor An(C) of poles of the
differential forms at the point Pn(C). The blow-up process is thus required in order to have
a class that represents the integration domain. On the de Rham side, the blow-up process is
required in order to only consider absolutely convergent integrals of the form (18). This is made
precise by Propositions 3.4 and 3.6 below.

We start with the Betti realization. Let us write
◦
An = An − Pn and note that this is not a

closed subset, but only a locally closed subset, of Xn.

Proposition 3.4. The blow-up morphism πn : X̃n→ Xn induces an isomorphism

Z(n),∨
B

∼=−→ Hsing
n (Xn(C)−

◦
An(C), Bn(C)−Bn(C) ∩

◦
An(C)).
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Odd zeta motive and linear forms in odd zeta values

Proof. The blow-up morphism πn is the contraction of the exceptional divisor En onto the
point Pn. Thus, this is a consequence of the classical excision theorem in singular homology, see
for instance [Hat02, Proposition 2.22]. 2

As a consequence of Proposition 3.4, we see that the unit n-square �n = [0, 1]n ⊂ Xn(C)−
◦
An(C) defines a class

[�n] ∈ Z(n),∨
B .

When viewed in X̃n(C) − Ãn(C), it is the class of the strict transform �̃n, which has the
combinatorial structure of an n-cube truncated at one of its vertices.

We now turn to a description of the de Rham realization of Z(n). Instead of giving a general
description in terms of algebraic differential forms on Xn−An, we will only give a way of defining

many classes in Z(n)
dR , which will turn out to be enough for our purposes.

Definition 3.5. An algebraic differential n-form on Xn − An is said to be integrable if it can
be written as a linear combination of forms of the type

ω =
(1− x1)v1−1 · · · (1− xn)vn−1f(x1, . . . , xn)

(1− x1 · · ·xn)N
dx1 · · · dxn (19)

with v1, . . . , vn > 1 and N > 0 integers such that v1 + · · · + vn > N + 1, and f(x1, . . . , xn) a
polynomial with rational coefficients.

The terminology is justified by the following proposition.

Proposition 3.6. Let ω be an algebraic differential n-form on Xn − An. If ω is integrable,

then π∗n(ω) does not have a pole along En, and thus defines a class in Z(n)
dR . In particular, the

integral ∫
�̃n

π∗n(ω) =

∫
�n

ω

is absolutely convergent and is a period of Z(n).

Proof. We write ω as in (19). We note that the only problem for absolute convergence is around
the point (1, . . . , 1). Let us thus make the change of variables yi = 1 − xi for i = 1, . . . , n,
and g(y1, . . . , yn) = (−1)n f(x1, . . . , xn). We write h(y1, . . . , yn) = 1− (1− y1) · · · (1− yn) so that
we have

ω =
yv1−1

1 · · · yvn−1
n g(y1, . . . , yn)

h(y1, . . . , yn)N
dy1 · · · dyn.

There are n natural affine charts for the blow-up πn : X̃n → Xn of the point (0, . . . , 0), and
by symmetry it is enough to work in the first one. We then have local coordinates (z1, . . . , zn)
on X̃n, which are linked to the coordinates (y1, . . . , yn) = πn(z1, . . . , zn) by the formula

(y1, . . . , yn) = (z1, z1z2, . . . , z1zn).

The problem of convergence occurs in the neighborhood of the exceptional divisor En, which is
defined by the equation z1 = 0. Since h(0, . . . , 0) = 0, we may write

h(z1, z1z2, . . . , z1zn) = z1 h̃(z1, . . . , zn)
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C. Dupont

with h̃(z1, . . . , zn) a polynomial such that h̃(0, . . . , 0) = 1. The strict transform Ãn of An is thus

defined by the equation h̃(z1, . . . , zn) = 0. We note that we have dy1 · · · dyn = zn−1
1 dz1 · · · dzn, so

that we can write

π∗n(ω) =
zv1−1

1 (z1z2)v2−1 · · · (z1zn)vn−1g(z1, z1z2, . . . , z1zn)

zN1 h̃(z1, . . . , zn)N
zn−1

1 dz1 · · · dzn = zv1+···+vn−N−1
1 Ω,

where Ω has a pole along Ãn but not along En. The claim follows. 2

We make an abuse of notation and denote by

[ω] ∈ Z(n)
dR

the class of the pullback π∗n(ω) for ω integrable, so that the comparison isomorphism reads

〈[�n], [ω]〉 =

∫
�n

ω.

We note the converse of Proposition 3.6, which we will not use.

Proposition 3.7. Let ω be an algebraic differential n-form on Xn−An. If the integral
∫
�n ω is

absolutely convergent, then ω is integrable.

Proof. In the coordinates yi = 1− xi, we write

ω =
P (y1, . . . , yn)

h(y1, . . . , yn)N
dy1 · · · dyn

with P (y1, . . . , yn) a polynomial with rational coefficients. If the integral
∫
�n ω is absolutely

convergent in the neighborhood of the point (0, . . . , 0), then after the change of variables

φ(z1, . . . , zn) = (z1, z1z2, . . . , z1zn)

we get an absolutely convergent integral in the neighborhood of z1 = 0. We write, as in the proof
of Proposition 3.6,

φ∗(ω) =
P (z1, z1z2, . . . , z1zn)

zN−n+1
1 h̃(z1, . . . , zn)N

dz1 · · · dzn.

Let us write
P (y1, . . . , yn) =

∑
a

λa y
a1−1
1 · · · yan−1

n

with λa ∈ Q for every multi-index a = (a1, . . . , an). We then have

P (z1, z1z2, . . . , z1zn) =
∑
a

λa z
a1+···+an−n
1 za2−1

2 · · · zan−1
n .

Let v denote the smallest integer such that there exists a multi-index a with |a| := a1+· · ·+an = v.
We then have an equivalence

P (z1, z1z2, . . . , z1zn) ∼z1→0 z
v−n
1 Q(z2, . . . , zn),

where Q(z2, . . . , zn) =
∑
|a|=v λa z

a2−1
2 · · · zan−1

n . We also have the equivalence

h̃(z1, . . . , zn) ∼z1→0 1 + z2 + · · ·+ zn,

from which we deduce

φ∗(ω) ∼z1→0 z
v−N−1
1 dz1

Q(z2, . . . , zn)

(1 + z2 + · · ·+ zn)N
dz2 · · · dzn.

This gives an absolutely convergent integral in the neighborhood of z1 = 0 if and only if v >N+1,
which is exactly the integrability condition. 2
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Odd zeta motive and linear forms in odd zeta values

3.4 The Eulerian differential forms
Recall that the family of Eulerian polynomials Er(x), r > 0, is defined by the equation

Er(x)

(1− x)r+1
=
∑
j>0

(j + 1)rxj . (20)

We refer to [Foa10] for a survey on Eulerian polynomials. If r > 1, then (20) is equivalent to

Er(x)

(1− x)r+1
=

1

x

(
x
d

dx

)r 1

1− x.

For instance, we have E0(x) = E1(x) = 1, E2(x) = 1 + x, E3(x) = 1 + 4x + x2. The Eulerian
polynomials satisfy the recurrence relation

Er+1(x) = x(1− x)E′r(x) + (1 + rx)Er(x). (21)

For integers n > 2 and k = 2, . . . , n, we define a differential form

ω
(n)
k =

En−k(x1 · · ·xn)

(1− x1 · · ·xn)n−k+1
dx1 · · · dxn.

Note that we have ω
(n)
n = dx1 · · · dxn/(1− x1 · · ·xn).

Lemma 3.8. For k = 2, . . . , n, the form ω
(n)
k defines a class [ω

(n)
k ] ∈ Z(n)

dR and we have

〈[�n], [ω
(n)
k ]〉 =

∫
�n

ω
(n)
k = ζ(k). (22)

Proof. The first statement follows from Proposition 3.6. The computation of the period is then
straightforward using the definition (20) of the Eulerian polynomials:∫

�n

ω
(n)
k =

∑
j>0

(j + 1)n−k
∫

[0,1]n
(x1 · · ·xn)j dx1 · · · dxn =

∑
j>0

(j + 1)−k = ζ(k). 2

For every n > 0, we define ω
(n)
0 = dx1 · · · dxn; we also have the class [ω

(n)
0 ] ∈ Zn,dR, whose

pairing with the class [�n] is

〈[�n], [ω
(n)
0 ]〉 =

∫
�n

ω
(n)
0 = 1.

We call the differential forms ω
(n)
k , for k = 0, 2, . . . , n, the Eulerian differential forms.

3.5 An inductive system
For n > 2 there are natural morphisms

i(n) : Z(n−1)
→ Z(n) (23)

in the category MT(Q), that we now define. We fix the identification Xn−1 = {xn = 1} ⊂ Xn,
which implies the equality An−1 = An ∩Xn−1. Let us set

B′n =
⋃

16i6n

{xi = 0} ∪
⋃

16i6n−1

{xi = 1},

so that we have Bn = B′n ∪Xn−1, and Bn−1 = B′n ∩Xn−1.
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C. Dupont

In the blow-up X̃n, we thus get an embedding X̃n−1 ⊂ X̃n and identifications Ãn−1 = Ãn ∩
X̃n−1, B̃n−1 = B̃′n ∩ X̃n−1 and En−1 = En ∩ X̃n−1. Thus, the complex in DM(Q) that we have
used to define Z(n−1) is the subcomplex

· · ·→
⊔
|I|=3

∂IY⊂X̃n−1

∂IY →
⊔
|I|=2

∂IY⊂X̃n−1

∂IY → X̃n−1→ 0→ 0 (24)

of the complex (15) that we have used to define Z(n), shifted by 1. Taking the nth cohomology
groups with respect to the t-structure gives the morphism (23).

In the Betti and the de Rham realizations, the morphism (23) is also induced by the inclusion
of double subcomplexes of (16) and (17).

We define the ind-motive
Z = lim

−→
n

Z(n),

viewed as an ind-object in the category MT(Q), and simply call it the zeta motive.

The map i
(n),∨
B : Z(n),∨

B → Z(n−1),∨
B given by the transpose of the Betti realization of i(n)

satisfies
i
(n),∨
B ([�n−1]) = [�n]. (25)

More generally and loosely speaking, if σ is a chain on X̃n(C) − Ãn(C) whose boundary is

on B̃n(C)∪En(C), then i
(n),∨
B ([σ]) is the class of ‘the component of the boundary of σ that lives

on X̃n−1(C)’. According to Proposition 3.4, one can also work with chains on Xn(C) −
◦
An(C).

We note that (25) allows us to define a class

[�] ∈ Z∨B := lim
←−
n

Z(n),∨
B .

Remark 3.9. There are (alternating) signs in the differentials of the complexes (15)–(17), that
we leave to the reader. This also induces signs on the different components of the inclusions of
subcomplexes such as (24); these signs are fixed once and for all by (25).

The next proposition shows that the Eulerian differential forms ω
(n)
k are compatible with the

inductive structure on the zeta motives.

Proposition 3.10. For integers n > 2 and k = 0, 2, . . . , n − 1, the map i
(n)
dR : Z(n−1)

dR → Z(n)
dR

sends the class [ω
(n−1)
k ] to the class [ω

(n)
k ].

Proof. Since all the differential forms that we are manipulating have no poles along the
exceptional divisors En−1 and En, it is safe to do the computations in the affine spaces Xn−1

and Xn; we leave it to the reader to turn them into computations in X̃n−1 and X̃n by working
in local charts as in the proof of Proposition 3.6. Let us first assume that k ∈ {2, . . . , n− 1}. We
put

η
(n−1)
k =

xnEn−1−k(x1 · · ·xn)

(1− x1 · · ·xn)n−k
dx1 · · · dxn−1,

viewed as a form on Xn. Then we have (η
(n−1)
k )|Xn−1

= ω
(n−1)
k and (η

(n−1)
k )|B′n−1

= 0. A diagram

chase in the double complex (17) shows that i
(n)
dR ([ω

(n−1)
k ]) is the class of

(−1)n−1 (d(η
(n−1)
k ))
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Odd zeta motive and linear forms in odd zeta values

(the sign is here to be consistent with the Betti version, see Remark 3.9). We have

(−1)n−1 d(η
(n−1)
k ) =

∂

∂xn

(
xnEn−1−k(x1 · · ·xn)

(1− x1 · · ·xn)n−k

)
dx1 · · · dxn

and one easily sees that setting x = x1 · · ·xn we have

∂

∂xn

(
xnEn−1−k(x1 · · ·xn)

(1− x1 · · ·xn)n−k

)
=
x(1− x)E′n−1−k(x) + (1 + (n− 1− k)x)En−1−k(x)

(1− x)n−k+1
.

Using the recurrence relation (21), one then concludes that

(−1)n−1d(η
(n−1)
k ) =

En−k(x1 · · ·xn)

(1− x1 · · ·xn)n−k+1
dx1 · · · dxn = ω

(n)
k .

For k = 0, this is the same computation with η
(n)
0 = xn dx1 · · · dxn−1 and

(−1)n−1 d(η
(n−1)
0 ) = dx1 · · · dxn = ω

(n)
0 . 2

Proposition 3.10 allows us to unambiguously define classes

[ωk] ∈ ZdR

for k = 0, 2, 3, . . . , whose pairing with the class [�] ∈ Z∨B is

〈[�], [ω0]〉 = 1 and 〈[�], [ωk]〉 = ζ(k) (k > 2).

Remark 3.11. The proof of Proposition 3.10 can be thought of as a cohomological version of the
relation ∫

�n

ω
(n)
k =

∫
�n−1

ω
(n−1)
k ,

which may be proved using Stokes’s theorem and the recurrence relation (21).

Proposition 3.12. For integers n > 1 and k = 0, 2, . . . , n, the class [ω
(n)
k ] lives in the pure

weight 2k component of Z(n)
dR .

Proof. For k = 0, Proposition 3.10 and the fact that the maps i
(n)
dR are compatible with the weight

gradings implies that it is enough to do the proof for n = 1; this case is easy since Z(1) ∼= Q(0)
only has weight 0. We now turn to the case k = 2, . . . , n. Thanks to Proposition 3.10 and the fact

that the maps i
(n)
dR are compatible with the weight gradings, it is enough to check it for k = n.

By (7), we need to prove that the class of ω
(n)
n is in FnZ(n)

dR . Let Y be a smooth projective
variety of dimension n, D be a normal crossing divisor inside Y , and Z be a closed subvariety
of Y of dimension 6 n− 1. Then we have

FnHn
dR(Y −D,Z − Z ∩D) = Im(H0(Ωn

Y (logD)) −→ Hn
dR(Y −D,Z − Z ∩D)).

Thus, it is enough to prove that there is a compactification Y of X̃n − Ãn such that Y −
(X̃n − Ãn) is a normal crossing divisor D, and such that ω

(n)
n has logarithmic singularities

along D. Since ω
(n)
n does not have poles along En, we can work on Xn−An instead. Let us start

with Y1 = (P1)n with coordinates ((x1 : y1), . . . , (xn : yn)), and D1 the divisor given by the union
of the subvarieties {yi = 0} for i = 1, . . . , n, and the subvariety {x1 · · ·xn = y1 · · · yn} (this is
the closure of An). This is not enough since D1 is not a normal crossing divisor. We then finish
thanks to the following lemma. 2
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C. Dupont

Lemma 3.13. Let φ : Y → Y1 be the iterated blow-up of all the codimension-2 subvarieties Zi,j =
{yi = xj = 0}, i 6= j, in any order. Then D = φ−1(D1) is a normal crossing divisor inside Y

and φ∗(ω
(n)
n ) has logarithmic singularities along D.

Proof. This is checked locally on the standard affine cover of Y , consisting of 2n affine spaces.
By symmetry of the variables, it is enough to look at the charts Ur with affine coordinates

(y1, . . . , yr, xr+1, . . . , xn),

for r = 0, . . . , n. We note that in the chart Ur the divisor D1 is the union of the subvarieties {yi =
0} for i = 1, . . . , r, and the subvariety {y1 · · · yr = xr+1 · · ·xn}. In that chart the differential form
that we are looking at is (up to a sign)

ω =
dy1 · · · dyr dxr+1 · · · dxn

y1 · · · yr(y1 · · · yr − xr+1 · · ·xn)
.

We proceed by induction on r. For r = 0, D1 only consists of {x1 · · ·xn = 1}, which is a normal
crossing divisor, and ω has logarithmic singularities along D1. The subvarieties Zi,j do not
intersect U0, so the blow-ups do not change anything. For a given r = 1, . . . , n, let us look at
the blow-up of Z1,n = {y1 = xn = 0} (this is enough for reasons of symmetry) in the chart Ur.
There are two natural affine charts An→ Ur for the blow-up.

(i) On the first chart, the blow-up map is given by

(y1, . . . , yr, xr+1, . . . , xn) = (v1, . . . , vr, ur+1, . . . , un−1, v1un).

The preimage of D1 consists of the subvarieties {vi = 0} for i = 1, . . . , r, and the
subvariety {v2 · · · vr = ur+1 · · ·un}. The pullback of ω is

ω̃ =
dv1 · · · dvr dur+1 · · · dun

v1 · · · vr(v2 · · · vr − ur+1 · · ·un)
=
dv1

v1
∧ω′ with ω′ =

dv2 · · · dvr dur+1 · · · dun
v2 · · · vr(v2 · · · vr − ur+1 · · ·un)

.

We note that {v1 = 0} is the exceptional divisor and that the total transforms of the
subvarieties Z1,j are empty in this chart. By the induction hypothesis (with n replaced by
n− 1), the pullback of ω′ by the successive blow-up of the subvarieties Zi,j with i 6= 1 has
logarithmic singularities. Since dv1/v1 has logarithmic singularities along {v1 = 0}, we are
done.

(ii) On the second chart, the blow-up map is given by

(y1, . . . , yr, xr+1, . . . , xn) = (v1un, v2, . . . , vr, ur+1, . . . , un).

The same argument as in the first chart applies. 2

3.6 A long exact sequence

We now show that the morphism i(n) : Z(n−1)
→ Z(n) fits into a long exact sequence. We first

define objects of MT(Q):

Z(n),r = Hr(X̃n − Ãn, (B̃n ∪ En)− (B̃n ∪ En) ∩ Ãn)

and
′Z(n),r = Hr(X̃n − Ãn, (B̃′n ∪ En)− (B̃′n ∪ En) ∩ Ãn),

so that Z(n) = Z(n),n. We leave it to the reader to fill in the technical definitions of these objects
by mimicking that of Z(n) from § 3.1.
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Odd zeta motive and linear forms in odd zeta values

Proposition 3.14. For n > 2, we have a long exact sequence in MT(Q):

· · ·→ Z(n−1),r−1
→ Z(n),r

→
′Z(n),r

→ Z(n−1),r
→ Z(n),r+1

→ · · · . (26)

Proof. The objects Z(n−1),•, Z(n),• and ′Z(n),• are defined via objects in DMT(Q) that we denote
by C(n−1), C(n) and ′C(n) respectively, C(n) being the complex (15) and C(n−1) the subcomplex
(24). Now there is an obvious exact triangle

C(n−1)[−1] −→ C(n) −→ ′C(n) +1−→,

in DMT(Q), which gives the desired long exact sequence after taking the cohomology with respect
to the t-structure. 2

We note that the map Z(n−1),n−1
→ Z(n),n in the long exact sequence (26) is exactly i(n).

4. Computation of the zeta motives Z(n)

This section is the technical heart of this article, where we compute (Theorem 4.9) the full
period matrix of the zeta motives Z(n). The main difficulty is showing that the motives T (n),
introduced below, are semi-simple. For that we use the involution τ defined in the introduction
and the computation of the extension groups in the category MT(Q). We then define the odd
zeta motive and compute its period matrix. We finish with an elementary (Hodge-theoretic)
proof that the motives T (n) are semi-simple.

4.1 The Gysin long exact sequence

Since the divisor An is smooth, it is natural to decompose the motives Z(n),r thanks to a Gysin
long exact sequence. In the next proposition, the definition of the objectsH•(Xn, Bn) andH•(An,
Bn ∩An) of MT(Q) is similar to that of Z(n) from § 3.1.

Proposition 4.1. For n > 1, we have a long exact sequence in MT(Q):

· · ·→ Hr(Xn, Bn)→ Z(n),r
→ Hr−1(An, Bn ∩An)(−1)→ Hr+1(Xn, Bn)→ Z(n),r+1

→ · · · .
(27)

Proof. Recall from [Voe00, (3.5.4)] the existence of a Gysin exact triangle in the category DM(Q).

For the pair (X̃n, Ãn), it reads (with cohomological conventions)

X̃n −→ X̃n − Ãn −→ Ãn(−1)[−1]
+1−→

and is an exact triangle in the category DMT(Q). Applying this triangle to every pair (∂IY,
∂IY ∩ Ãn) in the complex (15) and taking the cohomology with respect to the t-structure leads
to a long exact sequence

· · ·→Hr(X̃n, B̃n∪En)→Hr(X̃n−Ãn, (B̃n∪En)−Ãn)→Hr−1(Ãn, (B̃n∪En)∩Ãn)(−1)→ · · ·

in MT(Q). One finishes with the fact that the natural morphisms

Hr(X̃n, B̃n ∪ En)→ Hr(Xn, Bn) and Hr−1(Ãn, (B̃n ∪ En) ∩ Ãn)→ Hr−1(An, Bn ∩An)

are isomorphisms. This can be checked in the Betti realization (see Remark 2.5), where it is a
consequence of the excision theorem as in the proof of Proposition 3.4. 2
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C. Dupont

4.2 The motives H•(Xn, Bn)

The computation of the motives H•(Xn, Bn) appearing in the long exact sequence (27) is

relatively easy.

Proposition 4.2. (i) We have Hr(Xn, Bn) = 0 for r 6= n, and an isomorphism Hn(Xn, Bn) ∼=
Q(0).

(ii) A basis for the de Rham realization Hn
dR(Xn, Bn) is the class of the form dx1 · · · dxn.

(iii) A basis for the Betti realization HB
n (Xn, Bn) is the class of the unit n-cube �n = [0, 1]n.

Proof. By the relative Künneth formula we haveH•(Xn, Bn)∼=H•(X1, B1)⊗n so that it is enough

to prove the proposition for n = 1. This has already been done in Remark 3.2. 2

4.3 The motives H•(An, Bn ∩ An)

For n > 1, we realize the n-torus as Tn = {x1 · · ·xn+1 = 1}, and we have subtori Tn−1
i = {xi =

1} ⊂ Tn for i = 1, . . . , n+ 1. We define

T (n),r = Hr

(
Tn,

⋃
16i6n+1

Tn−1
i

)
and ′T (n),r = Hr

(
Tn,

⋃
16i6n

Tn−1
i

)
,

which are objects in MT(Q) (whose definition is similar to that of Z(n) from § 3.1) and write

T (n) = T (n),n and ′T (n) = ′T (n),n.

We then have

Hr−1(An, Bn ∩An) ∼= T (n−1),r−1.

By mimicking the proof of Proposition 3.14, one produces a long exact sequence in MT(Q):

· · ·→ T (n−1),r−1
→ T (n),r

→
′T (n),r

→ T (n−1),r
→ T (n),r+1

→ · · · . (28)

Proposition 4.3. (i) We have ′T (n),r = 0 for r 6= n, and an isomorphism ′T (n) ∼= Hn(Tn) ∼=
Q(−n).

(ii) We have T (n),r = 0 for r 6= n, and short exact sequences in MT(Q):

0→ T (n−1) j(n)

−→ T (n)
→ Hn(Tn)→ 0. (29)

Proof. If (i) is proved, then (ii) follows from the long exact sequence (28). By choosing

coordinates (x1, . . . , xn) on Tn we see that we have

′T (n),• = H•
(

(A1
Q − {0})n,

⋃
16i6n

{xi = 1}
)
∼= H•(A1

Q − {0}, {1})⊗n = (′T (1),•
⊗n
) ,

where we have used the relative Künneth formula. Thus, it is enough to prove (i) for n = 1,

which is easy since ′T (1),• is nothing but the reduced cohomology of A1
Q − {0}. 2

Remark 4.4. We note that the morphism j(n) : T (n−1)
→ T (n) in (29) is defined in the same way

as the morphism i(n) : Z(n−1)
→ Z(n) from § 3.5.
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Odd zeta motive and linear forms in odd zeta values

We note that we have T (0) = H0(pt,pt) = 0, so that Proposition 4.3 implies that we have

grW2kT (n) =

{
Q(−k) if k ∈ {1, . . . , n},
0 otherwise.

In the next proposition, we will prove that the weight filtration of T (n) actually splits
in MT(Q). For that we introduce the involution τ which acts on the tori Tn by

τ : (x1, . . . , xn+1) 7→ (x−1
1 , . . . , x−1

n+1).

This induces an involution, still denoted by τ , on the objects T (n),r and ′T (n),r of MT(Q), such
that all the maps in the long exact sequence (28) commute with τ .

Proposition 4.5. (i) The short exact sequences (29) split in MT(Q), hence we have
isomorphisms:

T (n) ∼= Q(−1)⊕Q(−2)⊕ · · · ⊕Q(−n).

Thus, a period matrix for T (n) is the diagonal matrix Diag(2πi, (2πi)2, . . . , (2πi)n).
(ii) The involution τ acts on the direct summand Q(−k) of T (n) by multiplication by (−1)k.

Proof. We first note that τ acts on H1(T 1) by multiplication by −1. It is enough to prove
it in the de Rham realization, where it follows from τ.dlog(x1) = −dlog(x1). Thus, τ acts
on grW2nT (n) ∼= Hn(Tn) ∼= H1(T 1)⊗n by multiplication by (−1)n, and we are left with proving (i).

We denote by T (n) = T (n)
+ ⊕ T (n)

− the direct sum decomposition of T (n) into its invariant and
anti-invariant parts with respect to τ . We have to prove that we have isomorphisms

T (2n)
+

∼= T (2n+1)
+

∼= Q(−2)⊕Q(−4)⊕ · · · ⊕Q(−2n)

and
T (2n+1)
−

∼= T (2n+2)
−

∼= Q(−1)⊕Q(−3)⊕ · · · ⊕Q(−(2n+ 1)).

We only prove the statements corresponding to the invariant parts, the statements corresponding
to the anti-invariant parts being proved similarly. We use induction on n, the case n = 0 being

trivial: T (0)
+ = T (1)

+ = 0. The short exact sequences (29) imply that we have short exact sequences

0→ T (2n+1)
+ → T (2n+2)

+ → Q(−(2n+ 2))→ 0 and 0→ T (2n+2)
+ → T (2n+3)

+ → 0→ 0.

Using the induction hypothesis we see that we have

Ext1
MT(Q)(Q(−(2n+ 2)), T (2n+1)

+ ) ∼= Ext1
MT(Q)(Q(−(2n+ 2)),Q(−2)⊕Q(−4)⊕ · · · ⊕Q(−2n))

∼=
⊕

16k6n

Ext1
MT(Q)(Q(−2k),Q(0))

= 0,

where we have used (13). Thus, the first short exact sequence splits. The second short exact
sequence then completes the induction. 2

Remark 4.6. From the short exact sequences (29) it is clear that, for every n, T (n)
dR has a

basis (w
(n)
1 , . . . , w

(n)
n ) which is compatible with the weight grading, such that w

(n)
n is the class

of the form dlog(x1) ∧ · · · ∧ dlog(xn), and such that these bases are compatible with the short
exact sequences (29).
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C. Dupont

4.4 The structure of the zeta motives

We can now determine the structure of the zeta motives Z(n), for n > 1.

Theorem 4.7. (i) We have a short exact sequence in MT(Q):

0→ Q(0)→ Z(n) p(n)

−→ T (n−1)(−1)→ 0, (30)

with T (n−1)(−1) ∼= Q(−2)⊕ · · · ⊕Q(−n).

(ii) We have a short exact sequence in MT(Q):

0→ Z(n−1) i(n)

−→ Z(n)
→ Q(−n)→ 0. (31)

(iii) These short exact sequences fit into a commutative diagram

0

��

0

��

0

��
0 // Q(0)

=

��

// Z(n−1)

i(n)

��

p(n−1)
// T (n−2)(−1)

j(n−1)

��

// 0

0 // Q(0)

��

// Z(n)

��

p(n)
// T (n−1)(−1)

��

// 0

0 // 0

��

// Q(−n)

��

= // Q(−n)

��

// 0

0 0 0

(32)

where all rows and columns are exact.

Proof. Assertion (1) follows from Propositions 4.1, 4.2 and 4.5. The commutativity of (32) follows

from the compatibility of the long exact sequences (26) and (28). A diagram chase implies that

(31) is exact. 2

Remark 4.8. The difference between the sign (−1)k in Proposition 4.5(2) and the sign (−1)k−1

in Theorem 1.4 comes from the Tate twist (−1) in the short exact sequence (30).

Theorem 4.9. (i) The classes

v
(n)
k := [ω

(n)
k ] (k = 0, 2, . . . , n)

of the Eulerian differential forms provide a basis (v
(n)
0 , v

(n)
2 , . . . , v

(n)
n ) of the de Rham

realization Z(n)
dR which is compatible with the weight grading.
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Odd zeta motive and linear forms in odd zeta values

(ii) There exists a unique basis (ϕ
(n)
0 , ϕ

(n)
2 , . . . , ϕ

(n)
n ) for the dual of the Betti realization Z(n),∨

B

which is compatible with the weight filtration and such that the period matrix for Z(n) in

the v-basis and the ϕ-basis is



1 ζ(2) ζ(3) · · · · · · ζ(n− 1) ζ(n)

(2πi)2

(2πi)3 0

. . .

. . .

0 (2πi)n−1

(2πi)n


. (33)

Proof. (i) Proposition 3.12 says that v
(n)
k is in the pure weight 2k component of Z(n)

dR . Thus, it is

enough to show that it is non-zero, which is a consequence of the equalities 〈[�n], v
(n)
0 〉 = 1 6= 0

and 〈[�n], v
(n)
k 〉 = ζ(k) 6= 0 for k = 2, . . . , n.

(ii) We put ϕ
(n)
0 = [�n]. Let (ψ

(n−1)
1 , . . . , ψ

(n−1)
n−1 ) be a basis of T (n−1),∨

B for which the period

matrix is diagonal, as in Proposition 4.5. Let p(n) denote the morphism Z(n)
→ T (n−1)(−1),

and let us consider the transpose of its Betti realization p
(n),∨
B : T (n−1),∨

B → Z(n),∨
B . Then we

can put ϕ
(n)
k = p

(n),∨
B (ψ

(n−1)
k−1 ) for k = 2, . . . , n. The fact that this gives a basis of Z(n),∨

B is a

consequence of the short exact sequence (30). The fact that the period matrix is as required

follows from Lemma 3.8 and Proposition 4.5. The uniqueness statement is obvious. 2

We have already noted that the classes v
(n)
k are compatible with the inductive system of

the zeta motives. By the uniqueness statement in Theorem 4.9, this is also the case for the

classes ϕ
(n)
k , and the zeta motive Z has an infinite period matrix



1 ζ(2) ζ(3) ζ(4) · · · · · · · · ·
(2πi)2

(2πi)3 0

(2πi)4

. . .

0
. . .

. . .


.

4.5 The odd zeta motive

Let us write T (n−1) = T (n−1)
+ ⊕ T (n−1)

− for the direct sum decomposition into its invariant and

anti-invariant parts with respect to τ , and let us write p(n) : Z(n)
→ T (n−1)(−1) for the surjection

appearing in the short exact sequence (30).
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C. Dupont

Definition 4.10. The nth odd zeta motive Z(n),odd is the object of MT(Q) defined by

Z(n),odd := (p(n))−1(T (n−1)
+ (−1)).

We obviously have a short exact sequence

0→ Q(0)→ Z(n),odd
→ T (n−1)

+ (−1)→ 0 (34)

with

T (n−1)
+ (−1) ∼=

⊕
362k+16n

Q(−(2k + 1)).

We note that there are morphisms

i(n),odd : Z(n−1),odd
→ Z(n),odd

such that i(2n),odd is an isomorphism for every integer n. The limit

Zodd := lim
−→
n

Z(n),odd

is an ind-object in MT(Q) that we simply call the odd zeta motive.

Proposition 4.11. (i) We have a direct sum decomposition

Z(n) ∼= Z(n),odd ⊕
⊕

262k6n

Q(−2k). (35)

(ii) A period matrix for Z(2n+1),odd ∼= Z(2n+2),odd is

1 ζ(3) ζ(5) · · · · · · ζ(2n− 1) ζ(2n+ 1)

(2πi)3

(2πi)5 0

. . .

. . .

0 (2πi)2n−1

(2πi)2n+1


. (36)

Proposition 4.11 implies that the odd zeta motive Zodd has an infinite period matrix (6). In
particular, Z(3),odd is the essentially unique non-trivial extension of Q(−3) by Q(0) in MT(Q).

Proof. This is a consequence of the short exact sequence (30) and the vanishing of the
extension groups Ext1

MT(Q)(Q(−2k),Q(0)), see (13). An alternative proof which does not use

the computation of extension groups goes as follows. A basis for Z(n),odd
dR is given by v

(n)
0 and

the v
(n)
2k+1, for 3 6 2k + 1 6 n, and a basis for Z(n),odd,∨

B is given by ϕ
(n)
0 and the ϕ

(n)
2k+1,

for 3 6 2k + 1 6 n. This gives the desired shape for the period matrix (36). Now, Euler’s
solution to the Basel problem implies that we have ζ(2k) = λ2k(2πi)

2k for every integer k > 1,
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Odd zeta motive and linear forms in odd zeta values

with λ2k =−B2k/2(2k)! ∈Q. Thus, we may replace the basis (ϕ
(n)
0 , ϕ

(n)
2 , . . . , ϕ

(n)
n ) of Theorem 4.9

by the basis ( ′ϕ
(n)
0 , ϕ

(n)
2 , . . . , ϕ

(n)
n ) with

′ϕ
(n)
0 = ϕ

(n)
0 −

∑
262k6n

λ2k ϕ
(n)
2k

to get a period matrix similar to (33) where the even zeta values ζ(2k) in the first row are
replaced by 0. This implies the direct sum decomposition (35). 2

We finish by proving that all the objects in MT(Q) considered earlier actually live in the full
subcategory MT(Z).

Proposition 4.12. The zeta motives Z(n) and the odd zeta motives Z(n),odd are objects of the
category MT(Z).

Proof. Thanks to the direct sum decomposition (35), it is enough to prove it for the odd zeta
motives. Let us recall the definition [DG05, Définition 1.4] of the category MT(Z). According
to the tannakian formalism, the de Rham realization functor MT(Q) → grVectQ induces an
equivalence of categories

MT(Q) ∼= grRep(gQdR)

between MT(Q) and the category of graded finite-dimensional representations of a graded Lie
algebra gQdR. The degree in gQdR is half the weight. This Lie algebra is non-positively graded. The
category MT(Z) is defined as the full subcategory of MT(Q) consisting of objects H such that
the degree −1 component of gQdR acts trivially on HdR. This is obviously the case for Z(n),odd,
which is concentrated in weights 0 and 2(2k + 1) with 2k + 1 > 3 by the short exact sequence
(34). 2

Remark 4.13. A tannakian interpretation of the odd zeta motive goes as follows. Let gZ,∨ be
the graded dual of the fundamental Lie algebra gZ of the tannakian category MT(Z). It is an
ind-object in MT(Z), independent of the choice of a fiber functor [Del89, Définition 6.1]. Then
one has a short exact sequence

0→ Q(0)→ gZ,∨→ uZ,∨→ 0,

where uZ is the pro-unipotent radical of gZ. One views Zodd inside the exact subsequence

0→ Q(0)→ Zodd
→ uZ,ab,∨

→ 0,

where uZ,ab,∨ ∼=
⊕

k>1Q(−(2k + 1)) is the graded dual of the abelianization of uZ.

4.6 An elementary computation of the motives T (n)

We give an elementary proof of Proposition 4.5, which only uses basic algebraic topology. The
proof is Hodge-theoretic, and the only drawback is that we have to use the full faithfulness of
the Hodge realization (Theorem 2.6). Let us consider the relative homology group

T (n),∨
B = Hsing

n

(
(C∗)n,

⋃
16i6n

{xi = 1} ∪ {x1 · · ·xn = 1}
)
.
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C. Dupont

By homotopy invariance, one may replace every C∗ by the unit circle S1 = {|x| = 1} ↪→ C∗ and
the divisor {x1 · · ·xn = 1} by its intersection with (S1)n, and we get

T (n),∨
B

∼= Hsing
n

(
(S1)n,

⋃
16i6n

{xi = 1} ∪ {x1 · · ·xn = 1}
)
.

Let us look at the projection [0, 1]n→ (S1)n, (t1, . . . , tn) 7→ (e2πit1 , . . . , e2πitn). Then by excision
we can write

T (n),∨
B

∼= Hsing
n

(
[0, 1]n,

⋃
16i6n

{ti ∈ Z} ∪ {t1 + · · ·+ tn ∈ Z}
)
.

This is simply the singular homology of the unit hypercube [0, 1]n relative to the union of its
faces {ti = 0} and {ti = 1}, for 1 6 i 6 n, and the hyperplanes {t1 + · · ·+ tn = k} for k = 0, 1,
. . . , n. We note that these hyperplanes cut the unit hypercube into polytopes

∆(n, k) = {(t1, . . . , tn) ∈ [0, 1]n | k 6 t1 + · · ·+ tn 6 k + 1},
for k = 0, . . . , n − 1. We note that ∆(n, 0) is the usual n-simplex; the polytopes ∆(n, k) are
usually called hypersimplices.

Lemma 4.14. (i) The classes [∆(n, k)], for k = 0, . . . , n− 1, form a basis of T (n),∨
B .

(ii) The morphism j
(n),∨
B : T (n),∨

B → T (n−1),∨
B sends

(a) [∆(n, 0)] to [∆(n− 1, 0)];

(b) [∆(n, k)] to [∆(n− 1, k)]− [∆(n− 1, k − 1)] for k = 1, . . . , n− 2;

(c) [∆(n, n− 1)] to −[∆(n− 1, n− 2)].

Proof. (i) This is clear by excision, since collapsing the boundary of [0, 1]n and the
hyperplanes {t1 + · · · + tn = k} onto a point creates a wedge sum of n spheres of dimension n,
one for each hypersimplex.

(ii) Recall (see Remark 4.4 and § 3.5) that j
(n),∨
B computes ‘the component of the boundary

that lives on {xn = 1}’. In the t-coordinates, {xn = 1} corresponds to {tn = 0} (counted
positively) and {tn = 1} (counted negatively). In case (b), the intersection of ∆(n, k) with {tn =
0} is ∆(n − 1, k) and its intersection with {tn = 1} is ∆(n − 1, k − 1), which proves the claim.
Cases (a) and (c) are similar. 2

Remark 4.15. One may check that the sum of the classes [∆(n, k)], for k = 0, . . . , n− 1, is sent

to 0 by the morphism j
(n),∨
B . This is because this sum is represented by the unit square [0, 1]n

in the t-coordinates, or by the compact n-torus (S1)n ⊂ (C∗)n in the x-coordinates, which has
empty boundary.

The Eulerian numbers are the coefficients of the Eulerian polynomials and are denoted by
symbols 〈nk〉:

En(x) =

n−1∑
k=0

〈n
k

〉
xk.

They satisfy many beautiful identities, including the following recursion, which can be deduced
from (21): 〈n

k

〉
= (n− k)

〈n− 1

k − 1

〉
+ (k + 1)

〈n− 1

k

〉
.

The following lemma is a classical result due to Laplace [Foa77, § 2].
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Odd zeta motive and linear forms in odd zeta values

Lemma 4.16. For k = 0, . . . , n− 1, the volume of the hypersimplex ∆(n, k) is the ratio 〈nk〉/n!.

Recall from Remark 4.6 that, for every integer n > 1, T (n)
dR has a basis (w

(n)
1 , . . . , w

(n)
n ) which

is compatible with the weight grading and with the morphisms j
(n)
dR : T (n−1)

dR → T (n)
dR . We let Pn

be the period matrix of T (n) with respect to the w-basis and the ∆-basis from Lemma 4.14.

The first period matrix P1 is simply the 1× 1 matrix (2πi). Let us introduce the following n×n
integer matrix encoding the family of Eulerian numbers:

An =



1

〈
n

0

〉
−1 1 0

〈
n

1

〉
−1 1

〈
n

2

〉
. . .

. . .

. . .
. . .

0 −1 1

〈
n

n− 2

〉
−1

〈
n

n− 1

〉



.

Proposition 4.17. The period matrices Pn satisfy the recurrence relation

Pn = An



0

0

Pn−1
...

0

0 0 . . . 0
(2πi)n

n!


.

Proof. Recall the short exact sequence (29)

0→ T (n−1) j(n)

−→ T (n)
→ Hn(Tn)→ 0

and the fact (see Remark 4.6) that the morphism j(n) is compatible with the w-bases. Then

Lemma 4.14 shows that the first (n−1) columns of Pn are as stated. It only remains to compute

the entries in the last column, i.e., compute the integral of the n-form dx1/x1 ∧ · · · ∧ dxn/xn on

a hypersimplex ∆(n, k). After the change of variables (x1, . . . , xn) = (e2πit1 , . . . , e2πitn), one sees

that this integral is simply (2πi)n times the volume of ∆(n, k), and completes the proof thanks

to Lemma 4.16. 2

We note that the period matrices Pn are not block upper-triangular. This is because the ∆-

basis is not compatible with the weight filtration. We thus have to introduce a change of basis.
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C. Dupont

Let (Qn)n>1 be the family of matrices (with rational entries) defined by Q1 = (1) and the

recurrence relation

Qn =



0

0

Qn−1
...

0

0 0 . . . 0 n!


A−1
n .

The first terms are

Q1 =
(
1
)
, Q2 =

(
1
2 −1

2

1 1

)
, Q3 =


1
3 −1

6
1
3

1 0 −1

1 1 1

 , Q4 =


1
4 − 1

12
1
12 −1

4
11
12 − 1

12 − 1
12

11
12

3
2

1
2 −1

2 −3
2

1 1 1 1

 .

Let us put 
Σ

(n)
1

Σ
(n)
2

...

Σ
(n)
n

 = Qn


∆(n, 0)

∆(n, 1)

...

∆(n, n− 1)

 .

We view Σ
(n)
k as a relative cycle with rational coefficients. The change of indexing is here to

remind the reader that Σ
(n)
k lives in weight 62k. We have thus proved the following result.

Proposition 4.18. The classes [Σ
(n)
k ], for k = 1, . . . , n, form a basis of T (n),∨

B and the period

matrix of T (n) in the w-basis and the Σ-basis is the diagonal matrix Diag(2πi, . . . , (2πi)n).

Proof. This amounts to saying that the product QnPn is the matrix Diag(2πi, . . . , (2πi)n), which

is easily proved by induction on n using Proposition 4.17. 2

By using Theorem 2.6, we thus get an alternate (Hodge-theoretic) proof of Proposition 4.5.

Remark 4.19. Proposition 4.18 implies that we can choose (Σ
(n−1)
1 , . . . ,Σ

(n−1)
n−1 ) as representatives

for the classes (ψ
(n−1)
1 , . . . , ψ

(n−1)
n−1 ) from the proof of Theorem 4.9.

Remark 4.20. One can easily prove that the last row of the matrix Qn is filled with 1s,

which means that Σ
(n)
n is homologous to the unit hypercube [0, 1]n. In the x-coordinates, it

is homologous to the compact n-torus (S1)n ⊂ (C∗)n.

5. Linear forms in zeta values

We apply our results from the previous section to prove Theorems 1.1 and 1.2 from the

Introduction.
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Odd zeta motive and linear forms in odd zeta values

5.1 Integral formulas for the coefficients
Theorem 5.1. For ω an integrable algebraic differential form on Xn −An, we have∫

[0,1]n
ω = a0(ω) + a2(ω)ζ(2) + · · ·+ an(ω)ζ(n) (37)

with ak(ω) a rational number for every k, given for k = 2, . . . , n by the formula

ak(ω) = (2πi)−k 〈ϕ(n)
k , [ω]〉. (38)

Proof. According to Proposition 3.6, the class [ω] defines an element in Zn,dR, hence we may
write

[ω] = a0(ω)v0 + a2(ω)v2 + · · ·+ an(ω)vn

with ak(ω) ∈ Q for every k. Pairing with the class ϕ
(n)
0 = [�n] gives the equality (37), and pairing

with the class ϕ
(n)
k , k = 2, . . . , n, gives the equality (38). 2

Remark 5.2. If we represent the class ϕ
(n)
k by a relative cycle σ

(n)
k , then (38) becomes

ak(ω) = (2πi)−k
∫
σ
(n)
k

ω.

Here we will not give explicit representatives for the classes ϕ
(n)
k . Recall from the proof

of Theorem 4.9 that the class ϕ
(n)
k is the image by the map p

(n),∨
B : T (n−1),∨

B → Z(n),∨
B of an

element ψ
(n−1)
k−1 , which by Remark 4.19 can be represented by the cycle Σ

(n−1)
k−1 . The question is

then how to compute the map p
(n),∨
B at the level of cycles. Such a task would involve the following

ingredients. Let T ⊂ Cn be a tubular neighborhood of An(C) in Cn. Let us denote by ρ : T →
An(C) the corresponding projection, and by ∂ρ : ∂T → An(C) the projection corresponding to
the boundary of the tubular neighborhood; it is an S1-bundle. The natural map Hsing

r (An(C))→
Hsing
r+1(Cn − An(C)) can be computed at the level of singular chains by mapping an r-cycle σ to

the (r+1)-cycle (∂ρ)−1(σ). We note that since An(C) does not intersect the hyperplanes {xi = 0},
we can do the computation with a tubular neighborhood inside (C∗)n and get representatives

in (C∗)n. Now if we want to play this game for the relative homology groups Z(n),∨
B , we need the

tubular neighborhood to be ‘compatible’ with the subvariety Bn(C), in the sense that ρ should
pull back An(C) ∩ Bn(C) to Bn(C). At this point, it is probably easier to ask for something
weaker than a tubular neighborhood, i.e., something that is a tubular neighborhood on a dense
open subset of An(C) (this does not change anything for the integral formulas). We will not try
to give formulas here and postpone this discussion to a future article. Nevertheless, we can give
more explicit formulas than (38) in two situations.

5.1.1 The highest weight coefficient. Let us fix real numbers ρ1, . . . , ρn−1, ρn > 0 and let us

introduce the cycle S(n) ⊂ Cn −An(C) defined by the conditions

|x1| = ρ1, . . . , |xn−1| = ρn−1,

∣∣∣∣xn − 1

x1 · · ·xn−1

∣∣∣∣ = ρn.

Proposition 5.3. Let ω be an integrable differential form on Xn−An. Then the highest weight
coefficient an(ω) from Theorem 5.1 is given by the integral formula

an(ω) = (2πi)−n
∫
S(n)

ω.
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C. Dupont

Proof. The integral formula is obviously independent of the choice of ρ1, . . . , ρn−1, ρn and we
can assume that we have ρ1 = · · · = ρn−1 = ρn = 1. We have noted in Remark 4.20 that the

highest weight basis vector ψ
(n−1)
n−1 of T (n−1),∨

B can be represented by the (n − 1)-torus {|x1| =
· · · = |xn−1| = 1}. Since this has an empty boundary we can make the computation explained
in Remark 5.2 with the choice of any tubular neighborhood of An(C) in Cn, for instance the
one defined by |xn − 1/(x1 · · ·xn−1)| 6 1, with projection map ρ(x1, . . . , xn) = (x1, . . . , xn−1,
1/(x1 · · ·xn−1)). The pullback of the (n− 1)-torus by the projection ∂ρ is exactly S(n). 2

The case n = 2 is Rhin and Viola’s contour integral for ζ(2) [RV96, Lemma 2.6].

5.1.2 The case of forms with simple poles. We say that a differential form on Xn −An has
a simple pole along An if it can be written as

ω = α+ dlog(1− x1 · · ·xn) ∧ β,

where α and β do not have poles along An. The residue of such a form along An is the restriction

Res(ω) = β|An
.

Recall that the relative cycles Σ
(n−1)
k−1 were defined in § 4.6.

Proposition 5.4. Let ω be an integrable differential form on Xn −An which has a simple pole
along An. Then the coefficients ak(ω), k = 2, . . . , n, from Theorem 5.1 are given by the integral
formulas

ak(ω) = (2πi)−k+1

∫
Σ

(n−1)
k−1

Res(ω).

Proof. Recall from the proof of Theorem 4.9 that we have defined

ϕ
(n)
k = p

(n),∨
B (ψ

(n−1)
k−1 ),

where (ψ
(n−1)
1 , . . . , ψ

(n−1)
n−1 ) is a basis of T (n−1),∨

B for which the period matrix is diagonal. In the

light of Remark 4.19 we see that ψ
(n−1)
k−1 is the class of the cycle Σ

(n−1)
k−1 , hence we get

ak(ω) = (2πi)−k〈p(n),∨
B ([Σ

(n−1)
k−1 ]), [ω]〉 = (2πi)−k+1〈[Σ(n−1)

k−1 ], p
(n)
dR ([ω]) 〉,

where the extra 2πi comes from the Tate twist at the target of p(n). Since ω has a simple

pole, p
(n)
dR ([ω]) is simply the class of Res(ω), hence the result. 2

5.1.3 Vanishing of coefficients.

Theorem 5.5. For ω an integrable algebraic differential form on Xn −An, we have:

(i) if τ. ω = ω then ak(ω) = 0 for k 6= 0 even;

(ii) if τ. ω = −ω then ak(ω) = 0 for k odd.

Proof. Let us assume that we have τ.ω = ω, and let us write x for the image of [ω] in T (n−1)
dR .

Then we have τ.x = x; according to Proposition 4.5, this implies that x only has components of

weights 2k with k even. Thus, [ω] ∈ Z(n)
dR only has components in weight 0 and 2k with k odd,

which implies that we have ak(ω) = 0 for k 6= 0 even. The second case is similar. 2
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Odd zeta motive and linear forms in odd zeta values

Let us write an integrable form as

ω =
P (x1, . . . , xn)

(1− x1 · · ·xn)N
dx1 · · · dxn (39)

with P (x1, . . . , xn) a polynomial with rational coefficients and N > 0 an integer. Then we have

τ.ω = ±ω ⇔ P (x1, . . . , xn) = ±(−1)N+n(x1 · · ·xn)N−2P (x−1
1 , . . . , x−1

n ). (40)

5.2 The Ball–Rivoal integrals
We apply Theorems 5.1 and 5.5 to a special family of integrals.

Corollary 5.6. Let u1, . . . , un, v1, . . . , vn > 1 and N > 0 be integers such that v1 + · · ·+ vn >
N + 1. Then the integral∫

[0,1]n

xu1−1
1 · · ·xun−1

n (1− x1)v1−1 · · · (1− xn)vn−1

(1− x1 · · ·xn)N
dx1 · · · dxn (41)

is absolutely convergent and evaluates to a linear combination

a0 + a2ζ(2) + a3ζ(3) + · · ·+ anζ(n)

with ak a rational number for every k. If furthermore we have 2ui + vi = N + 1 for every i, then
we get:

(i) if (n+ 1)(N + 1) is odd then ak = 0 for k 6= 0 even;

(ii) if (n+ 1)(N + 1) is even then ak = 0 for k odd.

Proof. This is a direct application of Theorem 5.5. The polynomial

P (x1, . . . , xn) = xu1−1
1 · · ·xun−1

n (1− x1)v1−1 · · · (1− xn)vn−1

satisfies

P (x1, . . . , xn) = (−1)n+v1+···+vnx2u1+v1−3
1 · · ·x2un+vn−3

n P (x−1
1 , . . . , x−1

n ).

Let us assume that we have 2ui + vi = N + 1 for every i, then v1 + · · ·+ vn ≡ n(N + 1) (mod 2)
and we get

P (x1, . . . , xn) = −(−1)(n+1)(N+1)(−1)N+n(x1 · · ·xn)N−2P (x−1
1 , . . . , x−1

n ),

hence the result, in view of (40). 2

Corollary 5.6 applies in particular to the special case

N = (2r + 1)m+ 2, ui = rm+ 1, vi = m+ 1

for some integer parameters r,m > 0 satisfying n(m + 1) > (2r + 1)m + 3. We then recover
the integrals considered by Ball and Rivoal [BR01, Lemme 2]. The vanishing of the coefficients
is [BR01, Lemme 1]. The notations (a, n, r) in [BR01] correspond to our notations (n− 1,m, r).

The integrals (41) can be expressed as generalized hypergeometric series( n∏
i=1

(ui − 1)!(vi − 1)!

(ui + vi − 1)!

)
n+1Fn

(
u1, . . . , un, N

u1 + v1, . . . , un + vn
; 1

)
=

∏n
i=1(vi − 1)!

(N − 1)!

∑
k>0

(k)u1 · · · (k)un(k + 1)N−1

(k)u1+v1 · · · (k)un+vn

. (42)

If 2ui + vi = N + 1, then the corresponding generalized hypergeometric series is said to be
well-poised.
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C. Dupont

5.3 Weight drop
In the context of Theorem 5.1, we say that the integral

∫
[0,1]n ω has weight drop if the highest

weight coefficient an(ω) vanishes. This amounts to saying that the class [ω] actually lives in the
step W2(n−1)Zn,dR of the weight filtration, hence the terminology. We give a sufficient condition
for this phenomenon to happen.

Lemma 5.7. Let u, v > 1 and N > 0 be integers such that u + v 6 N . Then there exists a
polynomial P (t) with rational coefficients such that∫ 1

0

xu−1(1− x)v−1

(1− tx)N
dx =

P (t)

(1− t)N−v

for every 0 6 t < 1.

Proof. We can write

xu−1(1− x)v−1 =

u+v−2∑
k=0

ak(t)(1− tx)k

with ak(t) a Laurent polynomial with rational coefficients for every k. We then have

xu−1(1− x)v−1

(1− tx)N
=

u+v−2∑
k=0

ak(t)

(1− tx)N−k

and all the powers of (1−tx) appearing in the denominators are>N−(u+v−2)>N−u−v+2> 2.
Thus, we may integrate and get∫ 1

0

xu−1(1− x)v−1

(1− tx)N
dx =

Q(t)

(1− t)N−1

with Q(t) a Laurent polynomial with rational coefficients. The left-hand side has a limit when t
tends to 0, so Q(t) has to be a polynomial. To finish, it is enough to show that

(1− t)N−v
∫ 1

0

xu−1(1− x)v−1

(1− tx)N
dx

is bounded when t approaches 1. We make the change of variables s = 1 − t, y = 1 − x, and
consider integrals

sN−v
∫ 1

0

(1− y)u−1yv−1

(y + s− ys)N dy

with s approaching 0. Since (1− y)u−1 6 1 and y+ s− ys > 1
2(y+ s), it is enough to prove that

the quantities

sN−v
∫ 1

0

yv−1

(y + s)N
dy

are bounded when s approaches 0. This equals

sN−v
∫ 1

0

(
y

y + s

)v−1 dy

(y + s)N−v+1
6 sN−v

∫ 1

0

dy

(y + s)N−v+1
=

1

N − v

(
1−

(
s

1 + s

)N−v)
and we are done. 2
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Odd zeta motive and linear forms in odd zeta values

Proposition 5.8. Let u1, . . . , un, v1, . . . , vn > 1 and N > 0 be integers such that v1 + · · ·+ vn >
N + 1. Let us assume that there exists an index i ∈ {1, . . . , N} such that

ui + vi 6 N.

Then the integral∫
[0,1]n

xu1−1
1 · · ·xun−1

n (1− x1)v1−1 · · · (1− xn)vn−1

(1− x1 · · ·xn)N
dx1 · · · dxn

is absolutely convergent and evaluates to a linear combination

a0 + a2ζ(2) + a3ζ(3) + · · ·+ an−1ζ(n− 1)

with ai ∈ Q for every i.

Proof. By symmetry, we can assume that un + vn 6 N . Therefore, applying Lemma 5.7 to the
variables x = xn and t = x1 · · ·xn−1 in the integral leads to the (n− 1)-dimensional integral∫

[0,1]n−1

xu1−1
1 · · ·xun−1−1

n−1 (1− x1)v1−1 · · · (1− xn−1)vn−1−1P (x1 · · ·xn−1)

(1− x1 · · ·xn−1)N−vn
dx1 · · · dxn−1.

Since v1 + · · ·+ vn−1 > N − vn + 1, one can then finish thanks to Theorem 5.1. 2

Note that Proposition 5.8 applies in particular if for every i, 2ui + vi = N + 1. This gives
in particular a geometric interpretation of the weight drop in the Ball–Rivoal integrals [Riv00,
BR01], which comes from the representations as hypergeometric series (42). Note that a careful
analysis of the degree of the polynomial P (t) in Lemma 5.7 can lead to sufficient conditions for
the vanishing of the subleading coefficients.

Acknowledgements
Many thanks to Francis Brown, Pierre Cartier, Tanguy Rivoal and Don Zagier for fruitful
discussions as well as comments and corrections on a preliminary version.

Appendix. An approach via series

Written jointly with Don Zagier

The aim of this appendix is to give an elementary construction of the coefficients ak(ω) from
Theorem 5.1. The dictionary between integrals and sums of series leads to an interpretation of
the (de Rham realization of the) zeta motive Z, modulo weight 0, in terms of rational functions
in one variable.

A.1 Series, integrals, and zeta values
A.1.1 Series of rational functions and zeta values. We denote by Q(k) the field of rational

functions in the variable k with rational coefficients. Let V denote the subspace of Q(k) consisting
of rational functions with poles in {−1,−2,−3, . . .} and V0 be the subspace of functions vanishing
at∞. Then V = V0 ⊕Q[k] and the set of functions (k+j)−r, with j, r > 1 integers, is a basis of V0.
The forward difference operator ∆ : Q(k)→ Q(k) defined by ∆R(k) = R(k+1)−R(k) preserves
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C. Dupont

the spaces V and V0 and one has direct sum decompositions V = ∆(V )⊕B and V0 = ∆(V0)⊕B,
where B is the space spanned by the functions (k + 1)−r, for r > 1 integers. We thus have an
identification V0/∆(V0) ∼= V/∆(V ) and an isomorphism

β : V/∆(V )
'−→
⊕
r>1

Q, R 7→ (β1(R), β2(R), . . .), (A.1)

where the numbers βr(R) ∈ Q, for R ∈ V , are defined by

R(k) ≡
∑
r>1

βr(R)

(k + 1)r
(mod ∆(V )).

For R ∈ V0 we can write

R(k) =
∑
r>1

βr(R)

(k + 1)r
−∆R0(k),

for some R0 ∈ V0, which is unique because ∆ : V0 → V0 is injective. Thus, the sum
∑∞

k=0R(k)
is absolutely convergent if and only if R ∈ V0 and β1(R) = 0, and in this case we have

∞∑
k=0

R(k) = R0(0) +
∑
r>2

βr(R) ζ(r) ∈ Q +
∑
r>2

Qζ(r). (A.2)

A.1.2 From differential forms to rational functions. For n > 1 an integer, we define

Ωn = Q[x1, . . . , xn, (1− x1 · · ·xn)−1]

and we interpret an element F ∈ Ωn as the algebraic differential n-form ω = F dx1 · · · dxn.

Lemma A.1. The formula

Φn

(
xa1−1

1 · · ·xan−1
n

(1− x1 · · ·xn)N

)
=

0 if N = 0,(
k +N − 1

N − 1

)
1

(k + a1) · · · (k + an)
if N > 1,

(A.3)

for a1, . . . , an > 1 and N > 0 integers, defines a linear map Φn : Ωn→ V/∆(V ).

Proof. If we rewrite

xa1−1
1 · · ·xan−1

n as
xa1−1

1 · · ·xan−1
n − xa11 · · ·xann

1− x1 · · ·xn
,

then its image by Φn is

1

(k + a1) · · · (k + an)
− 1

(k + a1 + 1) · · · (k + an + 1)
= ∆

(
− 1

(k + a1) · · · (k + an)

)
≡ 0 (mod ∆(V )).

For N > 1, if we rewrite

xa1−1
1 · · ·xan−1

n

(1− x1 · · ·xn)N
as

xa1−1
1 · · ·xan−1

n − xa11 · · ·xann
(1− x1 · · ·xn)N+1

,
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then we replace the function

R(k) =

(
k +N − 1

N − 1

)
1

(k + a1) · · · (k + an)

by the function

R∗(k) =

(
k +N

N

)(
1

(k + a1) · · · (k + an)
− 1

(k + a1 + 1) · · · (k + an + 1)

)
= R(k) +

kR(k)− (k + 1)R(k + 1)

N
≡ R(k) (mod ∆(V )).

This shows that the definition of Φn(F ) for F ∈ (1 − x1 · · ·xn)−NQ[x1, . . . , xn] is independent
of the choice of N . 2

Combining with (A.1), we get well-defined maps

br : Ωn→ Q, ω 7→ βr(Φn(ω)).

Note that this is zero for r > n for degree reasons. We denote by Ωint
n ⊂ Ωn the subspace of

integrable differential forms, which are the forms ω such that the integral
∫

[0,1]n ω is absolutely

convergent (see Definition 3.5 and Propositions 3.6 and 3.7).

Proposition A.2. For every ω ∈ Ωint
n we have b1(ω) = 0 and∫

[0,1]n
ω = b2(ω)ζ(2) + · · ·+ bn(ω)ζ(n) (mod Q).

Proof. Let us write ω = P (x1, . . . , xn)/(1− x1 · · ·xn)N with P (x1, . . . , xn) a polynomial with
rational coefficients and N > 1 an integer. Let R ∈ V be the representative of Φn(ω) obtained
by applying (A.3) to every monomial in P (x1, . . . , xn) and using linearity. Then the formula

1

(1− x)N
=
∞∑
k=0

(
k +N − 1

N − 1

)
xk

implies that we have ∫
[0,1]n

ω =
∞∑
k=0

R(k).

Thus, the sum
∑∞

k=0R(k) is convergent, which implies that we have R ∈ V0 and β1(R) = 0. The
claim then follows from (A.2). 2

Proposition A.2 implies that there is a well-defined map b0 : Ωint
n → Q such that for every ω ∈

Ωint
n we have ∫

[0,1]n
ω = b0(ω) + b2(ω)ζ(2) + · · ·+ bn(ω)ζ(n). (A.4)

We note that applying Φn to the integrals (41) leads to the hypergeometric series
representations (42).
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C. Dupont

A.1.3 Parity. Let us recall that τ denotes the involution (x1, . . . , xn) 7→ (x−1
1 , . . . , x−1

n ).
The following proposition is nothing but a generalization of the classical well-poised symmetry
of the hypergeometric series (42), and is similar to the parity considerations in [Zud04, § 8]
and [CFR08b, § 3.1].

Proposition A.3. Let ω ∈ Ωn be a differential form such that τ.ω belongs to Ωn. We have, for
every integer r > 1,

br(τ.ω) = (−1)r−1br(ω).

In particular, we have:

(i) if τ. ω = ω then br(ω) = 0 for r 6= 0 even;

(ii) if τ. ω = −ω then br(ω) = 0 for r odd.

Proof. Let R and S be representatives of Φn(ω) and Φn(τ.ω) respectively, constructed as in the
proof of Proposition A.2. The involution τ acts on differential forms by the formula

xa1−1
1 · · ·xan−1

n

(1− x1 · · ·xn)N
dx1 · · · dxn 7→ (−1)N+n x

N−a1−1
1 · · ·xN−an−1

n

(1− x1 · · ·xn)N
dx1 · · · dxn.

Thus, by looking at the formula for Φn, we see that we have S(k) = −R(−N − k). This implies,
for every integer r > 1, the equality,

βr(S) = (−1)r−1βr(R),

and the claim follows. 2

A.2 Comparison of the coefficients
The aim of this section is to prove the following theorem.

Theorem A.4. For every ω ∈ Ωint
n and every integer r = 0, 2, . . . , n we have ar(ω) = br(ω).

Note that this theorem would follow from the conjecture that 1 and the zeta values ζ(n),
n > 2, are linearly independent over Q, by looking at (37) and (A.4).

A.2.1 Inductive structure on the motives Z(n). Let us recall from § 3.5 the morphisms i
(n)
dR :

Z(n−1)
dR → Z(n)

dR , which come from the identification Xn−1 = {xn = 1} ⊂ Xn. Let us consider
an (n− 1)-form of the type

η =
P (x1, . . . , xn)

(1− x1 · · ·xn)N
dx1 · · · dxn−1,

with P (x1, . . . , xn) a polynomial with rational coefficients and N > 0 an integer. We say that such
a form is integrable if the pullback π∗n(η) does not have a pole along the exceptional divisor En (πn
and En are introduced in § 3.1). This can be characterized in the same way as in Propositions 3.6
and 3.7, but we will not need such a characterization. If η is integrable, then its derivative dη is
integrable in the sense of Definition 3.5, and the restriction η|xn=1, viewed as a form on Xn−1,

is also integrable. We then have classes [dη] ∈ Z(n)
dR and [η|xn=1] ∈ Z(n−1)

dR . They are related by
the formula

in,dR([η|xn=1]) ≡ (−1)n−1[dη] (mod W0Z(n)
dR ),
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Odd zeta motive and linear forms in odd zeta values

which is proved as in the proof of Proposition 3.10, by noticing that η|xn=0 is a polynomial, hence

has weight zero. This formula is the de Rham-theoretic incarnation of Stokes’s formula

(−1)n−1

∫
[0,1]n

dη =

(∫
[0,1]n−1

η|xn=1 −
∫

[0,1]n−1

η|xn=0

)
≡
∫

[0,1]n−1

η|xn=1 (mod Q).

If we now choose to make the identification Xn−1 = {xj = 1} ⊂ Xn, for some index j = 1,

. . . , n, then we get a morphism i
(n),j
dR : Z(n−1)

dR → Z(n)
dR , such that i

(n)
dR = i

(n),n
dR . They satisfy the

equation

i
(n),j
dR ([η|xj=1]) ≡ (−1)j−1[dη] (mod W0Z(n)

dR ), (A.5)

for η an integrable (n− 1)-form of the type

P (x1, . . . , xn)

(1− x1 · · ·xn)N
dx1 · · · d̂xj · · · dxn. (A.6)

One easily notes that the morphism i
(n),j
dR does not depend on the index j, for instance by

proving that Proposition 3.10 is valid for any choice of j: for every d = 0, 2, . . . , n − 1, the

map i
(n),j
dR sends the class [ω

(n−1)
d ] to the class [ω

(n)
d ]. We nevertheless keep the notation i

(n),j
dR

since these morphisms have different geometric interpretations.

A.2.2 Compatibility of Φn with the induction. The crucial point is that the morphisms Φn

are compatible with the inductive structure (A.5) on the motives Z(n)
dR , in the sense of the

following lemma.

Lemma A.5. For every j = 1, . . . , n and every differential (n− 1)-form η of type (A.6) we have

Φn(dη) ≡ (−1)j−1Φn−1(η|xj=1) (mod ∆(V )).

Proof. We do the case j = n, the general case being similar. It is enough to do the proof for a

monomial

η =
xa1−1

1 · · ·xan−1−1
n−1 xann

(1− x1 · · ·xn)N
dx1 · · · dxn−1,

with a1, . . . , an−1 > 1, an > 0 and N > 1. We have

(−1)n−1dη =

(
an

xa1−1
1 · · ·xan−1

n

(1− x1 · · ·xn)N
+N

xa11 · · ·xann
(1− x1 · · ·xn)N+1

)
dx1 · · · dxn,

and thus (−1)n−1Φn(dη) equals

an

(
k +N − 1

N − 1

)
1

(k + a1) · · · (k + an)
+N

(
k +N

N

)
1

(k + a1 + 1) · · · (k + an + 1)
.

By writing an/(k + an) = 1− k/(k + an) and N
(
k+N
N

)
= (k + 1)

(
k+N
N−1

)
, we get

(−1)n−1Φn(dη) ≡
(
k +N − 1

N − 1

)
1

(k + a1) · · · (k + an−1)
= Φn−1(η|xn=1) (mod ∆(V )). 2
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A.2.3 Proof of Theorem A.4. We prove Theorem A.4 by induction on n. The case n = 1 is

trivial since in this case we have a0(ω) = b0(ω) =
∫ 1

0 ω. Let us then assume that n > 2 and that
the theorem is proved for n− 1. Recall the notation

ω(n)
n =

dx1 · · · dxn
1− x1 · · ·xn

for the representative of the highest weight basis element in Zn,dR; it satisfies Φn(ω
(n)
n ) =

(k + 1)−n. The short exact sequence (31) implies that, for every ω ∈ Ωint
n , we may write

ω = an(ω)ω(n)
n +

n∑
j=1

dηj

with ηj an integrable (n−1)-form of type (A.6), for every j = 1, . . . , n. The short exact sequence
(31) actually implies that in addition we can assume that the classes of dη1, . . . , dηn−1 are zero,
but we will not need it here. By using (A.5) we may write

[ω] = an(ω)[ω(n)
n ] +

n∑
j=1

(−1)j−1i
(n),j
dR ([(ηj)|xj=1]) (mod W0Z(n)

dR ).

Now Lemma A.5 implies the formula

Φn(ω) ≡ an(ω)

(k + 1)n
+

n∑
j=1

(−1)j−1Φn−1((ηj)|xj=1) (mod ∆(V )).

By using the induction hypothesis on the forms (ηj)|xj=1 and the fact that the

morphisms i
(n),j
dR are compatible with the bases, this implies that we have

Φn(ω) ≡
n∑
r=2

ar(ω)

(k + 1)r
(mod ∆(V )),

which completes the proof.
We note that a restatement of Theorem A.4 is that the morphisms Φn induce an isomorphism

of graded vector spaces

Φ : ZdR/W0ZdR
'−→ (V/∆(V ))>2,

where (V/∆(V ))>2 is the subspace of V/∆(V ) characterized by the condition β1 = 0 and is
graded by the morphisms βn, n > 2.
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