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ODD ZETA MOTIVE AND LINEAR FORMS IN ODD ZETA VALUES

CLÉMENT DUPONT
WITH A JOINT APPENDIX WITH DON ZAGIER

Abstract. We study a family of mixed Tate motives over Z whose periods are linear forms in the zeta
values ζ(n). They naturally include the Beukers–Rhin–Viola integrals for ζ(2) and the Ball–Rivoal linear
forms in odd zeta values. We give a general integral formula for the coefficients of the linear forms and a
geometric interpretation of the vanishing of the coefficients of a given parity. The main underlying result is a
geometric construction of a minimal ind-object in the category of mixed Tate motives over Z which contains
all the non-trivial extensions between simple objects. In a joint appendix with Don Zagier, we prove the
compatibility between the structure of the motives considered here and the representations of their periods
as sums of series.

1. Introduction

1.1. Constructing linear forms in zeta values. The study of the values at integers n > 2 of the Riemann
zeta function

ζ(n) =
∑

k>1

1

kn

goes back to Euler, who showed that the even zeta value ζ(2n) is a rational multiple of π2n. Lindemann’s
theorem thus implies that the even zeta values are transcendental numbers. It is conjectured that the odd
zeta values ζ(3), ζ(5), ζ(7), . . . are algebraically independent over Q[π].

Many of the results in the direction of this conjecture use as a key ingredient certain families of period
integrals which evaluate to linear combinations of 1 and zeta values:

(1)

∫

σ

ω = a0 + a2ζ(2) + · · ·+ anζ(n) ,

with ak ∈ Q for every k. We can cite in particular the following results (see Fischler’s Bourbaki talk [Fis04]
for a more complete survey).

– Apéry’s proof [Apé79] of the irrationality of ζ(2) and ζ(3) was simplified by Beukers [Beu79] by using a
family of integrals evaluating to linear combinations a0 + a2ζ(2) and a0 + a3ζ(3);

– Ball and Rivoal’s proof [Riv00, BR01] that infinitely many odd zeta values are irrational relies on a family
of integrals evaluating to linear combinations (1) for which all the even coefficients a2, a4, a6, . . . vanish;

– Rhin and Viola’s irrationality measures [RV96, RV01] for ζ(2) and ζ(3) are built on generalizations of the
Beukers integrals and precise estimates for the coefficients a2 and a3.

In view of diophantine applications, it is crucial to have some control over the coefficients ak appearing in
linear combinations (1), in particular to be able to predict the vanishing of certain coefficients.

In the present article, we study the family of integrals

(2)

∫

[0,1]n
ω with ω =

P (x1, . . . , xn)

(1− x1 · · ·xn)N
dx1 · · · dxn ,

where n > 1 and N > 0 are integers and P (x1, . . . , xn) is a polynomial with rational coefficients. This family
contains the Beukers–Rhin–Viola integrals for ζ(2) and the Ball–Rivoal integrals. We say that an algebraic
differential form ω as in (2) is integrable if the integral in (2) is absolutely convergent. Our first result is
that such integrals evaluate to linear combinations of 1 and zeta values, with an integral formula for the
coefficients.
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Theorem 1.1. There exists a family (σ2, . . . , σn) of relative n-cycles with rational coefficients in (C∗)n −
{x1 · · ·xn = 1} such that for every integrable ω we have

∫

[0,1]n
ω = a0(ω) + a2(ω)ζ(2) + · · ·+ an(ω)ζ(n) ,

with ak(ω) a rational number for every k, given for k = 2, . . . , n by the formula

(3) ak(ω) = (2πi)−k

∫

σk

ω .

The case n = k = 2 of this theorem is Rhin and Viola’s contour formula for ζ(2) [RV96, Lemma 2.6].
We note that in Theorem 1.1, the relative homology classes of the n-cycles σk are uniquely determined, see
Theorem 4.8 for a precise statement. Furthermore, they are invariant, up to a sign, by the involution

(4) τ : (x1, . . . , xn) 7→ (x−1
1 , . . . , x−1

n ) ,

which implies a general vanishing theorem for the coefficients ak(ω), as follows.

Theorem 1.2. For k = 2, . . . , n the relative cycle τ.σk is homologous to (−1)k−1σk. Thus, for every
integrable ω:

(1) if τ. ω = ω then ak(ω) = 0 for k 6= 0 even;
(2) if τ. ω = −ω then ak(ω) = 0 for k odd.

This allows us to construct families of integrals (2) which evaluate to linear combinations of 1 and odd
zeta values, or 1 and even zeta values. This is the case for the integrals (see Corollary 5.6)

∫

[0,1]n

xu1−1
1 · · ·xun−1

n (1 − x1)
v1−1 · · · (1− xn)

vn−1

(1− x1 · · ·xn)N
dx1 · · · dxn

where the integers ui, vi > 1 satisfy 2ui + vi = N + 1 for every i. Depending on the parity of the prod-
uct (n+1)(N+1), the differential form is invariant or anti-invariant by τ and we get the vanishing of even or
odd coefficients. This gives a geometric interpretation of the vanishing of the coefficients in the Ball–Rivoal
integrals [Riv00, BR01], which correspond to special values of the parameters ui, vi.

The fact that the vanishing of certain coefficients in the Ball–Rivoal integrals could be explained by the
existence of (anti-)invariant relative cycles was suggested to me by Rivoal during a visit at Institut Fourier,
Grenoble, in October 2015. The special role played by the involution τ was first remarked by Deligne in a
letter to Rivoal [Del01].

In an appendix written jointly with Don Zagier, we give an interpretation of the coefficients ak(ω) ap-
pearing in Theorem 1.1 in elementary terms, that is in terms of the natural representations of the integrals
in (2) as sums of series. This should be viewed as a geometric version of the dictionary between integrals and
sums of series which is used in [Riv00, BR01]. It also gives an elementary proof of the vanishing properties
of Theorem 1.2, which is essentially already present in the literature, see e.g. [Riv00, BR01], [Zud04, §8]
and [CFR08, §3.1].

The existence of the integral formulas (3) follows from the computation of certain motives, which are the
central objects of the present article and that we now describe.

1.2. Constructing extensions in mixed Tate motives. Recall that the category MT(Z) of mixed Tate
motives over Z is a (neutral) tannakian category of motives (with rational coefficients) defined in [DG05]
and whose abstract structure is well understood. The only simple objects in MT(Z) are the pure Tate
objects Q(−k), for k an integer, and every object in MT(Z) has a canonical weight filtration whose graded
quotients are sums of pure Tate objects. The only non-zero extension groups between the pure Tate objects
are given by

(5) Ext1MT(Z)(Q(−(2n+ 1)),Q(0)) ∼= Q (n > 1) .
2



Furthermore, a period matrix of the (essentially unique) non-trivial extension of Q(−(2n+ 1)) by Q(0) has
the form (

1 ζ(2n+ 1)
0 (2πi)2n+1

)
.

The difficulty of constructing linear combinations (1) with many vanishing coefficients reflects the difficulty
of constructing objects of MT(Z) with many vanishing weight-graded quotients [Bro14, §1.4]. In particular,
the difficulty of constructing small linear combinations of 1 and ζ(2n + 1) reflects the difficulty of giving a
geometric construction of the extensions (5).

In this article, we construct a minimal ind-object Zodd in the category MT(Z) which contains all the non-
trivial extensions (5). The construction goes as follows. We first define, for every integer n, an object Z(n) ∈
MT(Z) whose periods naturally include all the integrals (2). More precisely, any integrable form ω defines

a class in the de Rham realization Z
(n)
dR , and the unit n-cube [0, 1]n defines a class in the dual of the Betti

realization Z
(n),∨
B , the pairing between these classes being the integral (2). The technical heart of this article

is the computation of the full period matrix of Z(n).

Theorem 1.3. We have a short exact sequence

0→ Q(0)→ Z(n) → Q(−2)⊕ · · · ⊕Q(−n)→ 0

and Z(n) has the following period matrix which is compatible with this short exact sequence:



1 ζ(2) ζ(3) · · · · · · ζ(n− 1) ζ(n)
(2πi)2

(2πi)3 0
. . .

. . .

0 (2πi)n−1

(2πi)n




·

Concretely, this theorem says that we can find a basis (v0, v2, . . . , vn) of the de Rham realization Z
(n)
dR

(which we will compute explicitly in terms of a special family of integrable forms) and a basis (ϕ0, ϕ2, . . . , ϕn)

of the dual of the Betti realization Z
(n),∨
B , such that the matrix of the integrals 〈ϕi, vj〉 is the one given.

The basis element ϕ0 is the class of the unit n-cube [0, 1]n. Expressing the class [ω] ∈ Z
(n)
dR of an integrable

form ω in the basis (v0, v2, . . . , vn) as

[ω] = a0(ω)v0 + a2(ω)v2 + · · ·+ an(ω)vn

and pairing with the dual basis of the Betti realization gives the proof of Theorem 1.1, with (σ2, . . . , σn)
representatives of the classes (ϕ2, . . . , ϕn).

The involution (4) plays an important role in the proof of Theorem 1.3. It induces a natural involution,
still denoted by τ , on the quotient Z(n)/Q(0) ∼= Q(−2)⊕ · · · ⊕Q(−n).

Theorem 1.4. For k = 2, . . . , n, the involution τ acts on the direct summand Q(−k) of Z(n)/Q(0) by
multiplication by (−1)k−1.

This readily implies Theorem 1.2. Now if we write

Z(n)/Q(0) = (Z(n)/Q(0))+ ⊕ (Z(n)/Q(0))−

for the decomposition into invariant and anti-invariants with respect to τ and write p : Z(n) → Z(n)/Q(0)
for the natural projection, we may set

Z(n),odd := p−1((Z(n)/Q(0))+)
3



whose period matrix only contains odd zeta values in the first row. The objects Z(n),odd ∈ MT(Z) form an
inductive system, and the limit

Zodd := lim
−→

n

Z(n),odd

has an infinite period matrix

(6)




1 ζ(3) ζ(5) ζ(7) · · · · · · · · ·
(2πi)3

(2πi)5 0
(2πi)7

. . .

0
. . .

. . .




·

We call Zodd the odd zeta motive. It is uniquely determined by its period matrix since the Hodge
realization functor is fully faithful on the category MT(Z), see Theorem 2.5 below.

1.3. Related work and open questions. This article follows the program initiated by Brown [Bro14],
which aims at explaining and possibly producing irrationality proofs for zeta values by means of algebraic
geometry. However, the motives that we are considering are different from the general motives considered
by Brown, and in particular, easier to compute. It would be interesting to determine the precise relationship
between our motives and those defined in [Bro14] in terms of the moduli spacesM0,n+3.

In another direction, an explicit description of the relative cycles σ
(n)
k defined in Theorem 1.1 could prove

helpful in proving quantitative results on the irrationality measures of zeta values, in the spirit of [RV96,
RV01].

It is also tempting to apply our methods to other families of integrals appearing in the literature, such as
the Beukers integrals for ζ(3) and their generalizations. One should be able, for instance, to recover Rhin
and Viola’s contour integrals for ζ(3) [RV01, Theorem 3.1]. The symmetry properties studied by Cresson,
Fischler and Rivoal [CFR08] can probably be explained geometrically via finite group actions as in the
present article. The ad-hoc long exact sequences appearing here should be replaced by more systematic
tools such as the Orlik–Solomon bi-complexes from [Dup14].

Finally, it should be possible to extend our results to a functional version of the periods (2), where one
replaces 1 − x1 · · ·xn in the denominator by 1 − z x1 · · ·xn, with z a complex parameter. Such functions
have already been considered in [Riv00, BR01]. The relevant geometric objects are variations of mixed
Hodge–Tate structures on C− {0, 1}, or mixed Tate motives over A1

Q − {0, 1}.

1.4. Contents. In §2 we recall some general facts about the categories in which the objects that we will be
considering live, and in particular the categories MT(Z) and MT(Q) of mixed Tate motives over Z and Q.
In §3 we introduce the zeta motives and examine their Betti and de Rham realizations. In §4, which is
more technical than the rest of the paper, we compute the full period matrix of the zeta motives, which
allows us to define the odd zeta motives. In §5, we apply our results to proving Theorems 1.1 and 1.2 on the
coefficients of linear forms in zeta values.

1.5. Acknowledgements. Many thanks to Francis Brown, Pierre Cartier, Tanguy Rivoal and Don Zagier
for fruitful discussions as well as comments and corrections on a preliminary version.

2. Mixed Tate motives and their period matrices

We recall the construction of the categories MHTS, MT(Q) and MT(Z), which sit as full subcategories of
one another, as follows:

MT(Z) →֒ MT(Q) →֒ MHTS .
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2.1. Mixed Hodge–Tate structures and their period matrices.

Definition 2.1. A mixed Hodge–Tate structure is a triple H = (HdR, HB, α) consisting of:

– a finite-dimensional Q-vector space HB, together with a finite increasing filtration indexed by even inte-
gers: · · · ⊂W2(n−1)HB ⊂W2nHB ⊂ · · · ⊂ HB;

– a finite-dimensional Q-vector space HdR, together with a grading indexed by even integers: HdR =⊕
n(HdR)2n;

– an isomorphism α : HdR ⊗Q C
≃
−→ HB ⊗Q C;

which satisfy the following conditions:

– for every integer n, the isomorphism α sends (HdR)2n ⊗Q C to W2nHB ⊗Q C;

– for every integer n, it induces an isomorphism αn : (HdR)2n ⊗Q C
≃
−→ (W2nHB/W2(n−1)HB)⊗Q C , which

sends (HdR)2n to (W2nHB/W2(n−1)HB)⊗Q (2πi)nQ.

We call HB and HdR respectively the Betti realization and the de Rham realization of the mixed Hodge–
Tate structure, and α the comparison isomorphism. The filtration W on HB is called the weight filtration.
The grading on HdR is called the weight grading, and the corresponding filtrationW2nHdR :=

⊕
k6n(HdR)2k

the weight filtration.

Remark 2.2. More classically, a mixed Hodge–Tate structure is defined to be a mixed Hodge structure [Del71,
Del74] whose weight-graded quotients are of Tate type, i.e. of type (p, p) for some integer p. One passes
from that classical definition to Definition 2.1 by setting HB := H and HdR :=

⊕
nW2nH/W2(n−1)H . The

isomorphism α is induced by the inverses of the isomorphisms

(W2nH/W2(n−1)H)⊗Q C
∼=
←−W2nH ⊗Q C ∩ FnH ⊗Q C

(multiplied by (2πi)n) which express the fact that the weight-graded quotients are of Tate type.

It is convenient to view the comparison isomorphism α : HdR ⊗Q C
≃
−→ HB ⊗Q C as a pairing

(7) H∨
B ⊗Q HdR −→ C , ϕ⊗ v 7→ 〈ϕ, v〉 ,

where (·)∨ denotes the linear dual. The weight filtration on H∨
B is defined by

W−2nH
∨
B := (HB/W2(n−1)HB)

∨ ,

so that we have

W−2nH
∨
B/W−2(n+1)H

∨
B
∼= (W2nHB/W2(n−1)HB)

∨ .

The pairing (7) is compatible with the weight filtrations in that we have 〈ϕ, v〉 = 0 for ϕ ∈ W−2mH
∨
B , v ∈

W2nHdR and m < n.

If we choose bases for the Q-vector spacesHdR andHB, then the matrix of α in these bases, or equivalently
the matrix of the pairing (7), is called a period matrix of the mixed Hodge–Tate structure. We will always
make the following assumptions on the choice of bases:

– the basis of HB is compatible with the weight filtration;
– the basis of HdR is compatible with the weight grading;
– for every n, the matrix of the comparison isomorphism αn in the corresponding basis is (2πi)n times the
identity.

This implies that any period matrix is block upper-triangular with successive blocks of (2πi)n Id on the
diagonal. Conversely, any block upper-triangular matrix with successive blocks of (2πi)n Id on the diagonal
is a period matrix of a mixed Hodge–Tate structure.

Example 2.3. Any matrix of the form



1 ∗ ∗ ∗ ∗
0 2πi 0 ∗ ∗
0 0 2πi ∗ ∗
0 0 0 (2πi)2 0
0 0 0 0 (2πi)2



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defines a mixed Hodge–Tate structure H such that HdR = (HdR)0 ⊕ (HdR)2 ⊕ (HdR)4 has graded dimen-
sion (1, 2, 2).

2.2. The category of mixed Hodge–Tate structures. We denote by MHTS the category of mixed
Hodge–Tate structures. It is a neutral tannakian category over Q, which means in particular that it is an
abelian Q-linear category equipped with a Q-linear tensor product ⊗. We note that an object H ∈ MHTS is
endowed with a canonical weight filtration W by sub-objects, such that the morphisms in MHTS are strictly
compatible with W . We have two natural fiber functors

(8) ωB : MHTS→ VectQ and ωdR : MHTS→ VectQ

from MHTS to the category of finite-dimensional vector spaces over Q, which only remember the Betti real-
ization HB and the de Rham realization HdR respectively. We note that the de Rham realization functor ωdR

factors through the category of finite-dimensional graded vector spaces. The comparison isomorphisms α
gives an isomorphism between the complexifications of the two fiber functors:

(9) ωdR ⊗Q C
≃
−→ ωB ⊗Q C .

For an integer n, we denote by Q(−n) the mixed Hodge–Tate structure whose period matrix is the 1× 1
matrix ((2πi)n). Its weight grading and filtration are concentrated in weight 2n, hence we call it the pure
Tate structure of weight 2n. For H a mixed Hodge–Tate structure, the tensor product H ⊗Q(−n) is simply
denoted by H(−n) and called the n-th Tate twist of H . A period matrix of H(−n) is obtained by multiplying
a period matrix of H by (2πi)n. The weight grading and filtration of H(−n) are those of H , shifted by 2n.

2.3. Extensions between pure Tate structures. The pure Tate structures Q(−n) are the only simple
objects of the category MHTS. The extensions between them are easily described. Up to a Tate twist, it is
enough to describe the extensions of Q(−n) by Q(0) for some integer n. The corresponding extension group
is given by

Ext1MHTS(Q(−n),Q(0)) =

{
C/(2πi)nQ if n > 0;

0 otherwise.

More concretely, the extension corresponding to a number z ∈ C/(2πi)nQ has a period matrix
(

1 z
0 (2πi)n

)
.

We note that the higher extension groups vanish: ExtrMHTS(H,H
′) = 0 for r > 2 and H , H ′ two mixed

Hodge–Tate structures.

Example 2.4. For a complex number a ∈ C − {0, 1}, the cohomology group H1(C∗, {1, a}) is an extension
ofQ(−1) byQ(0) corresponding to z = log(a) ∈ C/(2πi)Q. It is called the Kummer extension of parameter a.

2.4. Mixed Tate motives over Q. Let MT(Q) denote the category of mixed Tate motives over Q, as
defined in [Lev93]. It is a tannakian category. There is a faithful and exact functor

(10) MT(Q)→ MHTS

from MT(Q) to the category MHTS of mixed Hodge–Tate structures, which is called the Hodge realization
functor ([DG05, §2.13], see also [Hub00, Hub04]). Composing it with the fiber functors (8) gives the de
Rham and Betti realization functors, still denoted by

(11) ωB : MT(Q)→ VectQ and ωdR : MT(Q)→ VectQ ,

and we still have a comparison isomorphism (9). We note that any object in MT(Q) is endowed with a
canonical weight filtration W by sub-objects such that the morphisms in MT(Q) are strictly compatible
with W . The realization morphisms are compatible with the weight filtrations.

Deciding whether a given mixed Hodge–Tate structure is in the essential image of the realization functor
(10) is generally difficult. One can at least say that for every integer n, the object Q(−n) is the realization
of a mixed Tate motive over Q denoted by Q(−n) as well, and called the pure Tate motive of weight 2n. The

6



extension groups between these objects are computed by the rational K-theory of Q [Lev93, §4] and hence
given by

(12) Ext1MT(Q)(Q(−n),Q(0)) =





⊕
p primeQ if n = 1;

Q if n is odd > 3;

0 otherwise.

As in the category MHTS, the higher extension groups vanish in the category MT(Q). The morphisms

(13) Ext1MT(Q)(Q(−n),Q(0)) −→ Ext1MHTS(Q(−n),Q(0)) ∼= C/(2πi)nQ

induced by (10) are easy to describe. For n = 1, the image of the direct summand indexed by a prime p is
the line spanned by log(p). For n > 3 odd, the image is the line spanned by ζ(n). Thus, the morphism (13)
is injective for every n. This implies the following theorem [DG05, Proposition 2.14].

Theorem 2.5. The realization functor (10) is fully faithful.

This theorem is very helpful, since it allows one to compute in the category MT(Q) with period matrices;
in other words, a mixed Tate motive over Q is uniquely determined by its period matrix.

2.5. Mixed Tate motives over Z. Let MT(Z) denote the category of mixed Tate motives over Z, as
defined in [DG05]. By definition, it is a full tannakian subcategory

MT(Z) →֒ MT(Q)

of the category of mixed Tate motives over Q, which contains the pure Tate motives Q(−n) for every
integer n. It satisfies the following properties:
1. Ext1MT(Z)(Q(−1),Q(0)) = 0;

2. the natural morphism Ext1MT(Z)(Q(−n),Q(0))→ Ext1MT(Q)(Q(−n),Q(0)) is an isomorphism for n 6= 1.

As in the categories MHTS and MT(Q), the higher extension groups vanish in the category MT(Z).

For n odd> 3, there is an essentially unique non-trivial extension ofQ(−n) byQ(0) in the categoryMT(Q),
which actually lives in MT(Z). A period matrix for such an extension is

(
1 ζ(n)
0 (2πi)n

)
.

Apart from the case n = 3 (see [Bro14, Corollary 11.3] or Proposition 4.10 below), we do not know of any
geometric construction of these extensions.

3. Definition of the zeta motives Z(n)

We define the zeta motives Z(n) and explain how to define elements of their Betti and de Rham realizations.
In particular, we define the classes of the Eulerian differential forms, which are elements of the de Rham

realization Z
(n)
dR constructed out of the family of Eulerian polynomials. We also note that the zeta motives

fit into an inductive system · · · → Z(n−1) → Z(n) → · · · which is compatible with the Eulerian differential
forms.

3.1. The definition. Let n > 1 be an integer. In the affine n-space Xn = An
Q we consider the hypersurfaces

An = {x1 · · ·xn = 1} and

Bn =
⋃

16i6n

{xi = 0} ∪
⋃

16i6n

{xi = 1} .

The union An ∪Bn is almost a normal crossing divisor inside Xn: around the point Pn = (1, . . . , 1), it looks
like z1 · · · zn(z1 + · · ·+ zn) = 0 (set xi = exp(zi)). Let

πn : X̃n → Xn

be the blow-up along Pn, and En = π−1
n (Pn) be the exceptional divisor. We denote respectively by Ãn

and B̃n the strict transforms of An and Bn along πn. The union Ãn ∪ B̃n ∪ En is a simple normal crossing

divisor inside X̃n.
7



There is an object Z(n) ∈ MT(Q), which we may abusively denote by

Z(n) = Hn(X̃n − Ãn, (B̃n ∪ En)− (B̃n ∪ En) ∩ Ãn) ,

such that its Betti and de Rham realizations (11) are (? ∈ {B, dR})

Z
(n)
? = Hn

? (X̃n − Ãn, (B̃n ∪ En)− (B̃n ∪ En) ∩ Ãn) .

We now give the precise definition of Z(n), along the lines of [Gon02, Proposition 3.6]. Let us write Y =

X̃n− Ãn and ∂Y = (B̃n∪En)− (B̃n∪En)∩ Ãn, viewed as schemes defined over Q. We have a decomposition
into smooth irreducible components ∂Y =

⋃
i ∂iY , where i runs in a set of cardinality 2n + 1. For a

set I = {i1, . . . , ir} of indices, we denote by ∂IY = ∂i1Y ∩ · · · ∩ ∂irY the corresponding intersection; it is
either empty or a smooth subvariety of X of codimension r.

We thus get a complex

(14) · · · →
⊔

|I|=3

∂IY →
⊔

|I|=2

∂IY →
⊔

|I|=1

∂IY → Y → 0

in Voevodsky’s triangulated category DM(Q) of mixed motives over Q, see [Voe00]. The differentials are
the alternating sums of the natural closed immersions. One readily checks that the complex (14) lives in
the triangulated Tate subcategory DMT(Q), which has a natural t-structure whose heart is MT(Q) [Lev93].
By definition, the object Z(n) in MT(Q) is the n-th cohomology group of the complex (14) with respect to
this t-structure.

Definition 3.1. For n > 1, we call Z(n) ∈ MT(Q) the n-th zeta motive.

Note that for n = 1, the blow-up map π1 : X̃1 → X1 is an isomorphism and Ã1 = ∅, so that we
get Z(1) = H1(A1

Q, {0, 1}).

Remark 3.2. We will prove in Proposition 4.11 that Z(n) is actually an object of the full subcategoryMT(Z) →֒
MT(Q). It would be possible, but a little technical, to prove it directly from the definition by using the cri-

terion [GM04, Proposition 4.3] on some compactification of X̃n − Ãn.

3.2. Betti and de Rham realizations, 1. We now give a first description of the Betti and de Rham
realizations of the zeta motive Z(n).

We let C• denote the functor of singular chains with rational coefficients on topological spaces. By

definition, the dual of the Betti realization Z
(n),∨
B is the n-th homology group of the total complex of the

double complex

(15)

//
⊕

|I|=2

C0(∂IY (C)) //
⊕

|I|=1

C0(∂IY (C)) // C0(Y (C))

//

OO

⊕

|I|=1

C1(∂IY (C)) //

OO

C1(Y (C))

OO

//

OO

C2(Y (C))

OO

OO

obtained by applying the functor C• to the complex (14). One readily verifies that this complex is quasi-
isomorphic to the quotient complex C•(Y (C))/C•(∂Y (C)), classically used to define the relative homology

groups HB
• (Y, ∂Y ) = Hsing

• (Y (C), ∂Y (C)).
We let Ω•

∂IY
denote the complex of sheaves of algebraic differential forms on the smooth variety ∂IY ,

extended by zero to Y . By definition, the de Rham realization Z
(n)
dR is the hypercohomology of the total

complex of the double complex of sheaves
8



(16)

⊕

|I|=2

Ω0
∂IY

oo

��

⊕

|I|=1

Ω0
∂IY

oo

��

Ω0
Y

oo

��⊕

|I|=1

Ω1
∂IY

oo

��

Ω1
Y

oo

��
Ω2

Y
oo

��

where the vertical arrows are the exterior derivatives and the horizontal arrows are the alternating sums
of the natural restriction maps as in the complex (14).

The comparison morphism between the Betti and de Rham realizations of Z(n) is induced, after complex-
ification, by the morphism from the double complex (16) to the double complex (15) given by integration.
Note that one first has to replace (15) by the double complex of sheaves of singular cochains.

3.3. Betti and de Rham realizations, 2. We now give a description of the Betti and de Rham realizations

of Z(n) that allow to work directly in the affine space Xn and do not require to work in the blow-up X̃n. The
justification of the blow-up process goes as follows. Suppose that one wants to find a motive whose periods
include all absolutely convergent integrals of the form

(17)

∫

[0,1]n

P (x1, . . . , xn)

(1− x1 · · ·xn)N
dx1 · · · dxn

where P (x1, . . . , xn) is a polynomial with rational coefficients, and N > 0 is an integer. On the Betti side,
the blow-up process is required in order to have a class that represents the integration domain [0, 1]n; on
the de Rham side, the blow-up process is required in order to only consider absolutely convergent integrals
of the form (17). This is made precise by Propositions 3.3 and 3.5 below.

We start with the Betti realization. Let us write
◦

An = An −Pn and note that this is not a closed subset,
but only a locally closed subset, of Xn.

Proposition 3.3. The blow-up morphism πn : X̃n → Xn induces an isomorphism

Z
(n),∨
B

∼=
−→ Hsing

n (Xn(C)−
◦

An(C), Bn(C)−Bn(C) ∩
◦

An(C)) .

Proof. The blow-up morphism πn is the contraction of the exceptional divisor En onto the point Pn. Thus,
this is a consequence of the classical excision theorem in singular homology, see for instance [Hat02, Propo-
sition 2.22]. �

As a consequence of Proposition 3.3, we see that the unit n-square �n = [0, 1]n ⊂ Xn(C)−
◦

An(C) defines
a class

[�n] ∈ Z
(n),∨
B .

When viewed in X̃n(C) − Ãn(C), it is the class of the strict transform �̃n, which has the combinatorial
structure of an n-cube truncated at one of its vertices.

We now turn to a description of the de Rham realization of Z(n). Instead of giving a general description

in terms of algebraic differential forms on Xn−An, we will only give a way of defining many classes in Z
(n)
dR ,

which will turn out to be enough.
9



Definition 3.4. An algebraic differential n-form on Xn −An is said to be integrable if it can be written as
a linear combination of forms of the type

(18) ω =
(1− x1)

v1−1 · · · (1− xn)
vn−1f(x1, . . . , xn)

(1 − x1 · · ·xn)N
dx1 · · · dxn

with v1, . . . , vn > 1 and N > 0 integers such that v1 + · · · + vn > N + 1, and f(x1, . . . , xn) a polynomial
with rational coefficients.

The terminology is justified by the following proposition.

Proposition 3.5. Let ω be an algebraic differential n-form on Xn−An. If ω is integrable, then π∗
n(ω) does

not have a pole along En, and thus defines a class in Z
(n)
dR . In particular, the integral

∫

�̃n

π∗
n(ω) =

∫

�n

ω

is absolutely convergent and is a period of Z(n).

Proof. We write ω as in (18). We note that the only problem for absolute convergence is around the
point (1, . . . , 1). Let us thus make the change of variables yi = 1 − xi for i = 1, . . . , n, and g(y1, . . . , yn) =
(−1)n f(x1, . . . , xn). We write h(y1, . . . , yn) = 1− (1 − y1) · · · (1 − yn) so that we have

ω =
yv1−1
1 · · · yvn−1

n g(y1, . . . , yn)

h(y1, . . . , yn)N
dy1 · · · dyn .

There are n natural affine charts for the blow-up πn : X̃n → Xn of the point (0, . . . , 0), and by symmetry it

is enough to work in the first one. We then have local coordinates (z1, . . . , zn) on X̃n, which are linked to
the coordinates (y1, . . . , yn) = πn(z1, . . . , zn) by the formula

(y1, . . . , yn) = (z1, z1z2, . . . , z1zn) .

The problem of convergence occurs in the neighborhood of the exceptional divisor En, which is defined by
the equation z1 = 0. Since h(0, . . . , 0) = 0, we may write

h(z1, z1z2, . . . , z1zn) = z1 h̃(z1, . . . , zn)

with h̃(z1, . . . , zn) a polynomial such that h̃(0, . . . , 0) = 1. The strict transform Ãn of An is thus defined by

the equation h̃(z1, . . . , zn) = 0. We note that we have dy1 · · · dyn = zn−1
1 dz1 · · · dzn, so that we can write

π∗
n(ω) =

zv1−1
1 (z1z2)

v2−1 · · · (z1zn)
vn−1g(z1, z1z2, . . . , z1zn)

zN1 h̃(z1, . . . , zn)
N

zn−1
1 dz1 · · · dzn = zv1+···+vn−N−1

1 Ω ,

where Ω has a pole along Ãn but not along En. The claim follows. �

We make an abuse of notation and denote by

[ω] ∈ Z
(n)
dR

the class of the pullback π∗
n(ω) for ω integrable, so that the comparison isomorphism reads

〈[�n], [ω]〉 =

∫

�n

ω .

We note the converse of Proposition 3.5, which we will not use.

Proposition 3.6. Let ω be an algebraic differential n-form on Xn −An. If the integral
∫
�n ω is absolutely

convergent, then ω is integrable.

Proof. In the coordinates yi = 1− xi, we write

ω =
P (y1, . . . , yn)

h(y1, . . . , yn)N
dy1 · · · dyn

with P (y1, . . . , yn) a polynomial with rational coefficients. If the integral
∫
�n ω is absolutely convergent in the

neighborhood of the point (0, · · · , 0), then after the change of variables φ(z1, . . . , zn) = (z1, z1z2, . . . , z1zn)
10



we get an absolutely convergent integral in the nieghborhood of z1 = 0. We write, as in the proof of
Proposition 3.5:

φ∗(ω) =
P (z1, z1z2, . . . , z1zn)

zN−n+1
1 h̃(z1, . . . , zn)N

dz1 · · · dzn .

Let us write

P (y1, . . . , yn) =
∑

a

λa y
a1−1
1 · · · yan−1

n

with λa ∈ Q for every multi-index a = (a1, . . . , an). We then have

P (z1, z1z2, . . . , z1zn) =
∑

a

λa z
a1+···+an−n
1 za2−1

2 · · · zan−1
n .

Let v denote the smallest integer such that there exists a multi-index a with |a| := a1 + · · · + an = v. We
then have an equivalence

P (z1, z1z2, . . . , z1zn) ∼z1→0 z
v−n
1 Q(z2, . . . , zn)

where Q(z2, . . . , zn) =
∑

|a|=v λa z
a2−1
2 · · · zan−1

n . We then have

φ∗(ω) ∼z1→0 z
v−N−1
1 dz1

Q(z2, . . . , zn)

(1 + z2 + · · ·+ zn)N
dz2 · · · dzn .

This gives an absolutely convergent integral in the neighborhood of z1 = 0 if and only if v > N + 1, which
is exactly the integrability condition. �

3.4. The Eulerian differential forms. Recall that the family of Eulerian polynomials Er(x), r > 0, is
defined by the equation

(19)
Er(x)

(1− x)r+1
=
∑

j>0

(j + 1)rxj .

We refer to [Foa10] for a survey on Eulerian polynomials. If r > 1 then (19) is equivalent to

Er(x)

(1− x)r+1
=

1

x

(
x
d

dx

)r
1

1− x
·

For instance, we have E0(x) = E1(x) = 1, E2(x) = 1 + x, E3(x) = 1 + 4x + x2. The Eulerian polynomials
satisfy the recurrence relation

(20) Er+1(x) = x(1− x)E′
r(x) + (1 + rx)Er(x) .

For integers n > 2 and k = 2, . . . , n, we define a differential form

ω
(n)
k =

En−k(x1 · · ·xn)

(1− x1 · · ·xn)n−k+1
dx1 · · · dxn.

Note that we have ω
(n)
n =

dx1 · · · dxn
1− x1 · · ·xn

.

Lemma 3.7. For k = 2, . . . , n, the form ω
(n)
k defines a class [ω

(n)
k ] ∈ Z

(n)
dR and we have

(21) 〈[�n], [ω
(n)
k ]〉 =

∫

�n

ω
(n)
k = ζ(k) .

Proof. The first statement follows from Proposition 3.5. The computation of the period is then straightfor-
ward using the definition (19) of the Eulerian polynomials:

∫

�n

ω
(n)
k =

∑

j>0

(k + 1)n−k

∫

[0,1]n
(x1 · · ·xn)

j dx1 · · · dxn =
∑

j>0

(j + 1)−k = ζ(k) .

�
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For every n > 0, we define ω
(n)
0 = dx1 · · · dxn; we also have the class [ω

(n)
0 ] ∈ Zn,dR, whose pairing with

the class [�n] is

〈[�n], [ω
(n)
0 ]〉 =

∫

�n

ω
(n)
0 = 1 .

We call the differential forms ω
(n)
k , for k = 0, 2, . . . , n, the Eulerian differential forms.

3.5. An inductive system. For n > 2 there are natural morphisms

(22) i(n) : Z(n−1) → Z(n)

in the category MT(Q), that we now define. We fix the identification Xn−1 = {xn = 1} ⊂ Xn, which implies
the equality An−1 = An ∩Xn−1. Let us set

B′
n =

⋃

16i6n

{xi = 0} ∪
⋃

16i6n−1

{xi = 1} ,

so that we have Bn = B′
n ∪Xn−1, and Bn−1 = B′

n ∩Xn−1.

In the blow-up X̃n, we thus get an embedding X̃n−1 ⊂ X̃n and identifications Ãn−1 = Ãn∩X̃n−1, B̃n−1 =

B̃′
n ∩ X̃n−1 and En−1 = En ∩ X̃n−1. Thus, the complex in DM(Q) that we have used to define Z(n−1) is the

subcomplex

(23) · · · →
⊔

|I|=3

∂IY ⊂X̃n−1

∂IY →
⊔

|I|=2

∂IY⊂X̃n−1

∂IY → X̃n−1 → 0→ 0

of the complex (14) that we have used to define Z(n), shifted by 1. Taking the n-th cohomology groups with
respect to the t-structure gives the morphism (22).

In Betti and de Rham realizations, the morphism (22) is also induced by the inclusion of double subcom-
plexes of (15) and (16).

We define the ind-motive

Z = lim
−→

n

Z(n) ,

viewed as an ind-object in the category MT(Q), and simply call it the zeta motive.

The map i
(n),∨
B : Z

(n),∨
B → Z

(n−1),∨
B given by the transpose of the Betti realization of i(n) satisfies

(24) i
(n),∨
B ([�n−1]) = [�n] .

More generally and loosely speaking, if σ is a chain on X̃n(C)− Ãn(C) whose boundary is on B̃n(C)∪En(C),

then i
(n),∨
B ([σ]) is the class of “the component of the boundary of σ that lives on X̃n−1(C)”. According to

Proposition 3.3, one can also work with chains on Xn(C) −
◦

An(C). We note that (24) allows us to define a
class

[�] ∈ Z∨
B := lim

←−

n

Z
(n),∨
B .

Remark 3.8. There are (alternating) signs in the differentials of the complexes (14), (15), (16), that we leave
to the reader. This also induces signs on the different components of the inclusions of subcomplexes such as
(23); these signs are fixed once and for all by equation (24).

The next proposition shows that the Eulerian differential forms ω
(n)
k are compatible with the inductive

structure on the zeta motives.

Proposition 3.9. For integers n > 2 and k = 0, 2, . . . , n − 1, the map i
(n)
dR : Z

(n−1)
dR → Z

(n)
dR sends the

class [ω
(n−1)
k ] to the class [ω

(n)
k ].

12



Proof. Since all the differential forms that we are manipulating have no poles along the exceptional divi-
sors En−1 and En, it is safe to do the computations in the affine spaces Xn−1 and Xn; we leave it to

the reader to turn them into computations in X̃n−1 and X̃n by working in local charts as in the proof of
Proposition 3.5. Let us assume first that k ∈ {2, . . . , n− 1}. We put

η
(n−1)
k =

xnEn−1−k(x1 · · ·xn)

(1− x1 · · ·xn)n−k
dx1 · · · dxn−1 ,

viewed as a form on Xn. Then we have (η
(n−1)
k )|Xn−1

= ω
(n−1)
k and (η

(n−1)
k )|B′

n−1
= 0. A diagram chase in

the double complex (16) shows that i
(n)
dR ([ω

(n−1)
k ]) is the class of

(−1)n−1 (d(η
(n−1)
k ))

(the sign is here to be consistent with the Betti version, see Remark 3.8). We have

(−1)n−1 d(η
(n−1)
k ) =

∂

∂xn

(
xnEn−1−k(x1 · · ·xn)

(1− x1 · · ·xn)n−k

)
dx1 · · · dxn

and one easily sees that setting x = x1 · · ·xn we have

∂

∂xn

(
xnEn−1−k(x1 · · ·xn)

(1 − x1 · · ·xn)n−k

)
=
x(1 − x)E′

n−1−k(x) + (1 + (n− 1− k)x)En−1−k(x)

(1− x)n−k+1
.

Using the recurrence relation (20), one then concludes that

(−1)n−1d(η
(n−1)
k ) =

En−k(x1 · · ·xn)

(1 − x1 · · ·xn)n−k+1
dx1 · · · dxn = ω

(n)
k .

For k = 0, this is the same computation with η
(n)
0 = xn dx1 · · · dxn−1 and

(−1)n−1d(η
(n−1)
0 ) = dx1 · · · dxn = ω

(n)
0 .

�

Proposition 3.9 allows us to unambiguously define classes

[ωk] ∈ ZdR

for k = 0, 2, 3, . . ., whose pairing with the class [�] ∈ Z∨
B is

〈[�], [ω0]〉 = 1 and 〈[�], [ωk]〉 = ζ(k) (k > 2) .

Remark 3.10. The proof of Proposition 3.9 can be thought of as a cohomological version of the relation∫

�n

ω
(n)
k =

∫

�n−1

ω
(n−1)
k ,

which may be proved using Stokes’s theorem and the recurrence relation (20).

Proposition 3.11. For integers n > 1 and k = 0, 2, . . . , n, the class [ω
(n)
k ] lives in the pure weight 2k

component of Z
(n)
dR .

Proof. For k = 0, Proposition 3.9 and the fact that the maps i
(n)
dR are compatible with the weight gradings

implies that it is enough to do the proof for n = 1; this case is easy since Z(1) ∼= Q(0) only has weight 0. We

now turn to the case k = 2, . . . , n. Thanks to Proposition 3.9 and the fact that the maps i
(n)
dR are compatible

with the weight gradings, it is enough to check it for k = n. Let us remark that we have

ω(n)
n = −dlog(1− x1 · · ·xn) ∧ dlog(x2) ∧ · · · ∧ dlog(xn) .

Let us denote by Yn the affine (n+ 1)-space with coordinates (x1, . . . , xn, t), and view Xn inside Yn as the
graph {t = 1 − x1 · · ·xn}. We define the subspaces Cn = {t = 0} and Dn =

⋃
16i6n{xi = 0} ∪ {xi = 1}

of Yn. Let Ỹn → Yn denote the blow-up along the point Pn = (1, . . . , 1, 0), Fn denote the exceptional divisor

and C̃n, D̃n denote the respective strict transforms of Cn and Dn. We then have a morphism

Hn(Ỹn − C̃n, (D̃n ∪ Fn)− (D̃n ∪ Fn) ∩ C̃n)→ Z
(n)
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in the categoryMT(Q). In the de Rham realization, the class of ω
(n)
n is the image of the class of (the pullback

of) the form
η = −dlog(t) ∧ dlog(x2) ∧ · · · ∧ dlog(xn)

by this morphism. Thus, it is enough to prove that the class of η lives in the pure weight 2n component

of Hn(Ỹn− C̃n, (D̃n∪Fn)− (D̃n∪Fn)∩ C̃n). Since Cn∪Dn is a normal crossing divisor inside Yn, one easily
checks that we have a natural isomorphism

Hn(Ỹn − C̃n, (D̃n ∪ Fn)− (D̃n ∪ Fn) ∩ C̃n) ∼= Hn(Yn − Cn, Dn −Dn ∩Cn) .

The claim then follows from the fact that the class of η in Hn(Yn − Cn, Dn − Dn ∩ Cn) lives in the pure
weight 2n component, which can easily be seen by working inside the compactification (P1)n+1 of Yn and
using the definition of the Hodge filtration via logarithmic forms [Del71]. �

3.6. A long exact sequence. We now show that the morphism i(n) : Z(n−1) → Z(n) fits into a long exact
sequence. We first define objects of MT(Q):

Z(n),r = Hr(X̃n−Ãn, (B̃n∪En)−(B̃n∪En)∩Ãn) and ′Z(n),r = Hr(X̃n−Ãn, (B̃
′
n∪En)−(B̃

′
n∪En)∩Ãn) ,

so that Z(n) = Z(n),n. We leave it to the reader to fill in the technical definitions of these objects by
mimicking that of Z(n) from §3.1.

Proposition 3.12. For n > 2, we have a long exact sequence in MT(Q):

(25) · · · → Z(n−1),r−1 → Z(n),r → ′Z(n),r → Z(n−1),r → Z(n),r+1 → · · ·

Proof. The objectsZ(n−1),•, Z(n),• and ′Z(n),• are defined via objects in DMT(Q) that we denote by C(n−1), C(n)

and ′C(n) respectively, C(n) being the complex (14) and C(n−1) the subcomplex (23). Now there is an obvious
exact triangle

C(n−1)[−1] −→ C(n) −→ ′C(n) +1
−→ ,

in DMT(Q), which gives the desired long exact sequence after taking the cohomology with respect to the t-
structure. �

We note that the map Z(n−1),n−1 → Z(n),n in the long exact sequence (25) is exactly i(n).

4. Computation of the zeta motives Z(n)

This section is the technical heart of this article, where we compute (Theorem 4.8) the full period matrix
of the zeta motives Z(n). The main difficulty is showing that the motives T (n), introduced below, are semi-
simple. For that we use the involution τ defined in the introduction and the computation of the extension
groups in the category MT(Q). We then define the odd zeta motive and compute its period matrix. We
conclude with an elementary (Hodge-theoretic) proof that the motives T (n) are semi-simple.

4.1. The Gysin long exact sequence. Since the divisor An is smooth, it is natural to decompose the
motives Z(n),r thanks to a Gysin long exact sequence. In the next Proposition, the definition of the ob-
jects H•(Xn, Bn) and H

•(An, Bn ∩An) of MT(Q) is similar to that of Z(n) from §3.1.

Proposition 4.1. For n > 1, we have a long exact sequence in MT(Q):

(26) · · · → Hr(Xn, Bn)→ Z
(n),r → Hr−1(An, Bn ∩ An)(−1)→ Hr+1(Xn, Bn)→ Z

(n),r+1 → · · ·

Proof. Recall [Voe00, (3.5.4)] the existence of a Gysin exact triangle in the category DM(Q). For the

pair (X̃n, Ãn), it reads (with cohomological conventions)

X̃n −→ X̃n − Ãn −→ Ãn(−1)[−1]
+1
−→

and is an exact triangle in the category DMT(Q). Applying this triangle to every pair (∂IY, ∂IY ∩ Ãn) in
the complex (14) and taking the cohomology with respect to the t-structure leads to a long exact sequence

· · · → Hr(X̃n, B̃n∪En)→ Hr(X̃n−Ãn, (B̃n∪En)−(B̃n∪En)∩Ãn)→ Hr−1(Ãn, (B̃n∪En)∩Ãn)(−1)→ · · ·

in MT(Q). One concludes with the fact that the natural morphisms

Hr(X̃n, B̃n ∪ En)→ Hr(Xn, Bn) and Hr−1(Ãn, (B̃n ∪ En) ∩ Ãn)→ Hr−1(An, Bn ∩ An)
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are isomorphisms. This can be checked in the Betti realization, where it is a consequence of the excision
theorem as in the proof of Proposition 3.3. �

4.2. The motives H•(Xn, Bn). The computation of the motives H•(Xn, Bn) appearing in the long exact
sequence (26) is relatively easy.

Proposition 4.2. (1) We have Hr(Xn, Bn) = 0 for r 6= n, and an isomorphism Hn(Xn, Bn) ∼= Q(0).
(2) A basis for the de Rham realization Hn

dR(Xn, Bn) is the class of the form dx1 · · · dxn.
(3) A basis for the Betti realization HB

n (Xn, Bn) is the class of the unit n-cube �n = [0, 1]n.

Proof. By the relative Künneth formula we have H•(Xn, Bn) ∼= H•(X1, B1)
⊗n so that it is enough to prove

the proposition for n = 1. We have H•(X1, B1) = H•(A1
Q, {0, 1}) and the statements follow from the long

exact sequence in relative cohomology:

0→ H0(A1
Q, {0, 1})→ H0(A1

Q)→ H0({0})⊕H0({1})→ H1(A1
Q, {0, 1})→ 0 .

�

4.3. The motives H•(An, Bn ∩ An). For n > 1, we realize the n-torus as T n = {x1 · · ·xn+1 = 1}, and we
have subtori T n−1

i = {xi = 1} ⊂ T n for i = 1, . . . , n+ 1. We define

T (n),r = Hr(T n,
⋃

16i6n+1 T
n−1
i ) and ′T (n),r = Hr(T n,

⋃
16i6n T

n−1
i ) ,

which are objects in MT(Q) (whose definition is similar to that of Z(n) from §3.1) and write T (n) =
T (n),n, ′T (n) = ′T (n),n. We then have

Hr−1(An, Bn ∩ An) ∼= T
(n−1),r−1 .

By mimicking the proof of Proposition 3.12, one produces a long exact sequence in MT(Q):

(27) · · · → T (n−1),r−1 → T (n),r → ′T (n),r → T (n−1),r → T (n),r+1 → · · ·

Proposition 4.3. (1) We have ′T (n),r = 0 for r 6= n, and an isomorphism ′T (n) ∼= Hn(T n) ∼= Q(−n).
(2) We have T (n),r = 0 for r 6= n, and short exact sequences in MT(Q):

(28) 0→ T (n−1) j(n)

−→ T (n) → Hn(T n)→ 0 .

Proof. If (1) is proved then (2) follows from the long exact sequence (27). By choosing coordinates (x1, . . . , xn)
on T n we see that we have

′T (n),• = H•((A1
Q − {0})

n,∪16i6n{xi = 1}) ∼= H•(A1
Q − {0}, {1})

⊗n = (′T (1),•)⊗n ,

where we have used the relative Künneth formula. Thus, it is enough to prove (1) for n = 1, which is easy
since ′T (1),• is nothing but the reduced cohomology of A1

Q − {0}. �

Remark 4.4. We note that the morphism j(n) : T (n−1) → T (n) in (28) is defined analogously to the mor-
phism i(n) : Z(n−1) → Z(n) from §3.5.

We note that we have T (0) = H0(pt, pt) = 0, so that Proposition 4.3 implies that we have

grW2kT
(n) =

{
Q(−k) if k ∈ {1, . . . , n};

0 otherwise.

In the next proposition, we will prove that the weight filtration of T (n) actually splits in MT(Q). For that
we introduce the involution τ which acts on the tori T (n) by

τ : (x1, . . . , xn+1) 7→ (x−1
1 , . . . , x−1

n+1) .

This induces an involution, still denoted by τ , on the objects T (n),r and ′T (n),r of MT(Q), such that all the
maps in the long exact sequence (27) commute with τ .

Proposition 4.5. (1) The short exact sequences (28) split in MT(Q), hence we have isomorphisms:

T (n) ∼= Q(−1)⊕Q(−2)⊕ · · · ⊕Q(−n) .

Thus, a period matrix for T (n) is the diagonal matrix Diag(2πi, (2πi)2, . . . , (2πi)n).
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(2) The involution τ acts on the direct summand Q(−k) of T (n) by multiplication by (−1)k.

Proof. We first note that τ acts on H1(T 1) by multiplication by −1. It is enough to prove it in the de Rham
realization, where it follows from τ. dlog(x1) = −dlog(x1). Thus, τ acts on grW2nT

(n) ∼= Hn(T n) ∼= H1(T 1)⊗n

by multiplication by (−1)n, and we are left with proving (1). We denote by T (n) = T
(n)
+ ⊕ T

(n)
− the direct

sum decomposition of T (n) into its invariant and anti-invariant parts with respect to τ . We have to prove
that we have isomorphisms

T
(2n)
+

∼= T
(2n+1)
+

∼= Q(−2)⊕Q(−4)⊕· · ·⊕Q(−2n) and T
(2n+1)
−

∼= T
(2n+2)
−

∼= Q(−1)⊕Q(−3)⊕· · ·⊕Q(−(2n+1)) .

We only prove the statements corresponding to the invariant parts, the statements corresponding to the anti-

invariant parts being proved similarly. We use induction on n, the case n = 0 being trivial: T
(0)
+ = T

(1)
+ = 0.

The short exact sequences (28) imply that we have short exact sequences

0→ T
(2n+1)
+ → T

(2n+2)
+ → Q(−(2n+ 2))→ 0 and 0→ T

(2n+2)
+ → T

(2n+3)
+ → 0→ 0 .

Using the induction hypothesis we see that we have

Ext1MT(Q)(Q(−(2n+ 2)), T
(2n+1)
+ ) ∼= Ext1MT(Q)(Q(−(2n+ 2)),Q(−2)⊕Q(−4)⊕ · · · ⊕Q(−2n))

∼=
⊕

16k6n

Ext1MT(Q)(Q(−2k),Q(0))

= 0

where we have used (12). Thus, the first short exact sequence splits. The second short exact sequence then
completes the induction. �

Remark 4.6. From the short exact sequences (28) it is clear that every T
(n)
dR has a basis (w

(n)
1 , . . . , w

(n)
n )

which is compatible with the weight grading, such that w
(n)
n is the class of the form dlog(x1)∧· · ·∧dlog(xn),

and such that these bases are compatible with the short exact sequences (28).

4.4. The structure of the zeta motives. We can now determine the structure of the zeta motives Z(n),
for n > 1.

Theorem 4.7. (1) We have a short exact sequence in MT(Q):

(29) 0→ Q(0)→ Z(n) p(n)

−→ T (n−1)(−1)→ 0 ,

with T (n−1)(−1) ∼= Q(−2)⊕ · · · ⊕Q(−n).
(2) We have a short exact sequence in MT(Q):

(30) 0→ Z(n−1) i(n)

−→ Z(n) → Q(−n)→ 0 .

(3) These short exact sequences fit into a commutative diagram

(31)

0

��

0

��

0

��
0 // Q(0)

=

��

// Z(n−1)

i(n)

��

p(n−1)

// T (n−2)(−1)

j(n−1)

��

// 0

0 // Q(0)

��

// Z(n)

��

p(n)

// T (n−1)(−1)

��

// 0

0 // 0

��

// Q(−n)

��

= // Q(−n)

��

// 0

0 0 0

where all rows and columns are exact.
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Proof. Assertion (1) follows from Propositions 4.1, 4.2 and 4.5. The commutativity of (31) follows from the
compatibility of the long exact sequences (25) and (27). A diagram chase implies that (30) is exact. �

Theorem 4.8. (1) The classes

v
(n)
k := [ω

(n)
k ] (k = 0, 2, . . . , n)

of the Eulerian differential forms provide a basis (v
(n)
0 , v

(n)
2 , . . . , v

(n)
n ) of the de Rham realization Z

(n)
dR

which is compatible with the weight grading.

(2) There exists a unique basis (ϕ
(n)
0 , ϕ

(n)
2 , . . . , ϕ

(n)
n ) for the dual of the Betti realization Z

(n),∨
B which

is compatible with the weight filtration and such that the period matrix for Z(n) in the v-basis and
the ϕ-basis is

(32)




1 ζ(2) ζ(3) · · · · · · ζ(n− 1) ζ(n)
(2πi)2

(2πi)3 0
. . .

. . .

0 (2πi)n−1

(2πi)n




·

Proof. (1) Proposition 3.11 says that v
(n)
k is in the pure weight 2k component of Z

(n)
dR . Thus, it is

enough to show that it is non-zero, which is a consequence of the equalities 〈[�n], v
(n)
0 〉 = 1 6= 0

and 〈[�n], v
(n)
k 〉 = ζ(k) 6= 0 for k = 2, . . . , n.

(2) We put ϕ
(n)
0 = [�n]. Let (ψ

(n−1)
1 , . . . , ψ

(n−1)
n−1 ) be a basis of T

(n−1),∨
B for which the period matrix

is diagonal, as in Proposition 4.5. Let p(n) denote the morphism Z(n) → T (n−1)(−1), and let us

consider the transpose of its Betti realization p
(n),∨
B : T

(n−1),∨
B → Z

(n),∨
B . Then we can put ϕ

(n)
k =

p
(n),∨
B (ψ

(n−1)
k−1 ) for k = 2, . . . , n. The fact that this gives a basis of Z

(n),∨
B is a consequence of the

short exact sequence (29). The fact that the period matrix is as required follows from Lemma 3.7
and Proposition 4.5. The uniqueness statement is obvious.

�

We have already noted that the classes v
(n)
k are compatible with the inductive system of the zeta motives.

By the uniqueness statement in Theorem 4.8, this is also the case for the classes ϕ
(n)
k , and the zeta motive Z

has an infinite period matrix



1 ζ(2) ζ(3) ζ(4) · · · · · · · · ·
(2πi)2

(2πi)3 0
(2πi)4

. . .

0
. . .

. . .




·

4.5. The odd zeta motive. Let us write T (n−1) = T
(n−1)
+ ⊕T

(n−1)
− for the direct sum decomposition into

its invariant and anti-invariant parts with respect to τ , and let us write p(n) : Z(n) → T (n−1)(−1) for the
surjection appearing in the short exact sequence (29).

Definition 4.9. The n-th odd zeta motive Z(n),odd is the object of MT(Q) defined by

Z(n),odd := p−1(T
(n−1)
+ (−1)) .

17



We obviously have a short exact sequence

(33) 0→ Q(0)→ Z(n),odd → T
(n−1)
+ (−1)→ 0

with
T

(n−1)
+ (−1) ∼=

⊕

362k+16n

Q(−(2k + 1)) .

We note that there are morphisms

i(n),odd : Z(n−1),odd → Z(n),odd

such that i(2n),odd is an isomorphism for every integer n. The limit

Zodd := lim
−→

n

Z(n),odd

is an ind-object in MT(Q) that we simply call the odd zeta motive.

Proposition 4.10. (1) We have a direct sum decomposition

(34) Z(n) ∼= Z(n),odd ⊕
⊕

262k6n

Q(−2k) .

(2) A period matrix for Z(2n+1),odd ∼= Z(2n+2),odd is

(35)




1 ζ(3) ζ(5) · · · · · · ζ(2n− 1) ζ(2n+ 1)
(2πi)3

(2πi)5 0
. . .

. . .

0 (2πi)2n−1

(2πi)2n+1




·

Proposition 4.10 implies that the odd zeta motive Zodd has an infinite period matrix (6).

Proof. A basis for Z
(n),odd
dR is given by v

(n)
0 and the v

(n)
2k+1, for 3 6 2k + 1 6 n, and a basis for Z

(n),odd,∨
B is

given by ϕ
(n)
0 and the ϕ

(n)
2k+1, for 3 6 2k + 1 6 n. This gives the desired shape for the period matrix (35).

Now, Euler’s solution to the Basel problem implies that we have ζ(2k) = λ2k(2πi)
2k for every integer k > 1,

with λ2k = − B2k

2(2k)! ∈ Q. Thus, we may replace the basis (ϕ
(n)
0 , ϕ

(n)
2 , . . . , ϕ

(n)
n ) of Theorem 4.8 by the

basis (′ϕ
(n)
0 , ϕ

(n)
2 , . . . , ϕ

(n)
n ) with

′ϕ
(n)
0 = ϕ

(n)
0 −

∑

262k6n

λ2k ϕ
(n)
2k

to get a period matrix similar to (32) where the even zeta values ζ(2k) in the first row are replaced by 0.
This implies the direct sum decomposition (34). �

We finish by proving that all the objects in MT(Q) considered earlier actually live in the full subcate-
gory MT(Z).

Proposition 4.11. The zeta motives Z(n) and the odd zeta motives Z(n),odd are objects of the cate-
gory MT(Z).

Proof. Thanks to the direct sum decomposition (34), it is enough to prove it for the odd zeta motives. Let us
recall the definition [DG05, Définition 1.4] of the category MT(Z). According to the Tannakian formalism,
the de Rham realization functor MT(Q)→ grVectQ induces an equivalence of categories

MT(Q) ∼= grRep(gQdR)

between MT(Q) and the category of graded finite-dimensional representations of a graded Lie algebra g
Q
dR.

The degree in g
Q
dR is half the weight. This Lie algebra is non-positively graded. The category MT(Z) is

defined as the full subcategory of MT(Q) consisting on objects H such that the degree −1 component of gQdR
18



acts trivially on HdR. This is obviously the case for Z(n),odd, which is concentrated in weights 0 and 2(2k+1)
with 2k + 1 > 3 by the short exact sequence (33). �

Remark 4.12. A tannakian interpretation of the odd zeta motive goes as follows. Let g
Z,∨ be the graded

dual of the fundamental Lie algebra g
Z of the Tannakian category MT(Z). It is an ind-object in MT(Z),

independent of the choice of a fiber functor [Del89, Définition 6.1]. Then one has a short exact sequence

0→ Q(0)→ g
Z,∨ → u

Z,∨ → 0 ,

where u
Z is the pro-unipotent radical of gZ. One views Zodd inside the exact subsequence

0→ Q(0)→ Zodd → u
Z,ab,∨ → 0 ,

where u
Z,ab,∨ ∼=

⊕
k>1 Q(−(2k + 1)) is the graded dual of the abelianization of uZ.

4.6. An elementary computation of the motives T (n). We give an elementary proof of Proposition 4.5,
which only uses basic algebraic topology. The proof is Hodge-theoretic, and the only drawback is that we
have to use the full faithfulness of the Hodge realization (Theorem 2.5). Let us consider the relative homology
group

T
(n),∨
B = Hsing

n ((C∗)n,
⋃

16i6n

{xi = 1} ∪ {x1 · · ·xn = 1}) .

By homotopy invariance, one may replace every C∗ by the unit circle S1 = {|x| = 1} →֒ C∗ and we get

T
(n),∨
B

∼= Hsing
n ((S1)n,

⋃

16i6n

{xi = 1} ∪ {x1 · · ·xn = 1}) .

Let us look at the projection [0, 1]n → (S1)n, (t1, . . . , tn) 7→ (e2πit1 , . . . , e2πitn). Then by excision we can
write

T
(n),∨
B

∼= Hsing
n ([0, 1]n,

⋃

16i6n

{ti ∈ Z} ∪ {t1 + · · ·+ tn ∈ Z}) .

This is simply the singular homology of the unit hypercube [0, 1]n relative to the union of its faces {ti = 0}
and {ti = 1}, for 1 6 i 6 n, and the hyperplanes {t1 + · · ·+ tn = k} for k = 0, 1, . . . , n. We note that these
hyperplanes cut the unit hypercube into polytopes

∆(n, k) = {(t1, . . . , tn) ∈ [0, 1]n | k 6 t1 + · · ·+ tn 6 k + 1} ,

for k = 0, . . . , n− 1. We note that ∆(n, 0) is the usual n-simplex; the polytopes ∆(n, k) are usually called
hypersimplices.

Lemma 4.13. (1) The classes [∆(n, k)], for k = 0, . . . , n− 1, form a basis of T
(n),∨
B .

(2) The morphism j
(n),∨
B : T

(n),∨
B → T

(n−1),∨
B sends

(a) [∆(n, 0)] to [∆(n− 1, 0)];
(b) [∆(n, k)] to [∆(n− 1, k)]− [∆(n− 1, k − 1)] for k = 1, . . . , n− 2.
(c) [∆(n, n− 1)] to −[∆(n− 1, n− 2)];

Proof. (1) This is clear by excision, since collapsing the boundary of [0, 1]n and the hyperplanes {t1 +
· · ·+tn = k} onto a point creates a wedge sum of n spheres of dimension n, one for each hypersimplex.

(2) Recall (see Remark 4.4 and §3.5) that j
(n),∨
B computes “the component of the boundary that lives

on xn = 1”. In the t-coordinates, {xn = 1} corresponds to {tn = 0} (counted positively) and {tn = 1}
(counted negatively). The claim then follows from computing the intersection of the hypersimplices
with these two hyperplanes.

�

Remark 4.14. One may check that the sum of the classes [∆(n, k)], for k = 0, . . . , n− 1, is sent to 0 by the

morphism j
(n),∨
B . This is because this sum is represented by the unit square [0, 1]n in the t-coordinates, or

by the compact n-torus (S1)n ⊂ (C∗)n in the x-coordinates, which has empty boundary.
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The Eulerian numbers are the coefficients of the Eulerian polynomials and are denoted by symbols
〈
n
k

〉
:

En(x) =

n−1∑

k=0

〈
n

k

〉
xk .

They satisfy many beautiful identities, in particular the recursion〈
n

k

〉
= (n− k)

〈
n− 1

k − 1

〉
+ (k + 1)

〈
n− 1

k

〉
.

The following lemma is a classical result due to Laplace.

Lemma 4.15. For k = 0, . . . , n− 1, the volume of the hypersimplex ∆(n, k) is the ratio

〈
n
k

〉

n!
.

Recall from Remark 4.6 that for every integer n > 1, T
(n)
dR has a basis (w

(n)
1 , . . . , w

(n)
n ) which is compatible

with the weight grading and with the morphisms j
(n)
dR : T

(n−1)
dR → T

(n)
dR . We let Pn be the period matrix

of T (n) with respect to the w-basis and the ∆-basis from Lemma 4.13. The first period matrix P1 is simply
the 1× 1 matrix (2πi). Let us introduce the following n× n integer matrix encoding the family of Eulerian
numbers:

An =




1
〈
n
0

〉

−1 1 0
〈
n
1

〉

−1 1
〈
n
2

〉

. . .
. . .

. . .
. . .

0 −1 1
〈

n
n−2

〉

−1
〈

n
n−1

〉




·

Proposition 4.16. The period matrices Pn satisfy the recurrence relation

Pn = An




0
0

Pn−1

...

0

0 0 . . . 0
(2πi)n

n!




·

Proof. Recall the short exact sequence (28)

0→ T (n−1) j(n)

−→ T (n) → Hn(T n)→ 0

and the fact (see Remark 4.6) that the morphism j(n) is compatible with the w-bases. Then Lemma 4.13
shows that the first (n− 1) columns of Pn are as stated. It only remains to compute the entries in the last
column, i.e., compute the integral of the n-form dx1

x1
∧ · · · ∧ dxn

xn
on a hypersimplex ∆(n, k). After the change

of variables (x1, . . . , xn) = (e2πit1 , . . . , e2πitn), one sees that this integral is simply (2πi)n times the volume
of ∆(n, k), and concludes thanks to Lemma 4.15. �

We note that the period matrices Pn are not block upper-triangular. This is because the ∆-bases are not
compatible with the weight filtration. We thus have to introduce a change of basis. Let (Qn)n>1 be the
family of matrices (with rational entries) defined by Q1 = (1) and the recurrence relation

Qn =




0
0

Qn−1

...

0
0 0 . . . 0 n!



A−1

n .
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The first terms are

Q1 =
(
1
)
, Q2 =

(
1
2 − 1

2
1 1

)
, Q3 =




1
3 − 1

6
1
3

1 0 −1
1 1 1


 , Q4 =




1
4 − 1

12
1
12 − 1

4
11
12 − 1

12 − 1
12

11
12

3
2

1
2 − 1

2 − 3
2

1 1 1 1


 .

Let us put 


Σ
(n)
1

Σ
(n)
2
...

Σ
(n)
n




= Qn




∆(n, 0)
∆(n, 1)

...
∆(n, n− 1)


 .

We view Σ
(n)
k as a relative cycle with rational coefficients. The change of indexing is here to remind the

reader that Σ
(n)
k lives in weight 6 2k. We have thus proved the following result.

Proposition 4.17. The classes [Σ
(n)
k ], for k = 1, . . . , n, form a basis of T

(n),∨
B and the period matrix of T (n)

in the w-basis and the Σ-basis is the diagonal matrix Diag(2πi, . . . , (2πi)n).

Proof. This amounts to saying that the product QnPn is the diagonal matrix Diag(2πi, . . . , (2πi)n), which
is easily proved by induction on n using Proposition 4.16. �

By using Theorem 2.5, we thus get an alternate (Hodge-theoretic) proof of Proposition 4.5.

Remark 4.18. Proposition 4.17 implies that we can choose (Σ
(n−1)
1 , . . . ,Σ

(n−1)
n−1 ) as representatives for the

classes (ψ
(n−1)
1 , . . . , ψ

(n−1)
n−1 ) from the proof of Theorem 4.8.

Remark 4.19. One can easily prove that the last row of the matrix Qn is filled with 1’s, which means that Σ
(n)
n

is homologous to the unit hypercube [0, 1]n. In the x-coordinates, it is homologous to the compact n-
torus (S1)n ⊂ (C∗)n.

5. Linear forms in zeta values

We apply our results from the previous section to prove Theorems 1.1 and 1.2 from the Introduction.

5.1. Integral formulas for the coefficients.

Theorem 5.1. For ω an integrable algebraic differential form on Xn −An, we have

(36)

∫

[0,1]n
ω = a0(ω) + a2(ω)ζ(2) + · · ·+ an(ω)ζ(n)

with ak(ω) a rational number for every k, given for k = 2, . . . , n by the formula

(37) ak(ω) = (2πi)−k 〈ϕ
(n)
k , [ω]〉 .

Proof. According to Proposition 3.5, the class [ω] defines an element in Zn,dR, hence we may write

[ω] = a0(ω)v0 + a2(ω)v2 + · · ·+ an(ω)vn

with ak(ω) ∈ Q for every k. Pairing with the class ϕ
(n)
0 = [�n] gives the equality (36), and pairing with the

class ϕ
(n)
k , k = 2, . . . , n, gives the equality (37). �

Remark 5.2. If we represent the class ϕ
(n)
k by a relative cycle σ

(n)
k , then (37) becomes

ak(ω) = (2πi)−k

∫

σ
(n)
k

ω .

Here we will not give explicit representatives for the classes ϕ
(n)
k . Recall from the proof of Theorem 4.8 that

the class ϕ
(n)
k is the image by the map p

(n),∨
B : T

(n−1),∨
B → Z

(n),∨
B of an element ψ

(n−1)
k−1 , which by Remark 4.18

can be represented by the cycle Σ
(n−1)
k−1 . The question is then: how to compute the map p

(n),∨
B at the level

21



of cycles? Such a task would involve the following ingredient. Let us fix T ⊂ Cn be a tubular neighborhood
of An(C) in Cn. Let us denote by ρ : T → An(C) the corresponding projection, and by ∂ρ : ∂T → An(C)
the projection corresponding to the boundary of the tubular neighborhood; it is an S1-bundle. The natural

map Hsing
r (An(C))→ Hsing

r+1 (C
n −An(C)) can be computed at the level of singular chains by mapping an r-

cycle σ to the (r+1)-cycle (∂ρ)−1(σ). We note that since An(C) does not intersect the hyperplanes {xi = 0},
we can do the computation with a tubular neighborhood inside (C∗)n and get representatives in (C∗)n. Now

if we want to play this game for the relative homology groups Z
(n),∨
B , we need the tubular neighborhood to

be “compatible” with the subvariety Bn(C), in the sense that ρ should pull back An(C) ∩Bn(C) to Bn(C).
At this point, it is probably easier to ask for something weaker than a tubular neighborhood, i.e., something
that is a tubular neighborhood on a dense open subset of An(C) (this does not change anything for the
integral formulas). We will not try to give formulas here and postpone this discussion to a future article.
Nevertheless, we can give more explicit formulas than (37) in two situations.

5.1.1. The highest weight coefficient. Let us fix real numbers ρ1, . . . , ρn−1, ρn > 0 and let us introduce the
cycle S(n) ⊂ Cn −An(C) defined by the conditions

|x1| = ρ1, . . . , |xn−1| = ρn−1,

∣∣∣∣xn −
1

x1 · · ·xn−1

∣∣∣∣ = ρn .

Proposition 5.3. Let ω be an integrable differential form on Xn − An. Then the highest weight coeffi-
cient an(ω) from Theorem 5.1 is given by the integral formula

an(ω) = (2πi)−n

∫

S(n)

ω .

Proof. The integral formula is obviously independent from the choice of ρ1, . . . , ρn−1, ρn and we can assume
that we have ρ1 = · · · = ρn−1 = ρn = 1. We have noted in Remark 4.19 that the highest weight basis

vector ψ
(n−1)
n−1 of T

(n−1),∨
B can be represented by the (n − 1)-torus {|x1| = · · · = |xn−1| = 1}. Since this

has an empty boundary we can make the computation explained in Remark 5.2 with the choice of any

tubular neighborhood of An(C) in Cn, for instance the one defined by
∣∣∣xn − 1

x1···xn−1

∣∣∣ 6 1, with projection

map ρ(x1, . . . , xn) = (x1, . . . , xn−1,
1

x1···xn−1
). The pullback of the (n − 1)-torus by the projection ∂ρ is

exactly S(n). �

The case n = 2 is Rhin and Viola’s contour integral for ζ(2) [RV96, Lemma 2.6].

5.1.2. The case of forms with simple poles. We say that a differential form on Xn − An has a simple pole
along An if it can be written as

ω = α+ dlog(1− x1 · · ·xn) ∧ β ,

where α and β do not have poles along An. The residue of such a form along An is the restriction

Res(ω) = β|An
.

Recall that the relative cycles Σ
(n−1)
k−1 were defined in §4.6.

Proposition 5.4. Let ω be an integrable differential form on Xn − An which has a simple pole along An.
Then the coefficients ak(ω), k = 2, . . . , n, from Theorem 5.1 are given by the integral formulas

ak(ω) = (2πi)−k+1

∫

Σ
(n−1)
k−1

Res(ω) .

Proof. Recall from the proof of Theorem 4.8 that we have defined ϕ
(n)
k = p

(n),∨
B (ψ

(n−1)
k−1 ), where (ψ

(n−1)
1 , . . . , ψ

(n−1)
n−1 )

is a basis of T
(n−1),∨
B for which the period matrix is diagonal. In the light of Remark 4.18 we see that ψ

(n−1)
k−1

is the class of the cycle Σ
(n−1)
k−1 , hence we get

ak(ω) = (2πi)−k 〈 p
(n),∨
B ([Σ

(n−1)
k−1 ]) , [ω] 〉 = (2πi)−k+1 〈 [Σ

(n−1)
k−1 ] , p

(n)
dR ([ω]) 〉 ,

where the extra 2πi comes from the Tate twist at the target of p(n). Since ω has a simple pole, p
(n)
dR ([ω]) is

simply the class of Res(ω), hence the result. �
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5.1.3. Vanishing of coefficients.

Theorem 5.5. For ω an integrable algebraic differential form on Xn −An, we have:

(1) if τ. ω = ω then ak(ω) = 0 for k 6= 0 even;
(2) if τ. ω = −ω then ak(ω) = 0 for k odd.

Proof. Let us assume that we have τ.ω = ω, and let us write x for the image of [ω] in T
(n−1)
dR . Then we

have τ.x = x; according to Proposition 4.5, this implies that x only has components of weights 2k with k even.

Thus, [ω] ∈ Z
(n)
dR only has components in weight 0 and 2k with k odd, which implies that we have ak(ω) = 0

for k 6= 0 even. The second case is similar. �

Let us write an integrable form as

(38) ω =
P (x1, . . . , xn)

(1− x1 · · ·xn)N
dx1 · · · dxn

with P (x1, . . . , xn) a polynomial with rational coefficients and N > 0 an integer. Then we have

(39) τ.ω = ±ω ⇔ P (x1, . . . , xn) = ±(−1)
N+n(x1 · · ·xn)

N−2P (x−1
1 , . . . , x−1

n ) .

5.2. The Ball–Rivoal integrals. We apply Theorems 5.1 and 5.5 to a special family of integrals.

Corollary 5.6. Let u1, . . . , un, v1, . . . , vn > 1 and N > 0 be integers such that v1 + · · ·+ vn > N + 1. Then
the integral

(40)

∫

[0,1]n

xu1−1
1 · · ·xun−1

n (1 − x1)
v1−1 · · · (1− xn)

vn−1

(1− x1 · · ·xn)N
dx1 · · · dxn

is absolutely convergent and evaluates to a linear combination

a0 + a2ζ(2) + a3ζ(3) + · · ·+ anζ(n)

with ak a rational number for every k. If furthermore we have 2ui + vi = N + 1 for every i, then we get:

(1) if (n+ 1)(N + 1) is odd then ak = 0 for k 6= 0 even;
(2) if (n+ 1)(N + 1) is even then ak = 0 for k odd.

Proof. This is a direction application of Theorem 5.5. The polynomial P (x1, . . . , xn) = xu1−1
1 · · ·xun−1

d (1−
x1)

v1−1 · · · (1 − xn)
vn−1 satisfies

P (x1, . . . , xn) = (−1)n+v1+···+vnx2u1+v1−3
1 · · ·x2un+vn−3

n P (x−1
1 , . . . , x−1

n ) .

Let us assume that we have 2ui + vi = N + 1 for every i, then v1 + · · ·+ vn ≡ n(N + 1) (mod 2) and we get

P (x1, . . . , xn) = −(−1)
(n+1)(N+1)(−1)N+n(x1 · · ·xn)

N−2P (x−1
1 , . . . , x−1

n ) ,

hence the result, in view of (39). �

Corollary 5.6 applies in particular to the special case

N = (2r + 1)m+ 2, ui = rm + 1, vi = m+ 1

for some integer parameters r,m > 0 satisfying n(m + 1) > (2r + 1)m + 3. We then recover the integrals
considered by Ball and Rivoal [BR01, Lemme 2]. The vanishing of the coefficients is [BR01, Lemme 1]. The
notations (a, n, r) in [BR01] correspond to our notations (n− 1,m, r).

The integrals (40) can be expressed as generalized hypergeometric series
(41)(

n∏

i=1

(ui − 1)!(vi − 1)!

(ui + vi − 1)!

)
n+1Fn

(
u1, . . . , un, N

u1 + v1, . . . , un + vn
; 1

)
=

∏n
i=1(vi − 1)!

(N − 1)!

∑

k>0

(k)u1 · · · (k)un
(k + 1)N−1

(k)u1+v1 · · · (k)un+vn

.

If 2ui + vi = N + 1 then the corresponding generalized hypergeometric series is said to be well-poised.
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5.3. Weight drop. In the context of Theorem 5.1, we say that the integral
∫
[0,1]n

ω has weight drop if the

highest weight coefficient an(ω) vanishes. This amounts to saying that the class [ω] actually lives in the
step W2(n−1)Zn,dR of the weight filtration, hence the terminology. We give a sufficient condition for this
phenomenon to happen.

Lemma 5.7. Let u, v > 1 and N > 0 be integers such that u+ v 6 N . Then there exists a polynomial P (t)
with rational coefficients such that

∫ 1

0

xu−1(1− x)v−1

(1− tx)N
dx =

P (t)

(1 − t)N−v

for every 0 6 t < 1.

Proof. We can write

xu−1(1− x)v−1 =

u+v−2∑

k=0

ak(t)(1 − tx)
k

with ak(t) a Laurent polynomial with rational coefficients for every k. We then have

xu−1(1 − x)v−1

(1 − tx)N
=

u+v−2∑

k=0

ak(t)

(1− tx)N−k

and all the powers of (1 − tx) appearing in the denominators are > N − (u + v − 2) > N − u − v + 2 > 2.
Thus, we may integrate and get

∫ 1

0

xu−1(1− x)v−1

(1− tx)N
dx =

Q(t)

(1− t)N−1

with Q(t) a Laurent polynomial with rational coefficients. The left-hand side has a limit when t tends to 0,
so Q(t) has to be a polynomial. To conclude, it is enough to show that

(1 − t)N−v

∫ 1

0

xu−1(1− x)v−1

(1− tx)N
dx

is bounded when t approaches 1. We make the change of variables s = 1− t, y = 1−x, and consider integrals

sN−v

∫ 1

0

(1 − y)u−1yv−1

(y + s− ys)N
dy

with s approaching 0. Since (1−y)u−1 6 1 and y+s−ys > 1
2 (y+s), it is enough to prove that the quantities

sN−v

∫ 1

0

yv−1

(y + s)N
dy

are bounded when s approaches 0. This equals

sN−v

∫ 1

0

(
y

y + s

)v−1
1

(y + s)N−v+1
dy 6 sN−v

∫ 1

0

1

(y + s)N−v+1
dy =

1

N − v

(
1−

(
s

1 + s

)N−v
)

and we are done. �

Proposition 5.8. Let u1, . . . , un, v1, . . . , vn > 1 and N > 0 be integers such that v1 + · · ·+ vn > N +1. Let
us assume that there exists i ∈ {1, . . . , N} such that

ui + vi 6 N .

Then the integral ∫

[0,1]n

xu1−1
1 · · ·xun−1

n (1 − x1)
v1−1 · · · (1− xn)

vn−1

(1− x1 · · ·xn)N
dx1 · · · dxn

is absolutely convergent and evaluates to a linear combination

a0 + a2ζ(2) + a3ζ(3) + · · ·+ an−1ζ(n− 1)

with ai ∈ Q for every i.
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Proof. By symmetry, we can assume that un+ vn 6 N . Therefore, applying Lemma 5.7 to the variables x =
xn and t = x1 · · ·xn−1 in the integral leads to the (n− 1)-dimensional integral

∫

[0,1]n−1

xu1−1
1 · · ·x

un−1−1
n−1 (1− x1)

v1−1 · · · (1− xn−1)
vn−1−1P (x1 · · ·xn−1)

(1 − x1 · · ·xn−1)N−vn
dx1 · · · dxn−1 .

Since v1 + · · ·+ vn−1 > N − vn + 1, one can then conclude thanks to Theorem 5.5. �

Note that Proposition 5.8 applies in particular if for every i, 2ui + vi = N + 1. This gives in particular a
geometric interpretation of the weight drop in the Ball–Rivoal integrals [Riv00, BR01]. Note that a careful
analysis of the degree of the polynomial P (t) in Lemma 5.7 can lead to sufficient conditions for the vanishing
of more highest weight coefficients.

Appendix A. An approach via series (joint with Don Zagier)

The aim of this appendix is to give an elementary construction of the coefficients ak(ω) constructed in
Theorem 5.1. The dictionary between integrals and sums of series leads to an interpretation of the (de Rham
realization of the) zeta motive Z, modulo weight 0, in terms of rational functions in one variable.

A.1. Series, integrals, and zeta values.

A.1.1. Series of rational functions and zeta values. Let V denote the subspace of Q(k) consisting of rational
functions with poles in {−1,−2,−3, . . .} and V0 be the subspace of functions vanishing at ∞. Then V =
V0 ⊕Q[k] and the set of functions (k + j)−r, with j, r > 1 integers, is a basis of V0. The forward difference
operator ∆ : Q(k) → Q(k) defined by ∆R(k) = R(k + 1) − R(k) preserves the spaces V and V0 and one
has direct sum decompositions V = ∆(V ) ⊕ B and V0 = ∆(V0) ⊕ B, where B is the space spanned by
the functions (k + 1)−r, for r > 1 integers. We thus have an identification V0/∆(V0) ∼= V/∆(V ) and an
isomorphism

(42) β : V/∆(V )
≃
−→

⊕

r>1

Q , R 7→ (β1(R), β2(R), . . .) ,

where the numbers βr(R) ∈ Q, for R ∈ V , are defined by

R(k) ≡
∑

r>1

βr(R)

(k + 1)r
(mod ∆(V )) .

For R ∈ V0 we can write

R(k) =
∑

r>1

βr(R)

(k + 1)r
−∆R0(k) ,

for some R0 ∈ V0, which is unique because ∆ : V0 → V0 is injective. Thus, the sum
∑∞

k=0 R(k) is absolutely
convergent if and only if R ∈ V0 and β1(R) = 0, and in this case we have

(43)
∞∑

k=0

R(k) = R0(0) +
∑

r>2

βr(R) ζ(r) ∈ Q +
∑

r>2

Q ζ(r) .

A.1.2. From differential forms to rational functions. For n > 1 an integer, we define

Ωn = Q[x1, . . . , xn, (1 − x1 · · ·xn)
−1]

and we interpret an element F ∈ Ωn as the algebraic differential n-form ω = F dx1 · · · dxn.

Lemma A.1. The formula

(44) Φn

(
xa1−1
1 · · ·xan−1

n

(1− x1 · · ·xn)N

)
=





0 if N = 0(
k +N − 1

N − 1

)
1

(k + a1) · · · (k + an)
if N > 1

,

for a1, . . . , an > 1 and N > 0 integers, defines a morphism Φn : Ωn → V/∆(V ).
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Proof. If we rewrite xa1−1
1 · · ·xan−1

n as
xa1−1
1 · · ·xan−1

n − xa1
1 · · ·x

an
n

1− x1 · · ·xn
, then its image by Φn is

1

(k + a1) · · · (k + an)
−

1

(k + a1 + 1) · · · (k + an + 1)
= ∆

(
−

1

(k + a1) · · · (k + an)

)
≡ 0 (mod ∆(V )) .

For N > 1, if we rewrite
xa1−1
1 · · ·xan−1

n

(1− x1 · · ·xn)N
as

xa1−1
1 · · ·xan−1

n − xa1
1 · · ·x

an
n

(1− x1 · · ·xn)N+1
, then we replace the func-

tion R(k) =

(
k +N − 1

N − 1

)
1

(k + a1) · · · (k + an)
by the function

R∗(k) =

(
k +N

N

)(
1

(k + a1) · · · (k + an)
−

1

(k + a1 + 1) · · · (k + an + 1)

)

= R(k) +
kR(k)− (k + 1)R(k + 1)

N
≡ R(k) (mod ∆(V )) .

This shows that the definition of Φn(F ) for F ∈ (1− x1 · · ·xn)
−NQ[x1, . . . , xn] is independent of the choice

of N . �

Combining with (42), we get well-defined maps

br : Ωn → Q , ω 7→ βr(Φn(ω)) .

Note that this is zero for r > n for degree reasons. We denote by Ωint
n ⊂ Ωn the subspace of integrable differ-

ential forms, which are the forms ω such that the integral
∫
[0,1]n

ω is absolutely convergent (see Definition 3.4

and Propositions 3.5 and 3.6).

Proposition A.2. For every ω ∈ Ωint
n we have b1(ω) = 0 and

∫

[0,1]n
ω = b2(ω)ζ(2) + · · ·+ bn(ω)ζ(n) (mod Q) .

Proof. Let us write ω =
P (x1, . . . , xn)

(1 − x1 · · ·xn)N
with P (x1, . . . , xn) a polynomial with rational coefficients andN > 1

an integer. Let R ∈ V be the representative of Φn(ω) obtained by applying (44) to every monomial
in P (x1, . . . , xn) and using linearity. Then the formula

1

(1− x)N
=

∞∑

k=0

(
k +N − 1

N − 1

)
xk

implies that we have
∫

[0,1]n
ω =

∞∑

k=0

R(k) .

Thus, the sum
∑∞

k=0R(k) is convergent, which implies that we have R ∈ V0 and β1(R) = 0. The claim then
follows from (43). �

Proposition A.2 implies that have a well-defined map b0 : Ωint
n → Q such that for every ω ∈ Ωint

n we have

(45)

∫

[0,1]n
ω = b0(ω) + b2(ω)ζ(2) + · · ·+ bn(ω)ζ(n) .

We note that applying Φn to the integrals (40) leads to the hypergeometric series representations (41).
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A.1.3. Parity. Let us recall that τ denotes the involution (x1, . . . , xn) 7→ (x−1
1 , . . . , x−1

n ). The following
proposition is nothing but a generalization of the classical well-poised symmetry of the hypergeometric
series (41), and is similar to the parity considerations in [Zud04, §8] and [CFR08, §3.1].

Proposition A.3. Let ω ∈ Ωn be a differential form such that τ.ω belongs to Ωn, then we have, for every
integer r > 1:

br(τ.ω) = (−1)r−1br(ω) .

In particular,

(1) if τ. ω = ω then br(ω) = 0 for r 6= 0 even;
(2) if τ. ω = −ω then br(ω) = 0 for r odd.

Proof. Let R and S be representatives of Φn(ω) and Φn(τ.ω) respectively, constructed as in the proof of
Proposition A.2. The involution τ acts on differential forms by the formula

xa1−1
1 · · ·xan−1

n

(1− x1 · · ·xn)N
dx1 · · · dxn 7→ (−1)N+n x

N−a1−1
1 · · ·xN−an−1

n

(1− x1 · · ·xn)N
dx1 · · · dxn .

Thus, by looking at the formula for Φn, we see that we have S(k) = −R(−N − k). This implies, for every
integer r > 1, the equality:

βr(S) = (−1)r−1βr(R) ,

and the claim follows. �

A.2. Comparison of the coefficients. The aim of this section is to prove the following theorem.

Theorem A.4. For every ω ∈ Ωint
n and every integer r = 0, 2, . . . , n we have ar(ω) = br(ω).

Note that this theorem would follow from the conjecture that 1 and the zeta values ζ(n), n > 2, are
linearly independent over Q, by looking at equations (36) and (45).

A.2.1. Inductive structure on the motives Z(n). Let us recall from §3.5 the morphisms i
(n)
dR : Z

(n−1)
dR → Z

(n)
dR ,

which come from the identification Xn−1 = {xn = 1} ⊂ Xn. Let us consider an (n− 1)-form of the type

η =
P (x1, . . . , xn)

(1 − x1 · · ·xn)N
dx1 · · · dxn−1 ,

with P (x1, . . . , xn) a polynomial with rational coefficients and N > 0 an integer. We say that such a form
is integrable if the pullback π∗

n(η) does not have a pole along the exceptional divisor En. This can be
characterized in the same way as in Propositions 3.5 and 3.6, but we will not need such a characterization.
If η is integrable then its derivative dη is integrable in the sense of Definition 3.4, and the restriction η|xn=1,

viewed as a form on Xn−1, is also integrable. We then have classes [dη] ∈ Z
(n)
dR and [η|xn=1] ∈ Z

(n−1)
dR . They

are related by the formula

in,dR([η|xn=1]) ≡ (−1)n−1[dη] (mod W0Z
(n)
dR ) ,

which is proved as in the proof of Proposition 3.9, by noticing that η|xn=0 is a polynomial, hence has weight
zero. This formula is the de Rham-theoretic incarnation of Stokes’s formula

(−1)n−1

∫

[0,1]n
dη =

(∫

[0,1]n−1

η|xn=1 −

∫

[0,1]n−1

η|xn=0

)
≡

∫

[0,1]n−1

η|xn=1 (mod Q) .

If we now choose to make the identification Xn−1 = {xj = 1} ⊂ Xn, for some index j = 1, . . . , n, then we

get a morphism i
(n),j
dR : Z

(n−1)
dR → Z

(n)
dR , such that i

(n)
dR = i

(n),n
dR . They satisfy the equation

(46) i
(n),j
dR ([η|xj=1]) ≡ (−1)j−1[dη] (mod W0Z

(n)
dR ) ,

for η an integrable (n− 1)-form of the type

(47)
P (x1, . . . , xn)

(1 − x1 · · ·xn)N
dx1 · · · d̂xj · · · dxn .

One easily notes that the morphism i
(n),j
dR does not depend on the index j, for instance by proving that

Proposition 3.9 is valid for any choice of j: for every d = 0, 2, . . . , n−1, the map i
(n),j
dR sends the class [ω

(n−1)
d ]
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to the class [ω
(n)
d ]. We nevertheless keep the notation i

(n),j
dR since these morphisms have different geometric

interpretations.

A.2.2. Compatibility of Φn with the induction. The crucial point if that the morphisms Φn are compatible

with the inductive structure (46) on the motives Z
(n)
dR , in the sense of the following lemma.

Lemma A.5. For every j = 1, . . . , n and every differential (n− 1)-form η of type (47) we have

Φn(dη) ≡ (−1)j−1Φn−1(η|xj=1) (mod ∆(V )) .

Proof. We do the case j = n, the general case being similar. It is enough to do the proof for a monomial

η =
xa1−1
1 · · ·x

an−1−1
n−1 xan

n

(1 − x1 · · ·xn)N
dx1 · · · dxn−1 ,

with a1, . . . , an−1 > 1, an > 0 and N > 1. We have

(−1)n−1dη =

(
an

xa1−1
1 · · ·xan−1

n

(1− x1 · · ·xn)N
+N

xa1
1 · · ·x

an
n

(1− x1 · · ·xn)N+1

)
dx1 · · · dxn ,

and thus

(−1)n−1Φn(dη) = an

(
k +N − 1

N − 1

)
1

(k + a1) · · · (k + an)
+N

(
k +N

N

)
1

(k + a1 + 1) · · · (k + an + 1)
·

By writing an

k+an
= 1− k

k+an
and N

(
k+N
N

)
= (k + 1)

(
k+N
N−1

)
, we get

(−1)n−1Φn(dη) ≡

(
k +N − 1

N − 1

)
1

(k + a1) · · · (k + an−1)
= Φn−1(η|xn=1) (mod ∆(V )) .

�

A.2.3. Proof of Theorem A.4. We prove Theorem A.4 by induction on n. The case n = 1 is trivial since in

this case we have a0(ω) = b0(ω) =
∫ 1

0 ω. Let us then assume that n > 2 and that the theorem is proved
for n− 1. Recall the notation

ω(n)
n =

dx1 · · · dxn
1− x1 · · ·xn

for the representative of the highest weight basis element in Zn,dR; it satisfies Φn(ω
(n)
n ) = (k + 1)−n. The

short exact sequence (30) implies that for every ω ∈ Ωint
n , we may write

ω = an(ω)ω
(n)
n +

n∑

j=1

dηj

with ηj an integrable (n−1)-form of type (47), for every j = 1, . . . , n. The short exact sequence (30) actually
implies that in addition we can assume that the classes of dη1, . . . , dηn−1 are zero, but we will not need it
here. By using (46) we may write

[ω] = an(ω)[ω
(n)
n ] +

n∑

j=1

(−1)j−1i
(n),j
dR ([(ηj)|xj=1]) (modW0Z

(n)
dR ) .

Now Lemma A.5 implies the formula

Φn(ω) ≡
an(ω)

(k + 1)n
+

n∑

j=1

(−1)j−1Φn−1((ηj)|xj=1) (mod ∆(V )) .

By using the induction hypothesis on the forms (ηj)|xj=1 and the fact that the morphisms i
(n),j
dR are

compatible with the bases, this implies that we have

Φn(ω) ≡

n∑

r=2

ar(ω)

(k + 1)r
(mod ∆(V )) ,

which concludes the proof.
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We note that a restatement of Theorem A.4 is that the morphisms Φn induce an isomorphism of graded
vector spaces

Φ : ZdR/W0ZdR
≃
−→ (V/∆(V ))>2

where (V/∆(V ))>2 is the subspace of V/∆(V ) characterized by the condition β1 = 0 and is graded by the
morphisms βn, n > 2.
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[Beu79] F. Beukers. A note on the irrationality of ζ(2) and ζ(3). Bull. London Math. Soc., 11(3):268–272, 1979.
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