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Derivation and double shuffle relations

for multiple zeta values

Kentaro Ihara, Masanobu Kaneko and Don Zagier

Abstract

Derivation and extended double shuffle (EDS) relations for multiple zeta values (MZVs)
are proved. Related algebraic structures of MZVs, as well as a ‘linearized’ version of EDS
relations are also studied.

Introduction

In recent years, there has been a considerable amount of interest in certain real numbers called
multiple zeta values (MZVs). These numbers, first considered by Euler in a special case, have
arisen in various contexts in geometry, knot theory, mathematical physics and arithmetical algebraic
geometry. It is known that there are many linear relations over Q among the MZVs, but their exact
structure remains quite mysterious.

The MZVs can be given both as sums (1.1) or as integrals (1.2). From each of these represen-
tations one finds that the product of two MZVs is a Z-linear combination of MZVs, described by
a so-called shuffle product, but the two expressions obtained are different. Their equality gives a
large collection of relations among MZVs, which we call the double shuffle relations. These are not
sufficient to imply all relations among MZVs, but it turns out that one can extend the double shuffle
relations by allowing divergent sums and integrals in the definitions (roughly speaking, by adjoining
a formal variable T corresponding to the infinite sum

∑
1/n), and that these extended double shuffle

(EDS) relations apparently suffice to describe the ring of MZVs completely. This observation, which
was made by the third author a number of years ago and has been found independently by a number
of other researchers in the field, is central to this paper. Our first goal (§§ 1, 2 and 3) is to explain the
EDS relations in detail. This requires introducing a certain renormalization map whose definition,
initially forced on us by the asymptotic properties of divergent multiple zeta sums and integrals, is
later seen to have a purely algebraic meaning. This is carried out in §§ 4 and 5, in which we also
prove the equivalence of a number of different versions of the basic conjecture on the sufficiency of
the EDS relations. In the next two sections we prove a number of further algebraic properties of the
ring of MZVs that can be deduced from the EDS relations. In particular, we introduce a number of
derivations (and, by exponentiation, automorphisms) of the ring of formal MZVs and use them to
give new, and in several cases conjecturally complete, sets of relations among MZVs. These identi-
ties contain previous results of Hoffman and Ohno as special cases. Finally, the last section of the
paper contain a reformulation of the EDS relations as a problem of linear algebra and some general
results concerning this problem.

Some of the results in this paper (in particular, in §§ 2 and 8 concerning the double shuffle
relations and renormalization) originated in work that the third-named author carried out in
1988–1994 but never published. Since that time, much work has been done by other writers
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(Goncharov, Minh, Petitot, Boutet de Monvel, Écalle, Racinet, etc.; see the bibliography) and there
is a considerable amount of overlap with their results. We nevertheless present a self-contained
description of the work.

1. Double shuffle relations (convergent case)

The multiple zeta value (MZV) is defined by the convergent series

ζ(k) = ζ(k1, k2, . . . , kn) =
∑

m1>m2>···>mn>0

1
mk1

1 mk2
2 · · ·mkn

n

, (1.1)

where k = (k1, k2, . . . , kn) is an admissible index set (ordered set of positive integers whose first
element is strictly greater than 1). This value has an integral representation, known as the Drinfel’d
integral [Dri90], [Zag94], as follows:

ζ(k1, k2, . . . , kn) =
∫

· · ·
∫

1>t1>t2>···>tk>0

ω1(t1)ω2(t2) · · ·ωk(tk), (1.2)

where k = k1+k2+· · ·+kn is the weight and ωi(t) = dt/(1−t) if i ∈ {k1, k1+k2, . . . , k1+k2+· · ·+kn}
and ωi(t) = dt/t otherwise. There are many linear relations over Q among MZVs of the same weight.
The main goal of the theory is to give as complete a description of them as possible.

The product of two MZVs is expressible as a sum of MZVs. We may see this by using either
the defining series (1.1) or the integral representation (1.2) of ζ(k), but the multiplication rules
obtained by the two methods are not the same; the equality of the products that they give will
be our main tool for obtaining linear dependences among MZVs. To describe these multiplication
rules, it is convenient to use the algebraic setup given by Hoffman [Hof97]. Let H = Q〈x, y〉 be
the non-commutative polynomial algebra over the rationals in two indeterminates x and y, and H1

and H0 its subalgebras Q + Hy and Q + xHy, respectively. Let Z : H0 → R be the Q-linear map
(‘evaluation map’) that assigns to each word (monomial) u1u2 · · · uk in H0 the multiple integral∫

· · ·
∫

1>t1>t2>···>tk>0

ωu1(t1)ωu2(t2) · · ·ωuk
(tk) (1.3)

where ωx(t) = dt/t, ωy(t) = dt/(1− t). We set Z(1) = 1. As the word u1u2 · · · uk is in H0, we always
have ωu1(t) = dt/t and ωuk

(t) = dt/(1 − t), so the integral converges. By the Drinfel’d integral
representation (1.2), we have

Z(xk1−1yxk2−1y · · · xkn−1y) = ζ(k1, k2, . . . , kn).

The weight k = k1 + k2 + · · · + kn of ζ(k1, k2, . . . , kn) is the total degree of the corresponding
monomial xk1−1yxk2−1y · · · xkn−1y, and the depth n is the degree in y.

Let zk := xk−1y, which corresponds under Z to the Riemann zeta value ζ(k). Then H1 is freely
generated by zk (k = 1, 2, 3, . . . ). We define the harmonic product ∗ on H1 inductively by

1 ∗ w = w ∗ 1 = w,

zkw1 ∗ zlw2 = zk(w1 ∗ zlw2) + zl(zkw1 ∗ w2) + zk+l(w1 ∗ w2),

for all k, l � 1 and any words w,w1, w2 ∈ H1, and then extending by Q-bilinearity. Equipped with
this product, H1 becomes a commutative algebra [Hof97] and H0 a subalgebra. We denote these
algebras by H1∗ and H0∗. The first multiplication law of MZVs can then be stated by saying that the
evaluation map Z : H0 → R is an algebra homomorphism with respect to the multiplication ∗, i.e.

Z(w1 ∗ w2) = Z(w1)Z(w2) (1.4)
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for all w1, w2 ∈ H0. For instance, the harmonic product zk ∗ zl = zkzl + zlzk + zk+l corresponds to
the identity ζ(k)ζ(l) = ζ(k, l) + ζ(l, k) + ζ(k + l). Note that this multiplication rule corresponds
simply to the formal multiplication and rearrangement of the terms of the sums (1.1), and would
remain true if the numbers mi in these sums were to run over any other discrete subsets of R+, as
long as the series converged absolutely.

The other commutative product �, referred to as the shuffle product, corresponding to the
product of two integrals in (1.2), is defined on all of H inductively by setting

1� w = w � 1 = w,

uw1 � vw2 = u(w1 � vw2) + v(uw1 � w2),

for any words w,w1, w2 ∈ H and u, v ∈ {x, y}, and again extending by Q-bilinearity. This product
gives H the structure of a commutative Q-algebra [Reu93], which we denote by H�. Obviously
the subspaces H1 and H0 become subalgebras of H�, denoted by H1

�
and H0

�
, respectively. By the

standard shuffle product identity of iterated integrals, the evaluation map Z is again an algebra
homomorphism for the multiplication �:

Z(w1 � w2) = Z(w1)Z(w2). (1.5)

Again, this rule is a formal consequence of the formula (1.3) and would hold for the values defined
by these integrals if ωx and ωy were replaced by any other differential forms for which the integrals
converged; it is only in the equality between the two multiplication rules that the specific definition
of MZVs is important.

By equating (1.4) and (1.5), we get the double shuffle relations of MZV:

Z(w1 � w2) = Z(w1 ∗ w2) (w1, w2 ∈ H0). (1.6)

The first example is

4ζ(3, 1) + 2ζ(2, 2) = 2ζ(2, 2) + ζ(4) (= ζ(2)2)

from which we deduce 4ζ(3, 1) = ζ(4). These ‘finite’ double shuffle (FDS) relations, however, do
not suffice to obtain ‘all’ relations. For instance, we have 1, 2 and 4 MZVs in weights 2, 3 and 4,
respectively, but the relation above of weight 4 is obviously the only double shuffle relation in weight
� 4, so that we are only able to reduce the dimensions to 1, 2, 3 rather than the correct 1, 1, 1.
We therefore need a larger supply of relations. This is the object of the ‘renormalization’ procedure
discussed in the next section.

2. Regularizations of MZVs

Proposition 1. We have two algebra homomorphisms

Z∗ : H1
∗ −→ R[T ] and Z� : H1

�
−→ R[T ]

that are uniquely characterized by the properties that they both extend the evaluation map Z :
H0 → R and send y to T .

Proof. This is clear from the isomorphisms H1∗ � H0∗[y] and H1
�
� H0

�
[y] (see [Hof97] and [Reu93])

and the fact that the map Z is an algebra homomorphism for both harmonic and shuffle products.

For an index k = (k1, . . . , kn) (not necessarily admissible, i.e. any ordered set of positive integers),
the images under the maps Z∗ and Z� of the corresponding word xk1−1y · · · xkn−1y are denoted
by Z∗

k(T ) and Z�k (T ), respectively. If k is admissible, we have Z∗
k(T ) = Z�k (T ) = ζ(k). In general,
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Table 1. Regularizations.

k (1) (1, 1) (1, 2)

Z∗
k(T ) T 1

2T 2 − 1
2 ζ(2) ζ(2)T − ζ(2, 1) − ζ(3)

Z�k (T ) T 1
2T 2 ζ(2)T − 2ζ(2, 1)

we see by induction on s that, for k = (1, 1, . . . , 1︸ ︷︷ ︸
s

,k′) with k′ admissible and s � 0 we have

Z∗
k(T ) = ζ(k′)

T s

s!
+ (terms of lower degree in T )

and, similarly,

Z�k (T ) = ζ(k′)
T s

s!
+ (terms of lower degree in T ),

and also that the coefficients of T i in Z∗
k(T ) and Z�k (T ) are Q-linear combinations of MZVs of

weight k − i (k = weight of k). We give a few examples in Table 1.
To state the main renormalization formula, we introduce the following power series A(u) with

coefficients in the subring of R generated by Riemann zeta values:

A(u) = exp
( ∞∑

n=2

(−1)n

n
ζ(n)un

)
. (2.1)

As is easily seen from the standard Taylor expansion of log Γ(x) at x = 1, this is the Taylor expansion
of eγuΓ(1 + u) (γ = Euler’s constant) near u = 0:

A(u) = eγuΓ(1 + u) (|u| < 1).

Define an R-linear map ρ : R[T ] → R[T ] by

ρ(eTu) = A(u)eTu. (2.2)

Equivalently, ρ is determined by

ρ

(
T l

l!

)
=

l∑
k=0

γk
T l−k

(l − k)!
(l = 0, 1, 2, . . . )

and the R-linearity, where the coefficients γ0 = 1, γ1 = 0, γ2 = ζ(2)/2, . . . are given by the generating
function

A(u) =
∞∑

k=0

γku
k.

Note that, by (2.1), the coefficient γk is a weighted homogeneous polynomial of degree k with
rational coefficients in the Riemann zeta values ζ(2), ζ(3), . . . (with deg(ζ(n)) = n).

Theorem 1. For any index set k, we have

Z�k (T ) = ρ(Z∗
k(T )). (2.3)

Proof. For M > 0 and an index set k = (k1, k2, . . . , kn), put

ζM(k1, k2, . . . , kn) :=
∑

M>m1>m2>···>mn>0

1

mk1
1 mk2

2 · · ·mkn
n

.

If k is admissible, i.e. k1 > 1, then ζM(k) converges to ζ(k) as M → ∞. Note that we can write
the product ζM (k)ζM (k′) as a linear combination of ζM (k′′)s by the same rule as in the case of
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harmonic product of the convergent MZVs. For instance, we have

ζM (k)ζM (k′) = ζM (k, k′) + ζM(k′, k) + ζM (k + k′).

With this fact and the classical formula

ζM (1) = 1 +
1
2

+ · · · + 1
M − 1

= log M + γ + O
(

1
M

)
,

we see by induction that for any index set k we have

ζM (k) = Z∗
k(log M + γ) + O(M−1 logJ M) for some J as M → ∞,

where Z∗
k(T ) is the associated polynomial defined in Proposition 1.

Next, for k = (k1, k2, . . . , kn) and 0 < t < 1, put

Lik(t) =
∫

· · ·
∫

t>t1>t2>···>tk>0

ω1(t1)ω2(t2) · · ·ωk(tk),

where k = k1 + k2 + · · · + kn and ωi(t) = dt/(1 − t) if i ∈ {k1, k1 + k2, . . . , k1 + k2 + · · · + kn} and
ωi(t) = dt/t otherwise. Iterated integration shows that

Lik(t) =
∑

m1>m2>···>mn>0

tm1

mk1
1 mk2

2 · · ·mkn
n

. (2.4)

The product Lik(t)Lik′(t) is a linear combination of Lik′′(t)s via the shuffle product identity of
iterated integrals, and the formula specializes at t = 1 to that (with the shuffle product �)
of ζ(k)ζ(k′) if k and k′ are admissible. Together with Li1(t) = log(1/1 − t), we conclude by
induction that, for each index set k, we have

Lik(t) = Z�k

(
log

1
1 − t

)
+ O
(

(1 − t) logJ

(
1

1 − t

))
for some J as t ↗ 1.

We shall compare the behaviors of ζM (k) and Lik(t). For that we start with (2.4) to obtain

Lik(t) =
∑

m1>m2>···>mn>0

tm1

mk1
1 mk2

2 · · ·mkn
n

=
∞∑

m=1

( ∑
m>m2>···>mn>0

1
mk1mk2

2 · · ·mkn
n

)
tm

=
∞∑

m=1

(ζm+1(k) − ζm(k))tm

= (1 − t)
∞∑

m=1

ζm(k)tm−1.

To deduce the theorem from this, we use the following lemma.

Lemma 1.

(i) Let P (T ) ∈ R[T ] and Q(T ) = ρ(P (T )). Then

∞∑
m=1

P (log m + γ)tm−1 =
1

1 − t
Q

(
log

1
1 − t

)
+ O

(
logJ

(
1

1 − t

))

for some J (= deg P − 1) as t ↗ 1.
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(ii) For l � 0, we have

∞∑
m=1

logl m

m
tm−1 = O

(
logl+1

(
1

1 − t

))
as t ↗ 1.

As ζm(k) = Z∗
k(log m + γ) + O(m−1 logJ m), Lemma 1 gives

(1 − t)
∞∑

m=1

ζm(k)tm−1 = Q

(
log

1
1 − t

)
+ O
(

(1 − t) logJ+1

(
1

1 − t

))

with Q(T ) = ρ(Z∗
k(T )), so we conclude that Z�k (T ) = ρ(Z∗

k(T )).

Proof of Lemma 1. We first prove part (ii). For l = 0, the left-hand side is (1/t) log(1/1 − t) which
is clearly O(log(1/(1 − t))) as t → 1. We now proceed by induction on l. We have

logl+1 m � Cl

m∑
n=1

logl n

n
(m � 1, l � 0)

for some constant Cl independent of m. (This is easily seen by comparing the sum with the
corresponding integral

∫m
1 (logl x/x) dx.) Hence, for t < 1 we obtain

∞∑
m=1

logl+1 m

m
tm−1 � Cl

∞∑
m=1

tm−1

m

m∑
n=1

logl n

n

= Cl

∞∑
n=1

logl n

n
tn−1

∞∑
r=1

tr−1

r + n − 1

< Cl

( ∞∑
n=1

logl n

n
tn−1

)(
1
t

log
1

1 − t

)
.

The estimate in part (ii) now follows for all l by induction.
For part (i), it is enough by linearity to prove the identity for P (T ) = (T − γ)l. Put Q(T ) =

ρ((T − γ)l). Then

Q(T ) =
dl

dul
[A(u)e(T−γ)u]u=0 =

dl

dul
[Γ(1 + u)eTu]u=0,

and hence

1
1 − t

Q

(
log

1
1 − t

)
=

dl

dul

[
Γ(1 + u)
(1 − t)1+u

]
u=0

=
dl

dul

[ ∞∑
m=1

Γ(m + u)
Γ(m)

tm−1

]
u=0

(binomial theorem)

=
∞∑

m=1

Γ(l)(m)
Γ(m)

tm−1.

From the standard integral representation

log Γ(x) =
(

x − 1
2

)
log x − x + C −

∫ ∞

0

t − [t] − 1/2
x + t

dt (x > 0)

we see by induction on l that

Γ(l)(m)
Γ(m)

= logl m + O
(

logl−1 m

m

)
(m → ∞)
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for all l � 0, and from this and Lemma 1(ii) we deduce that
∞∑

m=1

Γ(l)(m)
Γ(m)

tm−1 =
∞∑

m=1

logl m tm−1 + O
(

logl 1
1 − t

)

=
∞∑

m=1

P (log m + γ)tm−1 + O
(

logl 1
1 − t

)
.

This completes the proof.

As an example of the theorem, by comparing the two entries for k = (1, 2) in the table at the
beginning of the section, we find

ζ(2)T − 2ζ(2, 1) = ζ(2)T − ζ(2, 1) − ζ(3),

the left-hand side being Z�k (T ) and the right ρ(Z∗
k(T )). (Note that ρ(T ) = T .) This equality gives

Euler’s formula

ζ(2, 1) = ζ(3)

and shows that the space of weight-3 MZVs is one-dimensional, whereas using only the finite shuffle
relations as in § 1 we were not able to reduce the dimension below 2. Similarly, by comparing the
two sides of (2.3) for k = (1, 3), (1, 2, 1), we find

ζ(3)T − 2ζ(3, 1) − ζ(2, 2) = ζ(3)T − ζ(4) − ζ(3, 1),
ζ(2, 1)T − 3ζ(2, 1, 1) = ζ(2, 1)T − ζ(3, 1) − ζ(2, 2) − 2ζ(2, 1, 1)

and, hence, the identities

ζ(4) = ζ(3, 1) + ζ(2, 2) = ζ(2, 1, 1),

which, together with the formula 4ζ(3, 1) = ζ(4) obtained in § 1 as a FDS relation, reduce the
dimension of weight-4 MZVs to 1.

In each of these examples, the degree with respect to T was at most 1 and hence the effect of
the automorphism ρ, which acts as the identity on the subspace R + RT of R[T ], was not visible.
As an example involving higher powers of T , take k = (1, 1, 2) in (2.3). Then

Z�1,1,2(T ) = 1
2ζ(2)T 2 − 2ζ(2, 1)T + 3ζ(2, 1, 1),

Z∗
1,1,2(T ) = 1

2ζ(2)T 2 − (ζ(3) + ζ(2, 1))T + 1
2ζ(4) + ζ(3, 1) + ζ(2, 1, 1),

so from Z�1,1,2(T ) = ρ(Z∗
1,1,2(T )) and ρ(T 2) = T 2 + ζ(2) we find (again) ζ(2, 1) = ζ(3) and also

3ζ(2, 1, 1) = 1
2ζ(2)2 + 1

2ζ(4) + ζ(3, 1) + ζ(2, 1, 1).

This latter relation is a consequence of the relations obtained above, which already reduced the
dimension of the MZV space in this weight to 1, but at the same time we see that here Z�1,1,2(T ) 	=
Z∗

1,1,2(T ) and hence that the presence of the automorphism ρ in (2.3) is really necessary to make
this identity correct.

These examples show that in weight up to 4, Theorem 1, together with the homomorphism
properties of the evaluation maps Z� and Z∗, suffices to give all relations of MZVs, and that this
still remains true even if we restrict our attention to index sets k with at most one leading 1. It is
conjectured that both of these statements remain true in all weights. These conjectures will be
formulated more precisely in the next section in the language of the algebra H.
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3. EDS relations

Denote by regT
�

(respectively regT∗ ) the map (actually an isomorphism) H1
�
→ H0

�
[T ] (respectively

H1∗ → H0∗[T ]) defined by the properties that it is the identity on H0, maps y to T , and is an algebra
homomorphism. The maps H1

�
→ H0

�
and H1∗ → H0∗ obtained by specializing regT

�
and regT∗ to T = 0

will be denoted by reg
�

and reg∗, respectively. If R is a commutative Q-algebra with 1 and ZR is
any map from H0 to R which is a homomorphism with respect to both multiplications � and ∗, i.e.

ZR(w1 � w2) = ZR(w1 ∗ w2) = ZR(w1)ZR(w2), (3.1)

we say that ZR has the ‘finite double shuffle (FDS)’ property. We can then extend ZR to maps
Z�R : H1 → R[T ] and Z∗

R : H1 → R[T ] in the same way (namely, they agree with ZR on H0, send y to
T , and are homomorphisms with respect to � or ∗), or equivalently, we can define Z�R and Z∗

R as the
composites of the maps regT

�
and regT∗ with the map ZR⊗1 : H0[T ] = H0⊗Q[T ] → R⊗Q[T ] = R[T ].

Finally, we define an R-module automorphism ρR of R[T ], generalizing the map ρ in Theorem 1,
by the formula

ρR(eTu) = AR(u)eTu (3.2)
(together with the requirement of R-linearity), where AR(u) is the power series defined, in analogy
with (2.1), by

AR(u) = exp
( ∞∑

n=2

(−1)n

n
ZR(xn−1y)un

)
∈ R[[u]]. (3.3)

Theorem 2. Let (R,ZR) be as above with the FDS property. Then the following properties are
equivalent:

(i) (Z�R − ρR ◦ Z∗
R)(w) = 0 for all w ∈ H1;

(ii) (Z�R − ρR ◦ Z∗
R)(w)|T=0 = 0 for all w ∈ H1;

(iii) Z�R (w1 � w0 − w1 ∗ w0) = 0 for all w1 ∈ H1 and all w0 ∈ H0;

(iii′) Z∗
R(w1 � w0 − w1 ∗ w0) = 0 for all w1 ∈ H1 and all w0 ∈ H0;

(iv) ZR(reg
�

(w1 � w0 − w1 ∗ w0)) = 0 for all w1 ∈ H1 and all w0 ∈ H0;

(iv′) ZR(reg∗(w1 � w0 − w1 ∗ w0)) = 0 for all w1 ∈ H1 and all w0 ∈ H0;

(v) ZR(reg
�

(ym ∗ w0)) = 0 for all m � 1 and all w0 ∈ H0;

(v′) ZR(reg∗(ym
� w0 − ym ∗ w0)) = 0 for all m � 1 and all w0 ∈ H0.

The implications (i) ⇒ (ii), (iii) ⇒ (iv) and (iii′) ⇒ (iv′) are obvious (note that ZR ◦ reg
�

(respectively ZR ◦reg∗) is the specialization Z�R |T=0 (respectively Z∗
R|T=0)). For (i) ⇒ (iii), multiply

ZR(w0) (∈R) on both sides of Z�R (w1) = ρR(Z∗
R(w1)) and use the R-linearity of ρR to get

Z�R (w1�w0) = ρR(Z∗
R(w1 ∗w0)). Using (i) on the right, we obtain (iii). The implication (i) ⇒ (iii′)

is proved similarly (multiply ZR(w0) on both sides of ρ−1
R (Z�R (w1)) = Z∗

R(w1)). By the same
arguments we can show (ii) ⇒ (iv) and (ii) ⇒ (iv′). The properties (v) and (v′) are obtained,
respectively, from (iv) and (iv′) by setting w1 = ym and noting (for (iv)) reg

�
(ym

� w) = 0 which
follows from reg

�
(ym) = 0 (since ym = y�m/m!). We have thus shown the following implications.

(i)

��

�� (ii)

��
(iii) �� (iv) �� (v)

and
(i)

��

�� (ii)

��
(iii′) �� (iv′) �� (v′)

Note that these implications are formal and do not depend on the precise definition of the algebraic
renormalization map ρR (i.e., they would remain true if AR(u) in (3.2) were replaced by any other
power series). The real content of the theorem is the implications (v) ⇒ (i) and (v′) ⇒ (i), which
we will prove in § 5 after some algebraic preliminaries.
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Definition 1. The Q-algebra R and the map ZR : H0 → R with the FDS property have the EDS
property if the eight equivalent properties of Theorem 2 are satisfied.

The content of Theorem 1 is now precisely that (R, Z) satisfies the EDS property, in the form
(i) of Theorem 2, and hence also in the forms (ii)–(v) and (iii′)–(v′). In particular, we have

Z(reg
�

(w1 � w0 − w1 ∗ w0)) = 0 (∀w1 ∈ H1, ∀w0 ∈ H0) (3.4)

and

Z(reg
�

(ym ∗ w0)) = 0 (∀m � 1, ∀w0 ∈ H0). (3.5)

The main conjecture about multiple zeta values is that the relations (3.4) suffice to give all linear
relations over Q among MZVs. To state this formally, we introduce the universal EDS ring, as
follows.

If (R, ZR) has the EDS property and ϕ : R → R′ is a Q-algebra homomorphism, then (R′, ϕ◦ZR)
also has the EDS property. Clearly, there exists a universal algebra REDS, namely the quotient of
H0 divided by the necessary relations, and a map ϕR : REDS → R for any (R,ZR) with the EDS
property that makes the diagram

H0

ZR ����
��

��
��

�
�� REDS

ϕR

��
R

commute. Now for (R,ZR) = (R, Z) we formulate the following.

Conjecture 1. The map ϕR is injective, i.e. the algebra of multiple zeta values is isomorphic to
REDS.

We briefly discuss here several possible different versions of the conjecture and their experimental
status. We can consider statements of various strength, namely:

(1) the FDS and EDS relations suffice to give all relations among MZVs;

(2) the FDS relations alone suffice;

(3) only FDS and EDS with ζ(1) suffice;

(4) only double shuffle relations with ζ(n) (n = 1, 2, 3, . . . ) against finite zetas suffice.

(Here (3) means that we only need FDS and the formula (v) of Theorem 2 with m = 1, and
(4) means that we need only Theorem 2(iv) with w1 = zn = xn−1y.) Statement (1) is just the
conjecture stated above. We checked up to k = 13 that the FDS and EDS relations suffice to give
all expected relations, i.e. to reduce the dimension to the numerically and theoretically predicted
value. (This is all one can hope to do, because actually proving the linear independence over Q of
MZVs is out of reach.) The more optimistic statement (2) is wrong, as the weight 3 and weight 4
examples in § 2 showed. The intermediate statement (3) says that it is enough to use Theorem 1
for index sets k for which Z�k (T ) is at most linear in T (in which case the map ‘ρ’ is not needed
in the formula (2.3)). The examples in § 2 verified this up to weight 4, and it has been checked up
to weight 16 by Minh, Petitot et al. in Lille. (This of course also verifies the weaker conjecture (1)
up to this weight.) Finally, statement (4), a different and particularly simple-looking strengthening
of (1), holds up to weight 12 but fails at weight 13, where the relations in (4) suffice only to reduce
the dimension of the space of MZVs to 17 instead of the value 16, which is what is obtained in this
weight if one uses all the double shuffle relations.
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4. Algebraic formulas

Recall that the algebra H1 (with concatenation product) is free on the generators zk = xk−1y
(k � 1). Denote by z the Q-linear span of the zk

1.

Proposition 2.

(i) For z ∈ z the map δz : H1 → H1 defined by

δz(w) := z ∗ w − zw (z ∈ z, w ∈ H1) (4.1)

is a derivation, and these derivations all commute.

(ii) The above derivation δz extends to a derivation on all of H, with values on the generators given
by

δz(x) = 0, δz(y) = (x + y)z (z ∈ z). (4.2)

In particular, δz preserves H0.

Proof. (i) It is almost immediate from the definition of ∗ that we have

z ∗ (ww′) = (z ∗ w)w′ + w(z ∗ w′) − wzw′ (4.3)

for all w,w′ ∈ H1, and this is equivalent to the derivation property. Now if z, z′ ∈ z and w ∈ H1

then from (4.1) and (4.3) and the associativity of ∗ we have

δz(δz′(w)) = z ∗ (z′ ∗ w − z′w) − zδz′(w) = δz∗z′(w) − z′δz(w) − zδz′(w),

which by virtue of the commutativity of ∗ is symmetric in z and z′.
(ii) Define a derivation δ′z on H by the formulas (4.2). Then, for k � 1, we have

δ′z(zk) = δ′z(x
k−1y) = xk−1(x + y)z = zk ∗ z − zzk,

so δ′z agrees with δz on the generators of H1 and hence on all of H1.

Proposition 3. The vector space z becomes a commutative and associative algebra with respect
to the multiplication ◦ defined by

z ∗ z′ = zz′ + z′z + z ◦ z′ (z, z′ ∈ z). (4.4)

Proof. We find immediately that zk ◦ zl = zk+l, from which these properties follow. Note that the
map

γ : X Q[[X]] → z, γ(Xk) = zk (k = 1, 2, . . . ) (4.5)

is an algebra isomorphism for ◦. We will use it occasionally later.

We now have three different associative and commutative multiplications: the shuffle product �
(defined on all of H), the harmonic product ∗ (defined on H1 ⊂ H) and the ‘circle’ product ◦ (defined
on z ⊂ H1). We denote by exp

�
, exp∗ and exp◦ the corresponding exponential maps. The next two

propositions describe some of their properties.

Proposition 4. For z ∈ z we have

exp∗(z) = (2 − exp◦(z))−1.

(The inverse on the right is with respect to the concatenation product.)

1We will not distinguish between direct sums and direct products, using the same letters H1 and z also for the
completions and freely allowing infinite sums (of elements with grading going to infinity); this will not lead to any
problems since H1 is finite-dimensional in each weight.

316



Derivation and double shuffle relations for multiple zeta values

Proof. Define a power series f(u) ∈ z[[u]] by

f(u) = exp◦(zu) − 1 = zu + z ◦ z
u2

2
+ · · ·

(here the map exp◦ has been extended to z[[u]] in the obvious way, in accordance with the footnote
above). Then f ′(u) = z ◦ (1 + f(u)), so

z ∗ 1
1 − f(u)

= z ∗
∑
n�0

f(u)n =
∑

α,β�0

f(u)αzf(u)β +
∑

α,β�0

f(u)α(z ◦ f(u))f(u)β

=
∑

α,β�0

f(u)αf ′(u)f(u)β =
d

du

(∑
n�0

f(u)n
)

=
d

du

(
1

1 − f(u)

)
.

For the second equality we have used the identity

z ∗ w1w2 · · ·wn =
n∑

i=0

w1 · · ·wizwi+1 · · ·wn +
n∑

i=1

w1 · · ·wi−1(z ◦ wi)wi+1 · · ·wn

for z,wi ∈ z, which follows from the derivation property of δz and the formula δz(w) = wz + z ◦
w(z,w ∈ z). It follows that the function F (u) := (1−f(u))−1 satisfies F ′(u) = z∗F (u) and F (0) = 1,
so F (u) = exp∗(zu).

Corollary 1. For all z ∈ z we have

exp∗(log◦(1 + z)) =
1

1 − z
. (4.6)

As an example, putting z = zk in (4.6) and applying the evaluation map Z, we obtain

Corollary 2. For k � 2, we have the identity

exp
( ∞∑

n=1

(−1)n−1ζ(nk)
un

n

)
= 1 +

∞∑
n=1

ζ(k, k, . . . , k︸ ︷︷ ︸
n

)un.

Proposition 5. For z, z′ ∈ z, w ∈ H1 we have the identities

exp(δz)(z′) = (exp◦(z) ◦ z′) exp∗(z), (4.7)

exp(δz)(w) = (exp∗(z))−1(exp∗(z) ∗ w). (4.8)

Proof. Using the derivation property of δz and (4.4), we find

δz(z′w) = δz(z′)w + z′δz(w) = (z ◦ z′ + z′z)w + z′(z ∗ w − zw)
= (z ◦ z′)w + z′(z ∗ w)

for z, z′ ∈ z, w ∈ H1. Now replacing z′ and w by z◦α ◦z′ and z∗β ∗w (which again belong to z and H1,
respectively) we obtain

δz((z◦α ◦ z′)(z∗β ∗ w)) = (z◦(α+1) ◦ z′)(z∗β ∗ w) + (z◦α ◦ z′)(z∗(β+1) ∗ w)

and, hence, by induction

δn
z (z′w) =

∑
α+β=n

(
n

α

)
(z◦α ◦ z′)(z∗β ∗ w)

or, dividing by n! and summing over n,

exp(δz)(z′w) = (exp◦(z) ◦ z′)(exp∗(z) ∗ w). (4.9)

Setting w = 1 in (4.9) gives (4.7). Observe that if δ is a derivation which increases the weight, then
by Leibniz’s rule, exp(δ) is a well-defined automorphism. With this, dividing (4.9) by (4.7) gives
(4.8).
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Combining the last two propositions, we obtain the following proposition.

Proposition 6.

(i) For z ∈ z define Φz : H1 → H1 by

Φz(w) := (1 − z)
(

1
1 − z

∗ w

)
(z ∈ z, w ∈ H1). (4.10)

Then Φz is an automorphism of H1 and we have the identity

Φz(w) = exp(δt)(w), where t = log◦(1 + z) ∈ z. (4.11)

The collection of all Φz (z ∈ z) forms a commutative subgroup of Aut(H1), with ΦzΦz′ =
Φz+z′+z◦z′ for z, z′ ∈ z. Equivalently, the map 1 + X Q[[X]] → Aut(H1) mapping 1 + f(X) to
Φγ(f), with γ defined by (4.5), is a homomorphism of groups.

(ii) The automorphism Φz of H1 extends to an automorphism of all of H, with Φz(x) = x and
Φz(x + y) = (x + y)(1 − z)−1 . In particular, Φz also induces an automorphism of H0.

Proof. (i) From (4.6) we have exp∗(t) = (1 − z)−1, and substituting this into (4.8) (with z re-
placed by t) immediately gives (4.11). The fact that Φz is an automorphism now follows from
Proposition 2(i) and the fact that the exponential of a derivation is an automorphism, as noted
before, and the last statements of the proposition follow immediately from formula (4.11), since for
t = log◦(1 + z) and t′ = log◦(1 + z′) we have δt + δt′ = δt+t′ and t + t′ = log◦(1 + z + z′ + z ◦ z′) by
the commutativity of ◦.

(ii) If we iterate δz, then we find δn
z (x) = 0 and δn

z (y) = (x + y)z∗n for all n � 1. (This is clear
by induction, as δz((x+y)w) = (x+y)(zw+ δz(w)) = (x+y)(z ∗w) for any w ∈ H1.) It follows that
exp(δz)(x) = x, exp(δz)(x + y) = (x + y) exp∗(z). Combining this with formulas (4.11) and (4.6) we
obtain the assertion.

Remark. Written out, the fact that Φz is a homomorphism says that

(zn) ∗ (ww′) =
∑

α+β=n

(zα ∗ w)(zβ ∗ w′) −
∑

α+β=n−1

(zα ∗ w)z(zβ ∗ w′)

for all n � 0, a generalization of (4.3) that can also be proved directly by a tedious induction using
(4.3), (4.4) and the commutativity and associativity of ∗ and ◦.

The analogous (but simpler) result for the shuffle product is as follows.

Proposition 7. Define the map d : H → H by d(w) = y � w − yw. Then d is a derivation and we
have

exp(du)(w) = (1 − yu)
(

1
1 − yu

� w

)
(w ∈ H). (4.12)

(Here, u is a formal parameter.) In particular, we have

exp(du)(x) = x
1

1 − yu
and exp(du)(y) = y

1
1 − yu

. (4.13)

Proof. That the d is a derivation on H is easily checked. For (4.12), we show by induction the
identity

1
m!

dm(w) = ym
� w − y(ym−1

� w) (m � 1, w ∈ H). (4.14)
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The case m = 1 is the definition of d. Assuming the identity for m, we have

1
(m + 1)!

dm+1(w) =
1

m + 1
d(ym

� w − y(ym−1
� w))

=
1

m + 1
[y � (ym

� w − y(ym−1
� w)) − y(ym

� w − y(ym−1
� w))]

=
1

m + 1
[(m + 1)ym+1

� w − y2(ym−1
� w) − y(y � ym−1

� w)

− y(ym
� w) + y2(ym−1

� w)]

= ym+1
� w − y(ym

� w).

Multiplying (4.14) by um and summing over m gives (4.12). Putting w = x (respectively w = y) in
(4.14), we have dm(x)/m! = xym (respectively dm(y)/m! = ym+1), which gives (4.13).

Corollary 3. Let ∆u be the automorphism of H defined by

∆u = exp(−du) ◦ Φyu. (4.15)

(Here ◦ denotes composition.) Then for w ∈ H1 we have

1
1 − yu

∗ w =
1

1 − yu
�∆u(w). (4.16)

In particular, for w0 ∈ H0 we have

reg
�

(
1

1 − yu
∗ w0

)
= ∆u(w0). (4.17)

The images of the generators x and y of H under ∆u are given by

∆u(x) = x(1 + yu)−1, ∆u(y) = y + x(1 + yu)−1yu. (4.18)

Proof. The first identity directly follows from (4.12) by replacing w with ∆u(w) and dividing both
sides on the left by 1−yu. To get the second, we put w = w0 in the first and take reg

�
of both sides,

noting that reg
�

(ym) = 0 for m � 1. For the images of x and y, we use Proposition 6(ii) and (4.13)
to obtain

∆u(x) = exp(−du)(Φyu(x)) = exp(−du)(x) = x(1 + yu)−1

and

∆u(x + y) = (exp(−du) ◦ Φyu)(x + y) = exp(−du)((x + y)(1 − yu)−1)
= x + y,

and so

∆u(y) = ∆u(x + y) − ∆u(x) = y + x(1 + yu)−1yu.

5. Regularization formulas

In this section we give various algebraic formulas for the regularization maps regT
�

and reg
�

(and also
regT∗ and reg∗). Using these, we complete the proof of Theorem 2. We also apply these formulas to
show that the well-known sum formula for MZVs is a formal consequence of the EDS relations.

Proposition 8. For w0 = xw′
0 ∈ H0 we have the regularization formula

regT
�

(
1

1 − yu
w0

)
= exp(−du)(w0)eTu = x

(
1

1 + yu
� w′

0

)
eTu. (5.1)
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In particular, for all m � 0 we have

reg
�

(ymw0) =
(−1)m

m!
dm(w0) = (−1)m x (ym

� w′
0). (5.2)

Proof. Putting w = exp(−du)(w0) in Proposition 7 and multiplying (1 − yu)−1 from the left, we
have (note the obvious identity (1 − yu)−1 = exp

�
(yu))

1
1 − yu

w0 =
1

1 − yu
� exp(−du)(w0)

= exp
�

(yu)� exp(−du)(w0). (5.3)

Taking regT
�

of this gives the first equality of (5.1). For the second, use the first equality in (4.13)
with u replaced by −u and Proposition 7 applied to w = xw′

0 to get

exp(−du)(w0) = exp(−du)(x) exp(−du)(w′
0)

=
(

x
1

1 + yu

)(
(1 + yu)

(
1

1 + yu
� w′

0

))

= x

(
1

1 + yu
� w′

0

)
.

This proves (5.1). Comparing the coefficients of um on both sides of this equation, we can rewrite
it more explicitly as

regT
�

(ymw0) =
1
m!

m∑
l=0

(−1)l
(

m

l

)
dl(w0)Tm−l =

m∑
l=0

(−1)lx(yl
� w′

0)
Tm−l

(m − l)!
.

Equation (5.2) is the special case T = 0.

Using this result, we can now complete the proof begun in § 3.

Proof of Theorem 2. We only have to prove the implications (v) ⇒ (i) and (v′) ⇒ (i), as the other
parts of the theorem were proved after its statement in § 3. Noting Φyu(w0) ∈ H0 if w0 ∈ H0, replace
w0 in Proposition 8 by Φyu(w0) to get

regT
�

(
1

1 − yu
Φyu(w0)

)
= (exp(−du) ◦ Φyu)(w0)eTu = ∆u(w0)eTu

and thus

Z�R

(
1

1 − yu
Φyu(w0)

)
= ZR(∆u(w0))eTu. (5.4)

On the other hand, the definition of Φyu and (4.6) give

1
1 − yu

Φyu(w0) =
1

1 − yu
∗ w0 = exp∗(log◦(1 + yu)) ∗ w0. (5.5)

Now we observe that

Z∗
R(exp∗(log◦(1 + yu))) = Z∗

R

(
exp∗

( ∞∑
n=1

(−1)n−1

n
zn un

))

= exp
(

Tu −
∞∑

n=2

(−1)n

n
ZR(zn)un

)
= AR(u)−1eTu (5.6)

with AR(u) as in (3.3). (This is the only point where the specific definition of the power series AR

is used.) Hence, applying ρR ◦ Z∗
R to (5.5) yields

ρR ◦ Z∗
R

(
1

1 − yu
Φyu(w0)

)
= eTuZR(w0). (5.7)
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From (5.4) and (5.7) we get

(Z�R − ρR ◦ Z∗
R)
(

1
1 − yu

Φyu(w0)
)

= ZR((∆u − 1)(w0))eTu

=
( ∞∑

m=1

ZR(reg
�

(ym ∗ w0))um

)
eTu (by (4.16)).

As Φyu acts as an automorphism of H0 and as the components of (1/1 − yu)H0 span H1, this shows
the equivalence of statements (i) and (v) of Theorem 2. The equivalence of statements (i) and (v′)
is shown in a similar manner. Applying ZR ◦ reg∗ to (4.6) (with z = yu) and using (5.6) with T = 0,
we have

ZR

(
reg∗

(
1

1 − yu

))
= AR(u)−1. (5.8)

Now replace w0 in (5.4) and (5.7) by ∆−1
u (w0) and take the difference to get

(Z�R − ρR ◦ Z∗
R)
(

1
1 − yu

exp(du)(w0)
)

= ZR(w0 − ∆−1
u (w0))eTu.

Multiplying AR(u)−1 on both sides of this and using (5.8), we obtain

AR(u)−1(Z�R − ρR ◦ Z∗
R)
(

1
1 − yu

exp(du)(w0)
)

= ZR

(
reg∗

(
1

1 − yu

)
∗ (w0 − ∆−1

u (w0))
)

eTu

= ZR

(
reg∗

(
1

1 − yu
∗ w0 −

1
1 − yu

∗ ∆−1
u (w0)

))
eTu

= ZR

(
reg∗

(
1

1 − yu
∗ w0 −

1
1 − yu

� w0

))
eTu (by (4.16)).

As before, this gives the equivalence of statements (i) and (v′) of Theorem 2.

As a second application of Proposition 8, we show that the ‘sum formula’ for MZVs [Gra97],
which states that the sum of all MZVs of fixed weight and depth is equal to the Riemann zeta value
of that weight, is a consequence of the EDS relations.

Proposition 9. Denote by S(k,m) the sum of all monomials in H0 of weight k and depth m.
For any k and m with k > m + 1 � 2, we have

(−1)mreg
�

(ym ∗ xk−m−1y) = S(k,m + 1) − S(k,m).

Corollary 4. If (R,ZR : H0 → R) has the EDS property, then ZR(S(k,m)) = ZR(xk−1y) for
0 < m < k. In particular, the sum of all MZVs of weight k and depth m is equal to ζ(k) for each
value m = 1, 2, . . . , k − 1.

Proof. Apply Theorem 2(v) to the statement of the proposition.

Proof of Proposition 9. The harmonic product ym ∗ xk−m−1y, which corresponds to the product
ζ(1, 1, . . . , 1︸ ︷︷ ︸

m

)ζ(k − m) of MZVs, is easily computed as

ym ∗ xk−m−1y =
m∑

i=0

yixk−m−1ym+1−i +
m−1∑
j=0

yjxk−mym−j .
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By (5.2), we then obtain

reg
�

(ym ∗ xk−m−1y) =
m∑

i=0

(−1)ix(yi
� xk−m−2ym+1−i) +

m−1∑
j=0

(−1)jx(yj
� xk−m−1ym−j)

= xk−m−1ym+1 +
m∑

i=1

(−1)ix{(yi
� xk−m−2ym−i)y + (yi−1

� xk−m−2ym+1−i)y}

+ xk−mym +
m−1∑
j=1

(−1)jx{(yj
� xk−m−1ym−1−j)y + (yj−1

� xk−m−1ym−j)y}

=
m∑

i=0

(−1)ix(yi
� xk−m−2ym−i)y +

m−1∑
i=0

(−1)i+1x(yi
� xk−m−2ym−i)y

+
m−1∑
j=0

(−1)jx(yj
� xk−m−1ym−1−j)y +

m−2∑
j=0

(−1)j+1x(yj
� xk−m−1ym−1−j)y

= (−1)mx(ym
� xk−m−2)y + (−1)m−1x(ym−1

� xk−m−1)y
= (−1)m(S(k,m + 1) − S(k,m)).

An alternative way of deducing this identity is by making use of the automorphism ∆u (note
the relation (4.17)) and the formula (4.18), as follows:

(−1)mreg
�

(ym ∗ xk−m−1y) = the degree k component of ∆−1(xk−m−1y)

= the degree k component of
(

x
1

1 − y

)k−m−1(
y − x

y

1 − y

)

= the degree k component of
(

x
1

1 − y

)k−m−1

y −
(

x
1

1 − y

)k−m

y

= S(k,m + 1) − S(k,m).

We end this section with a collection of formulas for the regularization map regT
�

and its harmonic
analog regT∗ .

Proposition 10. For w0 ∈ H0 we have

regT
�

(
1

1 − yu
w0

)
= reg

�

(
1

1 − yu
w0

)
eTu

=
(

exp
�

(−yu)�
(

1
1 − yu

w0

))
eTu (5.9)

and

regT
∗

(
1

1 − yu
w0

)
= reg∗

(
1

1 − yu
w0

)
eTu

=
(

exp∗(−yu) ∗
(

1
1 − yu

w0

))
eTu. (5.10)

Corollary 5 (Explicit regularization formula). Let w ∈ H1 and write w = ymw0 with m � 0 and
w0 ∈ H0. Then

reg
�

(w) =
m∑

i=0

(−1)iyi
� ym−iw0, reg∗(w) =

m∑
i=0

(−1)i

i!
y∗i ∗ ym−iw0,
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and, conversely,

w =
m∑

i=0

reg
�

(ym−iw0)� yi, w =
m∑

i=0

1
i!

reg∗(y
m−iw0) ∗ y∗i.

Proof. Equation (5.9) is essentially contained in Proposition 8 and its proof, as (5.1) and (5.3) give

reg
�

(
1

1 − yu
w0

)
= exp(−du)(w0) = exp

�
(−yu)�

(
1

1 − yu
w0

)
.

For (5.10), we first combine (4.10) and (4.6) to obtain

1
1 − yu

w0 =
1

1 − yu
∗ Φ−1

yu (w0) = exp∗(log◦(1 + yu)) ∗ Φ−1
yu (w0)

= exp∗(yu) ∗ [exp∗(log◦(1 + yu) − yu) ∗ Φ−1
yu (w0)]. (5.11)

As the expression in square brackets belongs to H0[[u]] by virtue of Proposition 6(ii), we have

reg∗

(
1

1 − yu
w0

)
= exp∗(log◦(1 + yu) − yu) ∗ Φ−1

yu (w0)

= exp∗(−yu) ∗ 1
1 − yu

w0.

From this, (5.10) follows. Finally, the corollary is obtained by specializing (5.9) and (5.10) to T = 0
and comparing the coefficients of um on both sides either before or after •-multiplying both sides
by exp•(yu), where • = � or ∗, and noting that y�i = i!yi.

6. Derivation and double shuffle relations

Let Der(H) be the Lie algebra of derivations of H (with respect to the concatenation product, Lie
algebra structure being defined by [∂, ∂′] := ∂∂′ − ∂′∂, as usual). Clearly, an element of Der(H)
is uniquely determined by the images of x and y. Examples of elements of Der(H) include the
maps δz (z ∈ z) and d introduced in Propositions 2 and 7. Let τ : H → H be the involutory
anti-automorphism that interchanges x and y. If ∂ ∈ Der(H), then ∂ := τ∂τ is also an element of
Der(H). The involution τ preserves H0 and the standard duality theorem for MZVs can be stated
as Z((1 − τ)(w0)) = 0 for any w0 ∈ H0.

For each integer n � 1, define the derivations ∂n and Dn in Der(H) by

∂n(x) = x(x + y)n−1y, ∂n(y) = −x(x + y)n−1y,

Dn(x) = 0, Dn(y) = xny.

Each of these derivations preserves H1 and H0. As is easily seen by checking the images of the
generators x and y, the derivations in each of the three families {∂n}, {Dn} and {Dn} commute
with one another: [∂m, ∂n] = [Dm,Dn] = [Dm,Dn] = 0 for any m,n � 1. For each m � 0, define the
linear maps σm and σm : H → H as homogeneous components of degree m of the homomorphisms

σ := exp
( ∞∑

n=1

Dn

n

)
, σ := exp

( ∞∑
n=1

Dn

n

)
(= τστ),

so that

σ = exp
( ∞∑

n=1

Dn

n

)
=

∞∑
m=0

σm, σ = exp
( ∞∑

n=1

Dn

n

)
=

∞∑
m=0

σm.

We can use these endomorphisms to give two further collections of relations that are equivalent
to the EDS relations.
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Theorem 3. Assume that R, ZR : H0 → R satisfy the FDS. Then the following three properties
are equivalent:

(i) (R, ZR) satisfies the EDS;

(ii) ZR(∂n(w0)) = 0 for all w0 ∈ H0 and all n;

(iii) ZR((σm − σm)(w0)) = 0 for all w0 ∈ H0 and all m.

Combining this result (for R = R) with Theorem 1, we obtain the following ‘derivation relations’
for MZVs.

Corollary 6. One has Z(∂n(w0)) = 0 for all n � 1 and all w0 ∈ H0.

This corollary is a generalization of Hoffman’s relation [Hof92] which is equivalent to the case
n = 1. An alternative proof is given in [HO03].

Part (iii) of the theorem enables us to understand Ohno’s relation [Ohn99] in light of the EDS
relations. To see this we describe the map σm more concretely as follows. Put

D =
∞∑

n=1

Dn

n
.

As D(x) = 0 and D(y) = (x + x2/2 + x3/3 + · · · )y = (−log(1 − x))y, we have Dn(x) = 0,Dn(y) =
(−log(1−x))ny and hence σ(x) = x and σ(y) =

∑∞
n=0(1/n!)(−log(1−x))ny = (1−x)−1y. From this,

we have

σ(xk1−1yxk2−1y · · · xkn−1y) = xk1−1(1 − x)−1yxk2−1(1 − x)−1y · · · xkn−1(1 − x)−1y

=
∞∑

m=0

∑
e1+e2+···+en=m

ei�0

xk1+e1−1yxk2+e2−1y · · · xkn+en−1y,

namely,

σm(xk1−1yxk2−1y · · · xkn−1y) =
∑

e1+e2+···+en=m
ei�0

xk1+e1−1yxk2+e2−1y · · · xkn+en−1y.

Ohno’s relation [Ohn99] then states that Z((σm − σmτ)(w0)) = 0 for all m � 1, w0 ∈ H0.
Under duality, this follows from Theorem 3(iii) and Theorem 1.

The crucial identities needed for the proof of Theorem 3 are given in the following result, which
will be proved in a more general form in the next section.

Theorem 4.

(i) The automorphism ∆u defined in (4.15) is given in terms of the derivations ∂n by

∆u = exp
( ∞∑

n=1

(−1)n
∂n

n
un

)
. (6.1)

(ii) Set ∂ =
∑∞

n=1

∂n

n
. Then we have

exp(∂) = σσ−1. (6.2)

Proof of Theorem 3. The equivalence of Theorem 3(ii) and Theorem 2(v) follows from (6.1) because
(∆u − 1)(w0) =

∑∞
m=1 reg

�
(ym ∗ w0)um by (4.17). By (6.2), we have ∂ = log(1 − (σ − σ)σ−1) and

σ − σ = (1 − exp(∂))σ. This gives the equivalence (ii) ⇔ (iii) of Theorem 3.
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7. Various derivations and automorphisms of H

In this section we study the various derivations and automorphisms being considered in more detail
and more systematically, and give a proof of Theorem 4.

Set δn := δzn . For the convenience of the reader, in Table 2 we give the various derivations that
have been introduced (in Propositions 2, 7 and § 6). In this table and for the rest of this section,
unlike the previous sections, z denotes x + y.

Table 2. Various derivations.

d d Dn Dn δn δn ∂n = −∂n

x xy x2 0 xyn 0 xyn−1z xzn−1y
y y2 xy xny 0 zxn−1y 0 −xzn−1y
z zy xz xny xyn zxn−1y xyn−1z 0

Note that each of these derivations belongs not merely to Der(H) = Lie algebra of all derivations
of H, but to the subspace Der+(H) consisting of derivations that increase the weight or, equivalently,
that induce the zero derivation on the associated graded space Gr(H) =

⊕
(H(k)/H(k+1)) of H,

where H(k) denotes the subspace generated by all monomials in x and y of weight � k. The space
Der+(H) is isomorphic via the exponential map to the subgroup Aut1(H) of Aut(H) consisting of
all automorphisms that induce the identity automorphism on Gr(H) (i.e. automorphisms φ of H

such that φ(x) − x and φ(y) − y contain only monomials of weight � 2). We want to understand
the automorphisms corresponding to all of the above derivations. In particular, the fact that the
derivations in each of the four families {Dn}, {Dn}, {∂n} and {δn} commute with one another is
more naturally interpreted in terms of the commutation of the corresponding automorphisms, as
the set of automorphisms is closed under composition and the set of derivations is not. As a first
step, we generalize the notation slightly. We define D,D, ∂, δ : XQ[[X]] → Der+(H) as the Q-linear
maps sending Xn (n � 1) to Dn, Dn, ∂n and δn, respectively, or alternatively as the maps sending
f(X) ∈ XQ[[X]] to the derivations Df ,Df , ∂f , δf defined on generators by

Df (x) = 0, Df (y) = f(x)y; Df (y) = 0, Df (x) = xf(y);

∂f (z) = 0, ∂f (x) = x
f(z)

z
y; δf (x) = 0, δf (z) = z

f(x)
x

y.
(7.1)

(Note that δf is just δγ(f), with γ as in (4.5), and that Df = Df .) The corresponding automorphisms
are described by the following proposition.

Proposition 11. For h(X) ∈ 1 + XQ[[X]] let σh, σh,∆h,Ψh ∈ Aut1(H) be the automorphisms
defined by the following action on generators:

σh(x) = x, σh(y) = h(x)y, (7.2)
σh(y) = y, σh(x) = xh(y), (7.3)

∆h(z) = z, ∆h(x) = x

(
1 +

h(z) − 1
z

y

)
−1, (7.4)

Ψh(x) = x, Ψh(z) = z

(
1 − h(x) − 1

x
y

)
−1. (7.5)

Then each of the maps h �→ σh, σh,∆h,Ψh is a homomorphism from 1 + XQ[[X]] to Aut(H), and
they are related to the derivations Df , Df , ∂f and δf by

σh = exp(Df ), σh = exp(Df ), ∆h = exp(−∂f ), Ψh = exp(δf ) (7.6)

for all h ∈ 1 + XQ[[X]], where f = log(h) ∈ XQ[[X]].
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Proof. Let g(X) and h(X) be two elements of 1 + XQ[[X]]. It is easy to verify the equations
σgh = σgσh, σgh = σgσh, and σh = exp(Df ), σh = exp(Df ) with f = log(h). If we use the map
γ in (4.5) then γ(Xk) = xk−1y implies that γ(h(X) − 1) = ((h(x) − 1)/x) y and, hence, we have
Ψh = Φγ(h−1). The proposition for Ψh then follows from Proposition 6(i), and this also implies the
statement for ∆h because of the identities ∆h = εΨhε and −∂f = εδf ε, where ε is the involution of
H interchanging x and z and sending y to −y.

We can now relate the above derivations and automorphisms to those previously studied and
give the proof of Theorem 4. First, note that the automorphism ∆1+uX is nothing other than the
automorphism ∆u in Theorem 4(i) defined by ∆u = exp(−du) ◦Φyu in § 4, as is seen by comparing
(4.18) and (7.4). The formula of Theorem 4(i) then follows from the third equation of (7.6) with
h = 1+uX and f = log(1+uX). On the other hand, the automorphisms denoted σ and σ in § 6 are
σ−1

1−X and σ−1
1−X in our notation. Part (ii) of Theorem 4 then follows from the special case u = −1

of part (i) and the formula ∆1+uX = σ−1
1+uX · σ1+uX , whose proof is immediate from the definitions

(7.2)–(7.4) by checking the action on generators.
In the rest of the section, we show that the Lie algebra generated by the four derivations

d, d, d − D1, and d − D1 contain all derivations considered so far, and discuss some properties
of this Lie algebra.

Proposition 12. For all n � 1 we have the commutation formulas

[d, δn] = nδn+1, [d, δn] = nδn+1, (7.7)

[d,Dn] = nDn+1, [d,Dn] = nDn+1. (7.8)

Proof. Since in each case both sides of the equation to be proved are derivations on all of H, it
suffices to show that they agree on the generators x and y. We have

[d, δn](x) = d(0) − δn(x2) = 0 = nδn+1(x)

and

[d, δn](y) = d(zxn−1y) − δn(xy)

= xzxn−1y + (n − 1)zxny + zxny − xzxn−1y

= nzxny = nδn+1(y).

The proofs of the other three identities are similar and will be omitted.

Theorem 5. Let L4 be the Lie subalgebra of Der(H) generated by the four elements d, d, D = d−D1

and D = d − D1, and L3 the Lie subalgebra of L4 generated by d, d, and D − D. Then:

(i) L3 = L3, L4 = L4;

(ii) L3 contains ∂n, δn, δn for all n � 1;
(iii) L4 also contains Dn and Dn for all n � 1.

Proof. Property (i) is clear from the definition. We have

δ1 = d − D + D (7.9)

(both sides are derivations sending x to 0 and y to zy) and D1 = d−D (by the definition of D), so
δ1 ∈ L3,D1 ∈ L4, and also δ1 ∈ L3,D1 ∈ L4 by (i). Proposition 12 and induction over n then show
that the derivations δn, δn belong to L3 and Dn, Dn to L4 for all n � 1. Finally, combining (6.1),
(4.15) and (4.11) we have

exp
( ∞∑

n=1

∂n

n
un

)
= ∆−u = exp(du) exp(δlog◦(1−yu)) = exp(du) exp

(
−

∞∑
n=1

δn

n
un

)
. (7.10)
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From this, we have ∂n ∈ L3 for all n by the Baker–Campbell–Hausdorff formula.

A more explicit formula for ∂n is obtained as follows. We differentiate (7.10) with respect to u
to get ( ∞∑

n=1

∂nun−1

)
exp
( ∞∑

n=1

∂n

n
un

)
= d exp(du) exp

(
−

∞∑
n=1

δn

n
un

)

− exp(du)
( ∞∑

n=1

δnun−1

)
exp
(
−

∞∑
n=1

δn

n
un

)

and hence
∞∑

n=1

∂nun−1 = d − exp(du)
( ∞∑

n=1

δnun−1

)
exp(−du)

= d − exp
(

ad(d)u
)( ∞∑

n=1

δnun−1

)
.

Here, by (7.7), we have
∞∑

n=1

δn =
∞∑

n=0

ad(d)n

n!
(δ1) = exp(ad(d))(δ1).

Hence, we obtain
∞∑

n=1

∂n = d − exp(ad(d)) exp(ad(d))(δ1).

Written out, this gives an explicit description of ∂n in terms of the generators of L3:

∂n =




d − d + D − D if n = 1,∑
i+j=n−1

ad(d)i

i!
ad(d)j

j!
(D − D − d) if n � 2.

The following proposition gives further relations in the Lie algebra L4. As we do not use this
proposition later (except that the relations do contribute to reduce the dimensions of L

(n)
4 as in the

table below), we omit the proof.

Proposition 13.

(i) The two derivations D and D commute.

(ii) We have

ad(d)n

n!
(d) =

[
ad(d),

ad(d)n−1

(n − 1)!

]
(D) (n > 1),

ad(d)n

n!
(d) =

[
ad(d),

ad(d)n−1

(n − 1)!

]
(D) (n > 1).

Below we give a short table of the dimensions of the graded piece L
(n)
3 and L

(n)
4 of L3 and

L4 for n � 8 and, for comparison, the same data for the free Lie algebras F3 and F4 on 3 and 4
generators, respectively.
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n 1 2 3 4 5 6 7 8

L
(n)
3 3 3 5 8 14 23 43 75

F
(n)
3 3 3 8 18 48 116 312 810

L
(n)
4 4 5 8 13 22 37 66 115

F
(n)
4 4 6 20 60 204 670 2340 8160

We end this section by presenting some results which seem interesting to us, even though there
is no obvious application to the structure of the double shuffle relations. Each of the four families
{δn}, {δn}, {Dn}, and {Dn} has the property that their elements mutually commute and, by
Proposition 12, that they have the form ad(X)n(Y ) for some X,Y ∈ Der(H). We give two results,
one generalizing and one reinterpreting this phenomenon.

Proposition 14. Let a, b be a basis of the two-dimensional space spanned by x and y, and δ a
derivation that sends a to 0 and b to any element of the form κb2 + λba + µab + νa2. Suppose that
θ is another derivation sending a to a2 and b to the sum of ab and any linear combination of [a, b]
and δ(b). Then the derivations δ′n defined by δ′n = ad(θ)n−1(δ)/(n − 1)! are given on generators by
δ′n(a) = 0, δ′n(b) = κban−1b + λban + µanb + νan+1 and all commute with one another.

The proof is routine and is omitted.
If we set a = z(= x+y), b = y, δ(b) = b2−ab(= −xy) and θ(b) = ab− [a, b]/2 in the proposition,

then we have δ = ∂1 and δ′n = ∂n, thereby proving not only that the elements {∂n} mutually
commute, as remarked at the beginning of § 7, but also that they have the form ad(θ)n−1(∂1)/(n−1)!.
Note, however, that the derivation θ in this case (defined by θ(x) = (xz+zx)/2, θ(y) = (yz+zy)/2)
does not belong to the Lie algebra L4.

Definition 2. Two elements X and Y in a Lie algebra over a field of characteristic 0 semi-
commute if the power series exp(tX) exp(−tY ) in (the completion of) the universal enveloping
algebra commute with each other for different t, i.e. if all of the coefficients of this power series
commute with each other. Clearly, if X and Y commute, then they semi-commute.

Proposition 15. Let X and δ be two elements in a Lie algebra over a field K of characteristic 0.
Then the following three statements are equivalent.

(i) All of the elements ad(X)n(δ) (n = 0, 1, 2, . . . ) commute with one another.

(ii) The elements X and X − δ semi-commute.

(iii) Any two elements of X + Kδ semi-commute.

Proof. We put δn := ad(X)n−1(δ)/(n − 1)! (n = 1, 2, 3, . . . ). Assume statement (i). Then we have

exp
( ∞∑

n=1

δn

n
tn
)

= exp(tX) exp(−t(X − δ)),

as both sides satisfy the differential equation f ′(t) = exp(tX)δ exp(−tX)f(t) and f(0) = 1.
This implies statement (ii). Conversely, assume statement (ii) and set

f(t) = exp(tX) exp(−t(X − δ)).

We calculate the derivative:

f ′(t) = exp(tX)δ exp(−(X − δ)) = Z(t)f(t),
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where

Z(t) = exp(tX)δ exp(−tX) = exp(ad(X)t)(δ) =
∞∑

n=1

δntn−1.

We want to show that if f(t) and f(u) commute for all t and u, then Z(t) and Z(u) commute for all
t and u (i.e. all δn commute). Differentiating the equation f(t)f(u) = f(u)f(t) with respect to u, we
find f(t)Z(u) = Z(u)f(t). Differentiating this with respect to t, we obtain Z(t)Z(u) = Z(u)Z(t).
Thus we have shown the equivalence of (i) and (ii). However, then (i) and (iii) are also equivalent,
as (i) is invariant under δ → −cδ for any c ∈ K∗.

Remark. (i) If X and Y are two elements of a Lie algebra that semi-commute with each other, then
the commutation identity is

euXe−(u+v)Y evX = e−vY e(u+v)Xe−uY

or, more symmetrically,

eaXebY ecXeaY ebXecY = 1 if a + b + c = 0,

which is somewhat reminiscent of the so-called Yang–Baxter equation.
(ii) Let L0 be the quotient of the free Lie algebra on two letters X and δ by the relation that

all ad(X)n(δ) commute or, equivalently, setting δn = ad(X)n−1(δ)/(n − 1)!, the Lie algebra with
basis (X, δ1, δ2 . . . ) and brackets given by [X, δn] = nδn+1, [δm, δn] = 0. As this is a graded Lie
algebra (with X and δ of weight 1, and δn of weight n), it extends naturally to a slightly larger
Lie algebra L1 = L0 + K · H where [H,X] = X and [H, δn] = nδn. Proposition 12 then states
that there are several natural copies of L1 in the endomorphisms of H, and Proposition 15 gives a
nice interpretation of embeddings of L1 into any Lie algebra in terms of semi-commuting elements.
It is therefore of interest to note that the same Lie algebra L1 has occurred in the work of Connes
and Moscovici in connection with questions about cyclic homology, foliations and, more recently,
the so-called ‘Rankin–Cohen brackets’ in the theory of modular forms [CM04a], [CM04b]. However,
while our copies of L1 act on H as derivations, and hence can be thought of as Hopf algebra
representations of the standard Hopf algebra associated with the Lie algebra L1 (i.e. the Hopf
algebra whose underlying algebra is the universal enveloping algebra of L1 and whose coproduct
is defined by requiring the generators X, δ and H, and hence all elements of L1, to be primitive),
Connes and Moscovici consider a ‘twisted’ Hopf algebra structure that has the same underlying
algebra and in which H and δ are still primitive, but with ∆(X) = X ⊗ 1+ δ⊗H +1⊗X. It would
be very interesting to discover whether there is any deeper reason for the occurrence of the same
Lie algebra L1 in these very different contexts, and whether the twisted Hopf structure considered
by Connes and Moscovici plays any role in the context of MZVs.

8. Linearized double shuffle relations

In this section, we fix the depth n and look at the (extended) double shuffle relation modulo elements
of lower depth and products. This amounts to ‘linearizing’ the double shuffle relation and reduces
the problem of finding an upper bound (and conjecturally exact value) for the number of generators
of the Q-algebra of MZVs of given weight k and depth n to the solution of an elementary, but hard,
problem of linear algebra. Some consequences of this reduction for general n are given at the end
of this section. A more detailed discussion of the special cases n = 2 and 3 as well as some general
results will be given in a subsequent paper.

Let Z =
⊕

k�0 Zk be the graded algebra generated by MZVs over Q, where Zk is the Q-vector

space generated by MZVs of weight k. The space Zk has a natural filtration Zk =
⋃

n�0 Z
(n)
k ,
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where Z(n)
k is the Q-vector space spanned by MZVs of weight k and depth � n, and setting Z(n) =⊕

k�0 Z
(n)
k gives a corresponding filtration Z =

⋃
n�0 Z(n) on the whole algebra Z. Let I =

⊕
k�1 Zk

be the augumentation ideal of Z and I2 its square. The quotient space T = I/I2 also inherits the
grading and filtration. All products of MZVs become trivial in T , so the dimension of Tk, the weight
k component of T , coincides with the number Dk of algebra generators of Z in weight k. We can
also consider the bigraded vector space M associated with the graded filtered space T :

M =
⊕

k, n�1

M(n)
k , M(n)

k = T (n)
k /T (n−1)

k � Z(n)
k /(Z(n−1)

k + Z(n)
k ∩ I2).

Then clearly the dimension Dk,n of M(n)
k equals the number of algebra generators of Z of weight k

and depth n, and we have Dk =
∑k−1

n=1 Dk,n.

Remark. There is a conjectural formula giving these dimensions Dk,n, due to Broadhurst and
Kreimer [BK97]. As it is too beautiful to omit, but we did not want to interrupt the text here,
we have reproduced this formula in the Appendix.

Our object is to introduce certain vector spaces DShn(d) (n, d > 0) whose dimensions give upper
bounds for (and are conjecturally equal to) the numbers Dn+d,n, and then to discuss the calculation
of these spaces. Let Sn denote the symmetric group of order n and R = Rn = Z[Sn] its group ring.
We denote by Vn the space Q[x1, . . . , xn] of polynomials in n variables with rational coefficients and
by Vn(d) its subspace of homogeneous polynomials of degree d. The group Sn acts on these spaces
in a natural way by (f |σ)(x1, . . . , xn) = f(xσ−1(1), . . . , xσ−1(n)). Note that this is a right action,
i.e. f |(στ) = (f |σ)|τ for all σ and τ in Sn. This action extends to an action of R in the standard
way by f |(

∑
aiσi) =

∑
ai(f |σi).

For each integer l with 1 � l � n − 1 we define the lth shuffle element shl = sh(n)
l in the group

ring R by

sh(n)
l =

∑
σ∈Sn

σ(1)<···<σ(l)
σ(l+1)<···<σ(n)

σ.

We denote by I(n) = sh1R + · · · + shn−1R the right ideal in R generated by all of these elements
and, for any (right) representation V of Sn, define the ‘shuffle subspace’ Sh(V ) of V by

Sh(V ) = Ker(I(n), V ) =
n−1⋂
l=1

Ker(sh(n)
l , V ),

the space of elements of V annihilated by the ideal I(n). In particular, we have the shuffle space
Shn := Sh(Vn) ⊂ Vn and its homogeneous part of degree d, Shn(d) := Sh(Vn(d)) ⊂ Vn(d).

We remark that the dimension of Sh(V ) can be computed for any Sn-module V in a nice way
using the theory of representation of finite groups. The following proposition gives explicit formulas
for this dimension.

Proposition 16. Let V be any representation of Sn and let C ∈ Sn be an element of order n
(i.e. a cyclic permutation of 1, . . . , n). Then we have the two formulas

dimSh(V ) =
1
n

∑
m|n

µ

(
n

m

)
tr(Cm, V ), (8.1)

and

dimSh(V ) =
1

ϕ(n)

∑
m|n

µ

(
n

m

)
dim(V Cm

), (8.2)
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where µ and ϕ denote the Möbius function and the Euler function respectively. In particular,

dimShn(d) =
1
n

∑
e|(n,d)

µ(e)
(

n/e + d/e − 1
d/e

)
. (8.3)

Actually, we proved this in the reverse direction, first proving the special case (8.3) by identifying
the space Shn(d) with the graded part of degree d and weight n+d of the free Lie algebra on infinitely
many generators of weights 1, 2, . . . , then noting that (8.1) coincides with (8.3) for V = Vn(d), and
that this suffices for the general case because the representations Vn(d)(d = 0, 1, 2, . . . ) span the
Grothendieck group of representations of Sn over Q; and finally deducing (8.2) from (8.1) by using
the formula dim(V G) = |G|−1

∑
g∈G tr(g, V ) which holds for any representation V of a group G. In

any case we omit the details of the proofs as we will not use any of these formulas and there must
exist a simpler proof anyway, undoubtedly already in the literature.

The space we are actually interested in, however, is a subspace of Shn(d) that is much harder to
compute. To define it, we first extend the action of Sn on Vn to an action of Γn = GLn(Z) on Vn

by setting

(f |S)(x1, . . . , xn) := f((x1, . . . , xn) · S−1) (S ∈ Γn),

which agrees with the previous definition for Sn if the elements of the symmetric group are identified
with permutation matrices in Γn in the usual way. In particular, we will be interested in the element
P of Γn given by

P =




1
−1 1

. . . . . .
−1 1


 , P−1 =




1
1 1
...

. . .
1 1 . . . 1


 .

We now define the double shuffle subspace DShn of Vn as the intersection

DShn = Shn ∩ Shn|P−1

= {f ∈ Vn | f |shl = f �|shl = 0 for l = 1, . . . , n − 1},

where for any polynomial f ∈ Vn we have set f � = f |P or explicitly

f �(x1, . . . , xn) = f(x1 + x2 + · · · + xn, x2 + · · · + xn, . . . , xn−1 + xn, xn).

For an element S in Z[GLn(Z)], we define S� := PS P−1. The condition f �|shl = 0 is then equivalent
to f |shl

� = 0. We write DShn(d) for the degree d part of DShn.

As already mentioned, the double shuffle space DShn(d) is much harder to compute than the
single shuffle space Shn(d), the reason being that it is defined in terms of the action of an infinite
rather than a finite group and therefore cannot be computed using the theory of characters of
finite groups. Some information about the dimension of DShn(d) can be obtained by looking at finite
subgroups or quotients of the subgroup of Γn generated by Sn and P and applying the theory of
characters. A few results of this nature, both for general n and for the special cases n = 2 and 3,
will be discussed at the end of the section. Before doing this, we prove a theorem that states
that the generating function of MZVs belong to the double shuffle space and, as a consequence,
bounds the number of linearly independent MZVs in terms of the dimensions of the vector spaces
DShn(d).

Let k be any (not necessarily admissible) index set. Recall that the ‘regularized MZVs’ Z∗
k(0)

and Z�k (0) are, respectively, the constant terms of the polynomials Z∗
k(T ) and Z�k (T ) defined in § 2.
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For a fixed n, consider the two generating functions

F ∗
n(x1, . . . , xn) =

∑
k

Z∗
k(0)xk1−1

1 · · · xkn−1
n

and

F�n (x1, . . . , xn) =
∑
k

Z�k (0)xk1−1
1 · · · xkn−1

n

in Z[x1, . . . , xn], where both the sums run over all index sets k = (k1, . . . , kn) (allowing k1 = 1) of
depth n. We regard the coefficients as elements in Z(n) and consider their images in M, and look
at the images of F ∗

n and F�n in M̃[x1, . . . , xn] = M̃⊗Q Vn, where M̃ = Q⊕M as a Q-vector space
and is regarded as a Q-algebra in a trivial way (only Q-multiplication is non-zero).

Theorem 6. The two polynomials F ∗
n and F�n agree as elements of M̃ ⊗ Vn and belong to the

subspace M̃ ⊗ DShn.

Corollary 7. For all k > n > 0, we have the upper bound

Dk,n � dimQ DShn(k − n).

Proof. The statement of the theorem follows from the following three assertions:

(i) (F ∗
n |shl)(x1, . . . , xn) = 0 in M̃ ⊗ Vn for 1 � l � n − 1;

(ii) ((F�n )�|shl)(x1, . . . , xn) = 0 in M̃ ⊗ Vn for 1 � l � n − 1;

(iii) F ∗
n(x1, . . . , xn) = F�n (x1, . . . , xn) in M̃ ⊗ Vn.

(i) With an obvious notational convention, we know from Proposition 1 that the values Z∗
k(0)

satisfy Z∗
k(0)Z∗

k′(0) = Z∗
k∗k′(0) for any index sets k and k′. From this we easily have

0 = F ∗
l (x1, . . . , xl)F ∗

n−l(xl+1, . . . , xn) = (F ∗
n

∣∣shl)(x1, . . . , xn) in M̃[x1, . . . , xn]. This proves (i).

(ii) Here we use the iterated integral expression. For small ε > 0, put

ζε(k1, k2, . . . , kn) =
∫

· · ·
∫

1−ε>t1>t2>···>tk>0

ω1(t1)ω2(t2) · · ·ωk(tk), (8.4)

where the integrand is the same as in (1.2). First we have∫
· · ·
∫

a>x1>···>xr>b

dx1

x1
· · · dxr

xr
=

1
r!

(
log

a

b

)r

for any a > b > 0, as the integral would be the same if x1, . . . , xr were ordered in any other way
and the integral over unordered r-tuples a > x1, . . . , xr > b is simply the rth power of

∫ a
b (dx/x).

Applying this to (8.4) with (a, b, r) = (1− ε, u1, k1 −1), (u1, u2, k2 −1),. . . , (un−1, un, kn −1), where
u1 = tk1 , u2 = tk1+k2, . . . , un = tk1+k2+···+kn = tk, we find

ζε(k1, k2, . . . , kn) =
1∏n

i=1(ki − 1)!

×
∫

· · ·
∫

1−ε>u1>···>un>0

(
log

1 − ε

u1

)k1−1 du1

1 − u1

(
log

u1

u2

)k2−1 du2

1 − u2
· · ·

· · ·
(

log
un−1

un

)kn−1 dun

1 − un
.
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From this, we obtain for the corresponding generating function F�n,ε:

F�n,ε(x1, . . . , xn) :=
∑

k1,...,kn�1

ζε(k1, . . . , kn)xk1−1
1 · · · xkn−1

n

= (1 − ε)x1

∫
· · ·
∫

1−ε>u1>···>uk>0

u−x1+x2
1

1 − u1
du1

u−x2+x3
2

1 − u2
du2 · · ·

u−xn
n

1 − un
dun

and, hence,

(F�n,ε)
�(x1, . . . , xn) = F�n,ε(x1 + x2 + · · · + xn, x2 + · · · + xn, . . . , xn)

= (1 − ε)x1+···+xn

∫
· · ·
∫

1−ε>u1>···>uk>0

u−x1
1

1 − u1
du1

u−x2
2

1 − u2
du2 · · ·

u−xn
n

1 − un
dun.

Now, it is clear that (F�n,ε)
�(x1, . . . , xn) satisfies the shuffle relation

(F�l,ε)
�(x1, . . . , xl)(F�n−l,ε)

�(xl+1, . . . , xn) =
(
(F�n,ε)

�
∣∣shl

)
(x1, . . . , xn)

for any ε and 1 � l � n − 1. From this and the definition of the polynomial Z�k (T ), we obtain the
desired assertion.

(iii) This follows from our fundamental relation (2.3) and the fact that the coefficient of ρ(T i)
is contained in the ring generated by the Riemann zeta values (MZVs of depth 1).

To prove the corollary, let {fi}i=1,...,r (r = dimDShn(d)) be a basis of DShn(d) over Q and write
each fi(x1, . . . , xn) as

∑
k ci(k)xk1−1

1 · · · xkn−1
n , where k = (k1, . . . , kn) runs over the index sets of

depth n and weight k. Then the r ×
(n+d−1

d

)
matrix {ci(k)}i,k has rank r, so all of its columns can

be expressed as Q-linear combinations of r of them, say, those labeled by the index sets k1, . . . ,kr.
This implies that the kth coefficient of any polynomial F ∈ A ⊗ DShn(d), for any index set k of
depth n and weight k and any Q-algebra A, is a rational linear combination (with coefficients not
depending on F ) of its k1th, . . . ,krth coefficients. Applying this to the polynomial F defined as the
homogeneous component of degree d = k − n of F ∗

n(x1, . . . , xn) = F�n (x1, . . . , xn), which belongs to
M̃ ⊗ DShn(d) by the theorem, we see that the image in M(n)

k of each MZV ζ(k) of weight k and
depth n is a rational linear combination of the r MZVs ζ(k1), . . . , ζ(kr), so dimQM(n)

k � r. �
In the remainder of this section we give some estimates of the spaces DShn(d) and corollaries

for MZVs.

Theorem 7. If d is odd, then DShn(d) = {0} for every n > 0.

Corollary 8 (Parity result). If k 	≡ n mod 2, then Dk,n = 0. In other words, any MZV of weight k
and depth n with k and n of opposite parity is a linear combination of MZVs of smaller depth and
products of MZVs of lower weight.

This result, of which a different proof was given by Tsumura [Tsu04], generalizes classical results
of Euler for n = 1 (that ζ(2j) is expressible as a product of smaller zeta values for j � 2) and n = 2
(that all double zeta values of odd weight can be expressed in terms of Riemann zeta values.)

To prove Theorem 7, we will construct a space ShCn(d) containing DShn(d) and show that it is
zero when d is odd. This larger space will also be of interest for d even, as it can be computed in
terms of representation of finite groups and hence, in principle, gives a non-trivial upper bound for
dimDShn(d) for all n and d. This subject will be treated in a later paper.

To define the space ShCn(d), we introduce an action of Sn+1 on the space Q[x1, . . . , xn] by
identifying this with the space Q[y1, . . . , yn+1]/(y1 + · · · + yn+1) via the obvious isomorphism

ϕ : Q[x1, . . . , xn] � Q[y1, . . . , yn+1]/(y1 + · · · + yn+1)
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given by

ϕ(xi) = yi (1 � i � n).

The action of Sn+1 is then given by

(F |σ)(y1, . . . , yn+1) := F (yσ−1(1), . . . , yσ−1(n+1)) (σ ∈ Sn+1).

Identifying Sn as the subgroup of Sn+1 consisting of elements that fix n + 1, we can also regard
the space Q[y1, . . . , yn+1]/(y1 + · · · + yn+1) as an Sn-module; the map ϕ is then Sn-equivariant.
As before, the actions of Sn+1 extends naturally to an action of Z[Sn+1] ⊃ Z[Sn].

Let

Cn+1 =
(

1 · · · n n + 1
2 · · · n + 1 1

)
∈ Sn+1

be the cyclic permutation and ε the involution (y1, . . . , yn+1) �→ (−y1, . . . ,−yn+1). Theorem 7 is a
consequence of the following proposition.

Proposition 17. For n, d � 1, define

ShCn(d) := {f ∈ Vn(d) | f �|shl = 0 (1 � l � n − 1), ϕ(f �)|Cn+1 = εϕ(f �)}.

Then:

(i) DShn(d) ⊂ ShCn(d);

(ii) ShCn(d) = {0} if d is odd.

Proof. We first prove statement (ii). For this, we use the easily checked identity

1 + sh(n)
1 Cn+1 = Cn+1(1 + sh(n)

1 τ) (8.5)

in Z[Sn+1], where τ is the transposition 1 ↔ n + 1 and where the shuffle element sh(n)
1 ∈ Z[Sn] is

viewed as an element in Z[Sn+1] in the way described above.

For f ∈ ShCn(d), put F = ϕ(f �). Applying (8.5) to F and using the conditions F |sh(n)
1 = 0 and

F |Cn+1 = εF , we obtain

F = F |Cn+1(1 + sh(n)
1 τ) = εF |(1 + sh(n)

1 τ) = εF.

If d is odd, this gives F = 0 and hence f = 0.
To prove statement (i), we need a lemma.

Lemma 2. For 0 � l � n, let

Tl =
(

1 · · · l l + 1 · · · n
1 · · · l n · · · l + 1

)
∈ Sn.

Then we have the relation
n−1∑
l=1

(−1)l−1shl Tl = T0 + (−1)n,

or, since sh0 = shn = id, simply
∑n

l=0(−1)lshlTl = 0.

Proof. For 1 � l � n − 1, we have

shl Tl =
∑

σ∈Sn
σ(1)<···<σ(l)

σ(l+1)>···>σ(n)

σ = Rl + Rl+1,
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where

Ri =
∑

σ∈Sn
σ(1)<···<σ(i)>···>σ(n)

σ ∈ Z[Sn] (i = 1, . . . , n).

Hence,
n−1∑
l=1

(−1)l−1shl Tl = R1 + (−1)nRn = T0 + (−1)n.

By Lemma 2, we have

f |T0 = f |T �
0 = (−1)n−1f for f ∈ DShn(d). (8.6)

Let

T ′ =
(

1 · · · n − 1 n n + 1
n − 1 · · · 1 n + 1 n

)
∈ Sn+1.

It is straightforward to check the relations

T0T
′ = Cn+1 (in Sn+1), ϕ(f |P )|T ′ = εϕ(f |T0P ). (8.7)

Now suppose that f ∈ DShn(d). We only need to check that the second condition in the definition
of ShCn(d) is satisfied. With (8.6) and (8.7), we have

ϕ(f �)|Cn+1 = ϕ(f �)|T0T
′ = ϕ(f |P )|T0T

′ = ϕ(f |PT0)|T ′

= ϕ(f |T �
0P )T ′ = εϕ(f |T �

0T0P ) = εϕ(f �).

This completes the proof of Proposition 17 and hence of Theorem 7. The corollary then follows
immediately by virtue of the corollary to Theorem 6.

One can sometimes get upper and lower bounds for DShn(d) using representation theory of finite
groups. In particular, we can prove the following proposition2 and also some results for general n.

Proposition 18. Assume d is even. Then we have:

(i) dimQDSh2(d) =
[
d

6

]
;

(ii)
[
d2 − 1

48

]
� dimQDSh3(d) �

[
(d + 3)2

24

]
.

Appendix. The conjectural value of Dk,n

In this appendix we describe the conjectural formula for Dk,n due to Broadhurst and Kreimer
[BK97].

Let dk,n = dim(Z(n)
k /Z(n−1)

k ) be the ‘number of Q-linearly independent MZVs of weight k and
depth exactly n’. Denote by D(x, y) =

∑
k,n dk,n xkyn the generating function of the numbers dk,n

and by D0(x, y) the corresponding generating function for the ‘primitive part’ Z0, where Z =
Z0 ⊗Q Q[π2]. Then

D(x, y) =
(

1 +
x2

1 − x2
y

)
D0(x, y)

2The referee pointed out that the dimensions of spaces essentially equivalent to our DSh2(d) and DSh3(d) have been
calculated (in a quite different way) in [Gon01a, pp. 474–475]. The space Dd+n,n there is isomorphic to our DShn(d).
According to [Gon01a], dimQDSh3(d) = [(d2 − 1)/48]. We thank the referee for this indication.
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and the numbers Dk,n are given in terms of D0(x, y) by the product expansion formula

∏
k, n

(
1

1 − xkyn

)Dk,n

=
1

1 − x2y
D0(x, y)

or, more explicitly, by the formulas

Dk,n =
∑

d|(k,n)

µ(d)
d

· coefficient of xk/dyn/d in logD0(x, y),

where µ(d) denotes the Möbius function. Knowing the numbers Dk,n is therefore equivalent to
knowing the function D(x, y) or D0(x, y). The Broadhurst–Kreimer conjecture states that the power
series D0(x, y) is given by

D0(x, y) =
1

1 − Oy + Sy2 − Sy4
,

where

O =
∑

k>1, k odd

xk =
x3

1 − x2

corresponds to the odd zeta values ζ(3), ζ(5), . . . and

S =
∑
k>0

dim Sk(SL2(Z))xk =
x12

(1 − x4)(1 − x6)

is the generating series of the dimension of the graded vector space of cusp forms on the full modular
group. The conjectural value for the full power series D(x, y) is then given by the rational function

D(x, y) =
1 + Ey

1 − Oy + Sy2 − Sy4

in x and y, where

E =
∑

k>0, k even

xk =
x2

1 − x2

now counts the even zeta values ζ(2), ζ(4), . . . . In particular, for the full number Dk =
∑

n Dk,n of
weight k generators of the MZV algebra, this would imply

∏
k�2

(
1

1 − xk

)Dk

= D(x, 1) =
1

1 − x2 − x3
,

in accordance with third-named author’s conjecture on the value of dimZk. This conjecture is still
open, but it has been shown by Terasoma [Ter02] and independently by Goncharov [Gon01c] that
the coefficient of xk in (1 − x2 − x3)−1 is an upper bound for dimZk.

The Broadhurst–Kreimer conjecture implies that Dk,n = 0 unless k � 3n and k is congruent to
n modulo 2, and gives Table 3 for n � 6 and k − 3n � 14.

It also implies the formulas

Dk,1 = 1, Dk,2 =
[
d

6

]
, Dk,3 =

[
d2 − 1

48

]
for 1 � n � 3 and k − n = d ≡ 0 (mod 2). Each of these three formulas is known to give an upper
bound for the true dimension (cf. [Zag93] for n = 2 and Goncharov [Gon01b] for n = 3; see also the
footnote before Proposition 18 of § 8).
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Table 3. Values of Dk,n.

k − 3n 0 2 4 6 8 10 12 14
n

1 1 1 1 1 1 1 1 1
2 0 1 1 1 2 2 2 3
3 0 1 2 2 4 5 6 8
4 1 1 3 5 7 11 16 20
5 1 2 5 9 15 23 36 50
6 1 3 7 14 27 45 73 113
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