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IN this note we give formulas for the signature of complete intersections
modulo certain powers of 2. Our method also yields relations modulo
powers of 2 on the signature of ramified covers. We conclude with a
formula for the behavior under ramified cyclic covers of Rokhlin's in-
variant for characteristic surfaces in a 4-manifold.

1. Signatures of intersections
Let X2m(d) be a nonsingular complete intersection of hypersurfaces of

degrees d = du ..., dT in CP2m+r Suppose du...,d, are even and
d I + 1 , . . . , dT are odd integers. Let d = dx- • • a\ denote the total degree.
Then the signature of X satisfies the congruence ([4] or [5])

id mod 8 if ( m + S) is odd,
(1)

0 mod 8 if ( | is even.

This is a simple consequence of the theory of integral quadratic forms. If

( I is even, then the intersection form on H = H2m(X,Z) has even

type, [5,(2.1)]. If ( I is odd, the homology class heH defined by

intersection with a generic CPm+r is characteristic, that is x • x =
x • hmod2 for any xeH. But also h- h = d, so (1) follows from the
lemma of van der Blij.

For a complete intersection of complex dimension 2 Rokhlin's formula
relating the signature of an oriented 4-manifold and the self-intersection
of a characteristic submanifold implies a congruence modulo 16. Namely,
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using the formula for the computation of an Arf invariant in coverings,
see § 7, we obtain for complete intersections of odd degree d

SignX2(d) = d + 8e(d)modl6 (2)

where

if d = ±1 mod 8

S. Ochanine [6] has generalized Rokhlin's formula to higher dimen-
sions and used mod 16 signatures to compute the Kervaire invariant of
certain complete intersections.

These examples suggest the problem: modulo which power of 2 does
the signature depend only on the total degree and what are explicit
formulas? In this note we give such formulas modulo 64 and higher
powers of 2. In particular we show (2) holds for any complete intersection
of odd degree d and dimension 2 m congruent to 2 modulo 4. Our main
result is

THEOREM 1. Let X2m(d) be a complete intersection as above. Let D =
dJ+1 • • • d, be the product of the odd entries in the multidegree, s the
number of even entries, and s* the number of df divisible by 4. Then

Sign X2m(d) = d(am>1 - ( D 2 - l)0m>J - 4 s * y m J

mod2m"l6'5+lA+l+l'}

where a^, „ /3m^, and y^s are constants depending only on m and s, and are
given by the generating functions (14) below.

The proof will start from the generating function for £ Sign X2m(d)z2m.
The result (3) can also be given by a generating function (13); the point is
that working modulo an appropriate power of 2 the coefficients are much
easier to analyze.

In the following corollaries we give several cases where the congruence
has a simpler expression.

COROLLARY 1. If d is odd,

+ (d2-l)(m-4[^]))mod64 (4)

where [r] denotes greatest integer s£ r.

Note that since, for odd d, 8 divides d 2 - l , we need only know
[m +1/2] mod 2; it is 1 for m = 1, 2 mod 4 and 0 for m = 3,4 mod 4.

COROLLARY 2. Sign X2m(d) modulo 32 depends only on m, s, and d
except when d^2mod4 when it depends also on D.
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COROLLARY 3. Modulo 16 the signature is determined by m, s, and d
and is given by the generating function

SignX 2 m (d)z 2" =
™-o v i -z 2)( i+2 2r

where e(d) = O unless d = ±3mod8.

8z2

s

0

1

2

3

2. Real varieties

m

0mod2
Imod2

0mod2
1 mod 2

0 or 5 mod 8
1 or 4 mod 8
2 or 3 mod 8
6 or 7 mod 8

0mod4
1, 2, or 3 mod 4

all m

Sign X^U) mod 16

d
d + Se(d)

d
0

d
-d
Id
0

d
0

0

In [8] Rokhlin showed that the signature of a projective variety
coincides modulo 16 with the Euler characteristic of the set of its real
points provided they form an M-manifold. Thus Corollary 3 provides
simplified formulas for the Euler characteristic mod 16 in the case of
complete intersections.

Let Xn(d) be defined by polynomials with real coefficients and let
A = XDRPn+r be its set of real points. It is a consequence of Smith
theory [8, § 2] that

dim ; Z/2) =edim H»(X; 272).

A is called an M-manifold when equality holds (an M-curve in the
classical case n = 1 of Hilbert's sixteenth problem).

COROLLARY 4. Let A2m{d) be an M-manifold, then the Euler charac-
teristic e(A) is given modulo 16 by the table of Corollary 3.
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3. Ramified covers

The method of proof of Theorem 1 also yields information about the
signature of ramified covers. Let N be an oriented manifold of dimension
divisible by 4 on which the cyclic group G = ZJd acts preserving orienta-
tion and acting freely on N-F where F is a codimension 2 submanifold
fixed by each ge G. N is called a cyclic cover of N/G ramified along F.
Then Sign N-d Sign N/G depends only on F and its normal bundle in N.
In [3] Hirzebruch gives an expression for this difference as a formal series
in Sign F*"0 with rational functions of d as coefficients, where F*r) denotes
the r-fold self-intersection of F in N. Working modulo powers of 2 we
give explicit formulas for the coefficients.

THEOREM 2. Let N be a d-fold cyclic cover ramified over F.

Then ford = 2 mod 4,

Sign N - d Sign N/d = - Sign F • F mod 32. (6)

For d = 0 mod 4,

Sign N - d Sign N/G = - 5 Sign F • F+ 4 Sign Fi*)

-4SignF (6 )+ mod 16.
Ford odd

Sign N - d Sign N/G = (d2 - 1 ) ( - 3 Sign F<2) + Sign F<4)

- 3 Sign F<6) + Sign F<8) - + • • • ) mod 64

s (d2 - l)(Sign F<2) + Sign F<4) + • • •) mod 32

= 0mod8 . (8)

COROLLARY 5. If N2n has an almost complex structure preserved by the
action of G = Z/d, then for d odd

Sign N - d Sign N/G^Seid^^iN) D im[F] mod 16.'

Here c denotes the Chem class and i: F «->N is the inclusion.

4. Proof of Theorem 1

Let

Then

I Sign X2m(d)z2m = - ^ - j ft
m - 0 A Z 1-1
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where d = (dlt..., d,). This is Hirzebruch's formula [2, 22.1.1] with y = 1
and k = 0. Now <fo(z) can be expanded as a power series in z2 whose
coefficients are polynomials in / with rational coefficients. In fact these
coefficients have only odd denominators, that is <fo(2)G Z(2)[/]Hz2II where

Z(2) = {alb: a,beZ and b is odd}.

To see this observe that

<(>, (z) = — tanh (I artanh z)

and that the power series for tanh x and artanh x have only odd powers
of x and coefficients with odd denominators.

Next note that <fo(z) is an even function of /, so the coefficients are
polynomials in I2, and that </>j(z)-l vanishes for J = ± l . Therefore
<fo(z)-l is divisible by P - l in Z(2)[/

2][|>2II- Moreover for / odd,
I2 = 1 mod 8, and hence (<fr(z) -1 ) / ( ' 2 -1 ) mod 8 is independent of I. Taking
1 = 3, we find this value is -£z2/(l + 3z2). Since if / is odd K'2~ 1) =
3( / 2 - l )mod64,

^ 4 . (9)

Similarly if / = 2mod4, then /2 = 4 mod 32, so

1

1 + z2

Finally if / = 0mod4, then /2 = 0modl6 , so

z2

Now

z
2 4 mod 16.

+z

z)2 _ 4z2 4z2

so

6. (11)

We next observe that (9) implies the congruence

d,odd

- 1 - I (d?-
dlodd

because each d ? - l is divisible by 8.
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Moreover the function d *-* d2 — 1 mod 64 from the multiplicative
semigroup of odd integers to the additive group 8Z/64Z is a
homomorphism since, if k and / are odd,

k 2 / 2 -1 = (k 2-1) + (/2- l) + (fc2-

Hence

I! ^ 4 (12)
d,odd

where D = d,+1 • • • d, is the product of the odd entries in the multidegree.
Combining (12) with (10) and (11) and observing that 2*+i* divides d we

obtain

SignX2m(d)z 2m

(l
) ' \ (1 + z2)2/

mod 2m"(65+'-4+'+'*> (13)

This is equivalent to (3) if we define the a's, 0's, and -y's as the
coefficients of the following expansions:

(14)

2 m

, 2 m

z —

2m

1

l \

1

1

2 ( l + z2)'

z2

3z2

1 + 3z2

1+2-

Note ymt, = o^ .^+j . For our purpose the a's are computed mod 64, the
/3'smod8, and the y'smod4.

5. Proofs of the corollaries
For complete intersections of odd degree we have s = 0. From (14)

a ,̂ 0 = 1 for all m. Since s* = 0, the term in (3) with s* vanishes. Therefore
we need only compute 0,^omod8. It is easy to check -jS^o^
m-4[m + l/2]mod8.

Next consider congruences mod 32. If d^0mod8 , the terms in (3)
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involving D and s* vanish mod 32, so the signature is congruent to
do^, mod 32, If d ̂  4 mod 8, then the term involving D vanishes mod 32,
so the signature mod 32 depends only on m, d, s, and s*. But s* itself is
determined by s since d = 4 mod 8 implies s = 1, s* = 1 or s = 2, s* = 0. If
d = 2 mod 4, then s* = 0 and we have

Sign X2m(d) = d(am, - ( D 2 - 1 ) 0 ^ ) mod 32.

Actual dependence on D can be seen in the examples X2(6,1) and
X2(2, 3) of degree 6 in CP4: Sign X2(6,1) = -64, Sign X2(2, 3) = -16 and
the difference is 16 mod 32.

For the computation of the table mod 16, formula (5) follows from (13)
since (i) if s* f 0 then 4d = 0 mod 16 and (ii) D2 - 1 = 8e(D) mod 16. The
results of the table follow easily.

6. Proof of theorem 2

Denote the quotient manifold NIG by M and let i: F ^ M b e the
inclusion of the branch set. Then i+[F] = dxfl[M] for a class xe
^ ( M ; Z). The signatures of M and N are given by

Sign M = {L(M)HM]

Sign N= d{4>d (tanh x)L(M)KKI

where L(M) is the Hirzebruch L-genus, see [3] or [9, (8.3)].
Let t - tanh i*x<=H*(F; Q). i*r) is the intersection of r slightly de-

formed copies of F which meet transversely. The signatures of these
self-intersections are given by

SignF<'+1) = {r'L(F)}[F|, r>0 .

Now

Sign N-d Sign M='d{(<fc,(tanh x ) - 1)L(M)}[M]

If d = 2mod4, then by (10) <f>d(t) = 1/(1 + f2) mod 32 and hence
(<fc,(0- l)/d*d(0 = -f. This proves (6).

For d = 2 the congruence can be replaced by equality. If d ™ 0 mod 4
then <f>d(t)^<f>4(t) mod 16 and
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from which (7) follows. If d is odd, 4>d(t)- l « - ( d 2 - I)3r2/(l + 3r2)
mod 64 by (9) and also 1/^(0 = 1 mod 8, so

m o d 6 4v ' l + 3r2

= (d 2 - l ) f ( -3 + r2-3f*+f6- + • • -)mod64.

From this (8) follows.
To prove Corollary 5 we must show

Sign f*2r) a c^,(N) D i J F ] mod 2. (15)
r - l

Now Sign F*0 is 0 for r odd and is congruent mod 2 to the Euler
characteristic e(F(r)) in any case. Denote by i(r) the inclusion of F*'' in N.
If F is dual to y e tf^N; Z), then F00 is dual to yr, that is 4r)[F<r>] =
y rn[N]. The normal bundle of i(r) is the sum of r complex line bundles
with Chern class l + i(r)*y. Hence

) ) + i ( r )*y)- r , [F<r)]>

Now

SO

r - l

This shows (15) and completes the proof of Corollary 5.

7. Behavior of Rokhlin's invariant in cyclic covers

First we recall Rokhlin's definitions. Let V be a 4-manifold with
H t(V; Z/2) = 0 and let K be an oriented characteristic surface, that is a
2-dimensional submanifold whose homology class mod 2 in V is dual to
w2(V). Let q: Ht(K; Z/2)-*Z/2 be the quadratic function defined as
follows: given a class aeH,(iC; ZJ2) there is a surface S with boundary
such that dS<=K represents a and K meets S transversely at / interior
points. Let i be the obstruction to extending across S the field of unit
normal vectors to dS in K. Then q(a) = i + j mod 2 is a quadratic function
associated to the intersection pairing on K and Rokhlin's invariant
k(V, K) is the Arf invariant of q.
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Rokhlin's formula [7] is

Sign V^K-K + 8k(V,K)modl6. (16)

It follows in particular that k(V, K) depends only on the integer homo-
logy class of K.

The behavior of Rokhlin's invariant in ramified covers is given by the
following

PROPOSITION. Let IT: V—* V be a cyclic cover of odd order d ramified
over F. Let K' be an invariant surface in V and K its quotient. Then K' is
characteristic for V iff K is for V and

k(V,Kl) = k(V,K) + e(d)K-FeZ/2. (17)

Proof. If X is any surface in V let tX, the transfer, be its inverse image
in V". The basic formula for intersections is

tXtY=dXY (18)

since we may assume XDY is disjoint from F. Since K' is invariant,
K' = tK. If X' is a surface in V, then as homology classes t-nX = dX'.
Now suppose K is characteristic. Then K' • X'= tK • X'—tK • dX' =
tK • tirX' = dK--nX^ d-nX • TTX' = tirX' • t-nX = d2X • X' - X • X, so
K' is characteristic. The converse is similar, but shorter.

Formula (17) is a consequence of (16) and (8). Modulo 2 we have

k(V,k ' )=i (SignV-K'-K' )

by (16)

=$(d Sign V+(d2- 1)F F-dK- K)

by (8) and (17)

= d\ (Sign V - K • K) + e(d)F • F

F

since K is characteristic.
There is also a simple geometric proof of (17) which does not depend

ultimately on the G-signature theorem. The restriction of TT to K',
IT: K'—+K, is a d-fold cover branched over KC\F and transfer induces an
injection t: HX{K) <-*H1(K') on homology with Z/2 coefficients. An
a e HX{K) can be represented by dS c K where S n K D F = <$>. Then to is
represented by d(tS). Now tS meets K' = tK in j ' = dS • K points. Lifting
to tS a vector field with isolated, nondegenerate zeros normal to S we see
i' = di and hence q'(t, x) = q(a)eZJ2. Hence q' \ image t = q. Also q' is
invariant under the covering transformations (which act on all of V).

Thus we can apply [10, Theorem 4] which, written additively, gives
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Arf q' = Arf q + e(d)K F since e(K) is even and the Jacobi symbol
(2 | d) = (-l)"W). The proof in [10] is a simple counting argument.

To deduce formula (2) note first that, since d is odd, Xx(d) is charac-
teristic for X2(d) and Xt(d) • Xl(d) = d so (2) follows from Rokhlin's
formula (16) if we show that k(X2(d), Xt(d)) = e(d). This is proved by
induction on r. For r = 0 we have d = 1 and k(CP2, CPJ = 1 by (15). Let
d = (du...,dr) and e = (d2, •• •, a\) where d,=sd, for l=£/'=£r. By [11,
(2.1)] there is a regular branched cyclic cover X2(d)—»X2(e) branched
over F=Xi(d). Referring to the proof in [11, §2] we see that the
hyperplane section K' of X2{d) obtained by setting the last variable equal
to 0 is a characteristic surface invariant under the group action; K' and F
are homologous in X2(d) but not equal. The quotient K is the hyperplane
section Xt(e) of X2{e) and KC\F=X0{d) so K°F= d « 1 mod 2. Hence
by (17)

k(X2(d), Xx(d)) = k(X2(e), X,(e)

Therefore
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