A COMBINATORIAL REFINEMENT OF THE KRONECKER-HURWITZ CLASS NUMBER RELATION

ALEXANDRU A. POPA AND DON ZAGIER
(Communicated by Kathrin Bringmann)

Abstract

We give a refinement of the Kronecker-Hurwitz class number relation, based on a tesselation of the Euclidean plane into semi-infinite triangles labeled by $\mathrm{PSL}_{2}(\mathbb{Z})$ that may be of independent interest.

1. A refinement of a classical class number relation

We give a refinement, and a new proof, of the following classical result [1-3].
Theorem 1 (Kronecker, Gierster, Hurwitz). For any $n \geqslant 1$ we have

$$
\sum_{t^{2} \leqslant 4 n} H\left(4 n-t^{2}\right)=\sum_{\substack{n=a d \\ a, d>0}} \max (a, d) .
$$

Here $H(D)(D \geqslant 0, D \equiv 0,3 \bmod 4)$ is the Kronecker-Hurwitz class number, which has initial values

D	0	3	4	7	8	11	12	15	16	19	20	23	24
$H(D)$	$-\frac{1}{12}$	$\frac{1}{3}$	$\frac{1}{2}$	1	1	1	$\frac{4}{3}$	2	$\frac{3}{2}$	1	2	3	2

and for $D>0$ equals the number of $\mathrm{PSL}_{2}(\mathbb{Z})$-equivalence classes of positive definite integral binary quadratic forms of discriminant $-D$, with those classes that contain a multiple of $x^{2}+y^{2}$ or of $x^{2}-x y+y^{2}$ counted with multiplicity $1 / 2$ or $1 / 3$, respectively.

Let $\Gamma=\mathrm{PSL}_{2}(\mathbb{Z})$. By the Γ-equivariant bijection $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \leftrightarrow c x^{2}+(d-a) x y-b y^{2}$ between integral matrices of determinant n and trace t and quadratic forms of discriminant $t^{2}-4 n$, the class number relation can be written as

$$
\sum_{\substack{M \in \mathcal{M}_{n} \tag{1}\\
M \text { elliptic }}} \chi\left(z_{M}\right)=\sum_{\substack{n=a d \\
a, d>0}} \max (a, d)+\left\{\begin{array}{cl}
1 / 6 & \text { if } n \text { is a square } \\
0 & \text { otherwise }
\end{array}\right.
$$

where \mathcal{M}_{n} is the set of integral matrices of determinant n modulo $\pm 1, z_{M}$ is the fixed point of an elliptic M in the upper half-plane \mathfrak{H}, and $\chi: \mathfrak{H} \rightarrow \mathbb{Q}$ is the modified

[^0]characteristic function of the standard fundamental domain
$$
\mathcal{F}=\{z \in \mathfrak{H}:-1 / 2 \leqslant \operatorname{Re}(z) \leqslant 1 / 2,|z| \geqslant 1\}
$$
of Γ acting on \mathfrak{H} such that $\chi(z)$ is $1 / 2 \pi$ times the angle subtended by \mathcal{F} at z (so χ is 1 in the interior of $\mathcal{F}, 0$ outside of $\mathcal{F}, 1 / 2$ on the boundary points different from the corners $\rho=e^{\pi i / 3}$ and ρ^{2}, and $1 / 6$ at the corners).

We will prove a refinement of (11) saying that the subsum of the expression on the left over all M in a given orbit of the right action of Γ on \mathcal{M}_{n} always takes on one of the values $0,1,2$ (or $7 / 6$ for the orbit $\sqrt{n} \Gamma$ if n is a square). Specifically, let us define for any right coset K in \mathcal{M}_{n} / Γ (more precisely, K is a right coset in $\mathrm{PGL}_{2}(\mathbb{Q}) / \Gamma$, since \mathcal{M}_{n} is not a group) two positive integers δ_{K} and δ_{K}^{\prime} by $\delta_{K}=\operatorname{gcd}(c, d), \delta_{K}^{\prime}=n / \delta_{K}$, where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is any representative of K. Then we have:
Theorem 2. For each right coset $K \in \mathcal{M}_{n} / \Gamma$ we have

$$
\sum_{M \in K}^{M \text { elliptic }}<\chi \chi\left(z_{M}\right)=1+\operatorname{sgn}\left(\delta_{K}^{\prime}-\delta_{K}\right)+\left\{\begin{array}{cl}
1 / 6 & \text { if } K=\sqrt{n} \Gamma \\
0 & \text { otherwise }
\end{array}\right.
$$

Equation (11) follows immediately by summing the relations in Theorem 2 over all cosets in the disjoint decomposition $\mathcal{M}_{n}=\bigsqcup\left(\begin{array}{c}\delta^{\prime} \beta \\ 0 \\ \delta\end{array}\right) \Gamma$ with $n=\delta^{\prime} \delta$ and $0 \leqslant \beta<\delta^{\prime}$.

Theorem 2 provides a correspondence between right cosets and Γ-conjugacy classes in \mathcal{M}_{n}, which generically assigns two conjugacy classes to each coset with $\delta^{\prime}>\delta$. We will deduce it from a similar statement, Theorem 3 which is sharper in two respects (it counts the number of matrices with a fixed point in a smaller domain, and it allows real coefficients), and which gives a generically one-to-one correspondence between cosets and conjugacy classes. To state it, we consider a half-fundamental domain

$$
\mathcal{F}^{-}=\{z \in \mathfrak{H}:-1 / 2 \leqslant \operatorname{Re}(z) \leqslant 0,|z| \geqslant 1\}
$$

and define a function $\alpha: \mathrm{GL}_{2}^{+}(\mathbb{R}) \rightarrow \mathbb{Q}$ by

$$
\alpha(M)=\left\{\begin{array}{cl}
\chi^{-}\left(z_{M}\right) & \text { if } M \text { is elliptic with fixed point } z_{M} \in \mathfrak{H} \\
-\frac{1}{12} & \text { if } M \text { is scalar, } \\
0 & \text { if } M \text { is parabolic or hyperbolic, }
\end{array}\right.
$$

where χ^{-}is defined in the same way as χ (and hence equals 1 in the interior of \mathcal{F}^{-}, 0 outside $\mathcal{F}^{-}, 1 / 2$ on the internal boundary points of \mathcal{F}^{-}, and $1 / 4$ and $1 / 6$ at the corners i and ρ^{2}, respectively). Note that $\alpha(-M)=\alpha(M)$, so α is well defined on $М Г$.
Theorem 3. For $M=\left(\begin{array}{cc}y & x \\ 0 & 1\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{R})$ with $y>0$, we have

$$
\begin{equation*}
\sum_{\gamma \in \Gamma} \alpha(M \gamma)=\frac{1+\operatorname{sgn}(y-1)}{2} \tag{2}
\end{equation*}
$$

Since each coset $K \in \mathcal{M}_{n} / \Gamma$ contains a representative M with $M \infty=\infty$, Theorem(2immediately follows from (2), and the fact that the map $\pm\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \mapsto \pm\left(\begin{array}{cc}-a & b \\ c & -d\end{array}\right)$ is a bijection between the sets of elements in \mathcal{M}_{n} having a fixed point in the left half and in the right half of the standard fundamental domain for Γ.

Theorem 3 is proved in Section 3 as an easy consequence of a triangulation of a Euclidean half-plane by triangles associated to elements of Γ (Theorem 4).

This triangulation may be of independent interest, and we give a self-contained treatment in the next section.

2. A triangulation of a Euclidean half-plane

Let $\Gamma_{\infty}=\{\gamma \in \Gamma \mid \gamma \infty=\infty\}$. We identify $\Gamma \backslash \Gamma_{\infty}$ with a subset of $\mathrm{SL}_{2}(\mathbb{Z})$ by choosing representatives $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $c>0$, and for such γ we define a semi-infinite triangle

$$
\begin{equation*}
\Delta(\gamma)=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leqslant d-c x-a y \leqslant c \leqslant-d x-b y\right\} \tag{3}
\end{equation*}
$$

(The motivation for this definition is that $(x, y) \in \Delta(\gamma)$ if and only if $\left(\begin{array}{ll}y & x \\ 0 & 1\end{array}\right) \gamma$ has a fixed point in \mathcal{F}^{-}.) Note that $\Delta(\gamma)$ is contained in the half-plane

$$
\mathcal{H}=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geqslant 1\right\}
$$

since $y=c(-d x-b y)+d^{2}-d(d-c x-a y) \geqslant c^{2}+d^{2}-c|d| \geqslant 1$.
Theorem 4. We have a tesselation

$$
\mathcal{H}=\bigcup_{\gamma \in \Gamma \backslash \Gamma_{\infty}} \Delta(\gamma)
$$

of the half-plane \mathcal{H} into semi-infinite triangles with disjoint interiors.
Remark. We can extend the triangulation of Theorem 4 to a triangulation of all of \mathbb{R}^{2} by triangles labeled by all of Γ if we define $\Delta(\gamma)$ also for $\gamma \in \Gamma_{\infty}$ by

$$
\Delta\left(\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right)\right)=[-n-1,-n] \times(-\infty, 1],
$$

and can then interpret the extended triangulation as giving a piecewise-linear action of Γ on \mathbb{R}^{2}, with each triangle being a fundamental domain. However we will not use this in the sequel.

Proof. The group Γ is a free product of its two subgroups generated by the elements $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $U=\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$ of orders 2 and 3, respectively, which fix the two corners of \mathcal{F}^{-}. Therefore we can view elements of Γ as words in S, U, U^{2} or as vertices of the tree shown in Figure 1 The proof of both Theorems 3 and 4 will

Figure 1. A tree associated to $\Gamma=\mathrm{PSL}_{2}(\mathbb{Z})$: the vertices are labeled by the elements of Γ and the edges by the generators S, U and U^{2} as shown.
follow from the following decomposition into triangles with disjoint interiors:

$$
\begin{equation*}
\mathcal{R}:=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leqslant x \leqslant y-1\right\}=\bigcup_{\gamma \in \mathcal{T}} \Delta(\gamma) \tag{4}
\end{equation*}
$$

where $\mathcal{T} \subset \Gamma$ is the set of words starting in U. The regions \mathcal{H} and \mathcal{R} and a few triangles corresponding to words of small length are pictured in Figure 2.

Figure 2. The region \mathcal{R} (shaded) and a few triangles $\Delta(\gamma)$. The finite side of a triangle $\Delta(\gamma)$ has been labeled by the final letter of γ as a word in S, U, U^{2}, with the same convention as in Figure 1 .

To prove (4), let $\mathcal{T}=\mathcal{T}^{+} \cup \mathcal{T}^{-}$, where \mathcal{T}^{+}consists of the elements of \mathcal{T} ending in U or U^{2}, while $\mathcal{T}^{-}:=\mathcal{T}^{+} S$ consists of those elements ending in S. The set \mathcal{T}^{+} can be enumerated recursively by starting at U and replacing $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ at each step by

$$
\gamma S U=\left(\begin{array}{cc}
a & a+b \\
c & c+d
\end{array}\right), \quad \gamma S U^{2}=\left(\begin{array}{cc}
a+b & b \\
c+d & d
\end{array}\right) .
$$

From this description we easily obtain the following equivalent characterizations: 1

$$
\gamma \in \mathcal{T}^{+} \Longleftrightarrow 0 \leqslant \frac{-a}{c}<\frac{-b}{d} \leqslant 1, \quad \gamma \in \mathcal{T}^{-} \Longleftrightarrow 0 \leqslant \frac{-b}{d}<\frac{-a}{c} \leqslant 1
$$

Alternatively, \mathcal{T}^{+}consists of those $\gamma \in \mathcal{T}$ having $d>0$.
For $\gamma \in \Gamma \backslash \Gamma_{\infty}$, the triangle $\Delta(\gamma)$ has two vertices given by

$$
P_{3}\left(-a c-b d+b c, c^{2}+d^{2}-c d\right), \quad P_{2}\left(-a c-b d, c^{2}+d^{2}\right),
$$

connected by a line segment of slope $-d / b$, and it has two infinite parallel sides of slope $-c / a$. For $\gamma \in \mathcal{T}$ we denote by $\mathcal{C}(\gamma) \subset \mathcal{H}$ the half-cone containing $\Delta(\gamma)$, bounded by half-lines of slopes $-c / a$ and $-d / b$, and having as vertex P_{3} or P_{2}, depending on whether $\gamma \in \mathcal{T}^{+}$or $\gamma \in \mathcal{T}^{-}$respectively (see Figure (3).

[^1]

Figure 3. Left: The cone $\mathcal{C}(\gamma)$ and the triangle $\Delta(\gamma) \subset \mathcal{C}(\gamma)$ in the case $\gamma \in \mathcal{T}^{+}$. Right: The cone $\mathcal{C}(\gamma)$ decomposes into two triangles and two smaller, higher-up cones. On top of each line we have marked its slope.

Using this information, it is easy to check that for $\gamma \in \mathcal{T}^{+}$and $\gamma^{\prime}=\gamma S \in \mathcal{T}^{-}$ we have the following decompositions into sets with disjoint interiors (see the right picture in Figure 3):

$$
\mathcal{C}(\gamma)=\Delta(\gamma) \cup \mathcal{C}\left(\gamma^{\prime}\right), \quad \mathcal{C}\left(\gamma^{\prime}\right)=\Delta\left(\gamma^{\prime}\right) \cup \mathcal{C}\left(\gamma^{\prime} U\right) \cup \mathcal{C}\left(\gamma^{\prime} U^{2}\right)
$$

By induction we obtain that $\mathcal{R}=\mathcal{C}(U)$ is the union of the triangles indexed by \mathcal{T}, proving (4).

Finally we show that the decomposition in (4) implies the decomposition of \mathcal{H} given in Theorem 4. From the parenthetical remark following (3) it is clear that

$$
\Delta(T \gamma)=T \Delta(\gamma)
$$

where $T=S U=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and Γ_{∞} acts on \mathcal{H} by $T^{n}(x, y)=(x-n y, y)$. The region

$$
\begin{equation*}
\mathcal{R}^{\prime}=\mathcal{R} \cup \Delta\left(U^{2}\right)=\{(x, y) \in \mathcal{H}: 0 \leqslant x<y\} \tag{5}
\end{equation*}
$$

(see Figure 2) is a fundamental domain for this action of Γ_{∞} on \mathcal{H}, and we obtain the following decompositions into triangles with disjoint interiors:

$$
\{(x, y) \in \mathcal{H} \mid y-1 \leqslant x\}=\bigcup_{\gamma \in \mathcal{T}^{\prime}} \Delta(\gamma), \quad\{(x, y) \in \mathcal{H} \mid x \leqslant 0\}=\bigcup_{\gamma \in \mathcal{T}^{\prime \prime}} \Delta(\gamma)
$$

where \mathcal{T}^{\prime} consists of words starting with U^{2}, but different from $\left(U^{2} S\right)^{n}=T^{-n}$ with $n>0$, while $\mathcal{T}^{\prime \prime}$ consists of words starting with S, but different from $(S U)^{n}=T^{n}$ with $n>0$. Theorem 4 follows since $\Gamma \backslash \Gamma_{\infty}=\mathcal{T} \sqcup \mathcal{T}^{\prime} \sqcup \mathcal{T}^{\prime \prime}$.

3. Proof of Theorem 3

Since (22) is invariant under multiplying $M=\left(\begin{array}{ll}y & x \\ 0 & 1\end{array}\right)$ on the right by elements in Γ_{∞}, we assume without loss of generality that $0 \leqslant x<y$. If $M \gamma$ is scalar for $\gamma \in \Gamma$, the only possibility is easily seen to be $M=1$. In this case, $\alpha(\gamma) \neq 0$ for $\gamma \in\left\{1, S, U, U^{2}\right\}$, and (2) holds since $-\frac{1}{12}+\frac{1}{4}+\frac{1}{6}+\frac{1}{6}=\frac{1}{2}$.

Assuming that $M \neq 1$, it follows that $\alpha(M \gamma) \neq 0$ if and only if $M \gamma$ has a fixed point in \mathcal{F}^{-}, that is, $(x, y) \in \Delta(\gamma)$. We conclude from Section 2 that $y \geqslant 1$, so the point (x, y) belongs to the region \mathcal{R}^{\prime} in (5), and $\gamma=U^{2}$ or $\gamma \in \mathcal{T}$ by (44). Therefore the elements γ such that $\alpha(M \gamma) \neq 0$ depend on the position of the point (x, y) with respect to the triangulation of \mathcal{R}^{\prime} as follows (see Figure (3):

- $y=1$ and $0<x<1: \alpha\left(M U^{2}\right)=1 / 2$;
- (x, y) is in the interior of a triangle $\Delta(\gamma): \alpha(M \gamma)=1$;
- (x, y) is on a common side between $\Delta(\gamma)$ and $\Delta\left(\gamma^{\prime}\right)$, but it is not a vertex:

$$
\alpha(M \gamma)+\alpha\left(M \gamma^{\prime}\right)=\frac{1}{2}+\frac{1}{2}=1 ;
$$

- $(x, y) \in \mathcal{R}$ is the P_{2} vertex of the triangle $\Delta(\gamma)$ for $\gamma \in \mathcal{T}^{+}$:

$$
\alpha(M \gamma)+\alpha(M \gamma S)+\alpha(M \gamma U)=\frac{1}{4}+\frac{1}{4}+\frac{1}{2}=1
$$

- $(x, y) \in \mathcal{R}$ is the P_{3} vertex of $\Delta\left(\gamma^{\prime}\right)$ with $\gamma^{\prime} \in \mathcal{T}^{-}$:

$$
\alpha\left(M \gamma^{\prime}\right)+\alpha\left(M \gamma^{\prime} U\right)+\alpha\left(M \gamma^{\prime} U^{2}\right)+\alpha\left(M \gamma^{\prime} S\right)=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{2}=1 .
$$

References

[1] Joseph Gierster, Ueber Relationen zwischen Klassenzahlen binärer quadratischer Formen von negativer Determinante (German), Math. Ann. 21 (1883), no. 1, 1-50, DOI 10.1007/BF01442611. MR 1510185
[2] Adolf Hurwitz, Ueber Relationen zwischen Classenanzahlen binärer quadratischer Formen von negativer Determinante (German), Math. Ann. 25 (1885), no. 2, 157-196, DOI 10.1007/BF01446402. MR 1510301
[3] L. Kronecker, Ueber die Anzahl der verschiedenen Classen quadratischer Formen von negativer Determinante (German), J. Reine Angew. Math. 57 (1860), 248-255, DOI 10.1515/crll.1860.57.248. MR 1579129

Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1764, RO-014700 Bucharest, Romania

E-mail address: alexandru.popa@imar.ro
Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
E-mail address: don.zagier@mpim-bonn.mpg.de

[^0]: Received by the editors April 11, 2016 and, in revised form, May 7, 2016.
 2010 Mathematics Subject Classification. Primary 11E41.
 The first author was partly supported by CNCSIS grant TE-2014-4-2077. He would like to thank the MPIM in Bonn and the IHES in Bures-sur-Yvette for providing support and a stimulating research environment while he was working on this paper.

[^1]: ${ }^{1}$ Recall our convention that $c>0$.

