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Abstract: A diagrammatic expansion of coefficients in the low-momentum expansion of

the genus-one four-particle amplitude in type II superstring theory is developed. This is

applied to determine coefficients up to order s6 R4 (where s is a Mandelstam invariant and

R the linearized super-curvature), and partial results are obtained beyond that order. This

involves integrating powers of the scalar propagator on a toroidal world-sheet, as well as

integrating over the modulus of the torus. At any given order in s the coefficients of these

terms are given by rational numbers multiplying multiple zeta values (or Euler-Zagier sums)

that, up to the order studied here, reduce to products of Riemann zeta values. We are

careful to disentangle the analytic pieces from logarithmic threshold terms, which involves a

discussion of the conditions imposed by unitarity. We further consider the compactification

of the amplitude on a circle of radius r, which results in a plethora of terms that are power-

behaved in r. These coefficients provide boundary ‘data’ that must be matched by any

non-perturbative expression for the low-energy expansion of the four-graviton amplitude.
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1. Introduction

The low-momentum expansion (or α′ expansion) of string theory scattering amplitudes

produces an infinite sequence of stringy corrections to Einstein supergravity. Although the

coefficients in the momentum expansion of tree-level amplitudes are easily obtained to all

orders, it is far more difficult to obtain the coefficients in the expansion of higher-genus

contributions. Knowledge of such terms might be of use in constraining non-perturbative

extensions of string amplitudes. However, determining these coefficients is technically

challenging, as we will see.

We will here be interested in the low-momentum expansion of the genus-one scattering

amplitude for four particles in the massless supergravity multiplet. Each external particle

is labeled by its momentum pr (r = 1, 2, 3, 4), where p2
r = 0, and its superhelicity ζr,

which takes 256 values (the dimensionality of the maximal supergravity multiplet). The

genus-one amplitude has the form [1],

Agenus−1
ζ1,ζ2,ζ3,ζ4

= IR4
ζ1,ζ2,ζ3,ζ4 , (1.1)

where I is the integral of a modular function,

I(s, t, u) =

∫

F

d2τ

τ2
2

F (s, t, u; τ) , (1.2)

where F (s, t, u; τ) is defined in eq. (2.1) and s, t, u are Mandelstam invariants1 and τ =

τ1+iτ2 and d2τ ≡ dτ1dτ2 = dτdτ̄/2. The integral is over a fundamental domain of SL(2,Z),

defined by

F = {|τ1| ≤ 1
2
, |τ |2 ≥ 1} . (1.3)

The kinematical factor in (1.1) is given by (see (7.4.57) of [2])

R4
ζ1,ζ2,ζ3,ζ4(p1, p2, p3, p4) = ζAA′

1 ζBB′

2 ζCC′

3 ζDD′

4 KABCD K̃A′B′C′D′ , (1.4)

where the indices A,B on the polarization tensors ζAB
r run over both vector and spinor

values (for example, the graviton polarization is ζµν , where µ, ν = 0, 1, . . . , 9) and the

tensor K K̃ is defined in [2]. In the case of external gravitons R reduces to the linearized

Weyl curvature, Rµρνσ = −4p[µ ζρ][σ pν], and the kinematic factor is R4, which denotes the

product of four Weyl curvatures contracted into each other by a well-known sixteen-index

t8t8 tensor defined in appendix 9.A of [3]. The integrand in (1.1) is given by the expectation

value of the product of the vertex operators for the four external states integrated over

their insertion positions on the toroidal world-sheet of complex structure τ .

The expression (1.1) is free from divergences. We can anticipate it has a low-momentum

expansion that is the sum of an analytic part and a non-analytic part associated with

threshold singularities,

I(s, t, u) = Ian(s, t, u) + Inonan(s, t, u) . (1.5)

1The Mandelstam invariants are defined by s = −(p1 + p2)
2, t = −(p1 + p4)

2 and u = −(p1 + p3)
2 and

satisfy the mass-shell constraint s + t + u = 0.

– 2 –
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As shown in [4], the analytic part can be expressed in a power series in the Mandelstam

invariants,

Ian(s, t, u) =
∞∑

p=0

∞∑

q=0

σ̂p
2σ̂

q
3 J

(p,q) , (1.6)

where

σ̂2 =

(
α′

4

)2

(s2 + t2 + u2) σ̂3 =

(
α′

4

)3

(s3 + t3 + u3) = 3

(
α′

4

)3

stu , (1.7)

and J (p,q) are constant coefficients that are to be determined. The series (1.6) is the most

general power series in Mandelstam invariants that is symmetric in s, t and u, subject to

s+ t+ u = 0, as follows by making use of the identity,

σ̂n =

(
α′

4

)n (
sn + tn + un

)
= n

∑

2p+3q=n

(p+ q − 1)!

p!q!

(
σ̂2

2

)p( σ̂3

3

)q

. (1.8)

Each term in the series is a symmetric monomial in the Mandelstam invariants of order

r = 2p+ 3q. For r < 6 there is a single kinematic structure (a single term for a given value

of r), but there is a two-fold degeneracy for r = 6, associated with J (3,0) and J (0,2), and

thereafter the degeneracy of the kinematic factors increases sporadically.

The nonanalytic terms have branch cuts with a structure that is determined by unitar-

ity. These singularities arise as infrared effects of internal massless states (i.e., supergravity

states) in the loop. The discontinuities across these branch cuts are given by products of

string tree-level amplitudes integrated over the phase space of the (massless) states. The

lowest order term is the one-loop contribution of maximal supergravity, while higher-order

nonanalytic terms arise as stringy effects from higher-order terms in the expansion of the

tree amplitudes. As will become apparent later, the resulting structure of the nonanalytic

contribution to I(s, t, u) is given by a series of terms,

Inonan(s, t, u) = ISUGRA + Inonan (4) + Inonan (6) + Inonan (7) + · · · , (1.9)

where ISUGRA is the integral that arises in one-loop maximal supergravity. This has a

complicated set of threshold singularities, that have discontinuities in a single Mandelstam

variable, as well as terms that have multiple discontinuities (as will be reviewed in detail in

section 4). The nature of the singularities of Inonan depends on the space-time dimension.

In ten dimensions the higher-order threshold terms, Inonan (r), have logarithmic branch

points, schematically of the form sr ln(−α′s/µr), where µr is a constant scale. After

compactification on a circle to nine non-compact dimensions they are half-integer powers,

schematically of the form (−α′s)k+1/2 with integer k.

One motivation for evaluating the constants J (p,q) is to constrain the complete, non-

perturbative, expression for the low-energy expansion of the four-particle amplitude. For

example in the IIB case the exact SL(2,Z)-invariant amplitude must have analytic pieces

of the form
∞∑

p,q=0

E(p,q)(Ω, Ω̄) e(2p+3q−1)φ/2 σ̂p
2σ̂

q
3 R4 , (1.10)

– 3 –
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where Ω = Ω1 + iΩ2 = C(0) + ie−φ is the complex coupling constant that is given in

terms of the Ramond-Ramond pseudoscalar, C(0), and the dilaton φ. The explicit power

of the string coupling constant gs = eφ disappears in the Einstein frame and E(p,q)(Ω, Ω̄)

is a modular function that contains both perturbative terms (that are power-behaved in

Ω−1
2 = gs for small gs) and non-perturbative (instantonic) contributions (that behave like

e−2πn/gs). The genus-one terms arise in (1.10) from the piece of E(p,q) proportional to

e(1−2p−3q)φ/2 J (p,q). This amplitude may be interpreted in terms of a local effective action

which can be schematically written in the form

α′r−1
∫
d10x e(2p+3q−1)φ/2

√
−G E(p,q)(Ω, Ω̄)D2rR4 , (1.11)

In this expression the derivatives are contracted into each other and act on the curvature

tensors in R4 in a manner that is defined by the functions of the Mandelstam invariants

given in (1.10). The functions E(p,q) are known for (p, q) = (0, 0), (1, 0), (0, 1), and there

are various conjectures at higher orders [5]. In order to test conjectured forms of E(p,q) it

is helpful to have as much information from string perturbation theory as possible.

The aim of the present paper is to develop the expansion of the genus-one amplitude

more systematically in order to explicitly evaluate the coefficients of higher momentum

terms. Since the type IIA and IIB theories have identical massless four-particle scattering

amplitudes up to at least genus three, the calculations in this paper apply to both types

of theory. In section 2 we will begin by reviewing the procedure of [4]. This involves

integrating powers of propagators on the world-sheet torus with fixed modulus τ = τ1+iτ2,

followed by an integral over τ .

The ten-dimensional theory is considered in section 3, where the analytic terms in the

expansion of the amplitude up to order s6 R4 are evaluated. In order to analyze these terms

we have to separate the nonanalytic threshold singularities in a well-defined manner. Such

terms arise from the degeneration limit of the torus, in which τ2 → ∞, so we will divide

the integral over F into two domains: (i) FL, where τ2 ≤ L; (ii) RL, where τ2 ≥ L, with

L ≫ 1. Integration over the truncated fundamental domain FL is carried out in section 3

by making use of a theorem of harmonic analysis [6], and gives rise to the analytic terms

together with an L-dependent piece.

The integral over RL, considered in section 4, generates the nonanalytic threshold

behaviour as well as canceling the L-dependence of the FL integral. The lowest-order

threshold behaviour is the same as in the supergravity field theory one-loop amplitude and

has the schematic form α′ s log(−α′ s/µ1)+α′ t log(−α′ t/µ1)+α′ u log(−α′ u/µ1) where s,

t and u are Mandelstam invariants and µ1 is a constant scale. The precise form of this

threshold term is considerably more complicated, as will be seen in detail in section 4.2.1,

but it still possesses the property that the scale of the logarithms cancels (using s+t+u = 0),

so there is no ambiguity associated with the normalization of the logarithms. However,

an important new feature at order α′4 s4 R4 is the occurrence of the second nonanalytic

massless threshold singularity, Inonan (4), that arises via unitarity from the presence of the

tree-level R4 interaction, which will be discussed in section 4.1. This is again a symmetric

function of the Mandelstam variables and has the schematic form α′4 s4 log(−α′ s/µ4)+. . . ,

– 4 –
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where µ4 is another normalization constant. Changing the value of µ4 changes the definition

of the coefficient of the analytic terms of the form s4 + . . . , so the precise value of µ4 has to

be determined. We will also determine the terms at order s5 R4 and s6 R4, where the next

threshold singularity arises. We will also discuss partial results for terms at order s7 R4,

and s8 R4. These ten-dimensional results are summarized in section 4.3.

In section 5 we will study the compactification of the loop amplitude on a circle of

dimensionless radius r to nine dimensions. The threshold singularities are now half-integral

powers of s, t and u, and can be uniquely disentangled from the contributions analytic in

s, t and u, that give rise to the local effective action. The expression for the compactified

amplitude depends on r as well as on the nine-dimensional Mandelstam invariants. Since

T-duality equates the IIA theory at radius r to the IIB theory at radius 1/r and the

four-particle genus-one amplitude of the IIA and IIB theories are equal, the compactified

genus-one amplitude is invariant under r → 1/r. The coefficient of a generic term of order

sk R4 in the analytic part of the compactified genus-one amplitude contains powers ranging

from r2k−1 to r1−2k plus exponential terms O(exp(−r)). The term linear in r survives the

ten-dimensional limit r → ∞. The infinite series of terms proportional to r2k−1 sk for k > 1,

diverge in the ten-dimensional r → ∞ limit. However, these can be resummed and thereby

convert the nine-dimensional normal thresholds, which contain half-integer powers of the

Mandelstam invariants, into the ten-dimensional thresholds containing factors of log(−α′ s),

log(−α′ t) and log(−α′ u) [7, 8]. In addition there are terms of the form sk log(r2), which

are analytic in s but not in r. The many coefficients of the low-energy expansion of the nine-

dimensional and ten-dimensional genus-one amplitude that we determine have the form of

rational numbers multiplying products of Riemann zeta values. These nine-dimensional

results are summarized in section 5.2.

2. The general structure of the genus-one four-particle amplitude

Here we review the general structure of the genus-one amplitude in ten-dimensional Minkowski

space and its α′ expansion. The dynamical factor F in (1.2) is given by an integral over

the positions ν(i) = ν
(i)
1 + iν

(i)
2 of the four vertex operators on the torus,

F (s, t, u; τ) =

3∏

i=1

∫

T

d2ν(i)

τ2
(χ12χ34)

α′s (χ14χ23)
α′t (χ13χ24)

α′u

=

∫

T

3∏

i=1

d2ν(i)

τ2
eD =

∫

T

3∏

i=1

d2ν(i)

τ2
exp(α′s∆s + α′t∆t + α′u∆u), (2.1)

where d2ν(i) ≡ dν
(i)
1 dν

(i)
2 , ν(4) = τ , and

D = α′s∆s + α′t∆t + α′u∆u, (2.2)

with

∆s = log(χ12χ34), ∆t = log(χ14χ23), ∆u = log(χ13χ24) (2.3)

– 5 –
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and log χij ≡ logP(ν(i) − ν(j)|τ) where

P(ν|τ) = −1

4

∣∣∣∣
θ1(ν|τ)
θ′1(0|τ)

∣∣∣∣
2

+
πν2

2

2τ2
, (2.4)

is the scalar Green function on the torus. These Green functions are integrated over the

domain T defined by

T =

{
− 1

2
≤ ν1 <

1

2
, 0 ≤ ν2 < τ2

}
(2.5)

Since Inonan has logarithmic branch points associated with thresholds for intermediate

on-shell massless states, it has singularities in s, t and u that must be extracted from the

complete expression before the analytic terms can be determined. These thresholds arise

from the region of moduli space in which τ2 → ∞, which is the degeneration limit of the

torus. Our procedure for separating the threshold term will be to treat the region with

τ2 ≥ L separately from the region τ2 ≤ L, where L ≫ 1. In other words, we write the

integral over the fundamental domain as the sum of two terms,

I(s, t, u) = IFL
(L; s, t, u) + IRL

(L; s, t, u) , (2.6)

where

IFL
(L; s, t, u) =

∫

FL

d2τ

τ2
2

F (s, t, u; τ) , IRL
(L; s, t, u) =

∫

RL

d2τ

τ2
2

F (s, t, u; τ) . (2.7)

The first term on the right-hand side is integrated over FL, which is the fundamental

domain cut off at τ2 ≤ L, and the second over RL, which is the semi-infinite rectangular

domain τ2 ≥ L, − 1
2
≤ τ1 ≤ 1

2
. Clearly, the dependence on L cancels from the full amplitude.

The first term contains the analytic part of the amplitude, together with an L-dependent

piece, which is also analytic in the Mandelstam invariants,

IFL
(L; s, t, u) = Ian(s, t, u) +R(L; s, t, u) . (2.8)

The L-dependence is contained in the function R(L; s, t, u), which has an expansion of the

form

R(L; s, t, u) =
∑

r

(dr
1L

r−1 + dr
2L

r−3 + · · · + dr
r/2+1 log(L/µr)) s

r + · · · , (2.9)

where . . . denotes terms involving t and u. The second term on the right-hand side of (2.6)

contains the nonanalytic piece of I, together with an L-dependent piece that cancels the

L-dependence of the first term,

IRL
(L; s, t, u) = Inonan(s, t, u) −R(L; s, t, u) . (2.10)

The integrand of IRL
can be evaluated by substituting the large-τ2 approximation and will

give rise to the nonanalytic pieces, whereas the integral over FL contains purely analytic

pieces.

The low energy expansion of the analytic part, IFL
, in (2.7) is obtained by expand-

ing the integrand F (τ, τ̄ ) in (2.1) in powers of the scalar Feynman propagator and then

– 6 –
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integrating over the toroidal world-sheet. However, in order to treat the thresholds con-

sistently we will separate them by dividing the integral into the two pieces given in (2.6).

The resulting expansion of the analytic piece is contained in

IFL
(L; s, t, u) = Ian(s, t, u) +R(L; s, t, u)

=
∞∑

n=0

∫

FL

d2τ

τ2
2

∫

T

3∏

i=1

d2ν(i)

τ2

1

n!
Dn . (2.11)

The quantity D is the linear combination,

D = α′s(P(ν(12)|τ) + P(ν(34)|τ) − P(ν(13)|τ) − P(ν(24)|τ))
+α′t(P(ν(14)|τ) + P(ν(23)|τ) − P(ν(13)|τ) − P(ν(24)|τ)) , (2.12)

where P(ν(ij)|τ) is defined in (2.4) and can be written as [4]

P(ν|τ) =
1

4π

∑

(m,n)6=(0,0)

τ2
|mτ + n|2 exp

[
2πi

τ2
(mν1τ2 − (mτ1 + n)ν2)

]
+C(τ, τ̄ ) , (2.13)

where C(τ, τ̄) cancels out of the SL(2,Z)-invariant combination in (2.12). It can also be

written as

P(ν|τ) ≡ P̂∞(ν|τ) + P̃ (ν|τ) (2.14)

where P̂∞ = limτ2→∞ P(ν|τ) is proportional to τ2 and is given by

P̂∞(ν|τ) =
τ2
4π

∑

n 6=0

e2iπn ν̂2

n2
=
πτ2
2

(
ν̂2
2 − |ν̂2| +

1

6

)
, (2.15)

where ν̂2 ≡ ν2/τ2 and the second expression is defined in the range − 1
2
≤ ν̂2 ≤ 1

2
and is

periodically repeated outside this range. The quantity P̃ (ν|τ) in (2.14) is given by

P̃ (ν|τ) =
1

4

∑

m6=0
k∈Z

1

|m|e
2iπm(kτ1+ν1) e−2πτ2|m||k−ν̂2| . (2.16)

The decomposition (2.14) will be useful for expansions at large τ2.

One way of evaluating the coefficients J (0,0), J (1,0), J (0,1), · · · is to consider the deriva-

tives of Ian in the small s, t and u limit, as was done in [4]. Thus, the coefficients in the

power series expansion

Ian(s, t, u) =
∞∑

m=0

∞∑

n=0

I(m,n)
an

(
α′

4

)m+n smtn

m!n!
, (2.17)

are given by

I(m,n)
an =

∫

F

d2τ

τ2
2

f (m,n)
an (τ, τ̄) , (2.18)

– 7 –
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where

f (m,n)
an (τ, τ̄) =

1

m!n!
∂m

s ∂
n
t F (s, t, u; τ)

∣∣∣∣
s=t=u=0

=

∫

T

3∏

i=1

d2ν(i)

τ2
(4∆s − 4∆u)m (4∆t − 4∆u)n (2.19)

with ∆s, ∆t and ∆u are defined in (2.3).

Defining the quantity j(p,q)(τ, τ̄ ) to be the integrand of J
(p,q)
FL

, so that

J (p,q) =

∫

F

d2τ

τ2
2

j(p,q)(τ, τ̄ ) , (2.20)

and comparing (2.17) with (1.6) leads to the implicit relation between the integrands

f
(m,n)
an (τ, τ̄) and j(p,q)(τ, τ̄),

∞∑

p,q=0

σ̂p
2σ̂

q
3 j

(p,q) =
∞∑

m,n=0

(
α′

4

)m+n smtn

m!n!
f (m,n)

an . (2.21)

We note further that (1.6) implies

J (0,0) = I(0,0)
an , J (1,0) =

1

4
I(2,0)
an , J (0,1) = −1

6
I(1,2)
an , J (2,0) =

1

96
I(4,0)
an ,

J (1,1) = − 1

144
I(4,1)
an , J (3,0) =

1

2880
I(5,1)
an , J (0,2) =

1

5760
I(6,0)
an (2.22)

3. The analytic terms in the ten-dimensional genus-one amplitude

In this section we will formulate the diagrammatic expansion for determining the coeffi-

cients, J (p,q), of the higher derivative terms starting from (2.17). This will then be used to

determine the coefficients of terms up to α′6 s6 R4. These coefficients are obtained by inte-

grating the j(p,q)’s, which are linear combinations of the f
(m,n)
an ’s that have m+n = 2p+3q,

and are defined in (2.19). In other words, the coefficients are given as integrals of products

of powers of propagators between different vertex operators attached to the torus.

A term at order α′r is represented by a sum of ‘Feynman’ diagrams with a total of r

propagators joining pairs of vertices. Any propagator can join any of six distinct pairs of

vertices separated by ν(ij) = ν(i) − ν(j) (i, j = 1, 2, 3, 4). A diagram is therefore labeled by

a set of six numbers,

{ℓ} = {ℓ1, ℓ2, . . . , ℓ6} ,
6∑

k=1

lk = r , (3.1)

which define the number of propagators that join each pair of vertices. The labeling of

the diagram is indicated in the figures in appendix B. Each diagram is associated with a

scalar function D{ℓ}(τ, τ̄ ) that is determined by integrating the positions, ν(i), using the

representation (2.13) of the propagator, which is periodic in both ν
(i)
1 and ν

(i)
2 , leading to

conservation of the torus momentum, p = m+ nτ ∈ Z + τZ, at each vertex. The result is

– 8 –



J
H
E
P
0
2
(
2
0
0
8
)
0
2
0

a function that depends on the topology of the diagram — i.e. on the ℓk’s — and is given

at order α′r by

D{ℓ}(τ, τ̄ ) =
τ r
2

(4π)r

∑

p1,...,pr∈Z+τZ

∏4
i=1 δ(

∑
j∈Ii

pj)

|p1|2 · · · |pr|2
, (3.2)

where the topology of the diagram is subsumed in the values of the sets Ii with i = 1, 2, 3, 4.

The momentum conservation δ-function is understood to mean

δ(p1 + p2) = δ(m1 +m2) δ(n1 + n2) . (3.3)

This condition eliminates all one-particle reducible diagrams. In appendix B we will derive

some detailed properties of the D{ℓ}’s that contribute to the expansion up to order s8 R4.

The net result is that j(p,q)(τ, τ̄ ) is a linear combination,

j(p,q)(τ, τ̄ ) =
∑

{ℓ}

e
(p,q)
{ℓ} D{ℓ}(τ, τ̄) , (3.4)

where e
(p,q)
{ℓ} is a set of constant coefficients and the sum is over all diagrams with

∑6
k=1 lk =r.

In order to evaluate the integral of j(p,q)(τ, τ̄ ) in (2.20) we would like to make use of

a theorem reviewed in [6] and restated in appendix A.2. This theorem states that any

function that is square integrable on F is the sum of three terms: (i) a function whose zero

mode with respect to τ1 vanishes; (ii) a constant; (iii) a linear combination of incomplete

theta series’. However, j(p,q)(τ, τ̄ ) is not square integrable as it stands, since it is easy to

see that it has a large-τ2 expansion of the form

j(p,q) = a0
(p,q) τ

2p+3q
2 + a1

(p,q) τ
2p+3q−1
2 + · · · + a4p+6q−1

(p,q) τ1−2p−3q
2 +O(exp(−τ2)) , (3.5)

where a2p+3q
(p,q) ≡ J (p,q). We can, however, proceed by subtracting the positive powers of τ2

in a manner consistent with modular invariance. This can be achieved by subtracting a

suitably chosen quadratic form in nonholomorphic Eisenstein series,2

P (p,q)({Êr}) =
∑

s,s′

d
(p,q)
ss′ Ês Ês′ , (3.6)

where d
(p,q)
ss′ are constant coefficients and

Ês =
1

(4π)s

∑

(m,n)6=(0,0)

τ s
2

|m+ nτ |2s
=

2ζ(2s)Γ(s)

πs/2
τ s
2 +

2ζ(2s− 1)Γ(s − 1
2
)

πs−1/2
τ1−s
2 +O(e−2πτ2)

(3.7)

(some properties of nonholomorphic Eisenstein series are reviewed in appendix A.1). In

other words we choose the polynomial, P (p,q), so that it reproduces the terms with positive

powers of τ2 in (3.5), so that

j(p,q) = P (p,q)({Êr}) + J (p,q) + δj(p,q) , (3.8)

2This quadratic form may not be unique but any ambiguity is irrelevant in the following.
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where J (p,q) is a constant and δj(p,q) → 0 as τ2 → ∞. Since δj(p,q) is square integrable in

the fundamental domain F , the theorem applies to it, and since we also have

∫ 1
2

− 1
2

dτ1 δj
(p,q) =

a2p+3q+1
(p,q)

τ2
+ · · · + a4p+6q−1

(p,q) τ1−2p−3q
2 +O(exp(−τ2)) 6= 0 , (3.9)

the theorem implies that ∫

F

d2τ

τ2
2

δj(p,q) = 0 . (3.10)

Therefore, after cutting off the fundamental domain at large τ2 = L we have

J
(p,q)
FL

=

∫

FL

d2τ

τ2
2

j(p,q) =
π

3
J (p,q) +

∫

FL

d2τ

τ2
2

P (p,q)({Ê2}) +O(1/L) (3.11)

(where we have used the fact that
∫
F d

2τ/τ2
2 = π/3).

The function P (p,q) and constants J (p,q) that arise up to order order s6 R4 are given

in (C.2)–(C.6) in appendix C. The integral of P (p,q)({Er}) over the fundamental domain

can be reduced to a boundary integral by using ∆Ês = s(s − 1) Ês and integrating by

parts, as is reviewed in appendix A.1. This leads to the following results.

• At order R4. In this case j(0,0) = D0 = 1, so J (0,0) = π/3, as it is given by the volume

of a fundamental domain for SL(2,Z).

• At order α′2 s2 R4 it is easy to see that j(1,0) = D2 = Ê2 (as was found in [4]).

Substituting ∆Ê2 = 2 Ê2 for P (1,0) in the right-hand side of (3.11) gives a purely

boundary contribution proportional to L

J
(1,0)
FL

= L . (3.12)

This L dependence is canceled by the contribution from the region τ2 ≥ L, so the

result is

J (1,0) = 0 . (3.13)

• At order s3 R4, using (C.2) results in

J
(0,1)
FL

=
π

3

ζ(3)

3
+

π3

567
L2 +O(1/L) , (3.14)

which reproduces the result in [4]. The L2 dependence is canceled by the contribution

of the amplitude from the region τ2 ≥ L, which was given in (3.24) of [4] and has the

form

lim
s,t→0

Inonan (3);RL
(s, t) = − π3

567
L2 σ̂3 +O(1/L) . (3.15)

At this order there are no threshold contributions so Inonan (3) = 0, and the coefficient

multiplying s3 R4 in the ten-dimensional effective action is

J (0,1) =
π

3

ζ(3)

3
. (3.16)
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• At order α′4 s4 R4, using (C.3) and (A.10) we find

J
(2,0)
FL

=
4π4

42525
L3 +

2π

45
ζ(3) log(L/µ̃4) +O(1/L) , (3.17)

where the scale µ̃4 is given by

log µ̃4 = −1

2
+ log(2) − ζ ′(3)

ζ(3)
+
ζ ′(4)

ζ(4)
. (3.18)

The occurrence of the logL term originates from the presence of Ê2
2 in the expression

for j(2,0) in (C.3), together with the use of the integral (A.8). In section 4.2.2 the L3

and log(L) contributions will be shown to cancel with the contribution from τ2 ≥ L.

In particular, we will see that

lim
s,t→0

Inonan (4);RL
(s, t) = Inonan (4)(s, t) −

(
4π4

42525
L3 +

2π

45
ζ(3) log(L/µ̃4)

)
σ̂2

2 ,

(3.19)

where

Inonan (4)(s, t) = −4ζ(3)

45π
α′4 s4 log(−α′s/µ4) + perms . (3.20)

We will derive the coefficient of this term (which was also derived from the unitarity

argument in the last subsection), as well as the value of µ4, in section 4.2.2. Since

there is no constant L-independent term in (3.17) (apart from the log µ̃4 associated

with the logL) we find

J (2,0) = 0 . (3.21)

• At order α′5 s5 R4, using (C.4), we find

J
(1,1)
FL

=
π

3

97

1080
ζ(5) +

L4 π5

400950
+
Lπ2 ζ(3)

378
+O(1/L) . (3.22)

The power-behaved L4 and L contributions will again be seen to cancel the contri-

bution from the τ2 ≥ L region,

lim
s,t→0

Inonan (5);RL
(s, t) = −

(
L4 π5

400950
− Lπ2 ζ(3)

378
+O(1/L)

)
σ̂2σ̂3 , (3.23)

but there is no σ̂2σ̂3 log L term. This is in accord with the earlier unitarity argument,

which shows that there is no threshold at the order s5 so Inonan (5)(s, t) = 0. The

genus-one contribution to the ten-dimensional action at this order is given by the

constant term in (3.22),

J (1,1) =
π

3

97

1080
ζ(5) . (3.24)

• At order α′6s6 R4 there are two independent tensorial structures. For σ̂3
2 R4, us-

ing (C.5) and (A.11), we find

J
(3,0)
FL

=
π

3

ζ(3)2

30

+
2π6

4729725
L5 +

2π3 ζ(3)

4725
L2 +

11π

630
log(L/µ̃6) ζ(5) +O(1/L) .

(3.25)
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Figure 1: Unitarity equation relating the two-particle s-channel discontinuity of the amplitude

to the square of the four-particle amplitude, integrated over the phase space of the intermediate

particles and summed over the species of these particles.

For σ̂2
3 R4, using (C.6) and (A.11), we find

J
(0,2)
FL

=
π

3

61ζ(3)2

1080

+
1744π6

3192564375
L5 +

8π3 ζ(3)

14175
L2 +

π

45
log(L/µ̃6) ζ(5) +O(1/L) .

(3.26)

The scale µ̃6 in both of these equations is given by

log µ̃6 = − 7

12
+ log(2) − ζ ′(5)

ζ(5)
+
ζ ′(6)

ζ(6)
. (3.27)

In this case the logL terms originate from Ê2
3 terms in j(3,0) and j(0,2), together

with the integral in (A.8). The L-dependent terms in these equations will again be

seen to cancel with contributions from the τ2 ≥ L part of the integral, resulting in a

net nonanalytic term of the form h(6)(s, t, u) log(−α′ s/µ6) + perms, where h(6) is a

monomial in s, t and u of order six (defined by (4.13). We see from (3.25) that the

coefficient of the analytic σ̂3
2 R4 term is

J (3,0) =
π

3

ζ(3)2

30
, (3.28)

while from (3.26) we see that the coefficient of σ̂2
3 R4 is

J (0,2) =
π

3

61ζ(3)2

1080
. (3.29)

4. Ten-dimensional threshold terms

We now turn to discuss the nonanalytic terms in the low-energy expansion of the ten-

dimensional amplitude. These are characterized by branch cuts with imaginary parts that

are determined by unitarity in a standard manner that we will review in the following

subsection. The scales of the logarithms are more difficult to evaluate and will require a

direct calculation of the genus-one integral in the region τ2 ≥ L section 4.2.
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4.1 Two-particle unitarity

Unitarity identifies the discontinuity of the amplitude across the s-channel two-particle cut

(when s ≥ 0, t ≤ 0) with the product two amplitudes integrated over the phase space for

the intermediate massless two-particle states and summed over the superhelicities of these

states (as illustrated in figure 1).

Our normalisations for the string S-matrix are such that the tree-level and genus-one

terms in the amplitude enter in the combination3

A = κ2
(10) g

4
s

(
1

g2
s

Atree + 2πAgenus−1 +O(g2
s)

)
, (4.1)

where κ2
(10) = 26π7 α′4 and Atree has the form shown in (4.7) and Agenus−1 = Agenus−1

an +

Agenus−1
nonan . At lowest order in the string coupling constant the unitarity relation has the

form

Discs A
genus−1
ζ1,ζ2,ζ3,ζ4

(p1, p2, p3, p4) = − i
κ2

(10)

α′

π

2

∫
d10k

(2π)10
δ(+)(k2) δ(+)((q − k)2)

∑

{ζr ,ζs}

Atree
ζ1ζ2ζrζs

(p1, p2,−k, k−q)Atree
ζ3ζ4ζrζs

(p3, p4, k, q−1k) ,

(4.2)

where
∑

{ζr ,ζs}
denotes the sum over all the two-particle massless N = 8 supergravity

states, and δ(+)(p2) ≡ δ(10)(p2)θ(p0) imposes the mass-shell condition on each intermediate

massless state,

k2 = 0 , (q − k)2 = 0 . (4.3)

Expanding both sides of (4.2) in powers of α′ determines the discontinuity of the genus-one

amplitude in terms of the square of the terms in the tree-level expansion.

The discontinuity of the genus-one amplitude is obtained by substituting the tree-level

scattering amplitude into (4.2). Recall that this amplitude has the form [2]

Atree
ζ1,ζ2,ζ3,ζ4(p1, p2, p3, p4) = C(s, t, u)R4

ζ1,ζ2,ζ3,ζ4(p1, p2, p3, p4) , (4.4)

where s, t, u are Mandelstam invariants, satisfying the mass-shell condition s + t+ u = 0,

and

C(s, t, u) = −
Γ
(
−α′s

4

)
Γ
(
−α′t

4

)
Γ
(
−α′u

4

)

Γ
(
1 + α′s

4

)
Γ
(
1 + α′t

4

)
Γ
(
1 + α′u

4

) , (4.5)

The unitarity relation takes a very special form in maximal supergravity (as it does in

maximal Yang-Mills), because of the self-replicating relation derived in [9],

∑

{ζr ,ζs}

R4
ζ1ζ2ζrζs

(p1, p2, k − q,−k)R4
ζ3ζ4ζrζs

(k, q − k, p3, p4) = s4 R4
ζ1,ζ2,ζ3,ζ4(p1, p2, p3, p4)

(4.6)

3In the S-matrix there is a power is gs for each external state. Here we are considering the four point

amplitude, leading to an overall factor of g4
s .
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(q = p1 + p2), which simplifies the left-hand side of (4.2) drastically.

The low-momentum expansion of (4.2) follows by substituting the expansion of Atree

in the right-hand side (see, for example, [8]),

Atree =
3

σ̂3
exp

(
−

∞∑

n=1

2ζ(2n+ 1)

2n+ 1
σ̂2n+1

)
R4

=

(
3

σ̂3
+ 2ζ(3) + ζ(5)σ̂2 +

2

3
ζ(3)2σ̂3 +

1

2
ζ(7)σ̂2

2 +
2

3
ζ(3)ζ(5)σ̂2σ̂3

+
1

4
ζ(9)σ̂3

2 +
2

27

(
2ζ(3)3 + ζ(9)

)
σ̂2

3 + · · ·
)

R4 . (4.7)

We see that the left-hand side of (4.6) is identified with the lowest order term in the

integrand on the right-hand side of (4.2) since Atree ∼ R4/stu. This means that, to lowest

order in α′, Discs A
genus−1 is given by

DiscsA
genus−1(p1, p2, p3, p4)=−is2

κ2
(10)

α′

π

2
R4

∫
d10k

(2π)10
δ(+)(k2)δ(+)((q − k)2)

(p1−k)2(p4+k)2(p2−k)2(p3+k)2
,

(4.8)

where we have used the expressions for the Mandelstam invariants of the tree amplitudes

on either side of the intermediate states,

t′ = −(p1 − k)2 , u′ = −(p2 − k)2 , t′′ = −(p4 + k)2 , u′′ = −(p3 + k)2 . (4.9)

This reproduces the s-channel discontinuity of the massless box diagram, which is of order

s. In section 4.2.1 we will find the complete expression for the genus-one contribution,

which is the supergravity contribution, ASUGRA.

The next term in the α′ expansion is obtained by substituting 2ζ(3)α′3 R4 in one of the

factors of Atree on the right-hand side of the unitarity relation and the lowest-order term

in the other. This amounts to multiplying the right-hand side of (4.6) by 2ζ(3)α′3 st′u′

and so the expression for the discontinuity at this order is obtained by multiplying the

integrand of (4.8) by the same factor. The integral is proportional to ζ(3)α′ s S(0, 0, 1, 1)

that is evaluated in appendix E, giving

DiscsA
genus−1
(4) (p1, p2, p3, p4) = −2iπ

−4πζ(3)

45

(
α′ s

4

)4

R4 , (4.10)

with similar expressions for the t-channel and u-channel discontinuities. This implies that

A(4) has the form

Agenus−1
(4) (p1, p2, p3, p4)=−4πζ(3)

45

(
α′

4

)4(
s4 log

(
−α

′s

µ4

)
+t4 log

(
−α

′t

µ4

)
+u4 log

(
−α

′u

µ4

))
R4,

(4.11)

where the scale, µ4, inside the logarithm is yet not determined — this must await the more

detailed analysis of the amplitude in section 4.2.2.

There are no contributions to the discontinuity at order (α′ s)5 since there are no

terms in Atree of order α′ sR4. The next contribution is a discontinuity of order α′6 s6 R4,
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obtained by expanding one of the Atree factors on the right-hand side of (4.2) to the next

non-trivial order, which means substituting the ζ(5) σ̂′2R
4 term of (4.7) into (4.2). The

resulting integral is proportional to ζ(5) (2α′ s S(0, 0, 3, 1) + (α′ s)3 S(0, 0, 1, 1)) that is also

evaluated in appendix E, giving

DiscsA
genus−1
(6) (p1, p2, p3, p4) = −2iπ

−π ζ(5)
2520

(
α′

4

)6

(87 s6 + s4 (t− u)2)R4 , (4.12)

which is attributed to a function of the form

Agenus−1
(6) (p1, p2, p3, p4)=− π ζ(5)

2520

(
α′

4

)6(
(87s6+s4(t−u)2) log

(
−α′s

µ6

)

+(87t6+t4(s−u)2) log

(
−α′t

µ6

)
+(87u6+u4(s−t)2) log

(
−α′u

µ6

))
R4,

(4.13)

where t-channel and u-channel contributions have again be added. The scale µ6 can again,

in principle, be determined by explicit evaluation of the loop amplitude as in section 4.2.2

(although in this case we will not complete the evaluation).

At order α′7 s7 log(−α′ s), and beyond, contributions of a new type arise. These come

from the presence of higher-order terms in both factors of Atree in the unitarity equation.

They correspond to terms in which there are stringy corrections to both propagators in

the t′ and t′′ channels. For example, the total (α′ s)7 contribution is proportional to the

sum, ζ(3)2 (α′ s)2 (2S(0, 0, 2, 2) + S(1, 1, 1, 1)) in the notation of appendix E.

For future reference it is interesting to note that the overall coefficient of log µ4 in (E.8)

is

−πζ(3)
45

σ̂2
2 , (4.14)

while the overall coefficient of log µ6 in (E.9) is

−πζ(5)
630

(11σ̂3
2 + 14 σ̂2

3) log µ6 . (4.15)

These are the same as the coefficients of the r s4 log(r2), s6 log(r2) and s6 log(r2) terms

that arise in the compactification on a circle of radius r to be considered in section 5 and

summarized in (5.27). The necessity for such a cancelation is discussed following (5.28).

4.2 Low-momentum expansion of threshold terms

The constant scales inside the logarithms are not determined by unitarity, but by a direct

calculation of the amplitude in the large-τ2 region, which we turn to next.

The singularities due to massless two-particle thresholds arise at genus one from the

degeneration of the torus in the limit τ2 → ∞. As indicated in figure 2(a), the zeroth

order contribution is simply the type II supergravity box diagram with massless states

in all four internal lines, where the threshold behaviour of the S-matrix has the form

a1 α
′ s log(−α′ s/µ1)R

4. The constant µ1 cancels out using s + t + u = 0. Figure 2(b)

shows the discontinuity receives higher derivative corrections on one side of the cut, due to
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Figure 2: Degeneration limits of the genus-one string amplitude. (a) The limit in which all internal

legs are massless propagators. This is the limit that gives the one-loop ten-dimensional supergravity

contribution. (b) The triangle limit, in which there are three internal massless propagators. (c) The

bubble limit in which two massless propagators are picked out. The blobs in (a) and (b) represent

higher derivative contact interactions induced by stringy corrections.

R4, s3 R4, and higher-order contact interactions indicated by the blob. These correspond to

threshold terms of the form α′4 s4 log(−α′ s/µ4), α
′6 s6 log(−α′ s/µ6), α

′7 s7 log(−α′ s/µ7),

. . . . There are also corrections with higher-order contributions on both sides of the cut, as

seen in figure 2(c). These lead to higher-order threshold terms.

An important and well-known technical problem in the analysis of these threshold

contributions is that the integral representation (1.2) is not well defined for any values of

the Mandelstam invariants since the branch points in the s, t and u channels coincide. This

is remedied by splitting the integration range of the vertex operator insertion points into

three regions Tst, Tus and Ttu, that generate cuts in the (s, t), the (s, u) and (t, u) channels,

respectively. The integrand in the Tst region is real for s, t < 0 (so that u > 0) and may be

defined in the physical s-channel region (s > 0, t < 0) by analytic continuation. Similarly,

in the Tus region the integrand is defined for s, u < 0, while in the Ttu region it is defined

for t, u < 0. Further discussion of the integral representation of the genus-one expression

may be found in [10].

4.2.1 The massless supergravity amplitude

In the limit τ2 → ∞ the leading contribution in the Tst region is given by the integral [8]

ITst =

∫ ∞

L

dτ2
τ2
2

∫

Tst

3∏

i=1

dωi e
α′πτ2 Q(s,t) , (4.16)

where Tst = {0 ≤ ω1 ≤ ω2 ≤ ω3 ≤ 1}, with ωi = ν
(i)
2 /τ2. The expression for Q(s, t)

Q(s, t) = sω1(ω3 − ω2) + t(ω2 − ω1)(1 − ω3) , (4.17)

arises by taking the asymptotic limit of the propagators, limτ2→∞ ∆s ≡ ∆∞
s = P̂∞(ν(12))+

P̂∞(ν(34)), in the expression (2.1) for the one-loop amplitude (with s and t negative). We

need to add the contribution to the amplitude in the regions Tus = {0 ≤ ω2 ≤ ω1 ≤ ω3 ≤ 1}
with Q(s, u) = s(ω3 − ω1)ω2 + u(ω1 − ω2)(1 − ω3) and Ttu = {0 ≤ ω1 ≤ ω3 ≤ ω2 ≤ 1} with

Q(t, u) = u(ω2 − ω1)ω1 + t(ω3 − ω1)(1 − ω2). This is equivalent to evaluating the sum of

the supergravity box diagrams figure 2(a) in the (s, t), (s, u) and (t, u) channels.
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It is very complicated to evaluate the detailed form of this term using the cutoff

at τ2 ≥ L, so we will review the method used in [11] for evaluating the integral using

dimensional regularization. This will generally give a different definition of the scale, µ1,

in terms of the form s log(−α′ s/µ1). However, in this case the scale cancels out (using

s+ t+ u = 0) and so the result is identical. In D− 2ǫ dimensions, the one-loop amplitude

becomes4

I
(d=D−2ǫ)
Tst

(s, t) = c(D, ǫ)

∫ 1

0
dξ

(−α′sξ)
D
2
−ǫ−3 − (−α′t(1 − ξ))

D
2
−ǫ−3

α′t+ α′uξ
, (4.18)

where

c(D, ǫ) = π
D
2
−4−ǫ Γ(4 − D

2 + ǫ)Γ(D
2 − 2 − ǫ)2

(D − 6 − 2ǫ)Γ(D − 4 − 2ǫ)
. (4.19)

In order to perform the ǫ expansion we separate the integral into the two contributions

I
(d=D−2ǫ)
Tst

(s, t) = Ks(s, t) −Kt(s, t) , (4.20)

where

Ks(s, t) = c(D, ǫ)

∫ 1

0
dξ

(−α′sξ)
D
2
−ǫ−3 − (−α′sξ∗)

D
2
−ǫ−3

α′t− α′(s+ t)ξ
(4.21)

with ξ∗ = t/(s + t). In this manner it is clear that the integral over ξ does not develop a

singularity in the limit ǫ→ 0 as long as D > 4. In such dimensions ǫ singularities can only

arise from the factor c(D, ǫ). These correspond to ultraviolet divergences that first arise

as a ǫ pole in ten dimensions, c(10, ǫ) → −π/(5! ǫ) as ǫ → 0. For D ≤ 4 the integral may

diverge at the ξ = 0 endpoint, leading to infrared divergences that are seen as singularities

in the ǫ→ 0 limit. We now consider the ten and nine dimensional cases separately.

• In ten dimensions we have

I
(d=10−2ǫ)
Tst

(s, t) = − 1

5! ǫ
π1−ǫ e−γEǫ

(
1 +

46

15
ǫ+O(ǫ2)

) (
α′u

2
− ǫI(1) +O(ǫ2)

)
(4.22)

= −α
′uπ

240 ǫ
+

1

240
α′uπ

(
γE + log π − 46

15

)
+
π

5!
I
(d=10)
Tst

(s, t) +O(ǫ2) ,

where γE is Euler’s constant. The full result is given by adding the (s, t), (t, u) and (s, u)

contributions and using the on-shell condition. The pole in ǫ cancels in the sum, leaving

the ultraviolet finite result for the full amplitude in the ǫ→ 0 limit,

I
(d=10)
SUGRA(s, t, u) = I

(d=10)
Tst

(s, t) + I
(d=10)
Ttu

(t, u) + I
(d=10)
Tus

(u, s) , (4.23)

where the function I
(d=10)
Tst

is given by

I
(d=10)
Tst

(s, t) =

∫ 1

0

dξ

α′t+ α′uξ

[
(−α′t(1−ξ))2 log(−α′t(1−ξ))−(−α′sξ)2 log(−α′sξ)

]
. (4.24)

4We have made use of the change of variables w1 = ηξ1, w2 = (1−η)(1− ξ2)+ηξ1 and w3 = 1−η +ηξ1.
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This expression is real in the region s < 0, t < 0 and has the appropriate imaginary

part in other regions of the Mandelstam invariants. For example, in the physical region,

s > 0 and t, u < 0, the integrand in (4.24) is nonsingular in the whole range of ξ, so the

only singularities are branch points due to the explicit log(−α′s) factor. The pole of the

denominator at ξ = −t/u is canceled by a zero in the numerator and the integrand is

finite in the range of integration, as is evident from the form of Ks(s, t) in (4.21). Other

singularities with double discontinuities can be found by analytic continuation.

Evaluating the integrals in (4.24) explicitly leads to

I
(d=10)
Tst

(s, t) =
α′u

4
+ α′ st

2u
+ α′ s

2(s+ 3t) log(−α′s) + t2(t+ 3s) log(−α′t)

2u2

−α′ s
2t2

u3

(
L2

(
−u
t

)
+ L2

(
−u
s

))
, (4.25)

where

L2(x) = Li2(x) + log(x) log(1 − x) =
π2

6
− Li2(1 − x) (4.26)

is a real function for all x ≥ 0 [12]. Although I
(d=10)
Tst

(s, t) is a complicated expression it is

easy to see that it has the important scaling property

I
(d=10)
Tst

(Ls,Lt) = LI(1)(s, t) − α′u

2
L log(L) , (4.27)

which ensures that the scale of the logarithm does not contribute after summation over the

(s, t), (t, u) and (s, u) terms.

• For completeness, we also include the case of nine dimensions, where there are no

divergences when ǫ→ 0 and we can set ǫ = 0 directly in the expression for the amplitude,

giving

I
(d=9)
Tst

(s, t) =
2

3

(−α′s)3/2 + (−α′t)3/2

α′u
− 2

(−α′s)3/2t+ (−α′t)3/2s

α′u2

+
3(−α′s)3/2(−α′t)3/2

(α′u)5/2
log

(
(
√
−α′t+

√
α′u)(

√
−α′s−

√
α′u)

(
√
−α′t−

√
α′u)(

√
−α′s+

√
α′u)

)
.(4.28)

Once again the full expression for I
(d=19)
nonan (s, t, u) is obtained by adding the contributions

of I
(d=10)
Ttu

and I
(d=10)
Tus

to I
(d=10)
Tst

.

4.2.2 String corrections and higher-order massless thresholds

At higher order in the derivative expansion there are further massless threshold effects

due to the higher-order contact terms in the blob in figures 2(b) and 2(c). These lead to

factors of the form sr log(−s/µr), where the scale of the logarithm does not cancel. Luckily

the threshold structure of these terms is much simpler than that of the box diagram in

figure 2(a) since they only possess singularities in s rather than overlapping singularities. So

we can go back to the cutoff procedure outlined earlier in order to evaluate the expressions,

taking care to verify that the dependence on the cutoff L indeed cancels.
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The supergravity contribution considered in the last subsection was obtained by re-

placing the propagators in the exponent of (2.1) by their leading form in the large-τ2 limit.

In order to analyze threshold terms at higher-order in the momentum expansion we need

to keep non-leading terms at large τ2. To do this we write

∆s ∼ ∆∞
s + δs , (4.29)

where the correction, δs, to the asymptotic value is given by the k = 0 part of P̃ (ν|τ)
defined in (2.16),

δs =
∑

m6=0

1

4|m|
(
e2iπ(mν

(12)
1 +i|mν

(12)
2 |) + e2iπ(mν

(34)
1 +i|mν

(34)
2 |)

)
, (4.30)

with similar expressions for δt,u. In the τ2 ≥ L region the terms with k 6= 0 are suppressed

by powers of e−L. The asymptotic formula for the amplitude is therefore given by [4],

ITst;RL
(s, t) =

∫ ∞

L

dτ2
τ2
2

∫

Tst

3∏

i=1

d2ν

τ2
exp

(
α′s(∆∞

s − ∆∞
u ) + α′t(∆̃∞

t − ∆̃∞
u )
)

exp
(
α′s(δs − δu) + α′t(δt − δu)

)
. (4.31)

The higher-order threshold contributions containing factors of log(−sL) are obtained by

expanding the integrand in powers of δ, eα
′δ = 1 + α′δ + α′2δ2/2 + . . . . The factors of

eα
′ ∆∞

in the integrand contribute to terms with positive powers of L.

In particular, the terms of order α′4 s4 log(−α′s/µ4), which will be denoted I(4), is

obtained from the δ2s contribution of the integrand in (4.31). Neither δt or δu contributes

to this threshold behaviour term (although δt does contribute to the analogous t-channel

term, α′4 t4 log(−α′t/µ4)). This gives

I
(4)
Tst;RL

(s, t) =
1

2

∑

m6=0

(−α′s)2

(4m)2

∫ ∞

L

dτ2
τ2
2

∫

Tst

3∏

i=1

dωie
α′πτ2Q(s,t)−4π|m|τ2(ω2−ω1)

+
1

2

∑

m6=0

(−α′s)2

(4m)2

∫ ∞

L

dτ2
τ2
2

∫

Tst

3∏

i=1

dωie
α′πτ2Q(s,t)−4π|m|τ2(1−ω3)

=
∑

m6=0

(−α′s)2

(4m)2
g(4)(L; s, t) , (4.32)

where we note that the two terms on the right-hand side of the first equality are equal and

g(4)(L; s, t) =

∫ ∞

L

dτ2
τ2
2

∫ 1

0
dη dξ1dξ2 η(1 − η) eα

′πτ2Q(s,t)−4π|m|τ2(1−ξ2)(1−η) . (4.33)

Noting further that Q is given in terms of the variables η, ξ1 and ξ2 by

Q(s, t) = s η(1 − η) ξ1 ξ2 + t η(1 − η) (1 − ξ1) (1 − ξ2) , (4.34)

and performing the ξ2 integral gives

g(4)(L; s, t) =

∫ ∞

L

dτ2
τ3
2

∫ 1

0
dη dξ1 η

eα
′πsτ2η(1−η)ξ1 − e−4πmτ2(1−η)eα

′πtτ2η(1−η)(1−ξ1)

α′ηπ(sξ1 − t(1 − ξ1)) + 4πm
. (4.35)
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The term of order s4 in the amplitude comes from the O(α′3) correction to the tree

amplitude represented by the blob in 2(b). This is obtained by expanding g(4) to O(s2).

At this order it is easy to see that the term proportional to e−4πmτ2(1−η) in the numerator

of (4.35) is proportional to e−L and is negligible. The term of the form s2 log(−α′ s) arises

by expanding eα
′πsτ2η(1−η)ξ1 to quadratic order and replacing the denominator by 4πm. As

a result we find the O(s2) terms,

g(4)(L; s, t) = − 1

4πm

(α′s π)2

180

(
log(−α′s π L/ce) − 2/5

)
L3 +O(s3, L−1) , (4.36)

where ce = exp(−γE). In obtaining this we have used the fact that

lim
x→0

∫ ∞

L

dt

t3
e−xt =

1

2L2
− x

L
− x2

2
(log(xL) − 3/2 + γ) + o(x2). (4.37)

Substituting (4.36) into (4.32) gives the contribution

I
(4)
Tst;RL

(s, t) = −2πζ(3)

45

(
α′

4

)4

s4 log(−α′sL/µ̂4) + · · · , (4.38)

where the scale of the logarithm at this order is given by

log µ̂4 =
2

5
− log(π/ce) . (4.39)

The ellipses indicate that a similar contribution that arises by using the δ2t term in the

expansion of eα
′tδt , which gives a threshold singularity in the t channel in which figure 2(b)

is transformed by interchanging s and t. There are similarly contributions from Tus and

Ttu regions containing analogous terms with s, t and u-channel thresholds.

Therefore the total contribution from the upper part of the fundamental domain τ2 ≥ L

to the terms of order s4 is given by the sum

I
(4)
RL

(s, t, u)I
(4)
Tst;RL

(s, t) + I
(4)
Ttu;RL

(t, u) + I
(4)
Tus;RL

(u, s)

= −4ζ(3)

45π

(
α′

4

)4

s4 log(−α′sLπ/ce) − 2/5) + (s → t) + (s→ u) .
(4.40)

The dependence on both L3 and log(L) cancel in the sum of this contribution and the

contribution from τ2 ≤ L given in (3.17), giving

I(4)
nonan(s, t, u) = − 4πζ(3)

45

(
α′

4

)4 [
s4 log(−α′s/µ4)

+t4 log(−α′t/µ4) + u4 log(−α′u/µ4) − 6/5
]
,

(4.41)

where

log µ4 = log µ̂4 − log µ̃4 =
9

10
− log

(
2

πce

)
+
ζ ′(3)

ζ(3)
− ζ ′(4)

ζ(4)
, (4.42)

which is the sum of the scale from the lower part of the fundamental domain, given in (3.18),

and the scale in the logarithm obtained from the above computation from the large-τ2 part

of the fundamental domain (4.39).
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Contributions to terms of order s5 arise both from expanding the function g(4)(L; s, t)

to one further order in s and by bringing down one further power of δ from the exponential

in (4.31). In this case the there are no terms proportional to logL, which reflects the fact

that there is no threshold term at this order, as follows from the unitarity argument in

section 4.1. In order to evaluate the thresholds at order α′6 s6 log(−α′s/µ6), it is necessary

to expand g(4)(L; s, t) to two further orders in s, which is fairly complicated. In addition,

there are contributions from yet higher powers of δ. Although we have not evaluated these

terms, in principle, they will determine a scale log µ̂6 (analogous to log µ̂4 in (4.39)) that

combines with log µ̃6 (3.27) to give the scale log µ6.

At higher orders in α′ string corrections arise on both sides of the threshold disconti-

nuity as we saw in section 4.1. The qualitative structure of these threshold contributions

matches that of the discontinuities that we determined earlier from unitarity. Firstly, there

are contributions from the triangle diagram in figure 2(b) beyond the ones considered

above. The first of these is of order α′ s7 log(−α′ s). In addition, a new class of contribu-

tions arises, in which both the propagators on the left and right of the s-channel cut are

canceled and the result is the diagram in figure 2(c), which has two blobs representing the

higher derivative vertices.

4.3 Summary of the expansion of the ten-dimensional genus-one amplitude

To put these results in perspective we will here summarize the low-energy expansion of the

genus-one contribution to the analytic part of the amplitude up to order s6 R4. At tree-

level and genus one, type IIA and type IIB massless four-particle amplitudes are completely

equivalent, so the results apply equally to both cases.

The analytic terms to this order are summarized by

Agenus−1
an (σ̂2, σ̂3) =

π

3

(∑

p,q

J (p,q) σ̂p
2σ̂

q
3

)
R4

=
π

3

(
1 + 0 σ̂2 +

ζ(3)

3
σ̂3 + 0 σ̂2

2 +
97

1080
ζ(5) σ̂2σ̂3

+
1

30
ζ(3)2σ̂3

2 +
61

1080
ζ(3)2σ̂2

3 + · · ·
)

R4 , (4.43)

(where we have indicated explicitly the vanishing σ̂2 and σ̂2
2 coefficients), while the nonan-

alytic terms are contained in

Agenus−1
nonan (σ̂2, σ̂3) =Agenus−1

SUGRA

+

(
α′

4

)4 4ζ(3)π

45

(
s4 log

(
− α′s

µ4

)
+t4 log

(
− α′t

µ4

)
+u4 log

(
− α′u

µ4

))
R4

+

(
α′

4

)6π ζ(5)

2520

(
(87 s6 + s4 (t− u)2) log

(
− α′s

µ6

)

+ (87t6+t4(s−u)2) log

(
−α′t

µ6

)
+(87u6+u4(s−t)2) log

(
−α′u

µ6

))
R4+· · · ,

(4.44)
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where Agenus−1
SUGRA is the result obtained in ten-dimensional maximal supergravity that we

described earlier where we also discussed the scales µ4 and µ6. Notice that the terms in

equations (4.43) and (4.44) satisfy a ‘transcendentality condition’ in which ζ(k) is associated

with a weight k, π has weight 1 and log(x) also has weight 1. The total weight of a term

of order (α′)q is q + 1.

Clearly, the separation of the amplitude into Aan and Anonan depends on the definition

of the scales inside the logarithmic terms in (4.44). The sum of the terms that depend on

µ4 and µ6 is

−4πζ(3)

45
σ̂2

2 log µ4 R4 − ζ(5)π

630

(
11σ̂3

2 + 14σ̂2
3

)
log µ6 R4 . (4.45)

Notice that although changing the scale inside the logarithms alters the analytic part of the

amplitude, the pattern of Riemann zeta values is different in the coefficients of the terms

in Agenus−1
an from those in Agenus−1

nonan . In this sense, there is an objective meaning to the

separation between the analytic and the nonanalytic parts as given in (4.43) and (4.44). For

example, at order (α′ s)6 one has a finite piece proportional to ζ(3)2 while the logarithmic

term is multiplied by ζ(5) in agreement with the ‘transcendentality’ property noted earlier.

So our choice of scale in the argument of the logarithmic terms is not only the natural scale

that arises from the calculation of section 3, but is natural if ζ(3)2 and ζ(5) are considered

to be distinct coefficients.

5. The genus-one four-particle amplitude in nine dimensions

We now turn to consider the compactification of the amplitude on a circle of radius r

so that nine-space-time dimensions are non-compact. We will specialize to the case in

which the momenta of the scattering particles, pµ
r , have zero components in the compact

direction, so the external states are Kaluza-Klein ground states. In nine dimensions the

genus-one normal thresholds have square root singularities instead of logarithms. This

separates the threshold terms in the amplitude from the analytic terms in a very clear

manner. The massive Kaluza-Klein modes also generate massive square root thresholds

that are expanded, when α′s ≫ 1/r2, in an infinite series of terms of the form (α′sr2)n

and therefore enter into higher order terms in the low energy expansion. The logarithmic

singularities characteristic of ten dimensions are recovered in the ten-dimensional limit by

a condensation of these Kaluza-Klein thresholds [7].

5.1 General method

The expression for the integral I in the compactified genus-one amplitude (1.1) now has

the form

I(d=9)(s, t, u; r) =

∫

F

d2τ

τ2
2

√
τ2 Γ(1,1)(r)F (s, t, u; τ) , (5.1)

where the lattice sum factor is given by [11]

√
τ2 Γ(1,1)(r) =

√
τ2

∑

(m,n̂)∈Z2

e−πτ2((m
r

)2+(n̂r)2)+2iπτ1m̂n . (5.2)
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The loop amplitude can now be expressed in terms of an expansion in half-integer

powers of α′s, α′t and α′u. We can separate this into two terms,

I(d=9)(s, t, u; r) = I(d=9)
an (s, t, u; r) + I(d=9)

nonan(s, t, u; r) . (5.3)

The analytic part has an expansion with integer powers of the Mandelstam invariants of

the form

I(d=9)
an (s, t, u; r) =

∞∑

p,q=0

J (p,q)(r) σ̂p
2σ̂

q
3 (5.4)

and is analytic in s, t and u. We will see that the coefficients can be expanded at large r

as sums of powers of r, together with r log r2 terms and exponentials,

J (p,q)(r) = J
(p,q)
1 r4p+6q−1 + J

(p,q)
2 r4p+6q−3 + · · · + J

(p,q)
4p+6q r

−4p−6q+1

+K(p,q) r log(r2λ2p+3q) +O(e−r) , (5.5)

where the λk’s are constants. In the ten-dimensional theory only the term linear in r

survives with coefficient J
(p,q)
2p+3q. The nonanalytic part has the form

I(d=9)
nonan(s, t, u; r) = b1s

1
2 + b4s

7
2 + · · · , (5.6)

where terms involving t and u have not been included. The coefficients bi are independent

of r. In the following we will be interested in determining the coefficients J
(p,q)
r in the

expansion of I
(d=9)
an , but will not consider the coefficients bn of the non-analytic terms in

any detail (although they are relatively easy to extract).

We will first reexpress the lattice sum by a Poisson resummation that replaces the sum

over m by a sum over p̂ and two relatively prime integers (m̂, n̂),

√
τ2

∑

(m,n̂)∈Z2

e−πτ2((m
r

)2+(n̂r)2)+2iπτ1mn̂ = r
∑

p̂∈Z

(m̂,n̂)=1

e
−π p̂2 r2 |m̂+n̂τ |2

τ2 . (5.7)

Thanks to the modular invariance of the kinematical factor F (s, t, u; τ), after separating

the zero-winding term (p̂ = 0) one can unfold the integral onto the semi-infinite strip [6],

which gives

I(d=9)(s, t, u; r) = r

∫

F

d2τ

τ2
2

F (s, t, u; τ)

+r
∑

p̂6=0

∫ ∞

0

dτ2
τ2
2

e
−πp̂2 r2

τ2

∫ 1
2

− 1
2

dτ1 F (s, t, u; τ) . (5.8)

The first term is the zero-winding term, which is the term that survives the r → ∞ limit,

r

∫

F

d2τ

τ2
2

F (s, t, u; τ) = r I(d=10)(s, t, u) , (5.9)

where the low-energy expansion of I(d=10)(s, t, u) was considered in sections 3 and 4.
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Proceeding as for the ten-dimensional amplitude in section 3, the integral I
(d=9)
p̂6=0 can be

split into an analytic and non-analytic parts by dividing the τ2 integral into two domains,

so that I(d=9) = I
(d=9)
(1) + I

(d=9)
(2) , where

I
(d=9)
(1) = r

∑

p̂6=0

∫ L

0

dτ2
τ2
2

e
−πp̂2 r2

τ2

∫ 1
2

− 1
2

dτ1 F (s, t, u; τ) (5.10)

contains the analytic part of the amplitude, and

I
(d=9)
(2)

= r
∑

p̂6=0

∫ ∞

L

dτ2
τ2
2

e
−πp̂2 r2

τ2

∫ 1
2

− 1
2

dτ1 F (s, t, u; τ) , (5.11)

contains the non-analytic threshold terms. As in the ten-dimensional case, the L depen-

dence will cancel from the final expressions.

The analytic contributions in equation (5.10) can be analyzed by expanding∫
dτ1F (s, t, u; τ) in powers of σ̂2 and σ̂3,

∫ + 1
2

− 1
2

dτ1F (s, t, u; τ) =

∞∑

p,q=0

σ̂p
2 σ̂

q
3 j

(p,q) . (5.12)

As in section 3 the coefficients at any order in s, t, u, are determined by properties of the

D
(0)
{l} functions determined in appendices B and D. In those appendices we expanded these

functions in powers of 1/τ2. In the simplest cases we displayed all power-behaved terms

while in others we only displayed the positive powers and constant terms.

For the terms that are constant or negative powers of τ2 — i.e., of the form ak τ
k
2 with

k ≤ 0 — both the τ2 integral and the p̂ sum in (5.10) are easy to evaluate. For these terms

we may simply take L→ ∞ and I
(d=9)
(2) in (5.11) is zero. The result is a succession of terms

of the form

σ̂p
2 σ̂

q
3

∑

k≤0

J
(p,q)
k rk , (5.13)

with k ≤ 0. The contribution J
(p,q)
0 is the ten dimensional contribution J (p,q) discussed in

section 3.

The terms in the expansion of
∫
dτ1F (s, t, u; τ) that are positive powers of τ2 of the

form ak τ
k
2 with k ≥ 2 have to be treated separately since, in the limit τ2 → ∞, the p̂ sum

in (5.10) and (5.11) contains the factor e−πp̂2r2/τ2 ∼ 1, so it needs a Poisson resummation.

This involves first adding and subtracting a term with p̂ = 0. The subtracted term,

I
(d=9)
(2)p̂=0 = r

∫ ∞

L

dτ2
τ2
2

∫ 1
2

− 1
2

dτ1 F (s, t, u; τ) , (5.14)

is precisely the term studied in the last section that has thresholds of the form

sk log(−α′sL/µ̂k) with a coefficient that ensures that it cancels the sk log(−α′ s/µk) thresh-

olds contained in the term r I(d=10) in (5.8). This ensures that there are no log(−α′ s) terms
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in the nine-dimensional expression, in accord with unitarity. After the Poisson resumma-

tion the integer p̂ is replaced by the integer p and we have

I
(d=9)
(2) =

∑

p∈Z

∫ ∞

L

dτ2

τ
3
2
2

e−π p2 τ2
r2

∫ 1
2

− 1
2

dτ1 F (s, t, u; τ) . (5.15)

The p = 0 contribution,

I
(d=9)
(2);p=0 =

∫ ∞

L

dτ2

τ
3
2
2

∫ 1
2

− 1
2

dτ1 F (s, t, u; τ) , (5.16)

contains the nine-dimensional threshold terms of the form (−s)k+1/2, which we will not be

considering in any detail in the following. For the p 6= 0 terms we can again take L→ ∞,

in which case I
(d=9)
(2) vanishes and I

(d=9)
(1) gives a series of terms of the form (5.13) with

k ≥ 1.

The terms that we have calculated of the form (5.13) will be summarized in (5.27) in

subsection 5.2.

However, there is a subtlety in considering the τ2 integral of terms that are linear in

τ2, i.e., terms of the form
∫
dτ1F (s, t, u; τ) ∼ a1τ2 in (5.8). To see this note that in this

case the p̂ = 0 term we need to add and subtract before doing the Poisson resummation in

I
(d=9)
(1) is

I
(d=9)
p̂=0;a1

= a1r

∫ L

0

dτ2
τ2

, (5.17)

which diverges. This means that for terms linear in τ2 we cannot perform a Poisson

resummation in I
(d=9)
(1) but we still have to perform a Poisson resummation in I

(d=9)
(2) since

each term in the p̂ sum has a factor e
−πp̂2 r2

τ2 ∼ 1 at large τ2. Explicitly, we have

I
(d=9)
(1);a1

≡ a1 r
∑

p̂6=0

∫ L

0

dτ2
τ2

e
−πp̂2 r2

τ2 ≡ a1 r f1(L/r
2) , (5.18)

where we have rescaled τ2 in order to write the expression in terms of a function f1(L/r
2)

which will be of later use. After a Poisson resummation, the p 6= 0 terms in I
(d=9)
(2);a1

are

given by

I
(d=9)
(2);p 6=0;a1

= a1

∞∑

p 6=0

∫ ∞

L

dτ2

τ
1/2
2

e−π p2 τ2
r2 ≡ a1rf2(L/r

2) , (5.19)

where we have again rescaled τ2 in order to write the expression in terms of a function

f2(L/r
2), which will be of later use.

The dependence on L/r2 in f1 in equation (5.18) will cancel with that of the term f2

in equation (5.19). To see this, consider the derivatives of these terms with respect to L.

We have

r
∂f1(L/r

2)

∂L
=
r

L

∑

p̂ 6=0

e−πp̂2 r2

L . (5.20)
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On the other hand Poisson resumming the integer p̂ in (5.19)

r
∂f2(L/r

2)

∂L
= − 1

L
1
2

∑

p 6=0

e−πp2 L

r2

=
1

L
1
2

− r

L
− r

L

∑

p̂6=0

e−πp̂2 r2

L . (5.21)

In order to see what this means we can use the fact that

∂

∂L

(
I
(d=9)
(1)p 6=0;a1

+ I
(d=9)
(2)p̂ 6=0;a1

)
= a1r

∂f1(L/r
2)

∂L
+ a1r

∂f2(L/r
2)

∂L
=

a1

L1/2
− a1

r

L
. (5.22)

Integrating over L, we find

I
(d=9)
(1)p̂ 6=0;a1

+ I
(d=9)
(2)p̂ 6=0;a1

= a1r

(
2
L

1
2

r
+ log λ̃+ log(r2/L)

)
. (5.23)

where the constant λ̃ can be determined by integrating between r2 and L,

log λ̃ = −2 +

∫ 1

0

dt

t

∑

p 6=0

e−πp2/t +

∫ ∞

1

dt√
t

∑

p 6=0

e−πp2t (5.24)

= γE − log(4π) .

So the L-dependent terms cancel, apart from −a1r logL and 2a1L
1/2. These two terms can-

cel with the L-dependent parts of the p̂ = 0 threshold terms that subtract the log(−α′ s) ten

dimensional thresholds and the p = 0 threshold terms in (5.16) that add in the (−α′ s)−
1
2

thresholds.

5.2 Summary of the expansion of the nine-dimensional genus-one amplitude

By using the method outlined above and developed in detail in the appendices, we find the

following terms in the momentum expansion of the analytic terms in the integral, I, that

defines the four-particle amplitude in (1.1) up to order s8 R4 (with partial results beyond)

I(d=9)
an (r; s, t) = r I(d=10)

an + 2

∞∑

p=1

r

∫ ∞

0

dτ2
τ2
2

e
−πp2r2

τ2 j(p,q) σ̂p
2 σ̂

q
3

= r I(d=10)
an + 2

∞∑

p=1

r

∫ ∞

0

dτ2
τ2
2

e
−πp2r2

τ2

[
1 + σ̂2

(π2

45
τ2
2 +

ζ(3)

πτ2

)

+ σ̂3

(2π3τ3
2

567
+
ζ(3)

3
+

5ζ(5)

4π2τ2
2

+O(e−τ2)
)

+ σ̂2
2

( 8

315
ζ(4)τ4

2 +
2πζ(3)

45
τ2 +

5ζ(5)

12πτ2
+
ζ(3)2

4π2τ2
2

+
ζ(7)

4π3τ3
2

+O(e−τ2)
)

+ σ̂2σ̂3

( 4π5

66825
τ5
2 +

π2ζ(3)

63
τ2
2 +

29ζ(5)

135
+O(τ−1

2 )
)

+ σ̂3
2

( 2

1001
ζ(6)τ6

2 +
4π3ζ(3)

4725
τ3
2 +

11πζ(5)

630
τ2 +

ζ(3)3

30
+O(τ−1

2 )
)

+ σ̂2
3

( 1744

675675
ζ(6)τ6

2 +
16π3ζ(3)

14175
τ3
2 +

4πζ(5)

180
τ2 +

61ζ(3)2

6144
+O(τ−1

2 )
)]
,

(5.25)
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where I
(p,q)
(d=10) is the ten-dimensional integral considered in section 3 (the coefficient of R4

in (4.43)). These expansions in powers of 1/τ2 are valid for large τ2. We have displayed all

powers of τ2 up to order σ̂2
2, but at higher orders in s, t, u there are further inverse powers of

τ2 beyond the order displayed, which we have not calculated. There are also exponentially

suppressed contributions of order e−τ2 at order σ̂3 and above.

It is easy to integrate over τ2 using the formula

∞∑

p̂=1

r

∫ ∞

0

dτ2
τ2
2

e
−πp̂2r2

τ2 τn
2 = r2n−1ζ∗(2 − 2n) . (5.26)

where ζ∗(x) = π−x/2 ζ(x) Γ(x/2). The contributions with n > 1 can be obtained by using

the analytic continuation ζ∗(2 − 2n) = ζ∗(2n − 1), which is equivalent to performing the

Poisson resummation described in section 5.1. For terms linear in τ2 (n = 1) the integral

requires greater care, as was also emphasized in section 5.1, where we were led to (5.22).

The result is

I(d=9)
an (r; s, t) =

π

3

[
r+r−1+σ̂2

(
ζ(3)

15
r3+

ζ(3)

15
r−3

)

+σ̂3

(
ζ(5)

63
r5+

ζ(3)

3
r+

ζ(3)

3
r−1+

ζ(5)

63
r−5

)

+σ̂2
2

(
ζ(7)

315
r7+

2ζ(3)

15
r log(r2λ4)+

ζ(5)

36
r−3+

ζ(3)2

315
r−5+

ζ(7)

1050
r−7

)

+σ̂2σ̂3

(
7ζ(9)

2970
r9+

ζ(3)2

21
r3+

97ζ(5)

1080
r+

29ζ(5)

135
r−1+O(r−3)

)

+σ̂3
2

(
3ζ(11)

8008
r11+

2ζ(3)ζ(5)

525
r5+

11ζ(5)

210
r log(r2λ6)+

ζ(3)2

30
r+

ζ(3)2

30
r−1+O(r−3)

)

+σ̂2
3

(
109ζ(11)

225225
r11+

8ζ(3)ζ(5)

1575
r5+

ζ(5)

15
r log(r2λ6)+

61ζ(3)2

1080
r+

61ζ(3)2

6144
r−1

+O(r−3)

)
+O(e−r)

]
(5.27)

Note that the r → 1/r symmetry is manifest only in the first two lines of this expression, in

which there are no e−r terms and each power of r is accompanied by a corresponding inverse

power of r with identical coefficient. At order σ̂2
2 and beyond, there is no such pairing of

terms and here terms that are exponentially suppressed at large r play an essential rôle in

guaranteeing the r → 1/r symmetry.

The (α′ s)k r log(r2 λk) contributions are the ones we found in (5.22) that arise when

there is a linear dependence on τ2 and are connected with the ten-dimensional threshold

contributions discussed in section 4.2.2. The scale λk in such logarithms is determined

by combining log(λ̃) from (5.24) and the scale log(µ̂k) of the non-analytic contribution

discussed in section 4.2.2,

log λk ≡ log(λ̃/µ̃k) . (5.28)

It is striking that the coefficients of the logarithm terms for σ̂2
2 , σ̂

3
2 and σ̂2

3 agree with values

based on duality with eleven-dimensional supergravity compactified on a two-torus [5].
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The presence of the terms with coefficients r log r2 is essential in ensuring a smooth

ten-dimensional limit as r → ∞. To see this, recall that in this limit an infinite series of

terms with positive powers of r2 smust resum in a manner that cancels the nine-dimensional

square root thresholds [7], generating the ten-dimensional logarithmic thresholds, of the

form r sk log(−r2α′ s). The resummation therefore produces r log r2 terms with coefficients

that are the same as the ten-dimensional massless threshold terms (4.44) computed in

section 4. More precisely, the r log r2 terms produced in the resummation must appear

with the same coefficients as log µ4 and logµ6 in (4.45). From (4.45) we see that these

r log r2 contributions are precisely canceled by the terms σ̂2
2 r log(r2), σ̂2

3 r log(r2) and

σ̂3
2 r log(r2) in (5.27), as required.

The terms in equations (5.27) satisfy an extended transcendentality condition in which

a power of r±(1+2m) (with m ≥ 0) contributes weight −m and log(r2) has weight 1. As

before, ζ(k) has weight k and π has weight 1. The total weight of any term of order (α′)q

is once again equal to q + 1.

Although we have displayed results up to order (α′ s)6 R4, we have also obtained partial

results at all orders. Thus, we have evaluated the coefficients of all terms of the form σ̂n
2

(such as σ̂4
2 , which corresponds to one of the kinematic structures appearing at order

(α′ s)8 R4), in terms of harmonic sums or multiple zeta values, using general expressions

derived in the appendices. It is notable that, at least in all cases studied here, these reduce

to the product of Riemann zeta values. This leads to the interesting possibility that the

coefficients of the momentum expansion of the genus-one four-particle amplitude are all

rational numbers multiplying products of Riemann zeta values. Even more interesting is

the possibility (motivated by results from eleven-dimensional supergravity on S1 and on

T 2 [5]) that this property holds for all genera in string perturbation theory.

We have also determined the coefficients uk of terms of the form uk (α′ s)kζ(2k −
1)r2k−1, which contains the leading power of r for a given value of k. These coefficients

follow from the methods described in appendix D, and the results agree with the type IIA

expressions derived by taking the one-loop amplitude of eleven dimensional supergravity on

T 2 [13, 8]. The subleading contributions of the form vk (α′ s)k r2k−7 match those obtained

from the two-loop amplitude of eleven dimensional supergravity on T 2, at least up to (and

including) order (α′ s)6 R4 [5].
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A. Some mathematical background

A.1 Eisenstein series

The non-holomorphic Eisenstein Series Es are defined by

Es =
∑

(m,n)6=(0,0)

τ s
2

|m+ nτ |2s
. (A.1)

We will also use the notation Ês = Es/(4π)s and E∗
s = Γ(s)π−s Es. The function E∗

s can

be expanded at large τ2 as follows

E∗
s (τ, τ̄ ) = 2ζ∗(2s) τ s

2 + 2ζ∗(2s − 1) τ1−s
2 (A.2)

+4τ
1
2
2

∑

N 6=0

|N |s− 1
2 σ̂1−2s(|N |)Ks− 1

2
(2π|N |τ2) e2iπNτ1

where σ̂k(n) =
∑

d|n d
k is the kth divisor function of n, Ks(z) are the Bessel functions of

the second kind, and

ζ∗(s) =
ζ(s)Γ(s/2)

πs/2
=
∑

p≥1

∫ ∞

0

dt

t
t

s
2 e−πp2t . (A.3)

This function satisfies the functional equation ζ∗(s) = ζ∗(1−s) as is easily shown using the

Poisson resummation formula [14]. The function E∗
s obeys an analogous relation E∗

s = E∗
1−s

and satisfy the Laplace equation

∆τE
∗
s (τ, τ̄ ) = s(s− 1)E∗

s (τ, τ̄) . (A.4)

In the main text we need to integrate the product of a pair of Eisenstein series that

appears in the integrals of the functions P (p,q)({Er}) over FL. We may use (A.4) to replace

one factor of Ês in the integral by ∆Ês and then integrate by parts to give the result

1

4ζ∗(2s)ζ∗(2s′)

∫

FL

d2τ

τ2
2

E∗
sE

∗
s′ =

Ls+s′−1

s+s′−1
−L1−s−s′

s+s′−1
φ(s)φ(s′)+

Ls−s′

s−s′ φ(s′)−L
s′−s

s− s′
φ(s)+o(1),

(A.5)

where

φ(s) = ζ∗(2s− 1)/ζ∗(2s) . (A.6)

In section 3 we need to use the special cases

φ(2) =
πζ(3)

2ζ(4)
, φ(3) =

3πζ(5)

8ζ(6)
. (A.7)

For s > s′ and in the L → ∞ limit, the right-hand side of (A.5) contains two terms

proportional to Ls+s′−1 and Ls−s′ , respectively. When s = s′ the integral may be evaluated

by taking the s→ s′ limit of (A.5).

1

4ζ∗(2s)2

∫

FL

d2τ

τ2
2

(E∗
s )2 =

L2s−1

2s − 1
− L1−2s

2s− 1
φ2(s) + 2φ(s) log(L/µ̃2s) + o(1) , (A.8)
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where

log(µ̃2s) =
1

2

φ′(s)

φ(s)
=
ζ ′(2s)

ζ(2s)
+

Γ′(s− 1/2)

2Γ(s − 1/2)
− Γ′(s)

2Γ(s)
. (A.9)

For the cases of interest in the main text we need

log µ̃4 =
1

2
− log(2) +

ζ ′(3)

ζ(3)
− ζ ′(4)

ζ(4)
(A.10)

log µ̃6 =
7

12
− log(2) +

ζ ′(5)

ζ(5)
− ζ ′(6)

ζ(6)
(A.11)

A.2 Space of square integrable functions

Consider a modular function f(τ, τ̄) with the following zero mode expansion

f0(τ2) ≡
∫ 1

2

− 1
2

dτ1f
0(τ, τ̄ ) =

n∑

k=1

ak

τk
2

+
∑

N 6=0

m∑

k=0

bk(|N |)
(2πτ2)k

e−2π|N |τ2 . (A.12)

The sums over k are of finite range, n and m are in general different. The coefficients ak

and bk(|N |) are constrained by the modular invariance of the function f(τ, τ̄ ). Prototypes

of such functions are the modular functions δj(p,q) arising from the derivative expansion of

the string loop amplitude, where all the positive powers in τ2 in the zero mode expansion

have been subtracted by polynomials in the Eisenstein series as in appendix C.

In this case the integral of f(τ, τ̄) over a fundamental domain of SL(2,Z) converges

since this function is square integrable in the fundamental domain. We apply the following

lemma given, for example, on page 256 of [6]:

Lemma. The space of square integrable functions on L2(F) on a fundamental domain

F = SL(2,Z)\H is given by the orthogonal decomposition

L2(F) = L2
0(F) ⊕ C ⊕ θ0 (A.13)

where

L2
0(F) = {f ∈ L2(F)|

∫ 1/2

−1/2
dτ1f(τ) = 0for almost all τ2 > 0} (A.14)

and θ0 denotes the closed subspace of L2(F) generated by the incomplete theta series,

Tψ(z) =
∑

γ∈Γ∞\Γ

ψ(ℑm(γτ)) for τ ∈ H and Γ∞ = {±
(

1 n

0 1

)
|n ∈ Z} (A.15)

such that ∫ ∞

0

dτ2
τ2
2

ψ(τ2) = 0 =

∫

F

d2τ

τ2
2

Tψ(τ) ,

where ψ is smooth with compact support on R+.

Since f0 in (A.12) does not have any component on L2
0(F) and does not contain any

constant term it belongs to the space θ0. For any incomplete theta series in θ0 the integral

over the fundamental domain vanishes. Therefore for any f ∈ θ0 we have
∫

F

d2τ

τ2
2

f(τ) = 0 .
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A.3 Harmonic sums

In appendix B we will find different types of harmonic sums that arise upon integrating

over the vertex positions. In this subsection we start by discussing the simplest cases.

A.3.1 S(m,n) and S(α1, · · · , αn;β)

Consider the sum

S(m,n) =
∑

k1,...,km 6=0

δ(
∑

1≤i≤m ki)

|k1 · · · km|(|k1| + · · · + |km|)n , m ≥ 2 . (A.16)

As shown in section A.3.2, this sum reduces to a sum over multi-zeta values (MZV’s), with

the result (for m ≥ 2)

S(m,n) = m!
∑

a1,...,ar∈{1,2}
a1+···+ar=m−2

22(r+1)−m−n ζ(n+ 2, a1, . . . , ar) , (A.17)

where ζ(n1, . . . , nr) is a multiple zeta value of weight w =
∑r

i=1 si and depth r defined by

ζ(s1, . . . , sr) =
∑

n1>n2>···>nr≥1

1

ns1
1 · · ·nsr

r
. (A.18)

In general, ζ(m,n) does not reduce to a polynomial in zeta values.

In the following we give details of S(3, n), S(4, n) and S(5, 1), specializing to the cases

needed in the main text.

• S(2, n) is given by

S(2, n) = 21−n ζ(n+ 2) . (A.19)

• S(3, n) is given by

S(3, n) =
3

2n−2
ζ(n+ 2, 1)

=
3

2n−1

(
(n+ 2)ζ(n+ 3) −

n∑

k=1

ζ(n+ 2 − k)ζ(k + 1)

)
, (A.20)

which has been reduced to zeta values using the identity [15]

ζ(n, 1) =
n

2
ζ(n+ 1) − 1

2

n−2∑

k=1

ζ(n− k)ζ(k + 1) (A.21)

In particular, using various expressions for MZV given in the references [15 – 20] we

have

S(3, 1) =
3

2
ζ(4) (A.22)

S(3, 2) = 6ζ(5) − 3ζ(2)ζ(3) (A.23)

S(3, 3) =
9

8
ζ(6) − 3

4
ζ(3)2 (A.24)

where we have used ζ(2)ζ(4) = 7ζ(6)/4 and ζ(2)3 = 35ζ(6)/8.

– 31 –



J
H
E
P
0
2
(
2
0
0
8
)
0
2
0

• S(4, n) is given by

S(4, n) =
4!

2n
(ζ(n+ 2, 2) + 4ζ(n + 2, 1, 1)) .

In particular, we find

S(4, 1) = 30ζ(5) − 12ζ(2)ζ(3) (A.25)

S(4, 2) =
53

2
ζ(6) − 18ζ(3)2 (A.26)

S(4, 3) = −4

5
ζ(3) ζ(4) − 21 ζ(2) ζ(5) + 27 ζ(7) (A.27)

S(4, 4) = −3

5
ζ(6, 2) + 3 ζ(2) ζ(3)2 − 15 ζ(3) ζ(5) +

463

40
ζ(8) (A.28)

In the last expression we see the appearance, at weight 8, of the MZV ζ(6, 2) that

does not reduce to a polynomial in zeta values.

Another sum that appears is

S(α1, . . . , αn;β) =
∑

mi≥1

1

mα1
1 · · ·mαn

n (m1 + · · · +mn)β
. (A.29)

Ordering the αi as αn ≥ αn−1 ≥ · · · ≥ α1 and introducing the variables µ1 = m1, and

µr = µr−1 +mr for 2 ≤ r ≤ n, this sum can be written as

S(α1, . . . , αn;β) =
∑

µn>µn−1>···>µ1≥1

1

µβ
n(µn − µn−1)αn · · · (µ2 − µ1)α2µα1

1

. (A.30)

A repeated use of the identity [21]

1

minj
=

∑

r+s=i+j

r,s>0

(
r−1
i−1

)

(m+ n)rns
+

(
r−1
j−1

)

(m+ n)rms
, i, j > 0 , (A.31)

gives, for αi > 0 and β > 0,

S(αn, . . . , α1;β) =
∑

r1+s1=α2+r0
r1,s1>0

∑

r2+s2=α3+r1
r2,s2>0

· · ·
∑

rn−1+sn−1=αn+rn−2
rn−1,sn−1>0

×
n−1∏

i=1

[(
ri − 1

αn+1 − 1

)
+

(
ri − 1

rn−1 − 1

)]
δr0,α1ζ(β + rn−1, sn−1, . . . , s1)

In the special case β = 0 we find

S(αn, . . . , α1; 0) =
n∏

i=1

ζ(αi) . (A.32)
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The n = 2 case gives the Witten zeta-function S(α2, α1, β) = W (α2, α1, β), with

W (α1, α2, β) =

∞∑

m,n=1

1

mα2nα1(m+ n)β

=
∑

r+s=α2+α1
r,s>0

[(
r − 1

α2 − 1

)
+

(
r − 1

α1 − 1

)]
ζ(β + r, s) , (A.33)

so

W (0, α, β) = W (α, 0, β) = ζ(β, α) , W (α, β, 0) = ζ(α)ζ(β) . (A.34)

If αi = 0 for p values of i we have

S(αn, . . . , αp+1, 0, . . . , 0;β) = ζ(β, αn, . . . , αp+1, 0, . . . , 0) (A.35)

A.3.2 Evaluation of S(m,n) by Don Zagier

In this appendix we give a proof due to Don Zagier of the general formula (A.17) for the

values of the sums

S(m,n) =
∑

k1,...,km 6=0

δ(
∑

1≤i≤m ki)

|k1 · · · km|(|k1| + · · · + |km|)n , (m,n ≥ 0) . (A.36)

(Note that S(m,n) = 0 if m < 2, since then the sum is empty.) Denoting by r and m− r

the number of i with ki > 0 and ki < 0, respectively, and by l the sum of the positive ki,

we can rewrite S(m,n) as

S(m,n) =

m∑

r=0

(
m

r

) ∞∑

l=1

Sr(l)Sm−r(l)

(2l)n
(A.37)

where

Sr(l) =
∑

k1,···kr≥1
k1+···+kr=l

1

k1 · · · kr
(= 0 if r = 0) . (A.38)

Observing that Sr(l) is the coefficient of xl in the series expression of Li1(x)
r, where

Li1(x) =
∑

k≥1 x
k/k = − log(1 − x), we obtain

2n S(m,n) =

∞∑

l=1

1

ln

m∑

r=0

(
m

r

)
coeffxlyl

[
Li1(x)

r Li1(y)
m−r

]

=

∞∑

l=1

1

ln
coeffxlyl

[(
Li1(x) + Li1(y)

)m]
(A.39)

Hence the generating function
∑

m≥0 S(m,n)Xm/m! is given by

2n
∑

m≥0

S(m,n)
Xm

m!
=

∞∑

l=1

1

ln
coeffxlyl

[
exp

(
X(Li1(x) + Li1(y))

)]

=
∞∑

l=1

1

ln
coeffxlyl

[
(1 − x)−X (1 − y)−X

]
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=

∞∑

l=1

1

ln

(
X + l − 1

l

)2

=
∞∑

l=1

X2

ln+2

l−1∏

h=1

(
1 +

X

h

)2

=
∞∑

l=1

X2

ln+2

l−1∏

h=1


1 + 4

∑

a∈{1,2}

(X/2)a

ha




=
∑

r≥0

∑

l>h1>···>hr>0
a1,...,ar∈{1,2}

4r X2(X/2)a1+···+ar

ln+2 ha1
1 · · ·har

r
. (A.40)

Comparing the coefficients of Xm on both sides gives the desired formula

S(m,n) =
m!

2m+n−2

∑

a1,...,ar∈{1,2}
a1+···+ar=m−2

22r ζ(n+ 2, a1, . . . , ar) . (A.41)

B. Properties of Dℓ1,...,ℓ6

The coefficients of the terms in the analytic part of the momentum expansion are deter-

mined in terms of the functions Dℓ1,...,ℓ6 (
∑6

k=1 lk = r) associated with the diagrams shown

in figures 3–6. In the main part of the paper these enter in two separate manners.

1) In section 5 we considered compactification on a circle of radius r and considered

the coefficients of terms at each order up to s6 that are power-behaved in r for large r.

In this case the coefficients are determined by knowledge of the terms in Dℓ1,...,ℓ6 that are

power-behaved in τ2 for large τ2. Such terms are obtained by expanding the τ1,

D
(0)
{ℓ}(τ2) =

∫ 1
2

− 1
2

D{ℓ}(τ, τ̄ ) (B.1)

in powers of τ−1
2 . This will also be carried out in this appendix for all the D{ℓ}’s that enter

up to order s6 (although we will not evaluate the coefficients of the negative powers of r

at order s5 and beyond).

2) In section 3 we saw that the values of the coefficients of terms in the low-momentum

expansion in ten dimensions are determined in terms of a constant that survives the τ2 → ∞
limit after subtracting the positive powers of τ2 with a polynomial in Eisenstein series,

P (p,q)({Êr}). In this appendix we will here derive P (p,q) and the value of the constant for

each D{ℓ} function that enters up to order s6. In fact, the part of D{ℓ} that has positive

powers of τ2, or is constant in the large-τ2 limit, is independent of τ1 so it is also determined

by D
(0)
{ℓ}.

For these reasons, our priority here is to compute the τ1 zero modes of the D{ℓ}’s. For

this purpose we will need to make extensive use of the representation of the propagator as

the sum P̂∞(ν) + P̃ (ν) given in (2.14). A few special cases were evaluated in [4].
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Figure 3: The two-vertex diagram with ℓ1 lines connecting the two vertices defines Dℓ1 . Each line

is associated with a propagator on the torus with momentum pi = mi + niτ

(i = 1, . . . , l1).

B.1 The two-vertex case

The two-vertex diagram with ℓ1 lines is associated with a modular function of weight ℓ1,

which we will denote by

Dℓ1 ≡ Dℓ1,0,0,0,0,0 , (B.2)

in which case we have

Dℓ1 =
∑

(mi,ni)6=(0,0)

δ(

l1∑

r=1

pr)

ℓ1∏

i=1

1

4π

τ2
|mi + niτ |2

. (B.3)

The zero mode is given by5

D
(0)
ℓ1

=

∫ 1
2

− 1
2

dτ1

∫
dν(1)dν(2)

τ2
2

Pℓ1
12 (B.4)

=
∑

r+s=ℓ1

(
ℓ1
r

)∫ 1
2

− 1
2

dτ1

∫
dν(1)dν(2)

τ2
2

(P̂∞
12 )r(P̃12)

s

=
∑

r+s=ℓ1

(
ℓ1
r

) ∫ 1

0
dν̂

(1)
2 dν̂

(2)
2 (P̂∞

12 )r

×
∑

m1,...,ms 6=0
k1···ks∈Z

δ(
∑

imi)δ(
∑

imiki)

4s|m1 · · ·ms|
e−2πτ2

P

i |mi||ki−ν̂
(12)
2 | .

A direct evaluation of the integrals using the identity

∫ 1

0
dx1

∫ x1

0
dx2f(x1 − x2) =

∫ 1

0
dx (1 − x) f(x) , (B.5)

with f(x) = (P̂∞(x))n exp(−2πτ2
∑

i |mi||ki −x|), and using the periodicity of the asymp-

totic propagator P̂∞(x), leads to

D
(0)
ℓ1

=
(πτ2

12

)ℓ1
2F1(1,−ℓ1, 3/2; 3/2) + (B.6)

+
2

4ℓ1

ℓ1−2∑

k=0

∑

k1+k2+k3=k

(−1)k2

6k3

ℓ1!(2k1 + k2)!

(ℓ1 − k)!k1!k2!k3!
(2πτ2)

k3−k1−1 ×

×S(ℓ1 − k, 2k1 + k2 + 1) +O(exp(−τ2)) ,
5In this section we use the condensed notation Pij = P(ν(ij)), P̂∞

ij = P̂
∞(ν(ij)) and P̃ij = P̃ (ν(ij)).
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where the sums S(m,n) are defined in (A.16) and evaluated in section A.3.2.

Now we will write down the power-behaved terms in the large τ2 expansion for some

particular cases. The first non-trivial case is D2 = Ê2. The next cases are D3, D4 (called

B2 and C4 in [4]). We will also need D5 and D6. Their zero-mode expansions are given by

D
(0)
2 =

1

(4π)2

[
2ζ(4)τ2

2 +
πζ(3)

τ2

]
(B.7)

D
(0)
3 =

1

(4π)3

[
2ζ(6)τ3

2 +π3ζ(3)+
3π

4

ζ(5)

τ2
2

]
+O(e−τ2) (B.8)

D
(0)
4 =

1

(4π)4

[
10ζ(8)τ4

2 +
2π5

3
ζ(3) τ2+

10π3ζ(5)

τ2
− 3π2ζ(3)2

τ2
2

+
9π

4

ζ(7)

τ3
2

]
+O(e−τ2) (B.9)

D
(0)
5 =

1

(4π)5

[
20ζ(10)τ5

2 +
10π7 ζ(3)

27
τ2
2 +

95π5 ζ(5)

6
(B.10)

+
900 ζ(4) ζ(3)2

τ2
+

105π3 ζ(7)

4 τ2
2

− 135 ζ(2) ζ(3) ζ(5)

τ3
2

+
225π ζ(9)

16 τ4
2

]
+O(e−τ2)

D
(0)
6 =

1

(4π)6

[
46375 ζ(12) τ6

2

691
+

5π9 τ3
2 ζ(3)

27
+2365 ζ(6) ζ(3)2+

140π7 ζ(5)

9
τ2 (B.11)

−3π5(34020ζ(4) ζ(3) + 42120 ζ(2) ζ(5) − 117115 ζ(7))

32 τ2
− 12150 ζ(4) ζ(3) ζ(5)

τ2
2

+
45π3 (2 ζ(3)3 − 14 ζ(3) ζ(6) + 9 ζ(9))

2 τ3
2

−
4050 ζ(2)

(
ζ(5)2 + 2 ζ(3) ζ(7)

)

8 τ4
2

+
4725π ζ(11)

32 τ5
2

]
+O(e−τ2)

It is notable that all the coefficients appearing in this expansion are products of zeta values

multiplied by rational coefficients. Thanks to this, the positive powers of τ2 in each D{ℓ}

function can be matched with a polynomial in Eisenstein series. We find

D2 = Ê2 (B.12)

D3 = Ê3 +
ζ(3)

64
+ Dfin

3 (B.13)

D4 = −30Ê4 + 15 Ê2
2 + Dfin

4 (B.14)

D5 = −375 Ê5 + 175 Ê2Ê3 +
155

12288
ζ(5) + Dfin

5 (B.15)

D6 = −8297625

691
Ê6 + 4900 Ê2

3 + 875Ê2Ê4 +
25

4096
ζ(3)2 + Dfin

6 (B.16)

where Dfin
ℓ1

is such that limτ2→∞ Dfin
ℓ1

= 0.

B.2 The three-vertex case

The three-vertex diagrams are associated with the functions Dℓ1,ℓ2,ℓ3 ≡ Dℓ1,ℓ2,ℓ3;0,0,0, which
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Figure 4: The two possible three-vertex diagrams, with ℓ1, ℓ2 and ℓ3 lines joining the vertices

defines Dℓ1,ℓ2,ℓ3 . Setting l3 = 0 in (b) reduces the figure to the product of two two-vertex diagrams

Dℓ1,ℓ2,∅ = Dℓ1 × Dℓ2 shown in (a).

has the form

Dℓ1,ℓ2,ℓ3 =
∑

(m
(j)
i ,n

(j)
i )6=(0,0)

∏

1≤r<s≤3

δ

(
lr∑

k=1

p
(r)
k −

ls∑

k=1

p
(s)
k

)
3∏

j=1

ℓj∏

i=1

1

4π

τ2

|m(j)
i + n

(j)
i τ |2

,

(B.17)

where p
(r)
k is the momentum of the kth line in the rth leg. Momentum conservation at each

vertex implies that when one set of integers is empty the diagram reduces to the product

of two two-vertex diagrams, Dℓ1,ℓ2,∅ = Dℓ1 × Dℓ2. Some particular cases are

D1,1,1 = Ê3 ,

D0,2,2 = Ê2
2 , (B.18)

D0,2,3 = D3 × Ê2 .

For the general case where all the ℓi are non zero we extract the zero mode contribution

as in the previous subsection by splitting the string propagator into its asymptotic part

and the finite part at large τ2. Starting with

D
(0)
ℓ1,ℓ2,ℓ3

=

∫ 1
2

− 1
2

dτ1

∫
dν(1)dν(2)dν(3)

τ3
2

Pℓ1
12Pℓ2

23Pℓ3
13 , (B.19)

where none of the integers ni is zero and splitting the propagator, we find the general

expression

D
(0)
ℓ1,ℓ2,ℓ3

=
∑

ℓi=ri+si

3∏

i=1

ℓi!

ri!si!

∫ 1

0
dν̂

(i)
2 (P̂∞

12 )r1(P̂∞
23 )r2(P̂∞

13 )r3 ×

×
∑

m
(ij)
i

k
(ij)
l

∏

1≤i<j≤3

δ(
∑

im
(ij)
i )

|m(ij)
1 | · · · |m(ij)

sij |
δ(
∑

i,j,lm
(ij)
l k

(ij)
l )

4s1+s2+s3
× (B.20)

×e−2πτ2
P

|m
(ij)
l

||k
(ij)
l

−ν̂
(ij)
2 | .

It is convenient to decompose this into different contributions:

D
(0)
ℓ1,ℓ2,ℓ3

= D∞
ℓ1,ℓ2,ℓ3 + D

(a)
ℓ1,ℓ2,ℓ3

+ D
(b)
ℓ1,ℓ2,ℓ3

+ D
(c)
ℓ1,ℓ2,ℓ3

+ D
(c)
ℓ2,ℓ1,ℓ3

+ D
(c)
ℓ3,ℓ2,ℓ1

(B.21)
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where D∞ represents the contribution where si = 0 for all i = 1, 2, 3, D(a) and D(b) represent

the cases where si ≥ 1 for all i = 1, 2, 3 and s1 = 0 with s2, s3 ≥ 2, and D(c) represents the

cases where s1 = s2 = 0, s3 ≥ 2. The resulting expressions involve sums of the form

S(s1, s2; s3;α, β) =
∑

(m1,m2,m3)

δ(
∑

j m
1
i −

∑
j m

2
j )δ(

∑
j m

1
i −

∑
j m

3
j)∏s1

j=1 |m1
j |
∏s2

j=1 |m2
j |
∏s3

j=1 |m3
j |

× 1

(|m1| + |m3|)α(|m2| + |m3|)β , (B.22)

where |mi| =
∑

j |mi
j |. This is not one of the expressions that we analyzed in the earlier

appendices.

For the term D∞
ℓ1,ℓ2,ℓ3 we find

D∞
ℓ1,ℓ2,ℓ3 = 2

(πτ2
2

)ℓ123 ∑

ai+bi+ci=ℓi

3∏

i=1

ℓi!

ai!bi!ci!

(−1)b123

6c123
(B.23)

× (2a2 + b2)!(2a3 + b3)!

(2(a2 + a3) + b2 + b3 + 1)!

1

(2a123 + b123 + 2)
,

where we are using the compact notation,

x123 = x1 + x2 + x3 , with x = a,b, c or n . (B.24)

When all s1, s2 and s3 are greater than 1, or s1 = 0 and s2 and s3 greater than 2 we have

D
(a)
ℓ1,ℓ2,ℓ3

=
2

4ℓ123

∑̂ 3∏

i=1

ri!

ai!bi!ci!

(−1)b123

6c123
(2πτ2)

c123−a123−2 ×

×(2a3 + b3)!l1!l2!

q1!q2!
S(s1, s2; s3; l1 + 1, l2 + 1) , (B.25)

where the summation is over

ℓi = ri + si , (B.26)

ri = ai + bi + ci , (B.27)

q1 + q2 = 2a3 + b3 , (B.28)

li = 2ai + bi + qi , (B.29)

and

D
(b)
ℓ1,ℓ2,ℓ3

=
2

4ℓ123

∑̂ 3∏

i=1

ri!

ai!bi!ci!

(−1)b123

6c123
(2πτ2)

c123−a123−2 (2a3 + b3)!

q1!q2!

×
[

l1∑

r=0

(−1)q2
l1!(l2 + r)!

r!
S(s3, s2; s1; l1 − r + 1, l2 + r + 1)

+ (1 ↔ 2)] (B.30)
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and when s1 ≥ 2 and s2 = s3 = 0 in (B.19)

D
(c)
ℓ1,ℓ2,ℓ3

=
2

4ℓ123

∑̂

s2=0
s3=0

3∏

i=1

ri!

ai!bi!ci!

(−1)b123

6c123
(2πτ2)

c123−a123−2 × (B.31)

×(−1)q2
(2a3 + b3)!

q1!q2!(l2 + 1)

[
(−1)b3 l1!S(s1, l1 + 1) (2πτ2)

l2+1

+ (1 − (−1)b3) (2a123 + b123 + 1)!S(s1, 2a123 + b123 + 2)
]
.

Substituting these expressions for D∞, D(a), D(b) and D(c) into (B.21) gives the expression

for Dℓ1,ℓ2ℓ3. This completes the general expression for the three-vertex diagrams. We

list a few explicit examples obtained by using the above general formulas and simplifying

the harmonic sums (B.22). Thankfully, the functions S(s1, s2, s3;α, β) that we have not

evaluated drop out, apart from the special cases α = β = 0 and α = β = 1, which are

simple to evaluate directly. The result for the zero mode expansion of the three vertex

functions is

D
(0)
1,1,1 =

1

(4π)3

(
2ζ(6)τ3

2 +
3π

4

ζ(5)

τ2
2

)
(B.32)

D
(0)
1,1,2 =

1

(4π)4

(
4

3
ζ(8) τ4

2 +
2ζ(4)ζ(3)

π
τ2 +

5π

2

ζ(2)ζ(3)

τ2

+

(
9

2
ζ(2)ζ(3)2 − 10ζ(8)

)
1

τ2
2

+
9π

16

ζ(7)

τ3
2

)
+O(e−τ2) (B.33)

D
(0)
1,1,3 =

1

(4π)5

(
42

5
ζ(10)τ5

2 + 21ζ(3)ζ(6) τ2
2 +

33π

2
ζ(4)ζ(5)

)
+O

(
1

τ2

)
(B.34)

D
(0)
1,2,2 =

1

(4π)5

(
8

5
ζ(10)τ5

2 + 4πζ(3)ζ(6) τ2
2 + 24πζ(4)ζ(5)

)
+O

(
1

τ2

)
(B.35)

D
(0)
1,1,4 =

1

(4π)6

(
9940

691
ζ(12)τ6

2 + 140πζ(3)ζ(8)τ3
2 +

525π

2
ζ(5)ζ(6)τ2

+
1449

2
ζ(3)2ζ(6) − 450450

691
ζ(12)

)
+O

(
1

τ2

)
(B.36)

D
(0)
2,2,2 =

1

(4π)6

(
10615

691
ζ(12)τ6

2 + 30πζ(3)ζ(8)τ3
2 + 177πζ(5)ζ(6)τ2

+945ζ(3)2ζ(6) − 1576575

1382
ζ(12)

)
+O

(
1

τ2

)
(B.37)

D
(0)
1,2,3 =

1

(4π)6

(
4470

691
ζ(12)τ6

2 + 30πζ(3)ζ(8)τ3
2 +

519π

4
ζ(5)ζ(6)τ2

+
63

2764
(33859ζ(3)2ζ(6) − 35750ζ(12))

)
+O

(
1

τ2

)
. (B.38)

The notation O(1/τ2) indicates the presence of terms that are suppressed by inverse powers

of τ2 that we have not calculated (and there are also exponentially suppressed terms which

are not evaluated).
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Figure 5: The three possible non-degenerate four-vertex diagrams. (a) defines Dℓ1,ℓ2,ℓ3,ℓ4 , (b)

defines Dℓ1,ℓ2,ℓ3,ℓ4;ℓ5 , (c) defines Dℓ1,ℓ2,ℓ3;ℓ4,ℓ5,ℓ6 .

As before, we can associate a quadratic function of Eisenstein series that reproduces

the positive powers of τ2 of these zero modes,

D1,1,1 = Ê3 (B.39)

D1,1,2 = −1

2
Ê4 +

1

2
Ê2

2 + Dfin
1,1,2 (B.40)

32D1,1,3 − 24D1,2,2 = −2592

5
Ê5 + 288 Ê2Ê3 −

11

1920
ζ(5) + 32Dfin

1,1,3 − 24Dfin
1,2,2 (B.41)

D1,1,4+D2,2,2−2D1,2,3 = −162575

691
Ê6 + 60 Ê2

3 + 55 Ê2Ê4 −
7

245760
ζ(3)2 (B.42)

+Dfin
1,1,4 + Dfin

2,2,2 − 2Dfin
1,2,3

B.3 The four-vertex case

The general four-vertex diagrams shown in figure 5 have between four and six non-zero

ℓk’s. We will begin by computing the general expression for the four-vertex function of

figure 5(a), in which ℓ5 = ℓ6 = 0 and ℓ1, ℓ2, ℓ3, ℓ4 are non-zero and arbitrary.

B.3.1 ℓ5 = ℓ6 = 0

In this case we define Dℓ1,ℓ2,ℓ3,ℓ4 ≡ Dℓ1,ℓ2,ℓ3,ℓ4;0,0, and each four-vertex diagram is the
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modular function

Dℓ1,ℓ2,ℓ3,ℓ4 ≡
∑

(m
(j)
i ,n

(j)
i )6=(0,0)

∏

1≤r<s≤4

δ

(
lr∑

k=1

p(r) −
ls∑

k=1

p
(s)
k

)
4∏

j=1

ℓj∏

i=1

1

4π

τ2

|m(j)
i + n

(j)
i τ |2

(B.43)

In the particular case where one of the ℓi is zero, say ℓ4 = 0, this reduces to a product of

three two-vertex functions, Dℓ1,ℓ2,ℓ3,0 = Dℓ1 × Dℓ2 × Dℓ3, as in figure 6(c), or Dℓ1 × Dℓ2 as

in 6(a).

For the general case where all the ℓi (i = 1, 2, 3, 4) are non zero we extract the zero

mode contribution as in the previous subsections. We write

D
(0)
ℓ1,ℓ2,ℓ3,ℓ4

=

∫ 1
2

− 1
2

dτ1

∫
dν(1)dν(2)dν(3)

τ3
2

Pℓ1
12Pℓ2

23Pℓ34
34 Pℓ4

14 (B.44)

with ν4 = 0. Then we have to compute the integrals

D
(0)
ℓ1,ℓ2,ℓ3,ℓ4

=
∑

ℓi=ri+si

4∏

i=1

ℓi!

ri!si!

∫ 1

0
dν̂

(i)
2 (P̂∞

12 )r1(P̂∞
23 )r2(P̂∞

34 )r3(P̂∞
14 )r4 ×

×
∑

m
(ij)
i

k
(ij)
l

∏

1≤i<j≤4

δ(
∑

im
(ij)
i )

|m(ij)
1 | · · · |m(ij)

sij |
δ(
∑

i,j,lm
(ij)
l k

(ij)
l )

4s1+s2+s3+s4
× (B.45)

×e−2πτ2
P

|m
(ij)
l

||k
(ij)
l

−ν̂
(ij)
2 |

The final result can be separated into five contributions:

D
(0)
ℓ1,ℓ2,ℓ3,ℓ4

= D∞
ℓ1,ℓ2,ℓ3,ℓ4 + D

(1)
ℓ1,ℓ2,ℓ3,ℓ4

+ D
(a)
ℓ1,ℓ2,ℓ3,ℓ4

+ D
(b)
ℓ1,ℓ2,ℓ3,ℓ4

+ D
(c)
ℓ1,ℓ2,ℓ3,ℓ4

(B.46)

where D∞ accounts for the case where si = 0 for all i = 1, 2, 3, 4; D(a) contains the case

where three si vanish; D(b) contains the case where two si, namely si and si+1, vanish;

D(c) contains the case where si and si+2 vanish; and D(1) contains all other contributions,

namely those where si ≥ 1 for all i = 1, 2, 3, 4 and those where one of the si is zero.

We are interested in the contributions which are not exponentially suppressed, which

means that the integration region includes points where
∑ |m(ij)

l ||k(ij)
l − ν̂

(ij)
2 | = 0. Note

that this is possible only if all k
(ij)
l , with a given (ij) are equal to each other, i.e. k

(ij)
l ≡

k(ij), for (ij) = 12, 23, 34 and 14. As a result, δ(
∑

i,j,lm
(ij)
l k

(ij)
l ) becomes proportional to

δ(
∑

im
(ij)
i ) so it gives no further restriction to the above sums in (B.46). Therefore, we have

to sum over four integers (k(12), k(23), k(34), k(14)). Since |ν̂(ij)
2 | ≤ 1, the only contributions

come from the terms with k(ij) = 0, 1,−1. In order to identify such contributions, it is

convenient to decompose the integrals into four contributions:

∫ 1

0

∫ 1

0

∫ 1

0
dν̂

(1)
2 dν̂

(2)
2 dν̂

(3)
2 =

∫ 1

0
dν̂

(1)
2

∫ ν̂
(1)
2

0
dν̂

(2)
2

∫ ν̂
(2)
2

0
dν̂

(3)
2 +

∫ 1

0
dν̂

(1)
2

∫ ν̂
(1)
2

0
dν̂

(2)
2

∫ 1

ν̂
(2)
2

dν̂
(3)
2

+

∫ 1

0
dν̂

(2)
2

∫ ν̂
(2)
2

0
dν̂

(1)
2

∫ ν̂
(2)
2

0
dν̂

(3)
2 +

∫ 1

0
dν̂

(2)
2

∫ ν̂
(2)
2

0
dν̂

(1)
2

∫ 1

ν̂
(2)
2

dν̂
(3)
2

≡ J1 + J2 + J3 + J4 (B.47)
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Now it is easy to recognize the possible contributions of (k(12), k(23), k(34), k(14)). For ex-

ample, for J1, the values of k(ij) which will give rise to contributions to the zero mode that

are not exponentially suppressed are (0, 0, 0, 0), (1, 1, 1, 1), (0, 0, 1, 1), (1, 0, 0, 1), (0, 1, 0, 1).

The next step is to consider each separate contribution and perform the integral. Com-

puting the integrals in all cases, we find an explicit expression for the general four-vertex

function. We will here omit the explicit expression since it is very cumbersome. The ex-

pression involves, in addition to the harmonic sums of the previous subsection S(m,n) and

S(s1, s2, s3;α, β), new harmonic sums that are given by

H1(s1, s2, s3, s4;α, β, γ) =
∑

(m1,m2,m3,m4)

δ(
∑

j m
1
i −

∑
j m

2
j) δ(

∑
j m

3
i −

∑
j m

4
j )

∏4
a=1

(∏sa

j=1 |ma
j |
)

× 1

(|m1| + |m4|)α(|m2| + |m4|)β(|m3| + |m4|)γ (B.48)

H2(s1, s2, s3, s4;α, β, γ) =
∑

(m1,m2,m3,m4)

δ(
∑

j m
1
i −

∑
j m

2
j) δ(

∑
j m

3
i −

∑
j m

4
j )

∏4
a=1

(∏sa

j=1 |ma
j |
)

× 1

(|m2| + |m3|)α(|m1| + |m4|)β(|m3| + |m4|)γ (B.49)

H3(s1, s2, s3, s4;α, β, γ) =
∑

(m1,m2,m3,m4)

δ(
∑

j m
1
i −

∑
j m

2
j) δ(

∑
j m

3
i −

∑
j m

4
j )

∏4
a=1

(∏sa

j=1 |ma
j |
)

× 1

(|m2| + |m4|)α(|m1| + |m2|)β(|m3| + |m4|)γ (B.50)

where |m1| =
∑

j |m12
j |, |m2| =

∑
j |m23

j |, |m3| =
∑

j |m34
j |, |m4| =

∑
j |m14

j |. In addition,

the result involves particular cases of these harmonic sums:

H0(s1, s2;α, β, γ) ≡ H3(0, 0, s1, s2;α, β, γ) = H3(0, s1, 0, s2; γ, α, β)

S0(s1, s2;α, β) ≡ S(0, s2, s1;α, β) (B.51)

Running a Mathematica program with the complete expression, we find the following large-

τ2 expansions for the zero modes,

D
(0)
1,1,1,1 =

1

(4π)4

(
2ζ(8)τ4

2 +
5πζ(7)

8τ3
2

)
(B.52)

D
(0)
1,1,1,2 =

1

(4π)5

(
6ζ(10)

5
τ5
2 + 2πζ(3)ζ(6)τ2

2 − 1

2
πζ(4)ζ(5)

+
21πζ(2)ζ(7)

8τ2
2

− 3ζ(2)ζ(3)ζ(5)

τ3
2

+
43πζ(9)

64τ4
2

)
+O(e−τ2) (B.53)

D
(0)
1,1,2,2 =

1

(4π)6

(
612

691
ζ(12)τ6

2 +
8π

3
ζ(3)ζ(8)τ3

2 −πζ(5)ζ(6)τ2+
7

12
ζ(3)2ζ(6)

)
+O

(
1

τ2

)
(B.54)

D
(0)
1,2,1,2 =

1

(4π)6

(
612

691
ζ(12)τ6

2 +
8π

3
ζ(3)ζ(8)τ3

2 −πζ(5)ζ(6)τ2+21ζ(3)2ζ(6)

)
+O

(
1

τ2

)
(B.55)

D
(0)
1,1,1,3 =

1

(4π)6

(
5625

691
ζ(12)τ6

2 +20πζ(3)ζ(8)τ3
2 −

15π

4
ζ(5)ζ(6)τ2+

63

4
ζ(3)2ζ(6)

)
+O

(
1

τ2

)
,

(B.56)
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From these expressions we can determine the expression quadratic in Êr’s that reproduces

the terms with positive powers of τ2, so that,

D1,1,1,1 = Ê4 (B.57)

D1,1,1,2 = −8

5
Ê5 + Ê2Ê3 + Dfin

1,1,1,2 (B.58)

D1,1,2,2 = −3658

2073
Ê6 −

1

3
Ê2

3 +
4

3
Ê2Ê4 +

ζ(3)2

184320
+ Dfin

1,1,2,2 (B.59)

D1,2,1,2 = −3658

2073
Ê6 −

1

3
Ê2

3 +
4

3
Ê2Ê4 +

ζ(3)2

184320
+ Dfin

1,2,1,2 (B.60)

D1,1,1,3 = −10415

691
Ê6 −

5

4
Ê2

3 + 10 Ê2Ê4 +
ζ(3)2

245760
+ Dfin

1,1,1,3 (B.61)

We saw in section 3 and in appendix A.2 that the constant part in the large τ2 expansion

is needed in order to determine the coefficient of sk R4 in the ten-dimensional theory.

In addition to the preceding results, which are needed in order to determine the co-

efficients of the terms up to order s6 R4 that are summarized in the main text, we have

also evaluated certain terms at higher order. For the vertex functions appearing in the

calculation of the genus-one coefficient of s7 R4 we find

D
(0)
1,1,1,4

∣∣∣
cste

= − 167

123863040
ζ(7); D

(0)
1,1,2,3

∣∣∣
cste

=
727

82575360
ζ(7); (B.62)

D
(0)
1,2,1,3

∣∣∣
cste

=
727

82575360
ζ(7); D

(0)
1,2,2,2

∣∣∣
cste

=
733

61931520
ζ(7)

For s8 R4, we find

D
(0)
1,1,1,5

∣∣∣
cste

=
223

49545216
ζ(3)ζ(5) , D

(0)
2,2,2,2

∣∣∣
cste

=− 173

15482880
ζ(3)ζ(5) (B.63)

D
(0)
1,2,1,4

∣∣∣
cste

= D
(0)
1,1,2,4

∣∣∣
cste

=− 199

61931520
ζ(3)ζ(5) , D

(0)
1,1,3,3

∣∣∣
cste

=− 69

9175040
ζ(3)ζ(5),

(B.64)

D
(0)
1,3,1,3

∣∣∣
cste

=− 449

55050240
ζ(3)ζ(5) , D

(0)
1,2,2,3

∣∣∣
cste

= D
(0)
2,1,2,3

∣∣∣
cste

=− 89

10321920
ζ(3)ζ(5).

(B.65)

These coefficients are strikingly simple — a rational number times ζ(3)ζ(5) — even though

they arise after summing a huge number of terms.

B.3.2 ℓ5 and/or ℓ6 6= 0

Let us now consider particular four-vertex diagrams where ℓ5 and/or ℓ6 are different from

zero. In some cases, they reduce to products of lower-point vertex diagrams, as in fig-

ure 6(d), given by Dℓ1ℓ2ℓ3 × Dℓ4.

More generally, the diagrams are those of figure 5(b) and figure 5(c). Although we

have not evaluated the D functions in these cases for arbitrary nonzero values of ℓr, we

have computed the positive powers of τ2 and the constant part in two special cases that
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are needed for evaluating terms of order sk R4 up to k = 6. One of these is the diagram in

figure 5(c) with all lr = 1, for which the zero mode is

D
(0)
1,1,1;1,1,1 =

1

(4π)6

(
138

691
ζ(12) τ6

2 + 6π ζ(5)ζ(6)τ2 +O(1/τ2)

)
, (B.66)

which leads to the expression

D1,1,1;1,1,1 = −2791

691
Ê6 + 2 Ê2

3 + Dfin
1,1,1;1,1,1 . (B.67)

The other special case that we have evaluated is that of figure 5(b) with ℓr = 1, for which

the zero mode is

D
(0)
1,1,1,1;1 =

1

(4π)5
4

5
ζ(10)τ5

2 +
ζ(5)

30720
+O(1/τ2) , (B.68)

which leads to

D1,1,1,1;1 =
2

5
Ê5 +

ζ(5)

30720
+ Dfin

1,1,1,1;1 . (B.69)

However, we will see in the next section that in order to determine j(0,2) we also need

to evaluate D1,1,1,1;2 and D1,1,1,2;1. These will be obtained by a slightly different procedure

in appendix D.

C. Diagrammatic expansion of the coefficients

We will here present the expansions (3.4) of the j(p,q)’s as linear combinations of D{ℓ}’s for

values of p and q up to order 2p + 3q = 8. We will also substitute the expressions derived

in the last section for D{ℓ} in terms of Eisenstein series that are used in evaluating the

coefficients in the ten-dimensional case and the large-τ2 power series expansions that are

needed for obtaining the r-dependent coefficients in the nine-dimensional case.

We will present the expressions for each j(p,q) function in the form

j(p,q) =
∑

{ℓ}

e
(p,q)
{ℓ} D{ℓ}

= P (p,q)({Êr}) + J (p,q) + δj(p,q) , (C.1)

where δj(p,q) decreases by at least a power of τ2 at large τ2. The first equality shows the

diagrammatic decomposition and the second equality shows how the positive powers of τ2
are incorporated in a quadratic form in Eisenstein series and will be appropriate for the

ten-dimensional calculations. Furthermore, substituting the expansions of D
(0)
{ℓ} derived in

the previous appendix into the first line of (C.1) gives the expressions contained in the

nine-dimensional case in (5.25).

The list of functions of interest to us is the following:

j(0,1) =
43

3!
(8D1,1,1 + 2D3)

=
43

3!

(
10Ê3 +

ζ(3)

32

)
+ δj(0,1) , (C.2)
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Figure 6: This figure shows all the degenerate four-vertex diagrams that reduce to products of

two-vertex and three-vertex diagrams.

where the D3 contribution6 is represented by the two-vertex diagram of figure 3 of ap-

pendix B.1 with ℓ1 = 2, and δj(0,1).

j(2,0) =
44

4!

(
9D2

2 + 6D1,1,1,1 + D4

)

=
44

4!

(
24Ê2

2 − 24Ê4

)
+ δj(2,0) , (C.3)

where D4 is the ℓ1 = 4 contribution to figure 3.

j(1,1) =
5

6

45

5!
(2D5 + 96D2D1,1,1 + 28D3D2 + 32D1,1,3 − 24D1,2,2 + 24D1,1,1,2 − 48D1,1,1,1;1)

=
5

6

45

5!

(
−9864

5
Ê5 + 1080Ê3Ê2 +

97

7680
ζ(5)

)
+ δj(1,1) , (C.4)

where Dℓ1,ℓ2ℓ3, Dℓ1,ℓ2ℓ3,ℓ4 and Dℓ1,ℓ2ℓ3,ℓ4;ℓ5 are defined by figure 4(b), figure 5(a) and fig-

ure 5(b), respectively.

j(3,0) =
46

6!

(
−5D2

3 +
45

2
D2 D4 + 45D3

1,1,1 +
1

2
D6 + 60D1,1,1,3 − 90D1,1,2,2 + 45D1,2,1,2

)

=
46

6!

(
−9501120

691
Ê6 + 3960Ê2

3 + 2880 Ê2Ê4 +
3

512
ζ(3)2

)
+ δj(3,0) . (C.5)

6In [4] D3 was denoted B2.
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j(0,2) =
46

6!

(
2

3
D6 +

100

3
D2

3 − 10D2D4 − 20D3
2 + 160D1,1,1D3

+ 40(D2,2,2 + D1,1,4 − 2D1,2,3) − 20(3D1,2,1,2 − 12D1,1,2,2 + 4D1,1,1,3)

+ 80D1,1,1;1,1,1 + 240(D1,1,1,1;2 − 2D1,1,1,2;1)

)

=
46

6!

(
− 12345120

691
Ê6 + 5040 Ê2

3 + 3840 Ê2Ê4 +
61

6144
ζ(3)2

)
+ δj(0,2) ,

(C.6)

where Dℓ1,ℓ2ℓ3,ℓ4;ℓ5,ℓ6 is defined by figure 5(c)

All of the D functions that arise in these expressions were evaluated in appendix B

apart from D1,1,1,1;2 and D1,1,1,2;1, which will be determined by a different procedure in

appendix D.

We also note the sum of diagrams that arise at the next two orders, even though we

will not evaluate the D functions that arise in these cases in this paper. The coefficient

multiplying σ̂2
2 σ̂3 R4 is given by

j(2,1) =
47

7!

2 · 45

33 · 5

(
24D1,1,5 − 60D1,2,4 + 40D1,3,3 + 90D1,1,1,4 − 120D1,1,2,3 + 180D1,2,1,3

−90D1,2,2,2 + 30D2(16D1,1,3 − 12D1,2,2 + 5D2D3) + 120D1,1,1D4

+25D3D4 + 39D2D5 + D7 − 480D1,1,1,3;1

+360(D1,1,2,2;1 − D1,2,1,2;1 + D1,2,2,1;1)

)
. (C.7)

The coefficient multiplying σ̂4
2R

4 is given by

j(4,0) =
48

8!

128

135

(
D8 + 84D2D6 − 56D3D5 + 105D2

4 + 1260D2
2D4 − 560D2D

2
3

+ 336D1,1,1,5 − 1680D1,1,2,4 + 1120D1,1,3,3 + 840D1,2,1,4

− 3360D1,2,2,3 + 560D1,3,1,3 + 1680D2,1,2,3 + 630D2,2,2,2

)
.

(C.8)

The coefficient multiplying σ̂2σ̂
2
3 R4 is

j(1,2) =
48

8!

128

135

(
D8 + 700D2 D2

3 − 420D2
2 D4 − 35D2

4 + 420D1,1,1 D5 + 154D3 D5

+ 14D2 D6 + 1680D3 D1,1,3 + 1260D2 D1,1,4 + 70D1,1,6

− 1260D3 D1,2,2 − 2520D2 D1,2,3

− 210D1,2,5 + 70D1,3,4 + 1260D2 D2,2,2 + 210D2,2,4

− 140D2,3,3 − 84D1,1,1,5 + 1470D1,1,2,4 − 1120D1,1,3,3

− 210D1,2,1,4 + 2940D1,2,2,3 − 140D1,3,1,3 − 1680D2,1,2,3

− 630D2,2,2,2 + 420D1,1,1,1;4 − 1680D1,1,1,2;3 − 1260D1,2,2,1;2

+ 3360D1,1,1,3;2 − 2100D1,1,1,4;1 − 1260D1,1,2,2;2 + 840D1,1,2,3;1

+ 2520D1,2,1,2;2 − 4200D1,2,1,3;1 + 1260D1,2,2,2;1 + 840D1,2,3,1;1

+ 1680D1,1,3;1,1,1 + 1260D2,1,2;1,1,1 − 2520D2,2,1;1,1,1

)

(C.9)
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All the D’s in the last two equations have been evaluated apart from Dℓ1,ℓ2,ℓ3;ℓ4,ℓ5,ℓ6 and

Dℓ1,ℓ2,ℓ3;ℓ4,ℓ5,ℓ6 with all ℓk’s 6= 0. These coefficients that have not been evaluated arise from

the ‘Mercedes’ diagram, figure 5(c).

D. The zero mode of Dℓ1,...,ℓ6 by another method

The calculations of appendix B become very difficult at relatively low orders, as is evident

from the fact that we did not evaluate certain D functions that were needed in order to

determine j(0,2) in (B). Here we will here present an alternative method for evaluating

these functions, even though this also has technical difficulties.

The different diagrams that arise in the low energy expansion can be computed by

using the representation (2.13) of the propagator. We proceed by considering the following

generalization of the D functions,

Cs1,s2,...,sN+1
=

∑

(mi,ni)6=(0,0)

N+1∏

i=1

τ si

2

|mi + niτ |2si
δ

(∑

k

mk

)
δ

(∑

k

nk

)
, (D.1)

where si are integers and the sum over k involves a subset of the {mi, ni}, according to

the topology of the diagram, which needs to be specified in order to define this expression

completely. Certain special cases of these functions correspond to certain D functions. For

example,

D3 =
1

(4π)3
C1,1,1 , D1,1,1,1;1 =

1

(4π)5
C2,2,1 (D.2)

(although information on the topology of the diagram needs to be specified in completely

defining the function C2,2,1).

D.1 Leading and subleading powers of τ2

We will start by determining the first two terms in the expansion of (D.1) at large τ2. To

illustrate the method, we start with a particular example,

Cs1,s2,s3 =
∑

(m1,n1) 6=(0,0)
(m2,n2) 6=(0,0)

τ s1+s2+s3
2

|m1 + n1τ |2s1 |m2 + n2τ |2s2 |m1 +m2 + (n1 + n2)τ |2s3
. (D.3)

The zero mode expansion has the general form

C(0)
s1,s2,s3

= as1s2s3 τ
s1+s2+s3
2 + b1s1s2s3

τ1+s1−s2−s3
2 + b2s1s2s3

τ1+s2−s1−s3
2

+b3s1s2s3
τ1+s3−s1−s2
2 + · · · + cs1s2s3 τ

1−s1−s2−s3
2 +O

(
exp(−cτ2)

)
. (D.4)

So we begin by computing as1s2s3 and bis1s2s3
.

The leading term comes by setting n1 = n2 = 0 in the sums. This gives

as1s2s3 =
∑

m1,m2

′ 1

|m1|2s1 |m2|2s2|m1 +m2|2s3

= 2W (2s1, 2s2, 2s3) + 2W (2s2, 2s3, 2s1) + 2W (2s3, 2s1, 2s2) , (D.5)
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where
∑′

m1,m2
excludes m1m2(m1 + m2) = 0 and W (a, b, c) is the Witten zeta-function

of (A.33) whose values are tabulated using the methods of the appendix A.3 . For example,

one gets a1,1,1 = 2ζ(6).

The term with coefficient bis1s2s3
comes from ni = 0 (where we define n3 = n1 + n2).

Consider in particular the contribution with n1 = 0. This is given by

V 1
s1s2s3

≡
∑

m1,n2 6=0

∑

m2

τ s1+s2+s3
2

|m1|2s1 |m2 + n2τ |2s2 |m1 +m2 + n2τ |2s3
. (D.6)

Applying the Poisson resummation formula for the summation over m2 gives

V 1
s1s2s3

=
∑

m1,n2 6=0

∑

w

τ s1+s2+s3
2

|m1|2s1

∫ +∞

−∞
dµ

e2πiw(µ−n2τ1)

|µ+ in2τ2|2s2 |m1 + µ+ in2τ2|2s3
. (D.7)

Now the only dependence on τ1 is in the factor e−2πiwn2τ1 . The zero mode is independent

of τ1, so it arises from the w = 0 term in the sum. Introducing a new integration variable

ν = µ/(n2τ2) leads to

V 1
s1s2s3

∣∣∣∣
pert

=
∑

m1,n2 6=0

τ1+s1−s2−s3
2

|m1|2s1 |n2|2s2+2s3−1

∫ +∞

−∞
dν

1

(ν2 + 1)s2((ν + m1
n2τ2

)2 + 1)s3
. (D.8)

We now consider the limit of large τ2. When the sum over m1 of 1/|m1|2s1 is convergent

(i.e. s1 >
1
2 ) the leading term of the expansion of the integrand in powers of 1/τ2 is finite.

For the leading term the integral reduces to

∫ +∞

−∞
dν

1

(ν2 + 1)s2+s3
=

√
πΓ(s2 + s3 − 1

2 )

Γ(s2 + s3)
,

so

V 1
s1s2s3

∣∣∣∣
pert

= τ1+s1−s2−s3
2 2ζ(2s1)2ζ(2s2 + 2s3 − 1)

√
πΓ(s2 + s3 − 1

2)

Γ(s2 + s3)
. (D.9)

Therefore

b1s1s2s3
=

4
√
πΓ(s2 + s3 − 1

2 )

Γ(s2 + s3)
ζ(2s1)ζ(2s2 + 2s3 − 1) . (D.10)

As a check, we now compare with the expansions that were calculated earlier. For D
(0)
3 ,

we find

(4π)3 D
(0)
3 = C

(0)
1,1,1 = 2ζ(6)τ3

2 + π3ζ(3) +O(τ−2
2 ) , (D.11)

in agreement with the expansion given in section B.1. We have multiplied b11,1,1 by

3 since there are three identical subleading contributions bi1,1,1, i = 1, 2, 3. Similarly,

we reproduce the leading and subleading terms of the diagrams D1,1,1,2 = C1,1,3/(4π)5,

D1,1,1,1;1 = C2,2,1/(4π)5.

We now turn to consider the more general modular function given by (D.1). The

expansion now has the form

Cs1,s2,...,sN+1
= as1,...,sN+1

τ
s1+···+sN+1

2 + bijs1,...,sN+1
τ

1+s1+···−si−sj+···+sN+1

2 + · · · , (D.12)
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where

as1,...,sN+1
=

∑

m1,...,mN

′ 1

|m1|2s1 · · · |mN |2sN |m1 + · · · +mN |2sN+1
. (D.13)

The second term arises by setting to zero all nk except ni and nj (with the understanding

that nN+1 ≡
∑

k nk). The corresponding contribution V i,j is the following one:

V N,N+1
s1,...,sN+1

≡
∑

mi 6=0,i<N

nN 6=0

∑

mN

τ
s1+···+sN+1

2

|m1|2s1 · · · |mN−1|2sN−1 |mN +nNτ |2sN |m1+· · ·+mN +nNτ |2sN+1

(D.14)

Performing a Poisson resummation in mN we arrive at

V N,N+1
s1,...,sN+1

∣∣∣∣
pert

=
∑

m1,,...,,mN−1 6=0

∑

nN 6=0

τ
1+s1+···+sN−1−sN−sN+1

2 J

|m1|2s1 · · · |mN−1|2sN−1 |nN |2sN+2sN+1−1
, (D.15)

J =

∫ +∞

−∞
dν

1

(ν2 + 1)sN

(
(ν + 1

n2τ2
(m1 + · · · +mN−1))2 + 1

)sN+1
.

Now we would like to extract the leading term in the expansion in powers of 1/τ2 of J .

When s1, . . . , sN−1 > 1/2, the sums over mi of 1/|mi|2si are convergent and the leading

term is simply obtained by setting τ2 = ∞ inside the integral. This gives

J =

√
π Γ(sN + sN+1 − 1

2)

Γ(sN + sN+1)
,

so that

bN,N+1
s1,...,sN+1

=
2N√

π Γ(sN + sN+1 − 1
2 )

Γ(sN + sN+1)
ζ(2s1) · · · ζ(2sN−1)ζ(2sN + 2sN+1 − 1) . (D.16)

Applying (D.13) and (D.16), we reproduce the first two terms in the expansion of D
(0)
4

given in section B.1.

(4π)4D
(0)
4 = C

(0)
1,1,1,1 = 10ζ(8)τ4

2 +
2π5

3
ζ(3)τ2 + · · · (D.17)

We have included a combinatorial factor 4!/2!2! multiplying the subleading term, which

counts the number of identical subleading terms obtained by setting different ni to zero.

Similarly, we reproduce the first two terms in the expansion of D5 = C1,1,1,1,1/(4π)5 and

D1,1,3 = C1,1,1,2/(4π)5 (where the precise definition of these C functions requires a specifi-

cation of the topology of the diagram in addition to the values of the integers si).

The method outlined in this subsection is particularly useful for diagrams that cor-

respond to D functions of the general form D
(0)
ℓ1,ℓ2,ℓ3;ℓ4,ℓ5,ℓ6

where five or six of the ℓi are

different from zero, for which we did not derive the general formula in section B. As an

application we compute the first two terms in the expansion of D
(0)
1,1,1;1,1,1, defined as the

zero τ1 mode of

D1,1,1;1,1,1 =
1

(4π)6

∑

mi,ni

′ τ6
2

|m1 + n1τ |2|m2 + n2τ |2|m3 + n3τ |2|m1 +m2 + (n1 + n2)τ |2

× 1

|m1 +m3 + (n1 + n3)τ |2|m1 +m2 +m3 + (n1 + n2 + n3)τ |2
. (D.18)
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The expansion of the zero τ1 mode has the form

D
(0)
1,1,1;1,1,1 =

1

(4π)6

(
aτ6

2 + bτ2 +O(τ−1
2 )
)
. (D.19)

The leading term arises by setting all ni = 0, giving the sum

a =
∑

m1,m2,m3

′ 1

m2
1m

2
2m

2
3(m1 −m2)2(m1 −m3)2(m1 −m2 −m3)2

. (D.20)

The symbol
∑′ indicates that the sum does not contain those mi where the denominator

vanishes. Computing this sum gives

a =
138

691
ζ(12) . (D.21)

The subleading term arises from four identical sums, in which: a) n1 = n2 = 0; b) n1 =

n3 = 0; c) n1 = n3, n2 = 0; d) n1 = n2, n3 = 0. Following the above procedure for case a)

we perform a Poisson resummation on m3, leading to the result

b = 4
∑

m1,m2,n3

′ 1

m2
1m

2
2(m1 −m2)2

1

(n3)5

∫ +∞

−∞
dν

1

(ν2 + 1)3
= 6π ζ(6)ζ(5) . (D.22)

D.2 Systematic large-τ2 expansion

We return to the general modular function (D.1). The power-behaved terms of the zero

mode expansion are τ
s1+s2+···+sN+1

2 , . . . , τ
1−s1−s2−···−sN+1

2 . In order to obtain the coeffi-

cients of these terms one proceeds as follows. The different contributions can be organized

in terms of the different subsets {nk} where all nk are zero (the most suppressed contribu-

tion is the one where none of the ni vanishes). These subsets can easily be visualized by

considering a graphical representation of the modular function (see figure 5) and remove

propagator lines in all possible ways leaving diagrams containing closed loops only. For

example, in figure 5(a) one could cut all propagators in ℓ4 setting n1 = · · · = nℓ4 = 0, as

long as ℓ1,3 ≥ 2 and ℓ2 is either zero or ℓ2 ≥ 2, so that only closed loops remain in the

diagram. For a given subset {nk} of vanishing nk, one performs Poisson resummation in

all remaining mi variables with i 6= k. The resulting integral is then computed explicitly.

The next step is to perform the remaining summations explicitly. This step becomes more

complicated in diagrams with a large number of propagator lines. In this step one can drop

contributions which are exponentially suppressed at large τ2.

As an example, we come back to (D.8) with s1 = s2 = s3 = 1. Using

∫ +∞

−∞
dν

1

(ν2 + 1)((ν + a)2 + 1)
=

2π

4 + a2
, (D.23)

we find

V 1
111 = 2π

∑

m1,n2 6=0

1

m2
1|n2|

τ2
2

4n2
2τ

2
2 +m2

1

. (D.24)
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Now use
∑

m1 6=0

τ2
2

m2
1(4n

2
2τ

2
2 +m2

1)
=

π2

12n2
2

+
1

16n4
2τ

2
2

− π

8n3
2τ2

coth(2n2πτ2) . (D.25)

Noting that n−3
2 coth(2n2πτ2) → |n2|−3, modulo exponentially suppressed terms, as τ2 →

∞, it is straightforward to perform the remaining sum over n2, giving zeta values. Adding

the multiplicity factor 3 and the leading τ3
2 term, we obtain

(4π)3 D
(0)
3 = C

(0)
1,1,1 = 2ζ(6)τ3

2 + π3ζ(3) − π6

60τ2
+

3πζ(5)

4τ2
2

+ V ′
111 , (D.26)

where V ′
111 represents the contribution where none of the ni vanishes. This is computed as

follows. By performing Poisson resummation in m1 and m2 we find

V ′
111 =

∑

n1,n2

′

∫ +∞

−∞
dµ1dµ2

τ3
2

|µ1+in1τ2|2|µ2+in2τ2|2|µ1+µ2+i(n1+n2)τ2|2
+O(exp(−2πτ2)) .

(D.27)

Introducing new integration variables µ1 = ν1|n1|τ2 and µ2 = ν2|n2|τ2 and computing the

integrals, we find

V ′
111 =

π2

τ2
S(3, 1) =

3π2

2τ2
ζ(4) =

π6

60τ2
, (D.28)

where S(m,n) is defined in (A.16) and we have used (A.22). Thus V ′
111 cancels the similar

contribution in (D.26). The final result reproduces (B.8) obtained by using the asymptotic

form of the propagator.

We now calculate the first terms in the expansion of D1,1,1,1;2 and D1,1,1,2;1, which are

given by

D1,1,1,1;2 =
∑

m1,m2,m3
n1,n2,n3

τ6
2

|m1+n1τ |4|m2+n2τ |4|m3+n3τ |2|m1+m2+m3+(n1+n2+n3)τ |2
,

(D.29)

and

D1,1,1,2;1 =
∑

m1,m2,m3
n1,n2,n3

τ6
2

|m1 + n1τ |4|m2 + n2τ |2|m3 + n3τ |2

× 1

|m1 +m2 + (n1 + n2)τ |2|m2 +m3 + (n2 + n3)τ |2
. (D.30)

The leading term is of order τ6
2 and arises from the contribution with n1 = n2 = n3 = 0.

There are various contributions according to which ni are zero. Our aim is to compute the

expansion up to the term constant in τ2. Keeping only these contributions, we find

(4π)6 D1,1,1,1;2 =
5047ζ(12)

691
τ6
2 + V12 + 4V13 + 2V1 +O(τ−1

2 )

(4π)6 D1,1,1,2;1 =
802ζ(12)

691
τ6
2 + Ṽ12 + 2Ṽ13 + Ṽ23 + Ṽ1 +O(τ−1

2 ) (D.31)
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Here Vij indicates the contribution with ni = nj = 0 and Vi the contribution with ni = 0.

To compute the leading term of order τ6
2 we have used (for m1 6= 0)

∑

m2

′ 1

(m1 +m2)2m2
2

=
4ζ(2)

m2
1

− 6

m4
1

∑

m2

′ 1

(m1 +m2)4m
2
2

=
2ζ(4)

m2
1

+
8ζ(2)

m4
1

− 15

m6
1

∑

m2

′ 1

(m1 +m2)4m
4
2

=
4ζ(4)

m4
1

+
40ζ(2)

m6
1

− 70

m8
1

(D.32)

Next, for each Vij, Ṽij we perform Poisson resummation in the mk with k 6= i, j and

integrate over the resulting continuous variable νk. We find

V12 = 2π
∑

m1,m2,n3

τ5
2

m4
1m

4
2|n3|

1

4n2
3τ

2
2 + (m1 +m2)2

V13 =
π

2

∑

m1,m3,n2

τ3
2

m4
1m

2
3|n2|3

12n2
2τ

2
2 + (m1 −m3)

2

(4n2
2τ

2
2 + (m1 −m3)2)2

Ṽ12 = 2π
∑

m1,m2,n3

τ5
2

m4
1m

2
2(m1 −m2)2|n3|

1

4n2
3τ

2
2 +m2

2

Ṽ13 = 2π
∑

m1,m3,n2

τ5
2

m4
1m

2
3|n2|

m2
1 +m2

3 −m1m3 + 12n2
2τ

2
2

(4n2
2τ

2
2 +m2

1)(4n
2
2τ

2
2 +m2

3)(4n
2
2τ

2
2 + (m1 −m3)2)

Ṽ23 =
π

2

∑

m2,m3,n1

τ3
2

(m2 −m3)2m2
2m

2
3|n1|3

12n2
1τ

2
2 +m2

2

(4n2
1τ

2
2 +m2

2)
2

(D.33)

Using the identities (D.32) we find

V12 =
14π

3
ζ(8)ζ(3)τ3

2 − 7π

2
ζ(5)τ2 +

π6

180
ζ(6) +O(τ−1

2 )

V13 =
21π

4
ζ(5)τ2 −

π6

90
ζ(6) +O(τ−1

2 )

Ṽ12 =
4π

3
ζ(8)ζ(3)τ3

2 − 5π

4
ζ(5)τ2 +

π6

360
ζ(6) +O(τ−1

2 )

Ṽ13 =
21π

4
ζ(5)τ2 −

π6

90
ζ(6) +O(τ−1

2 )

Ṽ23 =
3π

2
ζ(5)τ2 +O(τ−1

2 ) (D.34)

To compute the contribution V1 we Poisson resum the integers m2 and m3. This gives

V1 =
∑

m1,n2,n3

τ6
2

m4
1

∫ +∞

−∞
dµ2dµ3

1

|µ2 + in2τ2|4µ3 + in3τ2|2|m1 + µ2 − µ3 + i(n2 − n3)τ2|2
(D.35)
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where we have dropped exponentially suppressed terms. After introducing ν2,3 integration

variables by µ2,3 = ν2,3|n2,3|τ2 we get

V1 =
∑

m1,n2,n3

1

m4
1|n2|3|n3|

∫ +∞

−∞
dν2dν3

1

(ν2
2 +1)2(ν2

3 +1)((m1
τ2

+ν2|n2|−ν3|n3|)2+(n2−n3)2)

(D.36)

Since we are interested in the leading term O(τ0
2 ) we can set m1 = 0 in the integrand.

The sum over m1 then gives 2ζ(4). Computing the integrals, one finds sums which can be

reduced to Witten zeta functions. The final result is

V1 =
7π6

360
− π6

180
ζ(3)2 (D.37)

Similarly, we find Ṽ1 = V1.

To summarize, we have found

D1,1,1,1;2 =
5047ζ(12)

(4π)6 691
τ6
2 +

14πζ(8)ζ(3)

(4π)6 3
τ3
2 +

35πζ(6)ζ(5)

(4π)6 2
τ2 −

2ζ(6)ζ(3)2

(4π)6 21
+O(τ−1

2 )

= −27965

2073
Ê6 +

35

6
Ê2

3 +
7

3
Ê2Ê4 −

2ζ(6)ζ(3)2

(4π)6 21
+ Dfin

1,1,1,1;2

D1,1,1,2;1 =
802ζ(12)

(4π)6 691
τ6
2 +

4πζ(8)ζ(3)

(4π)6 3
τ3
2 +

43πζ(6)ζ(5)

(4π)6 4
τ2 −

ζ(6)ζ(3)2

(4π)6 21
+O(τ−1

2 )

= −3435

691
Ê6 +

43

12
Ê2

3 +
2

3
Ê2Ê4 −

ζ(6)ζ(3)2

(4π)6 21
+ Dfin

1,1,1,2;1 (D.38)

The results (D.38), together with (D.19), (D.21), (D.22) are used in (C.6) — combined with

the other vertex functions found earlier — to find the corresponding σ̂2
3 terms in (5.25).

E. Phase-space integrals for two-particle unitarity

We will here evaluate the phase-space integrals that arise in the unitarity analysis of sec-

tion 4.1. This will involve a number of basic integrals that result from expanding the

tree amplitudes in (4.2) in powers of σ̂′2 = (α′/4)2 (s2 + t′2 + u′2), σ̂′3 = (α′/4)3 3st′u′,

σ̂′′2 = (α′/4)2 (s2 + t′′2 + u′′2) and σ̂′′3 = (α′/4)3 3st′′u′′, where t′ u′, t′′, u′′ are defined in

terms of the internal and external momenta in (4.9). This leads to integrals of the general

form

S(a, b, c, d) =

∫
d10k δ(+)(k2) δ(+)((p1 + p2 − k)2) (t′)a−1 (u′)b−1 (t′′)c−1(u′′)d−1 , (E.1)

where a, b, c, d are integers.

The δ(+) functions impose the mass-shell conditions. If we choose the centre of mass

frame in which qµ = pµ
1 + pµ

2 = (s
1
2 ,~09) (where ~0k is the k-dimensional zero vector) we can

write

δ(+)((q − k)2) =
1

2s
δ

(
k0 − 1

2
s

1
2

)
, δ(+)(k2) =

1

s
δ(k0 − |~k|) . (E.2)
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so that kµ has the form

kµ = (k0, ~k) =
s

1
2

2
(1, ~n9) , (E.3)

where ~n9 is the unit nine-vector. The integral (E.1) may be evaluated by choosing the

momenta, which satisfy the on-shell masslessness condition, to take the following form,

pµ
1 =

s
1
2

2
(1, 1 ,~08) pµ

2 =
s

1
2

2
(1, −1 ,~08)

pµ
3 =

s
1
2

2
(−1, cos ρ, sin ρ, ~07) , pµ

4 =
s

1
2

2
(−1, − cos ρ, − sin ρ, ~07)

kµ =
s

1
2

2
(1, cos θ, sin θ cosφ, sin θ sinφ~n7) , (E.4)

where ~n7 is the unit seven-vector and the scattering angle, ρ, is given by

cos ρ =
t− u

s
. (E.5)

Changing variables from ki (i = 1, . . . , 9) to θ, φ, ~n7, the measure of integration becomes

d10k δ(+)((q − k)2) δ(+)(k2) =
s3

26
(sin θ)7 (sinφ)6 dθ dφ d7~n7 δ(~n

2
7 − 1) . (E.6)

In this parametrization we have

t′ = 2p1 · k = −s
2

(1 − cos θ) , t′′ = −2p4 · k = −s
2

(1 + cos θ cos ρ+ sin θ cosφ sin ρ) ,

u′ = 2p2 · k = −s
2

(1 + cos θ) , u′′ = −2p3 · k = −s
2

(1 − cos θ cos ρ− sin θ cosφ sin ρ) .

(E.7)

The integral over the seven dimensional unit vector ~n7 gives an overall factor of the volume

of the six-dimensional sphere vol(S6) = 16π3/15.

Substituting the term of order ζ(3)R4 introduces a factor of st′′u′′ into one of the tree

amplitudes on the right-hand side of (4.2), with the lowest order term in the other, leading

to an integral of the form (E.1) with a = b = 0 and c = d = 1,

S(0, 0, 1, 1) = 2ζ(4) s , (E.8)

which determines the coefficient of the threshold terms of order α′4 s4 log(−s/µ4).

Similarly, substituting the expansion of one tree-level amplitude at order ζ(5) σ̂2 R4

and the lowest order term in the other in (4.2) leads to an integral of the form (E.1) with

a = b = 0 and c = d = 2,

S(0, 0, 3, 1) =
ζ(4)

56
s (31 s2 + (t− u)2) , (E.9)

which determines the coefficient of the threshold terms of order α′6 s6 log(−s/µ6).
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