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Abstract. We find an analytic solution of the Bethe Ansatz equations for the special case of afinite
XXZ spin chain with free boundary conditions and with a complex surface field which provides
for U, (sl(2)) symmetry of the Hamiltonian. More precisely, we find one nontrivial solution,
corresponding to the ground state of the system with anisotropy para::nete% corresponding

tog® = —1.

It is widely accepted that the Bethe Ansatz equations (BAE) for an integrable quantum spin
chain can be solved analytically only in the thermodynamic limit or for a small number of spin
waves or short chains. In this letter, however, we have managed to find a special solution of
the BAE for a spin chain of arbitrary lengit with % spin waves.

Itis well known (see, for example [1] and references therein) that there is a correspondence
between the-state Potts models and the ice-type models with anisotropy para;hete}é—g
The coincidence in the spectrum of Ansite self-dualQ-state quantum Potts chain with free
ends with a part of the spectrum of thg(s/(2)) symmetrical 2V-site XXZ Hamiltonian (1)
is to some extent a manifestation of this correspondence:

N-1 —1

qtq q9—d9

Hxxz = Z {GII O'n+1 + Oy Un+l 4 Un Un+l + 4 (U; - Urf+1)} (l)
n=1

whereA = (g +¢~1)/2. This Hamiltonian was considered by Alcaraizal [1] and its
U, (s1(2)) symmetry was described by Pasqgier and Saleur [2]. The family of commuting
transfer matrices that commute wifth,,, was constructed by Sklyanin [3] incorporating a
method of Cherednik [4].

Baxter'sT-Qequation for the case under consideration can be written as [5]

1@ QW) = ¢ (u+2) Qw—m+¢ (u—7) Qw+n) )

whereq = expin, ¢(u) = sm 2usitN u andt(u) =sin2uT (u). The Q(u) are elgenvalues
of Baxter’s auxilary matrle(u) whereQ(u) commutes with the transfer matﬂS((u) The

* Dedicated to Rodney Baxter on the occasion of his 60th birhday.
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eigenvalueQ («) corresponding to an eigenvector withh = % — S, reversed spins has the
form

M
o) = ]—[ SiN(u — u,,) SIN(U + 1,,).
m=1

Equation (2) is equivalent to the BAE [6]

sinug +n/2) T _ 1 SiNGu =+ 0) SN + 1 + 1)
|:Sin(“k - 77/2)} B H sin(ug — w, — n) SiN(uy +uy, — 1)’

In a recent article [7] Belavin and Stroganov argued that the criteria for the above-
mentioned correspondence is the existence of a second trigonometric solution for Baxter’'s
T-Qequation and it was shown that in the case= 7 the spectrum off,,, contains the
spectrum of the Ising model. In this letter we limit ourselves to the gase;. This case is
in some sense trivial since for this valueigfH,,, corresponds to the one-state Potts model.
We find only one eigenvalug(«) of the transfer matrice® () when Baxter’s equation (2)
has two independent trigonometric solutions. Solvingffés) = To(x) analytically we find
a trigonometric polynomiaDo(u), the zeros of which satisfy the BAE (3). The number of
spin waves is equal t&f = % The corresponding eigenstate is the ground stafé, of with
eigenvalueE, = %(1 — N), as numerically discovered by Alcararzal [1].

When does a second independent periodic solution exist? This question was considered
in [7]. Here we use a variation more convenient for our goal (see also [8]).

Let us consider thd-Q equation (2) forp = 7, whereL > 3 is an integer. Let us
fix a sequence of spectral parameter valugs= vg + nk, wherek are integers and write
o = (v — n/2), Or = Q(v) andy, = t(vy). The functionsp (), Q(u) andr(u) are
periodic with periodr. Consequently, the sequences we have introduced are also periodic
with periodL, i.e.,¢r+r = ¢, etc.

Settingu = v, in (2) gives the linear system

1Ok = Pr+1Qk—1 + P Q1. (4)

The matrix of coefficients for this system has a tridiagonal form. Taking Z*, wherem is
an integer, we have, = 0 for all k.

It is straightforward to calculate the determinant of the- 2 x L — 2 minor obtained
by deleting the two left-most columns and two lower-most rows. It is equal to the product
—¢f¢2¢3 ...¢r_1, which is nonzero, hence the rank &f cannot be less thah — 2. Here
we are interested in the case when the rankia$ preciselyL — 2 and we have two linearly
independent solutions for equation (4). Let us consider the three simplesticas8s4 and
5. The parametey is equal tog, 7 andz respectively.

®3)

m#k

For L = 3 the rank ofM is unity and we immediately gey = —¢,, 1 = —¢o and
t, = —¢1. Returning to the functional form, we can write
f —pu+%
To(u) = ow) _ —Pt3) = cosV u. (5)

Cosinze . sin2u
This is the unique eigenvalue of the transfer matrix for which Th€ equation has two
independent periodic solutions. It is well known (see, for example, [6]) that the eigenvalues
of H,,, are related to the eigenvalug) by

1'(3)

1(3)

For the eigenstate corresponding to eigenvalue (5) we oligia: g(l — N). This is the
ground state energy which was discovered by Alcategd [1] numerically.

E = —cosn(N + 2 —tarf n) + siny
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Below we find all solutions of Baxters—Q equation corresponding tB(u) = To(u).
Zeros of these solutions satisfy the BAE (3). In particular, we fihdx) corresponding to
physical Bethe state.

For L = 4, deleting the second row and the forth column\pfve obtain a minor with
determinant-¢gogs(fo + 12). Itis zero when, = —to, i.e.,t(u + %) = —t(u). Considering the
other minors we obtain the functional equation

(=5 (o 5) = (o= 5o (o 7)ot (3.

This functional equation was used in [7] to find:) and show that this part of the spectrum
of H,,, coincides with the Ising model. It would be interesting to find a correspon@iig.

Lastly, for L = 5, minor M35 (the third row and the fifth column are deleted) has
determinantpop4(tots + Ptz — ¢og2). Setting this to zero we have

t(u)t(u+%>+¢(u+f—0)t(u+3§)—¢<u—%>¢(u+%)=O. (6)

It is not difficult to check that in this case allx4 4 minors have zero determinant and that the
rank ofM is 3. Thus we have two independent periodic solutions of Baxtef@equation.

Note that this functional relation coincides with the Baxter—Pearce relation for the hard
hexagon model [9]. The connection between (6) and a special value of the rank of the matrix
of coefficients for system (4) was remarked upon in [10] by Andreta (see also [8]).

For generallL. we obtain the same truncated functional relations that have been obtained
in [7] with the same assumptions. Note that forthe ABF models [10], which are a generalization
of the hard hexagon model, the truncated functional relations have been proved by Behrend
etal[11].

We now consider the solution of Baxter’s equation#for 3 andT = To. Forn = 3
and transfer-matrix eigenvalig(x) = cos" u, the T-Qequation (2) reduces to

¢(u+3—2’7> 0w+ (u—3) Qu+m+¢ (u+1) Qu—m=0.

This equation can be rewritten as
2 4
f<v>+f(v+§)+f(v+§>=o ©)

where f (v) = sinv co$¥ (v/2) Q(v/2) has period 2. The trigonometric polynomiaf (v) is
an odd function, so it can be written
K

f) =) csinkv (8)

k=1
whereK is the degree of (v). Then equation (7) is equivalent¢g, = 0,m € Z.
The condition thatf (v) be divisible by sir cog” (v/2) is equivalent to

(i> f(v)|v:7'r=0 i=0,l,...,2N.
dv

For eveni this condition is immediate, whereas fo= 2j — 1 we use (8) to obtain
K
(=Dfek1=0 j=1,2...,N. (9)
k=1,k#3m
Our problem is thus to findc,} satisfying the last equation. This problem is a special
case of a more general problem which can be formulated as follows. Given a set of different
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complex numberX = {x1, x2, ..., x;} we seek another complex sBt= {81, B2, ..., Br}
wherep; # 0 for somei, so that

I
Z Bi P(x;) =0 (10)
i=1

for any polynomialP (x) of degree not more thal — 1. It is clear that fod < N the system
B does not exist. I8; # 0, for example, the produ¢t — x2)(x — x3) ... (x — x;) provides a
counter-example.

Let/ = N +1. We try the polynomials

N
Po= ] @=x») r=1,2,...,N. (11)
i=1,i#r,
Condition (10) give, P, (x,) + B; P,(x;) = 0 and we immediately obtain
N+1
B =const [T (x —x)7* (12)
i=1,i%r
which is a solution because the system (11) forms a basis of the linear sp¥ice bfdegree
polynomials. So fod = N +1 we have a unique solution (up to an arbitrary nonzero constant)
given by (12). Itis easy to show that fér= N + v we obtain a-dimensional linear space of
solutions.
Returning to (9) we consideV = 2n, n a positive integer. FiY = N +1 = 2n + 1.

The degreek becomes @ + 1. It is convenient to use a new indexwherejx| < »n and
k = |3« +1|. Equation (9) can be rewritten as

> BB+ =0 i=12...,N
where we use new unknows = (—1)“cjz+1|3« + 1] instead ofc;. Using (12) and (8) we
obtain the functionf (v)

n 2 2
F@) = K;n(—l)" (i”_*lj ) (2::K§ ) sin(3« + v, (13)
We recall that the solution of Baxteris-Qequation forT (1) = To(u) is given by
_ f(2u)
Qolw) = (Sin 24 cogN u) (14)

and its zeroqu,} satisfy the BAE (3). In a similar manner we have obtained the second
independent solution which we have used to find the firderivative of the transfer-matrix
eigenvalue [12].

Another way to derive the above solution is to observe that the fungtion satisfies a
simple second-order linear differential equation. Indeed, it is easily seen that the functions
F*(x) andF~(x), where

n 2 2
Fr(x) = K;n(—l)” (i":’;) <ZZ+K3>xK+§ and  F(x)=F"' (%)
are the two linearly independent solutions of the differential equation

{(@+m)?—Hxt+ @ —n)? -G F =0 (15)
whered = x % (up to a change of variables this is just the standard hypergeometric differential

equation, and in fack* (x) = constF (—2n, £ — 2n, 2, —x)x*="). Now the fact that there is
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a combinationf (v) of F*(€3") andF~(e3") which vanishes to order®+ 1 atv = x follows
immediately from the fact that = —1 is a singular point of the differential equation (15)
and that the indicial equation at this point has roots 0 anét 2. In terms of the variable,
equation (15) becomes

d?f 3v\ df
—~ +6ntan| = )| ==+ (1 -m?f =0.
dz < 2> dv ( S

The zeros off (v), the density of which is important in the thermodynamic limit, are
located on the imaginary axis in the compleplane. So it is convenient to make the change
of variablev = is. It is also useful to introduce another functigts) = f(is)/COSFF"(s—ZS).
The differential equation fog(s) is then

. 9(2n+1) B _
& (2 cosi(2) 1) 8=0. (16)

Letg(so) = 0. Forlargex we have in a small vicinity of an approximate equatiqff +w3g =
0. This equation describes a harmonic oscillator with frequesicy= 3n/ cosr(%). The
distance between nearest zeros is approximately= > and we obtain the following density
function which describes the number of zeros per unit length:
o(s) 1 1) 3n
As 1w (@ COS?‘(3—25))

We note that equation (16) has a history as rich as the BAE. Eckart [13] used the Schrodinger
equation with bell-shaped potentill(r) = —G/ costf r for phenomenological studies in
atomic and molecular physics. Later it was used in chemistry, biophysics and astrophysics, to
name just a few. For more recent references see, for example, [14].

After the completion of this letter, we were informed that in Baxter’s review [8] he noticed
the possibility of a simple eigenvalue of the transfer matrix for the XYZ model for the special
valueu = 3 of the crossing parameter.

We are gratefuld M T Batchelor, R J Baxter, V V Bazhanov, A A Belavin, L D Faddeeyv,
M Jimbo ard G P Pronko for useful discussions. We would like to thank M Kashiwara and
T Miwa for their kind hospitality in RIMS. This work is supported in part by RBRF-98-01—
00070, INTAS-96—-690 (Yu S). VF is supported by a JSPS fellowship.

References

[1] Alcaraz F C, Barber M N, Batchelor M T, Baxt® J and QuisdeG R W 1987J. Phys. A: Math. Ger206397
[2] Pasqier V and Saleur H 1990ucl. PhysB 330523
[3] Sklyanin E K 1988J. Phys. A: Math. Ger12375
[4] Cherednik | 1984Theor. Math. Phys61977
[5] Zhou Y K 1995Nucl. PhysB 453619
[6] Mezincescu L and NepomicaiR | 1992Nucl. PhysB 372597
[7] Belavin A A and Stroganov Yu G 199Bhys. LettB 466281
[8] Baxter R J 1989Adv. Stud. Pure MathL9 95
[9] Baxter R J and PearP A 1982J]. Phys. A: Math. Gerl5897
[10] Andrews G E, BaxteR J and Forreste® J 1984J. Stat. Phys35193
[11] Behrend R E, PeaecP A and O'Briea D L 1996J. Stat. Phys84 1
[12] Fridkin V, Stroganov Yu and Zagier D 200 oc. The Baxter Revolution in Statistical Mecharatgress
[13] Eckart C 193@Phys. Rev351303
[14] Znojil M 1999 New set of exactly solvable complex potentials giving the real end?gigsintquant-ph/9912079



