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Abstract. We find an analytic solution of the Bethe Ansatz equations for the special case of a finite
XXZ spin chain with free boundary conditions and with a complex surface field which provides
for Uq(sl(2)) symmetry of the Hamiltonian. More precisely, we find one nontrivial solution,
corresponding to the ground state of the system with anisotropy parameter1 = 1

2 corresponding
to q3 = −1.

It is widely accepted that the Bethe Ansatz equations (BAE) for an integrable quantum spin
chain can be solved analytically only in the thermodynamic limit or for a small number of spin
waves or short chains. In this letter, however, we have managed to find a special solution of
the BAE for a spin chain of arbitrary lengthN with N

2 spin waves.
It is well known (see, for example [1] and references therein) that there is a correspondence

between theQ-state Potts models and the ice-type models with anisotropy parameter1 =
√
Q

2 .
The coincidence in the spectrum of anN -site self-dualQ-state quantum Potts chain with free
ends with a part of the spectrum of theUq(sl(2)) symmetrical 2N -site XXZ Hamiltonian (1)
is to some extent a manifestation of this correspondence:

Hxxz =
N−1∑
n=1

{
σ +
n σ
−
n+1 + σ−n σ

+
n+1 +

q + q−1

4
σ znσ

z
n+1 +

q − q−1

4
(σ zn − σ zn+1)

}
(1)

where1 = (q + q−1)/2. This Hamiltonian was considered by Alcarazet al [1] and its
Uq(sl(2)) symmetry was described by Pasqier and Saleur [2]. The family of commuting
transfer matrices that commute withHxxz was constructed by Sklyanin [3] incorporating a
method of Cherednik [4].

Baxter’sT–Qequation for the case under consideration can be written as [5]

t (u)Q(u) = φ
(
u +

η

2

)
Q(u− η) + φ

(
u− η

2

)
Q(u + η) (2)

whereq = exp iη, φ(u) = sin 2u sin2N u andt (u) = sin 2uT (u). TheQ(u) are eigenvalues
of Baxter’s auxilary matrixQ̂(u), whereQ̂(u) commutes with the transfer matrix̂T (u). The
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eigenvalueQ(u) corresponding to an eigenvector withM = N
2 − Sz reversed spins has the

form

Q(u) =
M∏
m=1

sin(u− um) sin(u + um).

Equation (2) is equivalent to the BAE [6][
sin(uk + η/2)

sin(uk − η/2)
]2N

=
M∏
m6=k

sin(uk − um + η) sin(uk + um + η)

sin(uk − um − η) sin(uk + um − η) . (3)

In a recent article [7] Belavin and Stroganov argued that the criteria for the above-
mentioned correspondence is the existence of a second trigonometric solution for Baxter’s
T–Q equation and it was shown that in the caseη = π

4 the spectrum ofHxxz contains the
spectrum of the Ising model. In this letter we limit ourselves to the caseη = π

3 . This case is
in some sense trivial since for this value ofη, Hxxz corresponds to the one-state Potts model.
We find only one eigenvalueT0(u) of the transfer matriceŝT (u) when Baxter’s equation (2)
has two independent trigonometric solutions. Solving forT (u) = T0(u) analytically we find
a trigonometric polynomialQ0(u), the zeros of which satisfy the BAE (3). The number of
spin waves is equal toM = N

2 . The corresponding eigenstate is the ground state ofHxxz with
eigenvalueE0 = 3

2(1−N), as numerically discovered by Alcarazet al [1].
When does a second independent periodic solution exist? This question was considered

in [7]. Here we use a variation more convenient for our goal (see also [8]).
Let us consider theT–Q equation (2) forη = π

L
, whereL > 3 is an integer. Let us

fix a sequence of spectral parameter valuesvk = v0 + ηk, wherek are integers and write
φk = φ(vk − η/2), Qk = Q(vk) and tk = t (vk). The functionsφ(u), Q(u) and t (u) are
periodic with periodπ . Consequently, the sequences we have introduced are also periodic
with periodL, i.e.,φk+L = φk, etc.

Settingu = vk in (2) gives the linear system

tkQk = φk+1Qk−1 + φkQk+1. (4)

The matrix of coefficients for this system has a tridiagonal form. Takingv0 6= πm
2 , wherem is

an integer, we haveφk 6= 0 for all k.
It is straightforward to calculate the determinant of theL − 2× L − 2 minor obtained

by deleting the two left-most columns and two lower-most rows. It is equal to the product
−φ2

1φ2φ3 . . . φL−1, which is nonzero, hence the rank ofM cannot be less thanL − 2. Here
we are interested in the case when the rank ofM is preciselyL− 2 and we have two linearly
independent solutions for equation (4). Let us consider the three simplest casesL = 3, 4 and
5. The parameterη is equal toπ3 , π4 and π

5 respectively.
For L = 3 the rank ofM is unity and we immediately gett0 = −φ2, t1 = −φ0 and

t2 = −φ1. Returning to the functional form, we can write

T0(u) = t0(u)

sin 2u
= −φ(u + π

2 )

sin 2u
= cos2N u. (5)

This is the unique eigenvalue of the transfer matrix for which theT–Q equation has two
independent periodic solutions. It is well known (see, for example, [6]) that the eigenvalues
of Hxxz are related to the eigenvaluest (u) by

E = − cosη(N + 2− tan2 η) + sinη
t ′( η2)
t (
η

2)
.

For the eigenstate corresponding to eigenvalue (5) we obtainE0 = 3
2(1− N). This is the

ground state energy which was discovered by Alcarazet al [1] numerically.
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Below we find all solutions of Baxter’sT–Q equation corresponding toT (u) = T0(u).
Zeros of these solutions satisfy the BAE (3). In particular, we findQ0(x) corresponding to
physical Bethe state.

ForL = 4, deleting the second row and the forth column ofM we obtain a minor with
determinant−φ0φ3(t0 + t2). It is zero whent2 = −t0, i.e.,t (u + π

2 ) = −t (u). Considering the
other minors we obtain the functional equation

t
(
u +

π

8

)
t
(
u− π

8

)
= φ

(
u +

π

4

)
φ
(
u− π

4

)
− φ(u)φ

(
u +

π

2

)
.

This functional equation was used in [7] to findt (u) and show that this part of the spectrum
of Hxxz coincides with the Ising model. It would be interesting to find a correspondingQ(u).

Lastly, for L = 5, minorM35 (the third row and the fifth column are deleted) has
determinantφ0φ4(t0t1 + φ1t3− φ0φ2). Setting this to zero we have

t (u)t
(
u +

π

5

)
+ φ

(
u +

π

10

)
t

(
u +

3π

5

)
− φ

(
u− π

10

)
φ

(
u +

3π

10

)
= 0. (6)

It is not difficult to check that in this case all 4× 4 minors have zero determinant and that the
rank ofM is 3. Thus we have two independent periodic solutions of Baxter’sT–Qequation.

Note that this functional relation coincides with the Baxter–Pearce relation for the hard
hexagon model [9]. The connection between (6) and a special value of the rank of the matrix
of coefficients for system (4) was remarked upon in [10] by Andrewset al (see also [8]).

For generalL we obtain the same truncated functional relations that have been obtained
in [7] with the same assumptions. Note that for the ABF models [10], which are a generalization
of the hard hexagon model, the truncated functional relations have been proved by Behrend
et al [11].

We now consider the solution of Baxter’s equation forη = π
3 andT = T0. For η = π

3
and transfer-matrix eigenvalueT0(u) = cos2N u, theT–Qequation (2) reduces to

φ

(
u +

3η

2

)
Q(u) + φ

(
u− η

2

)
Q(u + η) + φ

(
u +

η

2

)
Q(u− η) = 0.

This equation can be rewritten as

f (v) + f

(
v +

2π

3

)
+ f

(
v +

4π

3

)
= 0 (7)

wheref (v) = sinv cos2N(v/2)Q(v/2) has period 2π . The trigonometric polynomialf (v) is
an odd function, so it can be written

f (v) =
K∑
k=1

ck sinkv (8)

whereK is the degree off (v). Then equation (7) is equivalent toc3m = 0,m ∈ Z.
The condition thatf (v) be divisible by sinv cos2N(v/2) is equivalent to(

d

dv

)i
f (v)|v=π = 0 i = 0, 1, . . . ,2N.

For eveni this condition is immediate, whereas fori = 2j − 1 we use (8) to obtain
K∑

k=1,k 6=3m

(−1)kckk
2j−1 = 0 j = 1, 2, . . . , N. (9)

Our problem is thus to find{ck} satisfying the last equation. This problem is a special
case of a more general problem which can be formulated as follows. Given a set of different
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complex numbersX = {x1, x2, . . . , xI } we seek another complex setB = {β1, β2, . . . , βI }
whereβi 6= 0 for somei, so that

I∑
i=1

βiP (xi) = 0 (10)

for any polynomialP(x) of degree not more thanN − 1. It is clear that forI 6 N the system
B does not exist. Ifβ1 6= 0, for example, the product(x − x2)(x − x3) . . . (x − xI ) provides a
counter-example.

Let I = N + 1. We try the polynomials

Pr =
N∏

i=1,i 6=r,
(x − xi) r = 1, 2, . . . , N. (11)

Condition (10) givesβrPr(xr) + βIPr(xI ) = 0 and we immediately obtain

βr = const
N+1∏

i=1,i 6=r
(xr − xi)−1 (12)

which is a solution because the system (11) forms a basis of the linear space ofN − 1 degree
polynomials. So forI = N +1 we have a unique solution (up to an arbitrary nonzero constant)
given by (12). It is easy to show that forI = N + ν we obtain aν-dimensional linear space of
solutions.

Returning to (9) we considerN = 2n, n a positive integer. FixI = N + 1 = 2n + 1.
The degreeK becomes 3n + 1. It is convenient to use a new indexκ, where|κ| 6 n and
k = |3κ + 1|. Equation (9) can be rewritten as

n∑
κ=−n

βκ(3κ + 1)2(j−1) = 0 j = 1, 2, . . . , N

where we use new unknownsβκ = (−1)κc|3κ+1||3κ + 1| instead ofck. Using (12) and (8) we
obtain the functionf (v)

f (v) =
n∑

κ=−n
(−1)κ

(
2n + 2

3
n− κ

)(
2n− 2

3
n + κ

)
sin(3κ + 1)v. (13)

We recall that the solution of Baxter’sT–Qequation forT (u) = T0(u) is given by

Q0(u) = f (2u)

(sin 2u cos2N u)
(14)

and its zeros{uk} satisfy the BAE (3). In a similar manner we have obtained the second
independent solution which we have used to find the firstη-derivative of the transfer-matrix
eigenvalue [12].

Another way to derive the above solution is to observe that the functionf (v) satisfies a
simple second-order linear differential equation. Indeed, it is easily seen that the functions
F +(x) andF−(x), where

F +(x) =
n∑

κ=−n
(−1)κ

(
2n + 2

3
n− κ

)(
2n− 2

3
n + κ

)
xκ+ 1

3 and F−(x) = F +

(
1

x

)
are the two linearly independent solutions of the differential equation

{((θ + n)2 − 1
9)x
−1 + (θ − n)2 − 1

9}F + = 0 (15)

whereθ = x d
dx (up to a change of variables this is just the standard hypergeometric differential

equation, and in factF +(x) = constF(−2n, 2
3 −2n, 5

3,−x)x1/3−n). Now the fact that there is
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a combinationf (v) of F +(e3iv) andF−(e3iv)which vanishes to order 2N +1 atv = π follows
immediately from the fact thatx = −1 is a singular point of the differential equation (15)
and that the indicial equation at this point has roots 0 and 2n + 1. In terms of the variablev,
equation (15) becomes

d2f

dv2
+ 6n tan

(
3v

2

)
df

dv
+ (1− 9n2)f = 0.

The zeros off (v), the density of which is important in the thermodynamic limit, are
located on the imaginary axis in the complexv-plane. So it is convenient to make the change
of variablev = is. It is also useful to introduce another functiong(s) = f (is)/ cosh2n( 3s

2 ).
The differential equation forg(s) is then

g′′ +

(
9n(2n + 1)

2 cosh2( 3s
2 )
− 1

)
g = 0. (16)

Letg(s0) = 0. For largenwe have in a small vicinity ofs0 an approximate equationg′′+ω2
0g =

0. This equation describes a harmonic oscillator with frequencyω0 = 3n/ cosh( 3s0
2 ). The

distance between nearest zeros is approximately1s = π
ω

and we obtain the following density
function which describes the number of zeros per unit length:

ρ(s) = 1

1s
= ω

π
= 3n

(π cosh( 3s
2 ))

.

We note that equation (16) has a history as rich as the BAE. Eckart [13] used the Schrodinger
equation with bell-shaped potentialV (r) = −G/ cosh2 r for phenomenological studies in
atomic and molecular physics. Later it was used in chemistry, biophysics and astrophysics, to
name just a few. For more recent references see, for example, [14].

After the completion of this letter, we were informed that in Baxter’s review [8] he noticed
the possibility of a simple eigenvalue of the transfer matrix for the XYZ model for the special
valueµ = π

3 of the crossing parameter.
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