LETTER TO THE EDITOR

Ground state of the quantum symmetric finite-size $\mathbf{X X Z}$ spin chain with anisotropy parameter $\Delta=\frac{1}{2}$ *

V Fridkin \dagger, Yu Stroganov $\dagger \ddagger$ and D Zagier§
\dagger Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan
\ddagger Institute for High Energy Physics, Protvino, Moscow, Russia
§ Max-Planck-Institut fur Mathematik, Gottfried-Claren-Strasse 26, D-53225, Bonn, Germany

Received 28 January 2000

Abstract

We find an analytic solution of the Bethe Ansatz equations for the special case of a finite XXZ spin chain with free boundary conditions and with a complex surface field which provides for $U_{q}(s l(2))$ symmetry of the Hamiltonian. More precisely, we find one nontrivial solution, corresponding to the ground state of the system with anisotropy parameter $\Delta=\frac{1}{2}$ corresponding to $q^{3}=-1$.

It is widely accepted that the Bethe Ansatz equations (BAE) for an integrable quantum spin chain can be solved analytically only in the thermodynamic limit or for a small number of spin waves or short chains. In this letter, however, we have managed to find a special solution of the BAE for a spin chain of arbitrary length N with $\frac{N}{2}$ spin waves.

It is well known (see, for example [1] and references therein) that there is a correspondence between the Q-state Potts models and the ice-type models with anisotropy parameter $\Delta=\frac{\sqrt{Q}}{2}$. The coincidence in the spectrum of an N-site self-dual Q-state quantum Potts chain with free ends with a part of the spectrum of the $U_{q}(s l(2))$ symmetrical $2 N$-site XXZ Hamiltonian (1) is to some extent a manifestation of this correspondence:
$H_{x x z}=\sum_{n=1}^{N-1}\left\{\sigma_{n}^{+} \sigma_{n+1}^{-}+\sigma_{n}^{-} \sigma_{n+1}^{+}+\frac{q+q^{-1}}{4} \sigma_{n}^{z} \sigma_{n+1}^{z}+\frac{q-q^{-1}}{4}\left(\sigma_{n}^{z}-\sigma_{n+1}^{z}\right)\right\}$
where $\Delta=\left(q+q^{-1}\right) / 2$. This Hamiltonian was considered by Alcaraz et al [1] and its $U_{q}(s l(2))$ symmetry was described by Pasqier and Saleur [2]. The family of commuting transfer matrices that commute with $H_{x x z}$ was constructed by Sklyanin [3] incorporating a method of Cherednik [4].

Baxter's $T-Q$ equation for the case under consideration can be written as [5]

$$
\begin{equation*}
t(u) Q(u)=\phi\left(u+\frac{\eta}{2}\right) Q(u-\eta)+\phi\left(u-\frac{\eta}{2}\right) Q(u+\eta) \tag{2}
\end{equation*}
$$

where $q=\exp \mathrm{i} \eta, \phi(u)=\sin 2 u \sin ^{2 N} u$ and $t(u)=\sin 2 u T(u)$. The $Q(u)$ are eigenvalues of Baxter's auxilary matrix $\hat{Q}(u)$, where $\hat{Q}(u)$ commutes with the transfer matrix $\hat{T}(u)$. The

[^0]eigenvalue $Q(u)$ corresponding to an eigenvector with $M=\frac{N}{2}-S_{z}$ reversed spins has the form
$$
Q(u)=\prod_{m=1}^{M} \sin \left(u-u_{m}\right) \sin \left(u+u_{m}\right) .
$$

Equation (2) is equivalent to the BAE [6]

$$
\begin{equation*}
\left[\frac{\sin \left(u_{k}+\eta / 2\right)}{\sin \left(u_{k}-\eta / 2\right)}\right]^{2 N}=\prod_{m \neq k}^{M} \frac{\sin \left(u_{k}-u_{m}+\eta\right) \sin \left(u_{k}+u_{m}+\eta\right)}{\sin \left(u_{k}-u_{m}-\eta\right) \sin \left(u_{k}+u_{m}-\eta\right)} . \tag{3}
\end{equation*}
$$

In a recent article [7] Belavin and Stroganov argued that the criteria for the abovementioned correspondence is the existence of a second trigonometric solution for Baxter's $T-Q$ equation and it was shown that in the case $\eta=\frac{\pi}{4}$ the spectrum of $H_{x x z}$ contains the spectrum of the Ising model. In this letter we limit ourselves to the case $\eta=\frac{\pi}{3}$. This case is in some sense trivial since for this value of $\eta, H_{x x z}$ corresponds to the one-state Potts model. We find only one eigenvalue $T_{0}(u)$ of the transfer matrices $\hat{T}(u)$ when Baxter's equation (2) has two independent trigonometric solutions. Solving for $T(u)=T_{0}(u)$ analytically we find a trigonometric polynomial $Q_{0}(u)$, the zeros of which satisfy the BAE (3). The number of spin waves is equal to $M=\frac{N}{2}$. The corresponding eigenstate is the ground state of $H_{x x z}$ with eigenvalue $E_{0}=\frac{3}{2}(1-N)$, as numerically discovered by Alcaraz et al [1].

When does a second independent periodic solution exist? This question was considered in [7]. Here we use a variation more convenient for our goal (see also [8]).

Let us consider the $T-Q$ equation (2) for $\eta=\frac{\pi}{L}$, where $L \geqslant 3$ is an integer. Let us fix a sequence of spectral parameter values $v_{k}=v_{0}+\eta k$, where k are integers and write $\phi_{k}=\phi\left(v_{k}-\eta / 2\right), Q_{k}=Q\left(v_{k}\right)$ and $t_{k}=t\left(v_{k}\right)$. The functions $\phi(u), Q(u)$ and $t(u)$ are periodic with period π. Consequently, the sequences we have introduced are also periodic with period L, i.e., $\phi_{k+L}=\phi_{k}$, etc.

Setting $u=v_{k}$ in (2) gives the linear system

$$
\begin{equation*}
t_{k} Q_{k}=\phi_{k+1} Q_{k-1}+\phi_{k} Q_{k+1} . \tag{4}
\end{equation*}
$$

The matrix of coefficients for this system has a tridiagonal form. Taking $v_{0} \neq \frac{\pi m}{2}$, where m is an integer, we have $\phi_{k} \neq 0$ for all k.

It is straightforward to calculate the determinant of the $L-2 \times L-2$ minor obtained by deleting the two left-most columns and two lower-most rows. It is equal to the product $-\phi_{1}^{2} \phi_{2} \phi_{3} \ldots \phi_{L-1}$, which is nonzero, hence the rank of M cannot be less than $L-2$. Here we are interested in the case when the rank of M is precisely $L-2$ and we have two linearly independent solutions for equation (4). Let us consider the three simplest cases $L=3,4$ and 5. The parameter η is equal to $\frac{\pi}{3}, \frac{\pi}{4}$ and $\frac{\pi}{5}$ respectively.

For $L=3$ the rank of M is unity and we immediately get $t_{0}=-\phi_{2}, t_{1}=-\phi_{0}$ and $t_{2}=-\phi_{1}$. Returning to the functional form, we can write

$$
\begin{equation*}
T_{0}(u)=\frac{t_{0}(u)}{\sin 2 u}=\frac{-\phi\left(u+\frac{\pi}{2}\right)}{\sin 2 u}=\cos ^{2 N} u . \tag{5}
\end{equation*}
$$

This is the unique eigenvalue of the transfer matrix for which the $T-Q$ equation has two independent periodic solutions. It is well known (see, for example, [6]) that the eigenvalues of $H_{x x z}$ are related to the eigenvalues $t(u)$ by

$$
E=-\cos \eta\left(N+2-\tan ^{2} \eta\right)+\sin \eta \frac{t^{\prime}\left(\frac{\eta}{2}\right)}{t\left(\frac{\eta}{2}\right)} .
$$

For the eigenstate corresponding to eigenvalue (5) we obtain $E_{0}=\frac{3}{2}(1-N)$. This is the ground state energy which was discovered by Alcaraz et al [1] numerically.

Below we find all solutions of Baxter's $T-Q$ equation corresponding to $T(u)=T_{0}(u)$. Zeros of these solutions satisfy the BAE (3). In particular, we find $Q_{0}(x)$ corresponding to physical Bethe state.

For $L=4$, deleting the second row and the forth column of M we obtain a minor with determinant $-\phi_{0} \phi_{3}\left(t_{0}+t_{2}\right)$. It is zero when $t_{2}=-t_{0}$, i.e., $t\left(u+\frac{\pi}{2}\right)=-t(u)$. Considering the other minors we obtain the functional equation

$$
t\left(u+\frac{\pi}{8}\right) t\left(u-\frac{\pi}{8}\right)=\phi\left(u+\frac{\pi}{4}\right) \phi\left(u-\frac{\pi}{4}\right)-\phi(u) \phi\left(u+\frac{\pi}{2}\right) .
$$

This functional equation was used in [7] to find $t(u)$ and show that this part of the spectrum of $H_{x x z}$ coincides with the Ising model. It would be interesting to find a corresponding $Q(u)$.

Lastly, for $L=5$, minor M_{35} (the third row and the fifth column are deleted) has determinant $\phi_{0} \phi_{4}\left(t_{0} t_{1}+\phi_{1} t_{3}-\phi_{0} \phi_{2}\right)$. Setting this to zero we have
$t(u) t\left(u+\frac{\pi}{5}\right)+\phi\left(u+\frac{\pi}{10}\right) t\left(u+\frac{3 \pi}{5}\right)-\phi\left(u-\frac{\pi}{10}\right) \phi\left(u+\frac{3 \pi}{10}\right)=0$.
It is not difficult to check that in this case all 4×4 minors have zero determinant and that the rank of M is 3 . Thus we have two independent periodic solutions of Baxter's $T-Q$ equation.

Note that this functional relation coincides with the Baxter-Pearce relation for the hard hexagon model [9]. The connection between (6) and a special value of the rank of the matrix of coefficients for system (4) was remarked upon in [10] by Andrews et al (see also [8]).

For general L we obtain the same truncated functional relations that have been obtained in [7] with the same assumptions. Note that for the ABF models [10], which are a generalization of the hard hexagon model, the truncated functional relations have been proved by Behrend et al [11].

We now consider the solution of Baxter's equation for $\eta=\frac{\pi}{3}$ and $T=T_{0}$. For $\eta=\frac{\pi}{3}$ and transfer-matrix eigenvalue $T_{0}(u)=\cos ^{2 N} u$, the $T-Q$ equation (2) reduces to

$$
\phi\left(u+\frac{3 \eta}{2}\right) Q(u)+\phi\left(u-\frac{\eta}{2}\right) Q(u+\eta)+\phi\left(u+\frac{\eta}{2}\right) Q(u-\eta)=0 .
$$

This equation can be rewritten as

$$
\begin{equation*}
f(v)+f\left(v+\frac{2 \pi}{3}\right)+f\left(v+\frac{4 \pi}{3}\right)=0 \tag{7}
\end{equation*}
$$

where $f(v)=\sin v \cos ^{2 N}(v / 2) Q(v / 2)$ has period 2π. The trigonometric polynomial $f(v)$ is an odd function, so it can be written

$$
\begin{equation*}
f(v)=\sum_{k=1}^{K} c_{k} \sin k v \tag{8}
\end{equation*}
$$

where K is the degree of $f(v)$. Then equation (7) is equivalent to $c_{3 m}=0, m \in Z$.
The condition that $f(v)$ be divisible by $\sin v \cos ^{2 N}(v / 2)$ is equivalent to

$$
\left.\left(\frac{\mathrm{d}}{\mathrm{~d} v}\right)^{i} f(v)\right|_{v=\pi}=0 \quad i=0,1, \ldots, 2 N
$$

For even i this condition is immediate, whereas for $i=2 j-1$ we use (8) to obtain

$$
\begin{equation*}
\sum_{k=1, k \neq 3 m}^{K}(-1)^{k} c_{k} k^{2 j-1}=0 \quad j=1,2, \ldots, N \tag{9}
\end{equation*}
$$

Our problem is thus to find $\left\{c_{k}\right\}$ satisfying the last equation. This problem is a special case of a more general problem which can be formulated as follows. Given a set of different
complex numbers $X=\left\{x_{1}, x_{2}, \ldots, x_{I}\right\}$ we seek another complex set $B=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{I}\right\}$ where $\beta_{i} \neq 0$ for some i, so that

$$
\begin{equation*}
\sum_{i=1}^{I} \beta_{i} P\left(x_{i}\right)=0 \tag{10}
\end{equation*}
$$

for any polynomial $P(x)$ of degree not more than $N-1$. It is clear that for $I \leqslant N$ the system B does not exist. If $\beta_{1} \neq 0$, for example, the product $\left(x-x_{2}\right)\left(x-x_{3}\right) \ldots\left(x-x_{I}\right)$ provides a counter-example.

Let $I=N+1$. We try the polynomials

$$
\begin{equation*}
P_{r}=\prod_{i=1, i \neq r,}^{N}\left(x-x_{i}\right) \quad r=1,2, \ldots, N \tag{11}
\end{equation*}
$$

Condition (10) gives $\beta_{r} P_{r}\left(x_{r}\right)+\beta_{I} P_{r}\left(x_{I}\right)=0$ and we immediately obtain

$$
\begin{equation*}
\beta_{r}=\mathrm{const} \prod_{i=1, i \neq r}^{N+1}\left(x_{r}-x_{i}\right)^{-1} \tag{12}
\end{equation*}
$$

which is a solution because the system (11) forms a basis of the linear space of $N-1$ degree polynomials. So for $I=N+1$ we have a unique solution (up to an arbitrary nonzero constant) given by (12). It is easy to show that for $I=N+v$ we obtain a v-dimensional linear space of solutions.

Returning to (9) we consider $N=2 n, n$ a positive integer. Fix $I=N+1=2 n+1$. The degree K becomes $3 n+1$. It is convenient to use a new index κ, where $|\kappa| \leqslant n$ and $k=|3 \kappa+1|$. Equation (9) can be rewritten as

$$
\sum_{\kappa=-n}^{n} \beta_{\kappa}(3 \kappa+1)^{2(j-1)}=0 \quad j=1,2, \ldots, N
$$

where we use new unknowns $\beta_{\kappa}=(-1)^{\kappa} c_{|3 \kappa+1|}|3 \kappa+1|$ instead of c_{k}. Using (12) and (8) we obtain the function $f(v)$

$$
\begin{equation*}
f(v)=\sum_{\kappa=-n}^{n}(-1)^{\kappa}\binom{2 n+\frac{2}{3}}{n-\kappa}\binom{2 n-\frac{2}{3}}{n+\kappa} \sin (3 \kappa+1) v \tag{13}
\end{equation*}
$$

We recall that the solution of Baxter's $T-Q$ equation for $T(u)=T_{0}(u)$ is given by

$$
\begin{equation*}
Q_{0}(u)=\frac{f(2 u)}{\left(\sin 2 u \cos ^{2 N} u\right)} \tag{14}
\end{equation*}
$$

and its zeros $\left\{u_{k}\right\}$ satisfy the BAE (3). In a similar manner we have obtained the second independent solution which we have used to find the first η-derivative of the transfer-matrix eigenvalue [12].

Another way to derive the above solution is to observe that the function $f(v)$ satisfies a simple second-order linear differential equation. Indeed, it is easily seen that the functions $F^{+}(x)$ and $F^{-}(x)$, where
$F^{+}(x)=\sum_{\kappa=-n}^{n}(-1)^{\kappa}\binom{2 n+\frac{2}{3}}{n-\kappa}\binom{2 n-\frac{2}{3}}{n+\kappa} x^{\kappa+\frac{1}{3}} \quad$ and $\quad F^{-}(x)=F^{+}\left(\frac{1}{x}\right)$
are the two linearly independent solutions of the differential equation

$$
\begin{equation*}
\left\{\left((\theta+n)^{2}-\frac{1}{9}\right) x^{-1}+(\theta-n)^{2}-\frac{1}{9}\right\} F^{+}=0 \tag{15}
\end{equation*}
$$

where $\theta=x \frac{\mathrm{~d}}{\mathrm{~d} x}$ (up to a change of variables this is just the standard hypergeometric differential equation, and in fact $\left.F^{+}(x)=\operatorname{const} F\left(-2 n, \frac{2}{3}-2 n, \frac{5}{3},-x\right) x^{1 / 3-n}\right)$. Now the fact that there is
a combination $f(v)$ of $F^{+}\left(\mathrm{e}^{3 \mathrm{i} v}\right)$ and $F^{-}\left(\mathrm{e}^{3 \mathrm{iiv}}\right)$ which vanishes to order $2 N+1$ at $v=\pi$ follows immediately from the fact that $x=-1$ is a singular point of the differential equation (15) and that the indicial equation at this point has roots 0 and $2 n+1$. In terms of the variable v, equation (15) becomes

$$
\frac{\mathrm{d}^{2} f}{\mathrm{~d} v^{2}}+6 n \tan \left(\frac{3 v}{2}\right) \frac{\mathrm{d} f}{\mathrm{~d} v}+\left(1-9 n^{2}\right) f=0
$$

The zeros of $f(v)$, the density of which is important in the thermodynamic limit, are located on the imaginary axis in the complex v-plane. So it is convenient to make the change of variable $v=$ is. It is also useful to introduce another function $g(s)=f(\mathrm{is}) / \cosh ^{2 n}\left(\frac{3 s}{2}\right)$. The differential equation for $g(s)$ is then

$$
\begin{equation*}
g^{\prime \prime}+\left(\frac{9 n(2 n+1)}{2 \cosh ^{2}\left(\frac{3 s}{2}\right)}-1\right) g=0 \tag{16}
\end{equation*}
$$

Let $g\left(s_{0}\right)=0$. For large n we have in a small vicinity of s_{0} an approximate equation $g^{\prime \prime}+\omega_{0}^{2} g=$ 0 . This equation describes a harmonic oscillator with frequency $\omega_{0}=3 n / \cosh \left(\frac{3 s_{0}}{2}\right)$. The distance between nearest zeros is approximately $\Delta s=\frac{\pi}{\omega}$ and we obtain the following density function which describes the number of zeros per unit length:

$$
\rho(s)=\frac{1}{\Delta s}=\frac{\omega}{\pi}=\frac{3 n}{\left(\pi \cosh \left(\frac{3 s}{2}\right)\right)} .
$$

We note that equation (16) has a history as rich as the BAE. Eckart [13] used the Schrodinger equation with bell-shaped potential $V(r)=-G / \cosh ^{2} r$ for phenomenological studies in atomic and molecular physics. Later it was used in chemistry, biophysics and astrophysics, to name just a few. For more recent references see, for example, [14].

After the completion of this letter, we were informed that in Baxter's review [8] he noticed the possibility of a simple eigenvalue of the transfer matrix for the XYZ model for the special value $\mu=\frac{\pi}{3}$ of the crossing parameter.

We are grateful to M T Batchelor, R J Baxter, V V Bazhanov, A A Belavin, L D Faddeev, M Jimbo and G P Pronko for useful discussions. We would like to thank M Kashiwara and T Miwa for their kind hospitality in RIMS. This work is supported in part by RBRF-98-0100070, INTAS-96-690 (Yu S). VF is supported by a JSPS fellowship.

References

[1] Alcaraz F C, Barber M N, Batchelor M T, Baxter R J and Quispel G R W 1987 J. Phys. A: Math. Gen. 206397
[2] Pasqier V and Saleur H 1990 Nucl. Phys. B 330523
[3] Sklyanin E K 1988 J. Phys. A: Math. Gen. 212375
[4] Cherednik I 1984 Theor. Math. Phys. 61977
[5] Zhou Y K 1995 Nucl. Phys. B 453619
[6] Mezincescu L and Nepomichie R I 1992 Nucl. Phys. B 372597
[7] Belavin A A and Stroganov Yu G 1999 Phys. Lett. B 466281
[8] Baxter R J 1989 Adv. Stud. Pure Math. 1995
[9] Baxter R J and Pearce P A 1982 J. Phys. A: Math. Gen. 15897
[10] Andrews G E, Baxter R J and Forrester P J 1984 J. Stat. Phys. 35193
[11] Behrend R E, Pearce P A and O’Brien D L 1996 J. Stat. Phys. 841
[12] Fridkin V, Stroganov Yu and Zagier D 2000 Proc. The Baxter Revolution in Statistical Mechanics at press
[13] Eckart C 1930 Phys. Rev. 351303
[14] Znojil M 1999 New set of exactly solvable complex potentials giving the real energies Preprint quant-ph/9912079

[^0]: * Dedicated to Rodney Baxter on the occasion of his 60th birhday.

