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where 0 is the unit step function, i.e., 

OCt) = 0 when t < 0, 

= 1 when t ~ O. 

Equations (11) and (l3) hold in an arbitrary system 
of inertia. The step function in (13) implies that a 
source point (zp) contributes to the field only at points 
inside a conical region given by (xs - Z3) ~ -Ial! p. 

III. TIME HARMONIC SOURCES, 3-
DIMENSIONAL REPRESENTATION 

Let the source be time harmonic in K: Si(Xr) = 
Si(Xp)e-kX4

, where k == wlc and w is the frequency. 
Omitting the time factor e-kX4

, we derive from (9) 

Si(Zp, X4 + T_) 

= Si(Zp) exp [-ikb(zs - xs)] 

x exp {ik(nla) [(Z3 - XS)2 + ap2]!}, (14) 
where 

nfJ ( 1) fJKC
2 

b == 1 _ (nfJ)2 n - ~ - 1 _ (nfJ)2 . 

Furthermore, we derive 

Si(Zp, X4 + T_) + Si(Zp, X4 + T+) 

= 2S;(zp)e-ikb
(Z3-

X
3) cos {(knja)[(zs - XS)2 + a!]!}. 

(15) 

From the definition of Si' and making use of the 
continuity equation Jp.P = -J4,4 = iwp = kJ4, we 
get, for the spatial components of Si' 

Sizp) = ,u(O;,. + ~ U;,U.)J.(Zp) 

Similarly, 

. ,uKC2 
+ 1-2-yU;,J •.• <zp)' (16) 

n 

c ,uc
2 
( KC

2 2) ,uKC
2 

-: S.(zp) = -.- 1 - -2 Y J •.• + -2 yU.J •. (17) 
I IW n n 

Substituting (14)-(17) into (11) and (l3) leads to 
expressions which are in agreement with Ref. 1. 

The field vector £ may be obtained by using the 
equation £ = - V<I> + iwA (Ref. 1; it can be shown 
that £ = - V<I> - aAjat holds in any system of 
inertia). By some calculation the results may be 
transformed to an expression as given in Ref. 8. 
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We write the n-point function of currents as a sum over nested commutators, a form more suitable 
for certain current algebra calculations. 

I. INTRODUCTION AND RESULT 

In this paper we consider the n-point function, 
defined as 

T(ql,' .. ,qn-l)/ll'''l'n 

= II· . ·I d4xl ... d4Xn_le-iQl"'1-"'-iQn-1Xn-l 

X (01 T(jl'l(Xl) ... jl'n-l(xn_l)jl'n(O» 10), (1) 

where TVl'" jn) is the product of the n current 
operators jl' ... ,jn' in the order of the time com­
ponents of their points of evaluation: 

T(Uxl ) ••• jn(xn» 

= I O(X~(I) - X~(2) ••• O(X~(n_l) - X~(n) 
1TcSn 

where the sum is over all permutations 7T in Sn, the 
symmetric group of order n. The function OCt) is the 
usual step function. In Eq. (1) we only integrate over 
n - 1 space variables because we are using the transla­
tion invariance of the theory to work in a coordinate 
system where Xn = 0 and ql + ... + qn = O. 

It is a straightforward calculation, which is given 
below, to rewrite Eq. (l) as a linear combination of 
products of n current operators (or, rather, of their 
Fourier transforms in momentum space) not involving 
the step functions O. However, current algebra treats 
only commutators of operators rather than arbitrary 
products, so that it is desirable to express the n-point 
function as a linear combination of commutators of 
operators. 
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Bjorkenl and Johnson and Low2 pointed out that 
in the case n = 2 the 2-point function is asymptotically 
equal to a commutator term. They showed, specifi­
cally, that the leading term in the asymptotic expan­
sion of 

MJl.(q,· .. ) = - f d4xe-
iq

'''' (AI T(jJl(x)j.(O» IB), (3) 

as qo ---')0 00 with q fixed, is 

1.. fd3xe-iQ.X(AI [jiO, x),jiO, 0)] IB) (4) 
qo 

and that the higher terms involve time derivatives 
of the currents; thus the next term is 

:~ if d3
xe-

iN< AI [~; (0, x), j.(O, 0) J IB). (5) 

Not only the leading term, but all subsequent 
terms in the expansion of the n-point function, as the 
energies q? become infinite, can, in fact, be written as 
sums of equal-time commutators. 3 The expression 
we obtain is 

T(ql, ... , qn-l)JllOO'Jln 

in-Iff fd3 d3x e-iQ"X'-"'-iQ"-"Xn - 1 = - ... Xl'" n-1 
n 

X I [IT (E"(1) + ... + E,,(s) 
1T'ESn 8=1 

° ° )-lJ +i--+"'+i--
otll (1) ot1[(S) 

X (01 [[ ... [j Jl1[ll) , j Jl"I.,]' ... ], j Jl1[ln)] 10)j tl=·oo=tn=o, 

(6) 

where the meaning of the right-hand side is that for 
each permutation 1T we expand each factor 

° ° )-1 
(

E1[(l) + ... + E1[(S) + i-- +". + i--
otll (1) ot1[(8) 

as a series 

I (-i-O- -'" - i f-'\/(E,,(1)'+'" + E,,(s)y+1, 
r=O otll (1) utll(s) 
formally multiply these differential operators, apply 
the product operator to the commutator 

[[ ... [jJl1Tll)(t"(l) ' x,,(1),jJlllI2)(t,,(2) ' Xll(2»], .•. ], 

i Jll1ln )(t,,(n) ' xll (n»], 

evaluate at 11 = ... = In = 0, and finally Fourier­
transform the space part of the result and divide by n. 
We have made the convention that 

1..+".+'£"'=0 
Otl Oln 

(since Xn and hence In are identically zero, ololn is 
undefined), and Ii and Ei are the time components of 

Xf and qf ' respectively. Written out in full, our result is 

T(El' ... , En-l)loo'n 

= in-Iff· . ·fdt ... dt 1 n-l 

X e-iEllt-,oo-iE,,-ltn-l(OI T(j Jll(Xl) ... j Jl,,(O» 10) 
1 00 00 

= - I I," I 
n 1[eSn rl=O r,,-l=O 

X (11 -n-l 
(- iolOlll (1) - ... - i01otl1(8)Y') 

s=l (E,,(1) + ... + E,,(s)r,+1 

X ( IT 0010111 (8+1) + ... + iOIOt1[(n)r') 
s=1l-1 (n) (E,,(1) + ... + E"(8»),,+1 

X (01 [[ ... [j Jl1l11l(t1l(1) , X,,(1), i ""12)(t"(2) , X,,(2»], ••• ], 

j Jl"ln)(t,,(n) , Xll (n»] 10). 

Here we have omitted the integration over the space 
variables. 

Before deriving this result, we will state it in a 
different form. Since the space variables and integra­
tions do not affect the problem, we will cease to write 
them; similarly, we omit the brackets (01," 10) 
denoting the vacuum state. Although the jJli are, in 
fact, components of a single current, we do not use 
this, but treat them as separate functions; since the 
subscripts fli do not change, we omit them. Thus 
j,,/ti' Xi) will be denoted j;(ti ) for 1 :s:;; i :s:;; n - 1. 
For convenience, we define jn by jn(t) = j11n(0)Mt). 
We use the following Fourier transform: 

leE) = 2~ I e-iE'i(t) dt, J(t) = f e+iEtj(E) dE. (7) 

With this definition of the Fourier transform, we have 

(-iY £ J(t)jt=o =I(-i)' E:. eiEtj(E) dEjt=o 
df of 

= f E'/'(E) dE. (8) 

Making all of these changes and substituting the 
definition (2) for the time-ordered product, we obtain 
as the theorem to be demonstrated,4 

jn-l f r .. I dt, ... dtne-iEllt-·oo-iEntn 

X I (J(t1l(1) - tll (2» ... (J(t1l(n-1) - t,,(n» 
'Il'ESn 

X jll(1)(t"U» ... jll(n)(tll(n» 

= 2: If· -J dE~ ... dE~~(E~ + ... + E~) 
X "" [[ ... U,,(1)(ED, jl1(2)(E~)], ... ], j".(n)(E~)] 

..t:., n-1 
llESn II (E".(1) + ... + E"(8) - E~ - ... - E;) 

,,=1 
(9) 
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This is the real result, and the previous form, in 
which integrations had been done by using Eq. (8), 
is simply its expansion for large energies [which may 
not be valid; it is only the identity (9) that will be 
proved rigorously]. 

The proof of the theorem, Eq. (9), is purely 
algebraic in nature and so makes no reference to the 
actual existence of the commutators and T products 
which we consider. It has been shown5 that, in fact, 
they do not exist in certain perturbation-theoretical 
models. We regard the question of their existence in 
general as being open at the present time. In the 
following, we assume that there is a theory for which 
the problems found in Ref. 5 do not exist. 

II. PROOF 

The proof of Eq. (9) will proceed in two stages: 
first, transforming the left-hand side to an expression 
involving a linear combination of products of n 
current operators, and then rewriting this as a sum of 
commutators. With the normalization of Eqs. (7), the 
Fourier transform of O(t - (0) is e-iEto/27TiE, and the 
rule for transforming a product is 

ME) = 2~ ff(t)g(t)e-iEt dt = f1(E')g(E - E') dE', 

(10) 
so that 

f
O(t - t )!(t)e-iEt dt =ff(E')e-i(E-E')/O dE'. (11) 

o iCE - E') 

Applying this repeatedly, we obtain [abbreviating 
O(/i - I j) to 0iJ 

x 0 ... 0 j,,(1)(ED 
34 n-I.n 'CE E') 

I ,,(1) - 1 

- (E') 
J,,(2) 2 • (t ) . () 

x '(E + E E' E,)},,(3) 3 ••• },,(n) tn 
I .. (1) ,,(2) - 1 - 2 

= ... 

= _1 If .. ·fdE' ... dE' dt jn-I 1 n-I" 

X e-i(E"(l)+'''+E"(n)-El'-'''-En-l')/,, 

x j,,(1)(ED j"(2)(E~) 

E,,(I) - E~ E,,(1) + E,,(2) - E~ - E~ 

X j"(n-1)(E~-I) . 
E + ... + E - E' _ ... _ E' },,(n)(t,,). 

,,(1) ,,(n-1) 1 11-1 

The final expression contains no 0 functions and, 
therefore, can be evaluated by the direct substitution 
of the first of Eqs. (7). We notice that 

E,,(1) + ... + E,,(n) = EI + ... + En = 0 
(since ql + ... + qn was zero), so that the result is 

27T If .. ·fdE' ... dE' 
jn-I 1 n-l 

X j,,(1)(E~) ... j"(n_1)(E~_l)],,(,,)(-E~ - ... - E~ I) 
n-I 

II (E,,(1) + ... + E,,«) - E~ - ... - E;) 
<~I 

which may be written more symmetrically as 

27T If .. ·fdE' ... dE'!5(E' + ... + E') 
in-lin 1 n 

X n-I 

II (E,,(I) + ... + E,,(s) - E~ - ... - E;) 
s~1 

This completes the first stage. Multiplying our last 
equation by in

- 1 and summing over all permutations 
7T of 1, 2, ... , n, for the left-hand side of Eq. (9),we 
obtain the expression 

27T f r . -J dE~ ... dE~!5CE~ + ... + E~) 
x '" j,,(1)(E~) ... j"(n)(E~) 
~ n-l 

1rESn II (E,,(1) + ... + E,,(s) - E~ - ... - E;) 
~=1 

the desired expression as a sum of products of the 
ji' Both in this expression and in Eq. (9) we could 
just as well have written E;(i) for E; in the denomina­
tors, since for each permutation 7T one could relabel 
the symmetric expression 

f f .. J dE~ ... dE~!5(E~ + ... + E~). 
Therefore, it suffices to prove the purely algebraic 
identity 

n '" j,,(1)(E~(1)' .. j"(n)(E~(n» 
~ n-l 

"EB" II ( " E .. (I) + ... + E,,(s) - E,,(1) -'" - E,,(s» 
s~I 

= '" [[ ... [J,,(1)(E;(1», j .. (2)(E~(2»]'· .. ], j .. (n)(E~(n»] 
~ n-I 

"EB" TIC ' E,,(I) + ... + E,,(s) - E .. (1) - ••• - E~(8» 
s~1 (12) 
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Having simplified the problem, we will again 
simplify our notation. Since the character of j as a 
function of energy no longer interests us, we will 
omit the argument and tilde and write simply ji for 
ji(E;). Next, we have E~ + ... + E~ = O. [Because 
of the presence of the Dirac D, it does not matter 
whether or not the sum in Eq. (9) can be written as a 
sum of commutators off the subspace E~ + ... + 
E~ = 0; indeed, simple examples show that it cannot.] 
Of course, El + ... + En is always zero. Further­
more, because we were able to group together E's and 
E"s with the same subscript in Eq. (12), we can now 
define a new set of numbers Fi = Ei - E;, and the 
identity to be demonstrated becomes 

n I , j,,(l) ... j,,(n) 

"ES n F,,(1)(},,(O + F,,(2»'" (F,,(l) + ... + F,,(n-O) 

= I [[ ... [j,,(l),j"(2)]'" '],j,,(nll 

"eSnF,,(o(F,,(O + F,,(2»' .. (F,,(O + ... + F,,(n-o) ' 

(13) 

where the Fi are n numbers such that their sum is 
zero, but no subsum is zero [the identity is meaning­
less if any subsum vanishes, but it suffices to prove it 
in the converse case since the region where some­
subsum vanishes has zero measure in the (n - 1)­
dimensional space E~ + ... + E~ = 0], the ji are 
noncommuting quantities, and the sums extend over 
all permutations of 1, 2, ... , n. 

To prove Eq. (13), we evidently have to expand the 
commutators on the right and then rearrange the 
sum so that we can pick out the coefficient of a given 
product j,,(l) ..• j,,(n) and check that it is indeed 

A commutator of n operators has 2n
- l terms, half of 

them positive and half negative, and we must start 
by finding the rule which determines which of the 
n! possible permutations appear and with what sign. 
If we expand a commutator such as [[[[hI' h2], 

ha], h4], h5], then typical terms are h5h4hlh2ha and 
-hahlh2h4h5' Inspecting the terms, we see that each 
one has descending subscripts up to hI and then 
ascending, so that it is in the form h,,(1)h"(2) ... h,,(n) , 
where 0'(1) > ... > a(k) = 1 < a(k + 1) < ... < 
a(n) for some k, and that the sign of such a term is 
(_l)k-l. Now, for a given value of k, we can choose 
anyk - 1 of then - 1 numbers 2, 3, ... ,ntoprecede 

a(k) = 1, but then their order is determined; thus the 
set Sn,k of permutations 0' with 0'(1) > ... > a(k) = 
1 < a(k + 1) < ... < a(n) has (~=D members and, 
since 

JIG =~) = 2
n
-t, 

if all the terms of the commutator are of the special 
form considered, then all terms of this form appear 
in the commutator. That this is, in fact, the case can 
be seen easily by induction: We have to prove 

[f· .. [hI' h2], ••• ], hn ] 

n 

= I(_1)k-l I h,,(1)'" ha(n), (14) 
k=l "ESn,k 

an identity plainly valid for n equal to one or two. 
lfit is valid for n, then [[[ ... [hI' h2], ••• ], hn], hn+l] 
is given by 

n 
~(_I)k-l ~ (h h h h .4 .4 oil) ,,(2)'" ,,(n) n+l 

k=l t1ES n ,k 

n 
= ~(_I)k-l ~ h,,(l) ... h,,(n+l) 

k=l 1TESn+l 
,,(l»"·>,,(k) 

=l<"'<,,(n+1)=n+l 
n+l 

+ I( _1)k-1 
k=2 

n+1 

11'ESn+l 
n+1=,,(1»"·>,,(k) 

=1<"'<,,(n+1) 

= ~(_I)k-l ~ h h .4 .4 ,,(1) . .. ,,(n+O, 
k=l 7TES n+l.k 

there being the last equality because any permutation 
7T of Sn+l,k must have either 7T(I) or 7T(n + 1) equal to 
n + 1 [since any other 7T(i) is smaller than one of 
these]. This completes the proof of Eq. (14). 

Now we can expand the right-hand side of Eq. (13) 
to obtain 

~ [[ ... [j,,(1),j,,(211," '],j,r(nll 

"eSn F,,(1)(F,,(O + F,,(2» ... (F,,(1) + ... + F,,(n-1» 
n 

= ~ ~ ~ (_I)k-1 
usBn. k=l t1eS n .k 

j",,(l) ••• j",,(n) 
X ------------~=---~~------------

F,,(1)(F,,(1) + F,,(2»' .. (F .. (1) + ... + F,,(n-1» 

The coefficient of jr(1)jr(2) ••• jr(n) in this is obtained 
by noting that for each 0' in Sn.k there is a unique 7T 
in Sn (namely, 7T = 1'0'-1) such that 7Ta = 1'; thus, the 
coefficient is 
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To prove Eq. (13), we must show that this sum equals n I1~':-ll (Fr(1) + ... + Fr(S))-I. By expanding the commu­
tator, we have gotten rid of the operators and have reduced the problem to an algebraic identity among ordinary 
numbers. Having fastened our attention on a single permutation T, we need no longer carry it as a subscript, 
but set Gi = Frw . If we can prove 

2 1 = ( _l)k-1 (15) 
"ESn.k G,,-I(1)(G,,-I(J) + G,,-1(2)' .. (G,,-I(1) + ... + G,,-I(n_J) GI(GI + G2)' •• (GI + ... + Gn- l ) 

for 1 ~ k ~ n, then the desired equality will follow on summation from 1 to n. 
We will prove Eq. (15) by another simple induction. For n = 2, it reduces to + IJGI = + I/GI or + I/G2 = 

-I/GI , depending on whether k is one or two, and both are true since GI + G2 is zero. Our previous 
induction hinged on the fact that, for a in Sn k' either a(I) or a(n) must be n, since each a(i) is smaller than 
one of them; this one depends on the fact that'a(k - 1) or a(k + 1) must be 2 since every a(i), except a(k) = 
1, is greater than one of them. Hence the left-hand side of Eq. (15) is 

1 1 

Gk "Et.'k (G k + Gk_I)(Gk + Gk- l + G,,-1(3)' .. (G k + Gk- l + ... + G,,-l(n_l) 
,,(k-J)=2 

+ -.L 2 1 . (16) 
Gk "ESn.k (Gk + Gk+I)(Gk + Gk+l + G,,-1(3)' .. (G k + Gk+l + ... + G,,-I(n-J) 

,,(k+1)=2 

If k is 1, the first sum is empty and, if k is n, the second is also empty; but if this is kept in mind, the following 
proof still is applicable. In any case Eq. (15) is almost trivial for k = 1 or k = n. To evaluate the two sums 
in Eq. (16), we use the fact that both can be transformed to special cases of Eq. (15) for n - 1. Thus, if we 
define numbers Hi for I ~ i ~ n - 1 and [for each a in the first sum in Eq. (16)] a permutation 7T of Sn-l by 

Hi = Gi , I ~ i ~ k - 2, 7T(i) = a(i) - I, 1 ~ i ~ k - 2, 

= Gk - l + Gk , i = k - 1, = I, i = k - 1, 

= Gi+l, k ~ i ~ n - I, = a(i + 1) - I, k ~ i::;; n - 1, 
and notice that 

HI + ... + Hn- l = GI + ... + (Gk- l + Gk ) + ... + Gn = 0, 

we can rewrite the first sum in Eq. (16) as 

the equality following from the induction hypothesis. 
Hence the first term in Eq. (16) is 

(-I)k-2/GkGt (GI + G2)··· (G1 + ... + Gk - 2) 

X (G I + ... + Gk - 1 + Gk ) ••• (G I + ... + Gn- l ). 

Exactly similarly, the second term in Eq. (16) is 

(-I)k-I/GkGI(Gl + G2)'" (G1 + ... + Gk- l) 
X (GI + ... + Gk + Gk+l) ... (Gl + ... + Gn - 1). 

Adding these, we see that the expression (16), which 
represents the left-hand side of Eq. (15), equals 

(-It-\Gl + ... + Gk ) + (_1)k-2(GI + ... + Gk_ l) 

G/,G1(GI + G2) ••• (GI + ... + Gn- l ) 

( _l)k-l 

GI(GI + G2) ••• (GI + ... + Gn- l) , 
which is the desired right-hand side of Eq. (15). It is 
interesting that the crucial hypothesis GI + ... + 
G n = ° did not enter the proof except to establish the 
case n = 2, and for larger n it was only needed to be 
able to apply the induction hypothesis. 
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