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Based on the Chen–Möller–Sauvaget formula, we apply the theory of integrable systems
to derive three equations for the generating series of the Masur–Veech volumes VolQg,n
associated with the principal strata of the moduli spaces of quadratic differentials,
and propose refinements of the conjectural formulas given in Delecroix et al. [11] and
Aggarwal et al. [4] for the large genus asymptotics of VolQg,n and of the associated area
Siegel–Veech constants.
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1. Statements of the results

Let Mg,n denote the moduli space of complex algebraic curves of genus g with n distinct marked points, and Qg,n the
oduli space of pairs (C, q), where C ∈ Mg,n is a smooth algebraic curve and q is a meromorphic quadratic differential
n C with only simple poles at the marked points. This moduli space of quadratic differentials Qg,n is endowed with the
anonical symplectic structure. The induced volume element on Qg,n is called the Masur–Veech (MV) volume element.
Denote by VolQg,n the volume of Qg,n; see e.g. [11,20,24] for its meaning. Recently, Chen–Möller–Sauvaget [8] proved
that the volumes VolQg,n with 2g − 2 + n > 0 can be expressed in terms of linear Hodge integrals as follows:

VolQg,n = 22g+1 π
6g−6+2n(4g − 4 + n)!
(6g − 7 + 2n)!

g∑
j=0

∫
Mg,3g−3+2n−j

λjψ
2
n+1 · · ·ψ2

3g−3+2n−j

(3g − 3 + n − j)!
, (1)

where Mg,k denotes the Deligne–Mumford compactification [13] of Mg,k, ψi denotes the first Chern class of the ith
tautological line bundle on Mg,k, and λj denotes the jth Chern class of the rank g Hodge bundle Eg,k on Mg,k. The goal of
the present paper is to study the numbers VolQg,n by using the Chen–Möller–Sauvaget (CMS) formula.
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For g, n ≥ 0, we define

ag,n =

{∑g
j=0

1
(3g−3+n−j)!

∫
Mg,3g−3+2n−j

λjψ
2
n+1 · · ·ψ2

3g−3+2n−j , 2g − 2 + n > 0 ,

0 , otherwise.
(2)

Note that the ag,n are rational numbers, and differ from VolQg,n only by some simple factors. Define a generating series
H(x, ϵ) for the numbers ag,n, called the MV free energy, by

H(x, ϵ) :=

∑
g,n≥0

ϵ2g−2 x
n

n!
ag,n . (3)

The first result of this paper is then given by the following theorem.

Theorem 1. The series H(x, ϵ) satisfies the following two equations:[
∂x(H+ − H−)

]2
+ ∂2x

(
H+ + H−

)
=

2x
ϵ2
, (4)(

ϵ∂ϵ +
1
2
x∂x −

ϵ2

24
∂3x

)(
H+ − H−

)
+

ϵ2

12

[
∂x(H+ − H−)

]3
= 0 , (5)

here H± := H
(
x ±

iϵ
2 , ϵ

)
.

A statement equivalent to Eq. (4) is given by the following corollary.

Corollary 1. For all g ≥ 0 and n ≥ 2, the numbers ag,n can be uniquely determined by the following recursion relation

ag,q+2 =
q!
2

∑
g1+g2+j1+j2=g

n1+n2=q+4+2(j1+j2)

(−1)j1+j2ag1,n1ag2,n2
4j1+j2 (2j1 + 1)!(2j2 + 1)!(n1 − 2j1 − 2)!(n2 − 2j2 − 2)!

−

g∑
j=1

(−1)jag−j,q+2j+2

4j(2j)!
+ δq,1δg,0 (6)

long with the boundary condition a0,2 = 0 (cf. (2)), where q ≥ 0.

Another corollary of Theorem 1 is the following non-linear differential equation for the series H.

orollary 2. The series H = H(x, ϵ) satisfies the following equation:

ϵ∂ϵ∂x(H) + x∂2x (H) +
1
2
∂x(H) −

ϵ2

4

[
∂2x (H)

]2
−
ϵ2

24
∂4x (H) = 0 . (7)

The proof will be given in Section 3. We also show there that Eq. (7) implies a recursion given by Kazarian in [27] for
he Hodge integrals

(5g − 3 − j)(5g − 5 − j)
(3g − 3 − j)!

∫
Mg,3g−3−j

λjψ
2
1 · · ·ψ2

3g−3−j , 0 ≤ j ≤ g .

A third corollary of Theorem 1 (which apart from the boundary conditions is in fact equivalent to Eq. (7)) is the
ollowing recursion for the numbers ag,n.

orollary 3. For all g ≥ 0 and n ≥ 1, the numbers ag,n are given recursively by

ag,n =
1
2

∑
g1,g2≥0
g1+g2=g

∑
ni≥2,(gi,ni)̸=(0,3),i=1,2

n1+n2=n+3

(
n − 1
n1 − 2

)
ag1,n1ag2,n2
4g − 4 + n

+
1
12

ag−1,n+3

4g − 4 + n
(8)

if 2g − 2 + n > 0, (g, n) ̸∈ {(0, 3), (0, 4)}, a0,3 = a0,4 = 1 and a0,1 = a0,2 = a−1,n = 0.

The recursion relations (6) or (8) both give rapid (polynomial-time) algorithms for computing ag,n for n ≥ 2 or n ≥ 1,
respectively. The first few values ag,n are given by Table 1.

The following proposition describes the property of VolQg,n, which will enable us to determine also ag,0 and ag,1
from (4), and ag,0 from (5) or (7).

Proposition 1 ([5,6,8]). The following properties of the MV volumes hold:

VolQ0,n =
π2n−6

, ∀ n ≥ 3 ; (9)
Please cite this article as: D. Yang, D. Zagier and Y. Zhang,Masur–Veech volumes of quadratic differentials and their asymptotics, Journal of Geometry and
Physics (2020) 103870, https://doi.org/10.1016/j.geomphys.2020.103870.
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Table 1
The numbers ag,n with 0 ≤ g ≤ 4 and 0 ≤ n ≤ 6.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

g = 0 0 0 0 1 1 3 15

g = 1 0 1
12

1
8

11
24

21
8

163
8

1595
8

g = 2 1
96

29
640

337
1152

319
128

10109
384

42445
128

620641
128

g = 3 575
21504

20555
82944

77633
27648

1038595
27648

16011391
27648

31040465
3072

201498115
1024

g = 4 2106241
7962624

1103729
294912

160909109
2654208

14674841399
13271040

99177888029
4423680

442442475179
884736

10765584400823
884736

VolQ1,n =
π2n

3

(
n!

(2n − 1)!!
+

2n
(2n − 1)2n

)
, ∀ n ≥ 1 ; (10)

VolQg,n = 22g+1+n π
6g−6+2n(4g − 4 + n)!
(6g − 7 + 2n)!

g∑
j=0

⟨λjτ
3g−3−j
2 ⟩g

(3g − 3 − j)!

(
5g − 5 − j

2

)
n
, (11)

here g ≥ 2, n ≥ 0, (b)n := b(b+1) · · · (b+n−1) denotes the increasing Pochhammer symbol, and we used Witten’s notation:
for a cohomology class γ ∈ H∗(Mg,n;C),

⟨γ τi1 · · · τin⟩g :=

∫
Mg,n

γ ψ
i1
1 · · ·ψ in

n , i1, . . . , in ≥ 0 .

The explicit expression for VolQ0,n, n ≥ 3 was conjectured by Kontsevich, and was proved by Athreya–Eskin–
orich in [6]. The formula (10) was conjecturally given by Andersen et al. [5], and the formula (11) is equivalent to the
onjecture 5.4 of [5] (to see the equivalence, cf. [8]). A proof of Proposition 1 was given in [8]. In this paper we give a
ifferent proof of this proposition based on the following lemma.

emma 1. Let T =
√
1 − 2x. Define the power series Hg (x), g ≥ 0 by

H(x, ϵ) =:

∑
g≥0

ϵ2g−2Hg (x) . (12)

hen we have

H0(x) =
1
40

−
T 2

12
+

T 4

8
−

T 5

15
, (13)

H1(x) =
1
24

log
1
T

+
1
24

(1 − T ) , (14)

H2(x) =
7

1440
1
T 5 +

5
1152

1
T 4 +

7
5760

1
T 3 . (15)

In general, we have the following expression for Hg (x):

Hg (x) =

g∑
j=0

⟨λjτ
3g−3−j
2 ⟩g

(3g − 3 − j)!
1

T 5g−5−j , g ≥ 2 . (16)

We give in Section 2 a proof of Lemma 1 by using the CMS formula (1) and the Dubrovin–Zhang formalism [15,16,18]
on Hodge integrals. Substituting the expansion (12) into (7) we find

xH′′

g +

(
2g −

3
2

)
H′

g −
1
4

∑
g1,g2≥0
g1+g2=g

H′′

g1H
′′

g2 −
1
24

H′′′′

g−1 = 0 . (17)

Here, the prime ‘‘ ′ ’’ denotes d/dx. It turns out that this formula together with Lemma 1 determines Hg , g ≥ 0, and
therefore the ag,n, uniquely for all g, n ≥ 0.

Recently, Aggarwal, Delecroix, Goujard, Zograf and Zorich [4] proposed a conjectural formula for the large g leading
asymptotics of VolQg,n (the conjectural formula was given originally in [11] for n = 0). The ADGZZ conjecture was very
recently proved in [1]. Our next result is a refinement of the ADGZZ conjecture to the following more precise asymptotic
statement.

Conjecture 1. For any fixed n ≥ 0, we have the asymptotic formula:

VolQg,n ∼
212g+4n−10

34g+n−4π

∞∑ mk(n)
gk , g → ∞ , (18)
Please cite this article as: D. Yang, D. Zagier and Y. Zhang,Masur–Veech volumes of quadratic differentials and their asymptotics, Journal of Geometry and
Physics (2020) 103870, https://doi.org/10.1016/j.geomphys.2020.103870.
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here each mk(n) is a polynomial in n with coefficients in Q[π2
], with the first four values (with M = −π2/144 for

onvenience) given by

m0(n) = 1 , m1(n) = M ,

m2(n) =
M
24

n3
−

3M
8

n2
+

4M − 27M2

6
n +

M + 19M2

2
,

m3(n) = −
8M + 27M2

288
n4

+
17M + 65M2

48
n3

−
860M + 1890M2

− 14256M3

576
n2

+
104M − 373M2

− 6156M3

48
n −

55M − 3615M2
− 28650M3

+ 126846M4

180
.

The asymptotic formula (18) with
∑

∞

k=0 mk(n)/gk replaced by 1 is the ADGZZ conjecture. We refer to [2,3,9,10,12,21,
33,34] for the analogues of the ADGZZ conjecture and Conjecture 1 (cf. also Conjecture 2 in Section 4) for the MV volumes
and for the related area Siegel–Veech constants associated with the moduli spaces of abelian differentials [20,30], and the
proofs of these analogues via different approaches; see also [31]. Conjecture 1 can also be stated in terms of the numbers
ag,n defined in (2) as

ag,n ∼
(6g − 7 + 2n)!
(4g − 4 + n)!

210g+4n−11

34g+n−4π6g−5+2n

∞∑
k=0

mk(n)
gk , g → ∞ . (19)

Conjecture 1, like the related Conjecture 2 which will be stated in Section 4, is completely empirical. Specifically, we
computed the values of ag,n numerically for g ≤ 100 and a number of small values of n, then interpolated by the numerical
method explained in [36], [25, Section 5] and elsewhere to get an asymptotic power series in 1/g with coefficients known
o high precision, and then used polynomial interpolation and the LLL (Lenstra–Lenstra–Lovasz) method to recognize the
oefficients as polynomials in n with coefficients in Q[π2

].

Remark 1. It would be interesting to investigate the following generating series:

Cn(ϵ) :=

∑
g≥0

ϵ2g−2ag,n , n ≥ 0 . (20)

In other words, H(x, ϵ) =
∑

n≥0
xn
n! Cn(ϵ). Eq. (7) then implies the following relations for Cn(ϵ):

Cn+4 =
24
ϵ

C ′

n+1 + 12
2n + 1
ϵ2

Cn+1 − 6n!
∑

n1+n2=n

Cn1+2Cn2+2

n1! n2!
, n ≥ 0 . (21)

imilarly, Eq. (5) implies relations for the analogue of Cn(ϵ) for H+ − H−. Understanding of Cn(ϵ) or its analogue might
e useful for proving the Conjecture 1.

The paper is organized as follows: In Section 2, we review the Dubrovin–Zhang theory and give a proof of Lemma 1.
n Section 3, we prove Theorem 1. In Section 4, we refine the conjectural formula for the large genus asymptotics of the
rea Siegel–Veech constants.

. The Hodge free energy

In this section we first give a short review of the Dubrovin–Zhang approach to Hodge integrals [7,14–16,18], and then
pecialize our discussions to linear Hodge integrals and prove Lemma 1. Recall that the genus g Hodge free energy Hg (t; s)
s defined by

Hg (t; s) =

∑
k≥0

∑
i1,...,ik≥0

ti1 · · · tik
k!

∫
Mg,k

Ωg,k(s)ψ
i1
1 · · ·ψ

ik
k , (22)

Ωg,k(s) := exp
(∑

j≥0

s2j−1 ch2j−1(Eg,k)
)
. (23)

Here g ≥ 0, t = (t0, t1, . . . ), s = (s1, s3, . . . ), t0, t1, t2, . . . , s1, s3, . . . are indeterminates, and ch1, ch3, ch5, . . . denote
components of the Chern character of Eg,k. Define the total Hodge free energy H by

H = H(t; s; ϵ) =

∑
g≥0

Hg (t; s) ϵ2g−2.

Let v ∈ C[[t]] be the unique power series solution to the following equation:∑ ti
i!
vi = v . (24)
Please cite this article as: D. Yang, D. Zagier and Y. Zhang,Masur–Veech volumes of quadratic differentials and their asymptotics, Journal of Geometry and
Physics (2020) 103870, https://doi.org/10.1016/j.geomphys.2020.103870.
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It is well known that this unique power series v = v(t) has the explicit expression

v(t) =

∑
k≥1

1
k

∑
p1,...,pk≥0

p1+···+pk=k−1

tp1
p1!

· · ·
tpk
pk!

. (25)

Denote

vm(t) = ∂mt0 (v(t)) , m ≥ 0 . (26)

Theorem A ([15]). The genus 0 and genus 1 Hodge free energies have the expressions

H0(t; s) =
v(t)3

6
−

∑
i≥0

ti
v(t)i+2

i!(i + 2)
+

1
2

∑
i,j≥0

titj
v(t)i+j+1

(i + j + 1)i!j!
, (27)

H1(t; s) =
1
24

log v1(t) +
s1
24
v(t) . (28)

For g ≥ 2, there exist elements

Hg (z1, . . . , z3g−2; s1, s3, . . . , s2g−1) ∈ C
[
z1, . . . , z3g−2, z−1

1 ; s1, s3, . . . , s2g−1
]

satisfying the conditions
3g−2∑
m=1

mzm
∂Hg

∂zm
= (2g − 2)Hg , (29)

3g−2∑
m=2

(m − 1) zm
∂Hg

∂zm
+

g∑
j=1

(2j − 1) s2j−1
∂Hg

∂s2j−1
= (3g − 3)Hg , (30)

such that

Hg (t; s) = Hg
(
v1(t), . . . , v3g−2(t); s1, s3, . . . , s2g−1

)
. (31)

This theorem was proved in [15]; see also [16] for a straightforward proof.
Define

u = u(t; s; ϵ) := ϵ2
∂2H(t; s; ϵ)

∂t20
, (32)

then according to [15], u satisfies an integrable hierarchy of tau-symmetric Hamiltonian evolutionary PDEs, called the
Hodge hierarchy, which is a deformation of the KdV hierarchy [29,35] and has the form

∂u
∂tk

= P
δh̄k

δu(x)
, k ≥ 0. (33)

Here P = ∂x + · · · is a Hamiltonian operator, h̄k, k ≥ 0 are Hamiltonians.
In [17] Theorem A was applied under a particular specialization of t, s, which gives the classical Hurwitz numbers

according to the ELSV formula. In this paper, we consider a different specialization. Firstly, we specialize s to s = s∗ as
follows:

s∗2k−1 := (2k − 2)! s2k−1, k ≥ 1 . (34)

Denote by Λg,k(s) :=
∑g

j=0 λj s
j the Chern polynomial of Eg,k. Applying the relationship between the Chern classes and

the Chern character, and using Mumford’s relations [32]

ch2m(Eg,k) = 0 , m ≥ 1,

we obtain Ωg,k(s = s∗) = Λg,k(s). So we have

Hg (t; s∗) =

∑
n≥0

∑
i1,...,in≥0

ti1 · · · tin
n!

∫
Mg,n

Λg,n(s)ψ
i1
1 · · ·ψ in

n . (35)

Secondly, we specialize t to t = t∗ given by

t∗0 = x , t∗1 = 0 , t∗2 = 1 , t∗i = 0 (i ≥ 3) . (36)

Substituting (36) into (35) we arrive at

Hg (t∗; s∗) =

∑ xn0

n0!

g∑
sj

⟨λj τ
n0
0 τ

3g−3+n0−j
2 ⟩g

(3g − 3 + n0 − j)!
. (37)
Please cite this article as: D. Yang, D. Zagier and Y. Zhang,Masur–Veech volumes of quadratic differentials and their asymptotics, Journal of Geometry and
Physics (2020) 103870, https://doi.org/10.1016/j.geomphys.2020.103870.
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rom the definition of ag,n given in (2), it follows that the MV free energy is a specialized linear Hodge free energy. More
recisely, we have the following lemma.

emma 2. For any g ≥ 0, the following identities hold:

Hg (x) = Hg (t∗; s∗)|s=1 , (38)

where Hg (x) is the gth-part of the MV free energy (12). Equivalently, we have

VolQg,n = 22g+1 π
6g−6+2n(4g − 4 + n)!
(6g − 7 + 2n)!

∂nx
(
Hg (t∗; s∗)

)⏐⏐
x=0,s=1 . (39)

Let us now apply Theorem A to the computation ofHg (t∗; s∗), which, due to (39), gives rise to VolQg,n. Substituting (36)
nto (24) we find that v = v(t∗) satisfies the following quadratic equation

x +
v2

2
= v . (40)

By solving this and observing that the power series v starts with x, we obtain

v(t∗) = 1 −
√
1 − 2x.

enote

T :=
√
1 − 2x . (41)

Then by noticing ∂x = −
1
T ∂T we find

vm(t∗) =
(2m − 3)!!

T 2m−1 + δm,0 , m ≥ 0 . (42)

emma 3. The power series Hg (t∗; s∗) of x, t are given explicitly for g = 0, 1, 2 by

H0(t∗; s∗) =
1
40

−
T 2

12
+

T 4

8
−

T 5

15
, (43)

H1(t∗; s∗) =
1
24

log
1
T

+
s
24

(1 − T ) , (44)

H2(t∗; s∗) =
7

1440
1
T 5 +

5
1152

s
T 4 +

7
5760

s2

T 3 . (45)

In general, for g ≥ 2, Hg (t∗; s∗) has the following expression:

Hg (t∗; s∗) =

g∑
j=0

⟨λjτ
3g−3−j
2 ⟩g

(3g − 3 − j)!
sj

T 5g−5−j , g ≥ 2 . (46)

roof. By substituting (42) into (27) and (28), we arrive at the formulas for H0(t∗; s∗) and H1(t∗; s∗), respectively. The
ormula for H2(t∗; s∗) can be obtained by using the algorithm of [15] with vm(t∗) given by (42). To show the validity of
he formula for Hg (t∗; s∗), g ≥ 2, we first observe that, according to (31), (42) and the homogeneity conditions (29), (30),
he function Hg (t∗; s∗) can be written in the form

Hg (t∗; s∗) =

g∑
j=0

Cg,jsj

T 5g−5−j , g ≥ 2 , (47)

where Cg,j ∈ Q. Therefore,

Hg (t∗; s∗)|x=0 =

g∑
j=0

Cg,jsj , g ≥ 2.

On the other hand, it follows from (37) that

Hg (t∗; s∗)|x=0 =

g∑
j=0

⟨λjτ
3g−3−j
2 ⟩g

(3g − 3 − j)!
sj.

By comparing the coefficients of sj in the two formulas given above we arrive at

Cg,j =
⟨λjτ

3g−3−j
2 ⟩g

, j = 0, . . . , g , (48)
Please cite this article as: D. Yang, D. Zagier and Y. Zhang,Masur–Veech volumes of quadratic differentials and their asymptotics, Journal of Geometry and
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where g ≥ 2. The lemma is proved. □

Proof of Lemma 1. By putting s = 1 in Lemma 3, we arrive at the result of Lemma 1. □

Now let us give a proof of Proposition 1 based on Lemma 1.

Proof of Proposition 1. By using (13) and the fact that d
dx = −

1
T

d
dT we have

H′

0(x) =
1
6

−
T 2

2
+

T 3

3
, H′′

0(x) = v(t∗) , (49)

dnH0(x)
dxn

= vn−2(t∗) =
(2n − 7)!!
T 2n−5 , n ≥ 3 . (50)

Therefore, dnH0(x)
dxn

⏐⏐
x=0 = (2n−7)!! δn≥3. Due to the definition (3) and the CMS formula this gives (9). Similarly, by using (14)

e obtain

dnH1(x)
dxn

=
δn≥1

24
2n−1(n − 1)!

T 2n +
δn,0

24
log

1
T

+
1
24

(2n − 3)!!
T 2n−1 +

δn,0

24
, (51)

from which we arrive at (10). Finally, by using (16) we have for g ≥ 2,

dnHg (x)
dxn

=

g∑
j=0

⟨λjτ
3g−3−j
2 ⟩g

(3g − 3 − j)!

∏n−1
i=0 (5g − 5 − j + 2i)

T 5g−5−j+2n , (52)

which yields formula (11). Proposition 1 is proved. □

Remark 2. The explicit expressions of the numbers ⟨λgτ
2g−3
2 ⟩g that appear in (11) of Proposition 1 are given by the

ollowing λg-conjecture proven in [19,22]:

⟨λgτ
2g−3
2 ⟩g

(2g − 3)!
=

22g−1
− 1

22g−1 (4g − 7)!!
|B2g |

(2g)!
, g ≥ 2 , (53)

where Bk denotes the kth-Bernoulli number. The number ⟨τ
3g−3
2 ⟩g for g ≥ 2 has the expression [26]:

⟨τ
3g−3
2 ⟩g

(3g − 3)!
=

24−gcg
(5g − 3)(5g − 5)

, (54)

here cg are given by the recursion

cg = 50 (g − 1)2 cg−1 +
1
2

g−2∑
h=2

ch cg−h, g ≥ 3 (55)

together with c0 = −1, c1 = 2, c2 = 98.

Proposition 1 and formula (54) imply immediately the following corollary.

orollary 4. For any fixed g ≥ 0, the following asymptotic formula is true:

VolQg,n ∼ κg
n

g
2 π2n

2n (n → ∞) , (56)

here

κg =
64π6g−

11
2

384g Γ ( 5g−1
2 )

cg , (57)

and cg are defined by (55).

The reader may notice that certain universality found in [17] about asymptotics of enumerations related to Mg,n

reappears in (56), (57). The first few κg are given by κ0 = 32/π6, κ1 = π
1
2 /3, κ2 = 7π6/1080, κ3 = 245π25/2/7962624.

3. Relations for the MV volumes

The goal of this section is to prove Theorem 1 and Corollary 2.
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roof of Theorem 1. It was shown by Buryak [7] that the Hodge hierarchy associated with Λ(s) is normal Miura
equivalent [15,18] to the intermediate long wave (ILW) hierarchy. To be precise, define ũ = ũ(t; s; ϵ) by

ũ(t; s; ϵ) :=

∞∑
g=0

ϵ2g
(−1)g sg

22g (2g + 1)!
∂2gu

∂t2g0
, (58)

where u is defined in (32) with the specialization s = s∗; then ũ satisfies [7] the ILW hierarchy, which has the first two
flows

ũt1 = ũ
∂ ũ
∂t0

+

∑
g≥1

|B2g |

(2g)!
ϵ2g sg−1 ∂

2g+1ũ

∂t2g+1
0

, (59)

ũt2 =
1
2
ũ2 ∂ ũ
∂t0

+

∑
g≥1

|B2g |

(2g)!
ϵ2g

sg−1

4

(
2∂t0

(
ũ
∂2g ũ

∂t2g0

)
+
∂2g+1(ũ2)

∂t2g+1
0

)

+

∑
g≥2

|B2g |

(2g)!
(g + 1)ϵ2g sg−2 ∂

2g+1ũ

∂t2g+1
0

. (60)

Let us now do the specialization (36) with s = 1, and denote the series u(t∗; s∗
; ϵ)|s=1, ũ(t∗; s; ϵ)|s=1 by u = u(x, ϵ),

˜ = ũ(x, ϵ), respectively. Then u(x, ϵ) = ϵ2∂2x (H(x, ϵ)), and from (58) it follows that ũ(x, ϵ) and u(x, ϵ) are related by

ũ =

∞∑
g=0

ϵ2g
(−1)g

22g (2g + 1)!
∂2gu
∂x2g

. (61)

Proposition 2. The series ũ = ũ(x, ϵ) satisfies the following non-linear equation:

x +
ũ2

2
+

∞∑
g=1

ϵ2g
|B2g |

(2g)!
∂2g ũ
∂x2g

= ũ . (62)

Proof. Recall that the Hodge partition function Z = Z(t; s; ϵ) := eH(t;s;ϵ) satisfies the string equation (cf. e.g. [15,16]), that
is, ∑

i=0

ti+1
∂Z
∂ti

+
t20
2ϵ2

Z +
s1
24

Z =
∂Z
∂t0

. (63)

Dividing both sides of (63) by Z and differentiating with respect to x we obtain
∞∑
i=0

ti+1
∂2H(t; s; ϵ)
∂ti∂x

+
x
ϵ2

=
∂2H(t; s; ϵ)

∂x2
. (64)

e recall that

ϵ2
∂2H(t; s; ϵ)
∂ti∂x

= Ωi,0
(
u(t; s; ϵ), ux(t; s; ϵ), . . .

)
, i ≥ 0 , (65)

here Ωi,0 are certain differential polynomials [7,15] of u. Then by using the Miura transformation (58) we obtain
∞∑
i=0

ti+1Ω̃i,0
(
ũ(t; s; ϵ), ũx(t; s; ϵ), . . .

)
+ x = ũ(t; s; ϵ) . (66)

Here Ω̃i,0, i ≥ 0 are differential polynomials of ũ. Buryak [7] showed that the Miura transformation (58) transforms the
Hamiltonian structure P of the linear Hodge hierarchy to ∂x, in particular, ũ(t; s; ϵ) satisfies the Hamiltonian system

∂ ũ
∂t1

= ∂x
δ ˜̄h1

δũ(x)
, (67)

here

˜̄h1 =

∫ (
ũ3

6
+

∞∑
g=1

|B2g |

2(2g)!
ũũ2g

)
dx .

Therefore, according to [15] we know that

Ω̃1,0 =
δ ˜̄h1

δũ(x)
=

ũ2

2
+

∞∑
ϵ2g

|B2g |

(2g)!
∂2g ũ
∂x2g

. (68)
Please cite this article as: D. Yang, D. Zagier and Y. Zhang,Masur–Veech volumes of quadratic differentials and their asymptotics, Journal of Geometry and
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Thus Eq. (66) with the specialization s = 1 leads to (62). The proposition is proved. □

We are in a position of proving Eq. (4). Indeed, observe that∑
g≥1

ϵ2g
|B2g |

(2g)!
∂2gx = 1 −

i
2
ϵ ∂x −

iϵ∂x
eiϵ∂x − 1

, (69)

so it follows from (62) that

x +
ũ2

2
−

i
2
ϵ ∂x(ũ) −

iϵ∂x
eiϵ∂x − 1

(ũ) = 0 . (70)

y using the fact that ũ = −iϵ∂x(H+ − H−) we arrive at Eq. (4).
We will now prove Eq. (5). We first switch on the t2-dependence and denote it by t in the specialization (36). More

recisely, we consider

H = H(x, t, ϵ) :=

∑
g,n≥0

g∑
j=0

⟨λjτ
n
0 τ

3g−3+n−j
2 ⟩

(3g − 3 + n − j)!
ϵ2g−2 x

n

n!
t3g−3+n−j , (71)

and denote H± := H
(
x ±

iϵ
2 , t, ϵ

)
. Then by using Eq. (59) and an argument like the one we used above to derive

equation (4), we find that H satisfies the following equation:

t
ϵ2

2

[
∂x(H+ − H−)

]2
+ t

ϵ2

2
∂2x
(
H+ + H−

)
− (1 − t) i ϵ ∂x(H+ − H−) = x . (72)

hen by using Eqs. (60) and (72) we obtain the following equation for H:

− i ϵ ∂t (H+ − H−) =
1
6
ũ3

+
3
4
ũ2

+ ũ −
iϵ
2
ũũx −

3iϵ
4

ũx −
ϵ2

6
ũxx +

x
2t

−
iϵ
4t

−
1 + 2t
2t

ϵ2∂2x (H−) +
iϵ3

4
∂3x (H−) −

ϵ2

2
ũ ∂2x (H−) . (73)

ere we recall that ũ = −iϵ∂x(H+ − H−), and we also used Theorem A to get the constant in x term −iϵ/4t . It is not
ifficult to deduce from Theorem A the following homogeneity property for H:

t
∂H
∂t

+

(
x −

1
t

)∂H
∂x

+ ϵ
∂H
∂ϵ

= −
1
24

−
1

24t
−

x2

2ϵ2t
. (74)

From Eqs. (72)–(74) we arrive at Eq. (5). The theorem is proved. □

Let us proceed to prove Corollary 2.

Proof of Corollary 2. Differentiating equation (5) with respect to x we obtain(
ϵ∂x∂ϵ +

1
2
∂x +

1
2
x∂2x −

ϵ2

24
∂4x

)(
H+ − H−

)
+
ϵ2

4

[
∂x(H+ − H−)

]2[
∂2x (H+ − H−)

]
= 0,

so from Eq. (4) it follows that(
ϵ∂ϵ +

1
2

+ x∂x −
ϵ2

24
∂3x

)
◦ ∂x

(
H+ − H−

)
−
ϵ2

4

[(
∂2x (H+)

)2
−
(
∂2x (H−)

)2]
= 0 .

bserving that
[
x∂x, e±iϵ∂x/2

]
= ∓

iϵ
2 e

±iϵ∂x/2∂x one can simplify this equation and find(
e

iϵ∂x
2 − e−

iϵ∂x
2

)[(
ϵ∂ϵ +

1
2

+ x∂x −
ϵ2

24
∂3x

)
◦ ∂x

(
H
)

−
ϵ2

4

[
∂2x (H)

]2]
= 0 . (75)

ince the operator (e
iϵ∂x
2 − e−

iϵ∂x
2 )/∂x is invertible on power series of x, we find that Eq. (75) is equivalent to

∂x

[(
ϵ∂ϵ +

1
2

+ x∂x −
ϵ2

24
∂3x

)
◦ ∂x

(
H
)

−
ϵ2

4

[
∂2x (H)

]2]
= 0 . (76)

t follows that(
ϵ∂ϵ +

1
2

+ x∂x −
ϵ2

24
∂3x

)
◦ ∂x

(
H
)

−
ϵ2

4

[
∂2x (H)

]2
= C(ϵ),

where C(ϵ) =
∑

g≥0 ϵ
2g−2Cg with Cg being constants. It remains to show that Cg all vanish. Indeed, for g = 0 and g = 1,

this can be verified directly with the explicit expressions of H0 and H1 given in Lemma 1. For g ≥ 2, by using Lemma 1
and the fact that ∂ = −

1 ∂ we arrive at C = 0. The corollary is proved. □
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Let us now show that Corollary 2 implies Kazarian’s recursion on the linear Hodge integrals

(5g − 3 − j)(5g − 5 − j)
(3g − 3 − j)!

∫
Mg,3g−3−j

λjψ
2
1 · · ·ψ2

3g−3−j .

ndeed, differentiating (7) with respect to x we find that the series u = ϵ2∂2x (H) satisfies the equation

2ϵuϵ + 2xux − u = ∂x

(1
2
u2
)

+
1
12
ϵ2uxxx . (77)

Denote

u(x, ϵ) =:

∑
g≥0

ϵ2gu[g](x) . (78)

Then we can write (77) equivalently as follows:(
4g − 1 + 2x

d
dx

)(
u[g]
)

=
1
2

d
dx

( ∑
g1+g2=g

u[g1]u[g2]

)
+

1
12

d3

dx3
(
u[g−1]) , g ≥ 0 . (79)

To proceed we note that it follows easily from Lemma 1 that u[g](x) has the expression

u[0]
= 1 − T , u[1]

=
1
12

1
T 4 +

1
24

1
T 3 , (80)

u[g]
=

g∑
j=0

⟨λjτ
3g−3−j
2 ⟩g

(3g − 3 − j)!

∏1
i=0(5g − 5 − j + 2i)

T 5g−1−j , g ≥ 2 . (81)

hus using the fact that d
dx = −

1
T

d
dT =: DT we find that (79) is equivalent to

(
4g − 1 + (1 − T 2)DT

)(
u[g]
)

=
1
2
DT

( ∑
g1,g2≥0
g1+g2=g

u[g1]u[g2]

)
+

1
12

D3
T

(
u[g−1]) . (82)

Substituting (80), (81) into (82) we find

cg,j =
g + 1 − k
5g − 2 − j

cg,j−1 +
(5g − 6 − j)(5g − 4 − j)

12
cg−1,j

+
1
2

∑
g1,g2≥1,j1,j2≥0
g1+g2=g,j1+j2=j

cg1,j1cg2,j2 , g ≥ 1, 0 ≤ j ≤ g , (83)

where the numbers cg,j are defined by

cg,j :=
⟨λjτ

3g−3−j
2 ⟩g

(3g − 3 − j)!

1∏
i=0

(5g − 5 − j + 2i) . (84)

he recursion relations (83) for cg,j were obtained by Kazarian [27] from the KP hierarchy [28] satisfied by the linear
odge integrals.
It is not clear at the moment whether Corollary 2 and Lemma 1 imply Theorem 1.
We end this section with two remarks on the computational aspects. Firstly, as a consequence of Eq. (4) and Lemma 1,

he u[g] can be computed from the recursion

u[0]
= 1 − T ,

u[g]
=

1
2T

∑
0≤g1,g2≤g−1

g1+g2+j1+j2=g

(
−

1
4

)j1+j2 D2j1
T

(
u[g1]

)
D2j2
T

(
u[g2]

)
(2j1 + 1)!(2j2 + 1)!

−
1
T

g∑
j=1

(
−

1
4

)jD2j
T

(
u[g−j]

)
(2j)!

,
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where g ≥ 1. Then one can further compute Hg , g ≥ 2 from u[g] via

Hg =

g∑
j=0

Cg,j

T 5g−5−j , Cg,j =
coefficient of 1/T 5g−1−j in u[g]

(5g − 3 − j)(5g − 5 − j)
(0 ≤ j ≤ g) . (85)

econdly, the series ũ (see (61)) also presents good properties. Denote

ũ(x, ϵ) =:

∑
g≥0

ϵ2g ũ[g](x) . (86)

f then follows from (80), (81) that ũ[g] has the expression

ũ[0]
= 1 − T , ũ[1]

=
1

12T 4 , ũ[g]
=

g∑
j=0

dg,j
T 5g−1−j (g ≥ 2) , (87)

where dg,j ∈ Q are constants. In terms of intersection numbers we have for g ≥ 2,

ũ[g]
=

g−2∑
g1=0

(−1)g1

22g1 (2g1 + 1)!

g−g1∑
j=0

⟨λjτ
3g−3g1−3−j
2 ⟩g−g1

(3g − 3g1 − 3 − j)!

∏1+2g1
i=0 (5g − 5g1 − 5 − j + 2i)

T 5g−g1−1−j

+
(−1)g−122g

12
1
T 4g +

(−1)g (4g − 3)!!
22g (2g + 1)!

5 − 2g
6

1
T 4g−1 .

Substituting (86) into (62) we find that ũ[g], g ≥ 0 satisfy the following recursion

ũ[0]
= 1 − T , (88)

ũ[g]
=

1
2T

g−1∑
g1=1

ũ[g1]ũ[g−g1]
+

1
T

g∑
g1=1

|B2g1 |

(2g1)!
D2g1
T

(
ũ[g−g1]

)
, g ≥ 1 . (89)

his recursion gives an algorithm for computing ũ. From (61) we know that

u = ũ +

∑
g≥1

ϵ2g
22g−1

− 1
22g−1

|B2g |

(2g)!
D2g
T (ũ).

Therefore, for g ≥ 0,

u[g]
= ũ[g]

+

g∑
g1=1

22g1−1
− 1

22g1−1

|B2g1 |

(2g1)!
D2g1
T

(
ũ[g−g1]

)
.

So this gives rise to another algorithm for computing the MV volumes. One could also use (5) to study ũ.

4. Asymptotics of the area Siegel–Veech constants

In this section we use Goujard’s formula to compute the area Siegel–Veech (SV) constants (cf. e.g. [20]) associated with
rincipal strata of moduli spaces of quadratic differentials. Indeed, according to Goujard [23] the area SV constants can
e expressed explicitly in terms of the number ag,n as follows:

Carea(Qg,n) =
π−2

4ag,n

(
n(n − 1)ag,n−1 + ag−1,n+2 +

∑
g1,g2≥0, n1,n2≥1

g1+g2=g, n1+n2=n+2
3gi−3+ni>0 (i=1,2)

(
n

n1 − 1

)
ag1,n1ag2,n2

)
. (90)

he result in this section is a refinement of the conjectural formula for the large g asymptotics of Carea(Qg,n) given in [4,11]
o the following more precise asymptotic statement.

onjecture 2. For any fixed n ≥ 0, we have the asymptotic formula

Carea(Qg,n) ∼

∞∑
k=0

Ck(n)
gk , g → ∞ , (91)

where each Ck(n) is a polynomial with rational coefficients in n and M = −π2/144, with the first four of them being

C0(n) =
1
, C1(n) =

1
n2

−
3

n +
1 − 2M

,
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C2(n) = −
5 + 12M

576
n3

+
59 + 180M

576
n2

−
11 + 24M − 72M2

32
n +

23 + 15M − 648M2

72
,

C3(n) =
4 + 17M + 54M2

1152
n4

−
179 + 978M + 3564M2

3456
n3

+
929 + 5169M + 13554M2

− 42768M3

3456
n2

−
989 + 4851M − 4428M2

− 192456M3

1728
n +

295 + 1165M − 16140M2
− 105300M3

+ 253692M4

720
.

The asymptotic formula (91) with
∑

∞

k=0 Ck(n)/gk replaced by 1/4 becomes the ADGZZ conjecture for the area SV
constants. As we mentioned in the Introduction, Conjecture 2 is also not based on theoretical reasoning but on numerical
computations. Very recently Aggarwal [1] proved the ADGZZ conjecture for the area SV constants by showing that
the leading term asymptotics in (18) implies the leading term asymptotics in (91) with the knowledge of Goujard’s
formula (90). However, we do not know whether Conjecture 1 implies Conjecture 2 in the same way. This would be
an interesting point to investigate next.

Acknowledgements

We would like to thank Dawei Chen, Martin Möller, and Motohico Mulase for helpful suggestions. Part of the work of
D.Y. was done during his visit to MPIM, Germany; he thanks MPIM for excellent working conditions and financial support.
This work was partially supported by NSFC No. 11771238.

References

[1] A. Aggarwal, Large genus asymptotics for intersection numbers and principal strata volumes of quadratic differentials, arXiv:2004.05042.
[2] A. Aggarwal, Large genus asymptotics for volumes of strata of abelian differentials, With an appendix by A. Zorich, J. Amer. Math. Soc. (to

appear), arXiv:1804.05431.
[3] A. Aggarwal, Large genus asymptotics for Siegel–Veech constants, Geom. Funct. Anal. 29 (2019) 1295–1324.
[4] A. Aggarwal, V. Delecroix, É. Goujard, P. Zograf, A. Zorich, A Conjectural large genus asymptotics of Masur–Veech volumes and of area

Siegel–Veech constants of strata of quadratic differentials, Arnold Mathematical Journal 6 (2020) 149–161.
[5] J.E. Andersen, G. Borot, S. Charbonnier, V. Delecroix, A. Giacchetto, D. Lewański, C. Wheeler, Topological recursion for Masur–Veech volumes,

arXiv:1905.10352.
[6] J. Athreya, A. Eskin, A. Zorich, Right-angled billiards and volumes of moduli spaces of quadratic differentials on CP1 , Ann. Sci. ENS 4ème Sér.

49 (2016) 1307–1381.
[7] A. Buryak, Dubrovin-Zhang hierarchy for the Hodge integrals, Commun. Number Theory Phys. 9 (2015) 239–271.
[8] D. Chen, M. Möller, A. Sauvaget, Masur–Veech volumes and intersection theory: The principal strata of quadratic differentials, With an appendix

by G. Borot, A. Giacchetto, D. Lewański, arXiv:1912.02267.
[9] D. Chen, M. Möller, A. Sauvaget, D. Zagier, Masur–Veech volumes and intersection theory on moduli spaces of Abelian differentials, Invent.

Math. (2020) https://doi.org/10.1007/s00222-020-00969-4, arXiv:1901.01785.
[10] D. Chen, M. Möller, D. Zagier, Quasimodularity and large genus limits of Siegel-Veech constants, J. Amer. Math. Soc. 31 (2018) 1059–1163.
[11] V. Delecroix, E. Goujard, P. Zograf, A. Zorich, Masur–Veech volumes, frequencies of simple closed geodesics and intersection numbers of moduli

spaces of curves, arXiv:1908.08611.
[12] V. Delecroix, E. Goujard, P. Zograf, A. Zorich, Contribution of one-cylinder square-tiled surfaces to Masur–Veech volumes, With an appendix by

P. Engel, Astérisque 415 (2020) 223–274.
[13] P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 45 (1969) 75–109.
[14] B. Dubrovin, Geometry of 2D topological field theories, in: M. Francaviglia, S. Greco (Eds.), Integrable Systems and Quantum Groups (Montecatini

Terme, 1993), in: Springer Lecture Notes in Math., vol. 1620, 1996, pp. 120–348.
[15] B. Dubrovin, S.-Q. Liu, D. Yang, Y. Zhang, Hodge integrals and tau-symmetric integrable hierarchies of Hamiltonian evolutionary PDEs, Adv.

Math. 293 (2016) 382–435.
[16] B. Dubrovin, D. Yang, Remarks on intersection numbers and integrable hierarchies. I. Quasi-triviality, arXiv:1905.08106.
[17] B. Dubrovin, D. Yang, D. Zagier, Classical Hurwitz numbers and related combinatorics, Mosc. Math. J. 17 (2017) 601–633.
[18] B. Dubrovin, Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, arXiv:math/0108160.
[19] T. Ekedahl, S. Lando, M. Shapiro, A. Vainshtein, On Hurwitz numbers and Hodge integrals, C. R. Acad. Sci., Paris I 328 (1999) 1175–1180.
[20] A. Eskin, M. Kontsevich, A. Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publ. Math.

Inst. Hautes Études Sci. 120 (2014) 207–333.
[21] A. Eskin, A. Zorich, Volumes of strata of abelian differentials and Siegel-Veech constants in large genera, Arnold Math. J. 1 (2015) 481–488.
[22] C. Faber, R. Pandharipande, Hodge integrals and Gromov–Witten theory, Invent. Math. 139 (2000) 173–199.
[23] E. Goujard, Siegel-Veech constants for strata of moduli spaces of quadratic differentials, Geom. Funct. Anal. 25 (2015) 1440–1492.
[24] E. Goujard, Volumes of strata of moduli spaces of quadratic differentials: getting explicit values, Ann. Inst. Fourier (Grenoble) 66 (2016)

2203–2251.
[25] D. Grünberg, P. Moree, Sequences of enumerative geometry: congruences and asymptotics, With an Appendix by D. Zagier, Exp. Math. 17

(2008) 409–426.
[26] C. Itzykson, J.B. Zuber, Combinatorics of the modular group II. The Kontsevich integrals, Internat. J. Modern Phys. A 7 (1992) 5661–5705.
[27] M. Kazarian, Recursion for Masur-Veech volumes of moduli spaces of quadratic differentials, arXiv:1912.10422.
[28] M. Kazarian, KP hierarchy for Hodge integrals, Adv. Math. 221 (2009) 1–21.
[29] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992) 1–23.
[30] M. Kontsevich, A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153

(2003) 631–678.
[31] M. Mirzakhani, Growth of the number of simple closed geodesics on hyperbolic surfaces, Ann. of Math. 168 (2008) 97–125.
[32] D. Mumford, Towards an enumerative geometry of the moduli space of curves, in: Arithmetic and Geometry (271–328), Birkhäuser Boston,

1983.
[33] A. Sauvaget, The large genus asymptotic expansion of Masur–Veech volumes, arXiv:1903.04454.
[34] A. Sauvaget, Volumes and Siegel-Veech constants of H(2g − 2) and Hodge integrals, Geom. Funct. Anal. 28 (2018) 1756–1779.
[35] E. Witten, Two-dimensional gravity and intersection theory on moduli space, in: Surveys in Differential Geometry (Cambridge, MA, 1990),

Lehigh Univ., Bethlehem, PA, 1991, pp. 243–320.
[36] D. Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology 40 (2001) 945–960.
Please cite this article as: D. Yang, D. Zagier and Y. Zhang,Masur–Veech volumes of quadratic differentials and their asymptotics, Journal of Geometry and
Physics (2020) 103870, https://doi.org/10.1016/j.geomphys.2020.103870.

http://arxiv.org/abs/2004.05042
http://arxiv.org/abs/1804.05431
http://arxiv.org/abs/1905.10352
http://arxiv.org/abs/1912.02267
http://arxiv.org/abs/1901.01785
http://arxiv.org/abs/1908.08611
http://arxiv.org/abs/1905.08106
http://arxiv.org/abs/math/0108160
http://arxiv.org/abs/1912.10422
http://arxiv.org/abs/1903.04454

	Masur–Veech volumes of quadratic differentials and their asymptotics
	Statements of the results
	The Hodge free energy
	Relations for the MV volumes
	Asymptotics of the area Siegel–Veech constants
	Acknowledgements
	References


