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Abstract

In this paper the `functiona F(q)"��
���

(1!q)(1!q�)2(1!q�) is studied. The series does not
converge in any open set, but has well-de"ned values and derivatives of all orders when q is a root of unity. It
is shown that the coe$cients of its Taylor expansion at q"1 are equal to the numbers �

�
of `regular

linearized chord diagramsa as de"ned by Stoimenow and hence give an upper bound (the best currently
known) for the number of linearly independent Vassiliev invariants of degree D. There are similar expansions
at other roots of unity. The same values and derivatives of all orders at all roots of unity are obtained as the
limiting value of the function !�

�
�

���
(!1)��6n#1�q������	
�, the `derivative of order one-half '' of the

Dedekind eta-function, and also exhibit a kind of modular behavior which can be seen as an example of
a generalization of the classical theory of periods of modular forms to the case of half-integral weight.
Functions of a similar type also occurred in recent joint work with Lawrence in connection with the
Witten}Reshetikhin}Turaev invariants of knots. � 2001 Elsevier Science Ltd. All rights reserved.
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Introduction

An important open problem of knot theory is the determination of the number <(D) of linearly
independent Vassiliev invariants of degree D, or equivalently of chord diagrams of degree
D modulo the 4-term relation. In a recent paper, Stoimenow [6] introduced the notion of `regular
linearized chord diagramsa (the de"nition is recalled in Section 1) and proved that<(D) is bounded
by the number �

�
of such diagrams of degree D. He gave an explicit, but somewhat complicated,
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algorithm (Eqs. (8)}(11) below) to compute the numbers �
�

and used it to show that
�
�

)C(M)D��D! for anyM'0, improving the previously known upper bound (D!2)!/2 for the
number of Vassiliev invariants, but observed that the numerical computations (up to D"30)
actually suggested a better estimate `something like D!/1.5� a. In this paper we will give another
and simpler description of Stoimenow's numbers �

�
and use it to deduce that �

�
/D! tends to

0 exponentially fast (like 1.6442�� ). The analysis involves a series of surprising identities related
to the Dedekind eta-function. These identities also provide the "rst indication of the existence of
a period theory (or theory of Eichler integrals) for modular forms of half-integral weight.
Speci"cally, we will show (Theorem 1) that Stoimenow's numbers �

�
are given by the simple

generating function identity

�
�
���

(1!q)(1!q�)2(1!q�)"
�
�

���

�
�
(1!q)� (1)

in �[[1!q]]. This identity, apart from its elegance, makes the numerical evaluation of the �
�
very

easy. Calculating the values up to D"200 and interpolating numerically suggested an asymptotic
formula of the form

�
�

&

D!�D
(��/6)��C�

#

C
�

D
#

C
�

D�
#2� (2)

with C
�
+2.704332490062429595, C

�
+!1.52707 and C

�
+!0.269009. Our second main

result (Theorem 4 in Section 3) is a proof of this formula with explicitly computable constantsC
�
. In

particular,

C
�
"

12�3
��
�

e��
��, (3)

which agrees to the accuracy given above with the empirically obtained value. The proof of (2) is
based on the following surprising identity of formal power series (Theorem 3 in Section 2):

e��
�
�
�
���

(1!e��)2(1!e���)"
�
�
���

¹
�

n! �
t
24�

�
. (4)

Here the numbers ¹
�
"1,¹

�
"23,¹

�
"1681,2 (which occur in the literature under the name

`Glaisher's T-numbersa; cf. [5], sequence �5138), are integers given by the generating function

�
�
���

¹
�

(2n#1)!
x����"

sin 2x
2 cos 3x �"

sinx
1!4 sin�x� (5)

or in closed form by the formulas

¹
�
"6

(!144)�
n#1 �B�����

1
12�!B

�����
5
12��"

(2n#1)!

2�3

¸(2n#2, �)
(�/6)����

, (6)

where B
�
(x) denotes the nth Bernoulli polynomial and ¸(s,�) is the Dirichlet L-series associated to

the quadratic character �"(12/ ) ) of conductor 12.
Identity (4) is surprising, but not strange: it is a normal identity between two formal power series.

The `strange identitya of the title is the `formulaa
�
�
���

(1!q)(1!q�)2(1!q�)"!

1
2

�
�
���

n�(n)q�����	
�. (7)
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What is strange about it, apart from the factor !�
�
on the right-hand side, is that the two sides

never make sense simultaneously: the left-hand side is divergent both as a power series in q and as
a complex-valued function in the region �q�(1 (or of course �q�'1), but has a well-de"ned value
when q is a root of unity, while the right-hand side converges as a formal power series and in the
disk �q�(1, but nowhere on the unit circle. The meaning of the equality is that the function on
the left agrees at roots of unity with the radial limit of the function on the right, and similarly for the
derivatives of all orders. Eq. (7), of which (4) is a consequence, is related to the Dedekind �-function
and the theory of periods of modular forms. This will be discussed brie#y in Section 6, and at more
length in a later paper.
I end this introduction with a few words on the origin of the formulas above. The expression

occurring on the left-hand side of (1) occurred in a lecture on analytic continuation of Feynman
integrals given byMaximKontsevich in theMax-Planck-Institut fuK rMathematik in October 1997.
He had studied the values of this expression when q is a root of unity (in which case the sum
terminates) and discovered a very surprising asymptotic formula (Eq. (34) below) for these values
when q"e���
� with kPR. I gave an interpretation of his formula as a statement about a certain
`period functiona associated to the Dedekind eta-function and showed that it would follow from
identity (7). As part of the attempt to prove (7) and its special case (4) I calculated the "rst few
Taylor coe$cients at q"1 of the left-hand side of (1) and discovered by using the on-line version of
[5] that the same numbers had occurred in [6] in the context of counting chord diagrams. Studying
the recursions in [6] led to a proof of identity (1) and to a derivation of the asymptotic Eq. (2)
modulo identity (4), for which I "nally found an elementary direct proof.

1. The number of regular linearized chord diagrams

We de"ne a linearized chord diagram (LCD) of degree D as a "xed-point free involution � on the
set �1,2,2,2D�. (Think of the chords as the semi-circles in the upper half-plane with end-points
i and �(i) for 1)i)2D.) The diagram is called regular if [i, i#1]-[�(i#1),�(i)] when-
ever �(i#1)(�(i). For instance, in degree 2 there are two regular LCDs (12)(34) and (13)(24)
and one irregular one (14)(23), while in degree 3 there are "ve regular LCDs
(12)(34)(56), (12)(35)(46), (13)(25)(46), (13)(24)(56) and (14)(25)(36) and ten irregular ones. It is well
known that the dimension of the space of Vassiliev invariants of degree D is equal to the dimension
of the space of LCDs of degree D modulo a certain relation (the four-term relation). The total
number of LCDs of degree D is equal to

(2D)!
2�D!

&

2�D!

��D
,

so this is a trivial upper bound on the dimension in question. This bound was improved to (D!1)!
by Chmutov and Duzhin [2] and to (D!2)!/2 by Ng and Stanford [4]. In a recent paper [6],
Stoimenow showed that any linearized chord diagram is equivalent modulo the four-term relation
to a linear combination of regular ones, so that the dimension <(D) of the space of Vassiliev
invariants is also bounded by the number �

�
of regular LCDs. In this section we will prove the

generating function identity (1) for these numbers.
In fact, we will prove a slightly more precise generating function identity. Following Stoimenow,

we de"ne �
���

for all k*1 as the number of regular LCSs of degree D whose leftmost chord has
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length k (i.e. �(1)"k#1). The numbers �
���

vanish for k'D and are related to the numbers �
�
by

�
�

"

�
�
���

�
���

"�
�����

. (8)

Stoimenow gave the following recursive formula to compute the numbers �
���

:

�
���

"1 and �
���

"

���
�

�����

�
�

	��

�K
������	

�
������	

for D*2, (9)

where �K
����	

is de"ned by the formula

�K
����	

"

	
�

��

(!1)	�
�
p!1

j!1 ����
���

(10)

and the coe$cients �
����	

by the generating function

�
���� 	��

�
����	

x�y�z	"
1!x

1!x!z(y/(1!y)!x�y/(1!xy))
. (11)

From these one can compute numerical values. Here is a table for D)7:

D k"1 2 3 4 5 6 7 �
�

1 1 1
2 1 1 2
3 2 2 1 5
4 5 6 3 1 15
5 15 21 12 4 1 53
6 53 84 54 20 5 1 217
7 217 380 270 110 30 6 1 1014

We extend the de"nition to all D, k*0 by setting �
���

"0 whenever Dk"0 except for �
���

"1.

Theorem 1. The numbers �
���

are given by the generating function

�
�� ���

�
���

X�>�"
�
�
���

(1!a)(1!qa)2(1!q���a)3�[>][[X]], (12)

where q and a are related to X and Y by

q"1!X, a"1!X>. (13)

Specializing to >"1, a"q and using (8), we obtain the generating function identity (1).

Proof. We can rewrite (9) (with D#1, k#1 in place of D, k) as

�
�������

"

�
�
���

�
�

	��
�

	
�

��

(!1)	�
�
p!1

j!1 ����
���
� �
����	

"

�
�
���

�
�

��

�
��
���


�H
����
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with

�H
����


"

�
�
	�


(!1)	�
�
p!1

j!1 ������	 (l*j*1).

Using the generating function (11) we compute

�
��
��� ���

�H
����


x�y�z
" �
��	�
��� ���

(!1)	�
�
p!1

j!1 ������	x�y�z


" �
��	��� ���

�
����	

x�y�z(z!1)	��

"

z
z!1�

(1!y)(1!xy)
(1!y)(1!xy)!y(z!1)(1#x!xy)

!1�
"

yz(1#x!xy)
1!yz(1#x!xy)

,

which gives the explicit formula

�H
����


"coe$cient of x�y��
 in (1#x(1!y))


"(!1)��
�
j

k��
k

l!j�.
(In particular �H

����

"0 unless l*j*k*l!j*0.) In other words, we have replaced (9)}(11) by

the simpler recursion relation

�
�������

"

�
�
���

���
�

��

(!1)��
k

r��
j

k������

(D*1) (14)

and this recursion remains true for D"0 with the conventions above.
Now let F(X,>) be the generating function de"ned by the left-hand side of Eq. (12). Then the

recursion relation (14) translates into the identity

F(X,>)"1# �
�����

�
�������

X���>���

"1#X> �
��
������

(!1)��
k

r��
j

k����

X���>�

"1#X> �
��
����

�
j

k����

X�>�(1!X)�

"1#X> �
��
��

�
��


X�(1#>!X>)


"1#X>F(X, 1#>!X>).
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Now make the change of variables (13). Then F(X,>) becomes a power series f (q, a) in 1!q and
1!a (because �

���
"0 for k'D) and the functional equation just proved translates into the

simpler functional equation

f (q, a)"1#(1!a) f (q,qa).

Iterating this, we "nd that f (q, a) is equal to the expression on the right-hand side of (12). �

2. Some beautiful power series identities

Set

F(q)"
�
�
���

(1!q)2(1!q�), (15)

where the empty product as usual is taken to be 1. This expression does not make any sense either
as a formal power series in q (since the terms tend to a non-zero limit in �[[q]]) or as a function of
a complex variable (since the series diverges both for �q�(1 and for �q�'1), but does make sense
when q is a root of unity (since the series then terminates) and also as a formal power series in 1!q
or in �!q for any root of unity �. The values and power series expansions of q at general roots of
unity will be discussed in Section 5; for now, we consider only the expansion of F around q"1, our
immediate goal being to prove identity (4) describing expansion of F(e��) as a power series in t. We
use the standard notation (a)

�
for the product (1!a)(1!qa)2(1!q���a) (to be taken as 1 if

n"0), so that F(q) can be written simply as �
���

(q)
�
.

Our "rst step is to replace F by another function which makes sense both as a function of the
complex variable q and as a power series in q. By partial summation or induction on N we have

���
�
���

[(q)
�
!(q)

�
]"

�
�
���

n(q)
���

q� (16)

for any integer N*1, and letting NPR we see that the series

F
�
(q)"

�
�
���

n (q)
���

q�, (17)

which makes sense both as a function of q (for �q�(1) and as a power series in either q or 1!q,
equals F(q) as a power series in (1!q) (or in �!q for any root of unity �), while the series

F
�
(q)"

�
�
���

[(q)
�
!(q)

�
] (18)

agrees with F
�
(q) both as a power series in q and as a function in the disk of radius 1. We will prove

an identity for the function F
�
"F

�
3�[[q]]. To state it, we introduce two more power series.

Let �( ) )"(12/ ) ) be the unique primitive character of conductor 12, already mentioned in the
introduction. Euler's famous `pentagonal number theorema (q)

�
"�

���
(!1)�q������	
� can be
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written in the form

(q)
�
:"

�
	
���

(1!q�)"
�
�
���

�(n) q�����	
�"1!q#q�#q�#q�#2; (19)

this has a natural interpretation (which we will return to in Section 6) as saying that the Dedeind
eta-function q�
�(q)

�
is a theta series. We de"ne a new power series H(q)3�[[q]] by

H(q)"
�
�
���

n�(n) q�����	
�"1!5q!7q�#11q�#13q�!2, (20)

i.e., formally by `di!erentiating the Dedekind eta-function half a timea (this, too, will be discussed
in more detail in Section 6). Finally, we de"ne a power series E(q)"q#2q�#2q�#3q#2 by

E(q)"!

d
dx

[log (qx)
�
]�
��

"

�
�
���

q�
1!q�

"

�
�
���

d(n) q�, (21)

where d(n) denotes the number of divisors of an integer n.

Theorem 2. The power series F
�
, H and E are related by

F
�
(q)"!�

�
H(q)#(�

�
!E(q))(q)

�
. (22)

Proof. De"ne a power series in q, a and x by the formula

S(a,x)"
�
�
���

(1!a)(1!qa)2(1!q���a)x�"
�
�
���

(a)
�
x�.

(Here q is considered as "xed and is suppressed in the notation.) The two recursions

(1!x)S(a,x)"1!ax S(a, qx) , S(a, x)"1#(1!a) xS(qa,x)

are immediately veri"ed, and from them we deduce that the series

S(x) :"(1!x)S(qx,x)"
�
�
���

(x)
���

x� 3Z[[q,x]]

satis"es the recursion S(x)"1!qx�!q�x� S(qx), whence

S(x)"
�
�
���

�(n)x����	
�q�����	
�. (23)

(This is Exercise 10, p. 29, of [1].) In particular, for 
 small we have

S(1!
)"
�
�
���

�(n) q�����	
�!

�
�
���

n!1
2

�(n) q�����	
�#O(
�).

On the other hand, directly from the de"nition we have

S(x)"(qx)
�

#(1!x)
�
�
���

[(qx)
�
!(qx)

�
]x�
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which gives (cf. Eq. (21))

S(1!
)"(q)
�

#[E(q)(q)
�

#F
�
(q)]
#O(
�).

The theorem now follows by comparing the coe$cients of 
 and recalling that F
�
"F

�
. �

Remark. An amusing consequence of (22) is the formula

�
���

n �(n) q��
�
�

���
�(n) q��
�

"1!2
�
�
���

q�
1!q��1#

1
(1!q)2(1!q�)�

for what one could call the `�
�
-logarithmic derivative of the Dedekind eta-functiona.

Theorem 2 concerned power series expansions near q"0. We now consider the expansion of
F(q) at q"1, or rather, three di!erent expansions, de"ning coe$cients �a

�
�, �b

�
�, �c

�
� in � by

F(1!x)"
�
�
���

a
�
x�, F(e��)"

�
�
���

b
�
n!

t�, e��
�F(e��)"
�
�
���

c
�

24�n!
t�, (24)

so Theorem 1 asserts the equality �
�

"a
�
and Eq. (4) the identity c

�
"¹

�
. (An interpretation of

the intermediate coe$cients b
�
will be given in Section 6.) We give a small table of these coe$cients

to illustrate their size; the precise asymptotics will be discussed in the next section.

n 0 1 2 3 4 5 6 7

a
�

1 1 2 5 15 53 217 1014
b
�

1 1 3 19 207 3451 81663 2602699
c
�

1 23 1681 257543 67637281 27138236663 15442193173681 11828536957233383

Theorem 3. The coezcients c
�
dexned by the generating function (24) agree for all n with the Glaisher

T-numbers ¹
�
dexned by the generating function (5) or by the closed formula (6).

Proof. We have already seen that F(q) and F
�
(q) agree to all orders as q approaches 1 (or any other

root of unity) radially from within the unit disk. From Theorem 2 it follows that F(q) also agrees
with !�

�
H(q) to all orders, since (q)

�
vanishes to in"nite order as we approach any root of unity

and E(q) blows up at worst like (1!�q�)�� (because the coe$cients d(n) in (21) are trivially bounded
by n). It follows that the function H(q) has an asymptotic expansion in powers of 1!q as q tends
to 1 and that, if we de"ne coe$cients ��

�
� by the asymptotic expansion

e��
�H(e��)"
�
�

���

m�(m)e��
�
�
�&

�
�
���

�
�
t� as tW0,

then c
�
/24�n!"!�

�
/2 for all n. But a standard argument shows that

�
�
"

(!1)�
24�n!

¸(!2n!1, �) (25)
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for all n*0, where ¸(!2n!1, �) is the value de"ned by analytic continuation of the ¸-series
¸(s,�)"��(m)m��. Indeed,

�
�

�

e��
�H(e��)t���dt"
�
�

���

m �(m)�
�

�

e��
�
�
� t���dt"24��(s)¸(2s!1, �),

while on the other hand we have

�
�

�

e��
�H(e��)t���dt"�
�

�
�
���
�
���

�
�
t�#O(t�)� t���dt"

���
�
���

�
�

s#n
#R

�
(s)

with R
�
(s) holomorphic in R(s)'!N (N any positive integer), and comparing the residues at

s"!n gives Eq. (24). But by the functional equation of ¸(s, �) we "nd that the number ¹
�
de"ned

by (6) is equal to (!1)���¸(!2n!1, �)/2, and combining this with formula (25) and the equality
c
�
/24�n!"!�

�
/2 we obtain the main assertion of the theorem. To relate the generating function (5)

and the formula for ¹
�
in terms of Bernoulli polynomials in (6), one applies the same method to the

function �
�
�(m) e���"(e��!e���)/1#e���)"sinh 2t/cosh 3t instead of �

�
m �(m) e��

�
�
�. �

Remark. The same method applied to the full identity (23) gives the two-variable identity

e��
�
�
�
���

(1!e��)(1!e����)2(1!e�����)e�����
�	�" �
�����

¹
���

t�
24�n!

(!1)�u����

2��(2r#1)!
.

3. Asymptotic formula for �
�

In [6], Stoimenow used his recursive formulas (8)}(11) to compute a table up to D"30 and to
prove that �

�
/D! goes to 0 faster than any power of 1/D, but observed that the numerical results in

fact suggested a faster exponential decrease roughly like 1.5��. Using (1) we can compute the
numbers �

�
much more easily, e.g. the "rst k values can be computed by the one-line PARI program

s"1#o(x�k); p"s; q"s; for (n"1,k,q"q!q*x; p"p!p*q; s"s�p); vec(s)

which takes about 0.5 s on a SUN workstation for k"100 and about 11 s for k"200, the
corresponding "nal values being

�
���

"6.09186804812�10���, �
���

"1.77229377482�10���.

To make Stoimenow's guess about the asymptotics of �
�
precise, we make the Ansatz

�
�

D!
&D�A��(C

�
#C

�
D��#C

�
D��#2) (26)

with some unknown constants �,A,C
�
,C

�
,2 and then try to "t these to the numerical data. The

easiest way to do this is to note that (26) implies that �
���

/D�
�
has an asymptotic expansion
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b
�
#b

�
D��#2 with some coe$cients b

�
"1/A, b

�
"(�#1)/A,2 . Given a function DC f (D)

for which such an asymptotic expansion is expected, one can determine the b
�
's numerically by

multiplying the function f (D) byD� for somemoderately small value of r (say, r"10) and taking the
rth di!erence of the resulting functionD� f (D)"b

�
D�#b

�
D���#2#b

�
#b

���
D��#2. This

di!erence equals r!b
�
#O(D����) and hence tends very rapidly to r!b

�
as D gets large, and once

one has computed b
�
one can compute b

�
by applying the same process to D( f (D)!b

�
) and then

continue the process iteratively. Applying this procedure in our case we found (to 20-digit accuracy)
that the numbers � and A in (26) were given by �

�
and ��/6, respectively, and that the "rst few

coe$cients C
�
had the numerical values given in the introduction.

Theorem 4. The numbers �
�
dexned by (1) have an asymptotic expansion of the form (2) with

computable coezcients C
�
and with C

�
as given in Eq. (3). In particular, the number of Vassiliev

invariants of degree D is O(D!�D/(��/6)�).

Proof. We know from Theorem 1 that �
�

"a
�
, with a

�
de"ned by Eq. (24). We use that formula to

express the a
�
in terms of the b

�
and the c

�
. First, we have

b
�
"

1
24�

�
�
���
�
n

k�c� .
Substituting into this the formula c

�
"¹

�
and the asymptotic formula

¹
�
"

1

2�3

(2n#1)!
(�/6)����

(1#O(5���)),

which follows immediately from (6), we "nd

b
�
&4�3

(2n#1)!
(2��/3)����1#

��/72
2n#1

#

(��/72)�/2!
(2n#1)(2n!1)

#2�
and hence by Stirling's formula

b
�
&

12�3n
��
�

n!�
(��/6)��1#


�
n

#


�

n�
#2� (27)

with computable coe$cients 
�
"

��

�
#�

�
, 

�
,2 . Now we use the generating function

t�
m!

"

�
�

���

S
���

(1!e��)�
n!

,

where S
���

denotes the Stirling number of the "rst kind (de"ned as the number of elements of
S

�
with exactly m cycles, or as the coe$cient of x� in x(x#1)2(x#n!1)) to deduce from (24)

the relation

a
�
"

1
n!

���
�
���

S
�����

b
���

(28)
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between a
�
and b

�
. From S

���
"1 and the recursion S

�����
"S

�����
#nS

���
we have

S
�����

"

n��
2�k!�1!

c
�
(k)
n

#

c
�
(k)
n�

#2�
with computable coe$cients c

�
(k)"(2k�#k)/3, c

�
(k),2. Together with (27) and (28) this gives

a
�
&

b
�
n!

�
���

(��/12)�
k! �1#

2k�!11k
6n

#2�&
n!�n
(��/6)��C�

#

C
�
n

#2�
with C

�
given by (3), C

�
"C

�
(�
�
!����

�
#

�

��
) , and all C

�
e!ectively computable. �

4. Enumeration of connected regular chord diagrams

In Section 4 of [6], Stoimenow also gave an algorithm, similar to but more complicated than
(8)}(11), to compute the number ��

�
of connected regular LCDs of degree D, which is an upper

bound for the number of primitive Vassiliev invariants of this degree. Here again we can partly
solve the recursions to give a fairly simple formula for the generating function

�(X)"
�
�

���

��
�
X�"X#X�#2X�#5X#16X�#63X�#293X�#1561X�#2.

To do this, we de"ne a power series �
�
(
)"1#X!
#2X�!2X
#
�#23�[[X, 
]] by

�
�
(
)"

�
�
���

(1!q)2(1!q�)
(1#
)(1#q
)2(1#q�
)

(q"1!X). (29)

Using the identity �
�
(q
)"(1#
)�

�
(
)!
/(1#
) we get the alternative expression

�
�
(
)"

�
�
���

[1#(1!q���)#(1!q���)(1!q���)#2](!
)�. (30)

Theorem 5. The generating function �(X) equals ���
�

(1).

Proof. We give a sketch only, since the details are similar to, but more tedious than, those of the
proof of Theorem 1. We use the notations and formulas of [6], Section 4, without restating them.
The recursions for the numbers ��

�����
translate to the functional equation

(1!X>#X>Z)F(X,>,Z)"Z#X>ZF(X,1#>!X>,Z)

for the generating function F(X,>,Z)"���
�����

X�>�Z�. Iterating this, we obtain

F(X,>,Z)"
1

1#

#

1!a
(1#
)(1#q
)

#

(1!a)(1!qa)
(1#
)(1#q
)(1#q�
)

#2,

where q and a are de"ned by (13) and 
"a(1!Z)/Z. In particular,

F(X,1,Z)"�
��q

1!Z
Z �"

1
Z

�
��

1!Z
Z �!1#Z.
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On the other hand, Eq. (2) of [6] is equivalent to the relation

P�(X,>,Z)"1#�(X,ZP�(X,>,Z))

between the two generating functions

P�(X,>,Z)"1# �
�������

�
�����

X�>�Z�, �(X,Z)" �
�����

��
���

X�Z�.

Finally, from �
���

��
�����

"��
���

"�
���

�
�����

we get P�(X,1,Z)"1!Z#F(X,1,Z). Combining
these equations leads to the `closeda formula

�(X,Z)"Z���
�

(Z)!1#Z.

The theorem is obtained by specializing to Z"1. �

Theorem 5 lets us compute the ��
�
very quickly. For instance, the evaluation of

��
��

"443902366431562012886101206

took just 1 s of CPU time on a Sun workstation as compared to the 30 h cited in [6]. Computing
further to D"100 (time: 3 min) and interpolating numerically in the way explained in the previous
section, we "nd empirically that ��

�
satis"es an asymptotic formula like (2) but with the coe$cients

C


replaced by other coe$cients CH



, with C

�
/CH

�
"2.7182818285 to 11 decimals, con"rming

Stoimenow's guess that ��
�

&�
�
/e as DPR. In particular, considering ��

�
rather than �

�
can give

at most a very modest improvement of the bound on <(D) in Theorem 4.

5. Expansions of F(q) near roots of unity

As already remarked, the series F(q) in (15) makes sense not only for q equal or near to 1, but also
for q equal or near to any root of unity �"e����, �3�. We can write its Taylor expansion near such
a root of unity in three di!erent sets of coordinates, setting

F(�(1!X))"
�
�
���

a
�
(�)X�, F(�e��)"

�
�
���

b
�
(�)
n!

t�, e��
�F(�e��)"
�
�
���

c
�
(�)

24�n!
t�, (31)

where a
�
(�), b

�
(�), and c

�
(�) belong to �[�]. The following result generalizes Theorem 3.

Theorem 6. Let �"e���� be a root of unity. Then the coezcients c
�
(�) dexned by (31) are given by the

generating function

1
1!e���

�
�

���

�(m)������	
�e���&2
�
�
���

(!1)�
n!

c
�
(�)t���� (tP0), (32)

where N is any positive multiple of 12 such that ��
��"1.
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Proof. The proof is similar to that of Theorem 3. Using Mellin transforms, we see that the function
H de"ned by (20) has the asymptotic expansion

e��
�H(�e��)"
�
�

���

m�(m)������	
�e��
�
�
�&

�
�
���

¸�(!2n!1,�)
n! �!

t
24�

�

around the point �, where ¸� (s, �) is the twisted ¸-series de"ned by

¸� (s, �)"
�
�

���

�(m)������	
�m��

if R(s)'1 and by analytic continuation otherwise. From Theorem 2 and (32) it follows that

c
�
(�)"(!1)���¸�(!2n!1, �)/2. (33)

On the other hand, the sameMellin transform argument shows that (!1)�¸� (!n, �) for any n*0
is the coe$cient of t�/n! in the Taylor expansion of ��

���
�(m)������	
�e��� at t"0, and since the

functionmC �(m) ������	
� is periodic of periodN, this latter function is equal to the left-hand side
of (32). (One must also check that this sum, which obviously has an expansion in t���[[t]], is "nite
at t"0 and is an odd function of t, but this is easy.) Combining these statements gives the desired
result. �

We can write (32) more explicitly in the form

c
�
(�)"

(!1)�N����

2n#2
�
�
�

���

�(m)������	
�B
�����

m
N�,

where B
�
(x) denotes the nth Bernoulli polynomial. (Cf. (6), where �"1, N"12.) For the special

case n"0 this becomes

F(�)"
1
4N

�
�

���

m��(m)������	
�.

Here is a small table of c
�
(�) for the "rst four roots of unity �"1, !1, �"e���
� and i:

n c
�
(1) c

�
(!1) c

�
(�) c

�
(i)

0 1 3 5!� 8!3i
1 23 261 955!215� 2728!1125i
2 1681 76083 625925!141841� 3180983!1317369i
3 257543 46620501 862948795!195611975� 7796806408!3229519605i

As in the special case �"1, the coe$cients b
�
(�) and a

�
(�) de"ned by (31) grow more slowly than

the c
�
(�), e.g. the sequence �b

�
(!1)�

���
begins 3, 11, 133, 3389,2 and the sequence �a

�
(!1)�

���
begins 3, 11, 72, 635,2 . The asymptotics of these sequences could be determined, if so desired, by
the method of Section 3.
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6. Modular properties

As mentioned at the end of the introduction, Kontsevich originally introduced the function F(q)
de"ned by (15), noted that it makes sense whenever q is a root of unity, and performed numerical
computations which led to the conjectural asymptotic formula

F(e���
�)&exp�!
�i
12�k!3#

1
k��k�
�# �

���

b
�
n!�!

2�i
k �

�
(kPR) (34)

with the "rst few coe$cients b
�
given empirically by

b
�
"1, b

�
"1, b

�
"3, b

�
"19, b


"207,2 . (35)

Comparing (35) with the table given in Section 2 suggests that the coe$cients b
�
are indeed the

same as the coe$cients b
�
de"ned there using the generating function expansion (24). The attempt

to understand the reason for the asymptotic development (34) and to identify the coe$cients (35)
led to the results of the present paper. In this section we will establish the asymptotic expansion
(34), with b

�
as given in (24), and "nd the corresponding statement for the expansion of F near other

roots of unity. We give only brief indications of the proofs, since this is part of a more general
theory of `period functions for modular forms of half-integral weighta which will be developed in
more detail in [7].
The "rst remark is that (34) becomes simpler if we multiply both sides by e��
���, namely

�
��

F(�
�
)&�����

�
k�
�# �

���

c
�
n!�!

�i
12k�

�
(kPR), (36)

where �
�
for any m3� denotes e���
� and the c

�
are related to the b

�
as in (24). We can write this in

a more enlightening way by de"ning a function � :�P� by

�(�)"e���
��F(e����) (�3�). (37)

(The factor e���
�� is suggested by Theorem 2, since both the functions H(q) and (q)
�
become more

natural when multiplied by q�
�.) Then � obviously satis"es

�(�#1)"�
�

�(�) (�3�), (38)

so �(k)"��
�

�(0)"��
�

and Eq. (36) and its complex conjugate can be rewritten as

�($1/k)&���
�

k�
��(Gk)# �
���

c
�
n!�G

�i
12k�

�
(kPR).

Together with (38), this formula suggests some kind of modular transformation behavior of the
function � under the generators �P�#1, �P!1/� of PS¸(2,�), and indeed this is the case.

Theorem. The function � :�P� dexned by (37) satisxes the modular transformation equations (38)
and

�(�)#(i�)��
��(!1/�)"g(�) (�3�, �O0), (39)

where (i�)��
� is the principal branch ("���
�

�����
� for $�'0) and g :�P� is a C� function
which is real-analytic everywhere except at x"0 and whose derivatives at x"0 are given by
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g��	(0)"(!�i/12)�c
�
(n"0,1,2). More generally, � satisxes

�(�)!v(�)(c�#d)��
��(�(�))"g� (�) (�3�, �(�)OR)

for all matrices �"�
a b

c d�3S¸(2,�), where v(�) is a 24th root of unity related to the multiplier of the

Dedekind eta-function and g� is a C� function on � which is real-analytic except at ���(R).

We do not give the complete proof, since this theorem is a special case of results to be proved in
more detail in [7], but only give an indication of the reason for the theorem and the de"nition of
the function g. In the classical theory of periods of modular forms, we assign to a cusp form
f (z)"��

���
a(n)e����� of integral weight k*2 on S¸(2,�) its Eichler integral fI (z)

"��
���

n���a(n)e�����. Then the modularity of f and the fact that (d/dz)���fI is a multiple of f
imply that fI is `nearly modulara of weight 2!k: we have fI (z#1)" fI (z) and
z���fI (!1/z)"fI (z)#g(z) for a certain polynomial g of degree *k!2, the period polynomial
of f, given explicitly by the formula g(x)"c

�
��
�
f (z) (z!x)���dz where c

�
is a constant depending

only on k. More generally, for an arbitrary element �"�
a b

c d� in the modular group we have

(cz#d)��� fI (�(z))"fI (z)#g� (z) where g� is a polymomial given by the same integral formula, but
with the integral taken from ���(R)"!d/c to R.
In our case we replace f with the Dedekind eta-function

�(z)"e��
��
�
	
���

(1!e�����)"
�
�
���

�(n) e�����
��,

which is a modular form of weight �
�
on S¸(2, �):

�(z#1)"�
�

�(z), �(!1/z)"(z/i)�
��(z), �(�(z))"v� (�) (cz#d)�
��(z),

where v�(�) is a certain 24th root of unity, depending on � and on the determination of the square
root of cz#d, whose value was determined by Dedekind. If we formally de"ne the Eichler integral
�� (z) by the same formula as before, then it is (up to a constant) the power series �n�(n)e�����
�� with
integer coe$cients (because k!1"�

�
in this case and the exponents occurring in the Fourier

expansion of � are proportional to perfect squares). The integral which we previously used to de"ne
the period polynomial g would be g(x)"c��

�
(z!x)��
��(z) dz. This does not make sense for x in

the upper half-plane, because of the two-valuedness and singularity at z"x of the factor
(z!x)��
�, and indeed there is no direct analogue for �� of the `nearly modulara property of fI valid
in the upper half-plane. But the integral doesmake sense for x real, and it turns out that the limiting
values of �� at rational points (and, indeed, its full asymptotic expansions at all rational points) do
satisfy modular transformation properties analogous to those of the Eichler integral fI of a modular
form f of integral weight. Together with Theorem 2, which shows that the limiting value of �� at any
rational point � is !2�(�), this gives the results stated in the theorem, with g(x) given by the above
integral formula and g� (x) by the same integral but with the lower limit replaced by
���(R)"!d/c.
As a "nal remark, we mention that formulas of the type discussed in this paper have a second

connection with knot theory, quite separate from the generating function (1): it turns out that the

D. Zagier / Topology 40 (2001) 945}960 959



Witten}Reshitikhin}Turaev invariants of certain 3-manifolds lead to a formalism and to generat-
ing functions which are very similar to those occurring here, but this time related to the period
functions of modular forms of weight �

�
(rather than �

�
) and to the `mock theta functionsa of

Ramanujan. This connection is discussed in [3].
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