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ABSTRACT

We give a generating function for the sums of multiple zeta values of fixed weight. depth and height
in terms of Riemann zeta values.

For any multi-index k = (ky, k2, ..., k) (k; € Z~y), the weight, depth, and height
of k are by definition the integers k =k +ky+---+k,, n and s=
#{i | ki > 1}, respectively. We denote by I(k, n, s) the set of multi-indices k of
weight &, depth », and height s, and by Iy{k,n,s) the subset of admissible in-
dices, i.e., indices with the extra requirement that k, > 2. For any admissible
index k = (k1. k2, ..., k,) € Iy(k,n,s), the multiple zeta value ((Kk) is defined by

1
k k ky
0<my <niy < <my, M1 tmp*2 .- -my™n

C(k) = C(klakza < 7kﬂ) =
We denote by Go(k, n, s) the value of the sum

(1) Golk,n,s) = > (k).

ke Iy(k.n.s)
Since the set Iy(k, n, s) is non-empty only if the indices k, n and s satisfy the in-
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equalities s > 1, n > s, and k > n + s, we can collect all the numbers Gy(k,n, s)
into a single generating function

(2) Do(x,y,2) = . Go(k,n,s)xk_"_sy"_szs_l € R[[x,y,7]].

k,n,s

Our main result will then be

Theorem 1. The power series (2) is given by

= xyl_z (1 - exp(g2 ? Sn(x,y,Z)»,

where the polynomials S,(x,y,z) € Z[x,y, z| are defined by the formula

(3) Po(x,y,2)

x+yEtr/(x+y)P?—4z

(4) S,,(x,y,z) = xn_'_yn_an_ﬂn' a,ﬂ = 2

or alternatively by the identity

xXy—z & Suxy,2)
o ol - y) - 5PN

together with the requirement that S,(x,y,z?) is a homogeneous polynomial of
degree n. In particular, all of the coefficients Go(k,n,s) of $o(x,y,z) can be ex-
pressed as polynomials in ((2), (3), ... with rational coefficients.

In view of (5), we can also restate (3) in the alternative form

x Xy —z
I e e I (B
LA ey
which is simpler looking but does not directly give the coefficients of the power
series as finite expressions in terms of Riemann zeta values.

Proof. A convenient approach to the multiple zeta vatue ((k) is to consider it
as the limiting value at 1 = 1 of the function

M

Lk(t) = Liy k.., kn(t) = Z %, (|t| < 1)

k k
0<my <my<-—<m, M imy*2 - -my

(Note that we consider Li(t) not just for k € I, but for all k € 1) For k empty
we define Ly () to be 1. For non-negative integers k, n and s set

Glknsit) = % Lilo)
kel(k.n,s)
(so0 G(0,0,0;¢) = 1 and G(k,n,s;t) = 0 uniess k > n+ s and n > 5 > 0), and let
Golk,n,s; t) be the function defined by the same formula but with the summa-
tion restricted to Kk € Iy(k,n,s). We denote by & = P(x,y,z;t) and &Py =
®o(x, v, z; t) the corresponding generating functions
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O= T Gllyns0X "0 = 1 L)y + Lia(0y2 4+

k,n,s>0

and

= > Golk,n,s; t))d‘_"_“‘y””zs‘l = Ly{t) + Li2(t)y + Ls(D)x + - - -.

kns>0

Our object is to express the generating function Po(x,y,z) = Po(x.y,z;1) in
terms of Riemann zeta values. Using the obvious formula

iLk k (t) — t_l Lk].....k,,,1‘kn~](t) lf kﬂ 223
dp e (1=0""Ley o, () if k=1

for the derivative of L(f), we obtain

%Go(k,n,s;t) =%<G(k—l,n,s—1;t)— Golk —1,n,s = 1;1) +G0(k—l,n,s;t)>,

d 1
=, ; - B T - 17 — 1,58
o (G(k,n,s, t) — Golk,n,s; t)) ] tG(k n—1,s1)

or, in terms of generating functions,

%:%(4&—1—2@0)#—;@0. %(@—z@o) :li_tqs.

Eliminating ¢, we obtain the differential equation

dz% dQO
— 1) — I=x)(1-1)— -— - =1
(-0 =2+ (A== ) 2+ (xy = 2) @
for the power series $y. The unique solution of this vanishing at ¢ = 0 is given
by

Go(x,y,z;t) = <1—-F(a—x,ﬂ—x;1—x;t)),

Xy —z
where a+ 8 =x+y, af =1z and F(a,b;c;x) denotes the Gauss hypergeo-
metric function. Specializing to t = 1 and using Gauss’s formula for F(a, b;¢; 1)
gives

I'(l—x)rd -y

L= (=2l 51) = Flomx 81 =51) = [ omer .

and now using the expansion I'(1 —x) =exp (yx+ 3,5, ((n) x"/n) yields
equation (3).

We end by mentioning several special cases of the theorem which were pre-
viously known or are of special interest.

(1) Specializing (3) to z = xy corresponds to dropping all information
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about s, the number of indices k; greater than 1, so the function $y(x, y, xy)
equals 3, . o Golk,n)x*="=1y"=1where Go(k,n) =3, Go(k,n,s)is the sum
of all multiple zeta values of weight & and depth n. On the other hand, taking
the limit as z — xy in (6), we find

1 ZC knlnl’

Q’O(X’y,xy) = R YNEY
2 (m k>n>0

3 .
gL

so we obtain the sum formula Gy(k,n) = ((k) already proved in [1] and [6].

(2) If s = 1, then the only admissible multi-index of weight £ and depth # is
(1,...,1,k—n) (with n — 1 I’s), so G(k,n, 1) = ¢(1,...,1,k — n). On the other
hand, we have S,(x,»,0) = x" 4+ y" — (x + y)", so (3) for z = 0 reduces to

> (1L b+ 1) x%P = B(x,,0)
ab>1 =—~—

a formula given also in [6].

(3) The well-known duality relation for multiple zeta values says that there
is a bijection k — k' from Iy(k,n,s) to Iy(k,k — n,s) such that ¢(k) = ¢(k’) for
all k. In particular, Go(k,n,s) = Golk,k —n,s), so the generating function
@(x, y, z) must be symmetric in x and y, a symmetry which is of course evident
in the formula (3).

(4) Specializing (3) to x =0 and y = 0 gives formulas for the sums of all
multiple zeta values having all k; > 2 or all &; < 2, respectively. The simulta-
neous specialization to x =y =0 corresponds to the unique zeta value
€(2,...,2) (with k = 2n = 2s), so from (3) we get

502D = 00.0.2) =~ (1-exp(- £ 2 (- "))

_EM_l —i____ﬁzs__,,s—l
oz \ m/z T A s+

and hence

7r2s

¢(2,...,2) :(_25—‘—{‘1_)!’

s

a formula also already given in [6].

(5) Finally, by specializing to y = —x in Theorem 1, we obtain the formula

n (=1 a2k k=s 2k + 1 s
-1 2k = 2-2"VBy, (k>s>1
SSnSZZk_S ( ) GO( 7n7s) (2k+ 1)' rZ::O 2r ( ) 2 ( - B patiy )
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proved by Le and Murakami in [3]. Indeed, from equation (4) or equation (5)
we have

N J2(xm— (=) if n=2m,
Snlov, =x,2) = {0 it n=1(mod2),

$0 (3) and the standard Taylor expansion of log((x/2)/ sinh x/2) give

ool -x.2) = o5 (oxp( & w«zm) - 1)

m=1

1 mx _sinhmyz 1
S x24z \sinmx 7wz
mx  (sinhmy/z)/my/Zz - (sinmx) /mx

T sinmwx z 4+ x2

{ % ( 1)/ Bz"' (2 22r‘) 2r Zr\
= — et — T X X
5 Y e )

2p+2s x2p -s—1
x . 7’_—)
<[,Z(§2;( ) (2p+ 25+ 1)!

The required identity now follows by comparing the coefficients of x?~25z5~1
on both sides.
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