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On the Capacity of Disjointly 
Shared Networks 
J.C. Lagar ias ,  A .M.  Od l yzko  and  
D.B.  Zagie r  * 
A T&T Bell Laboratories, 600 Mountain Avenue, Murray Hill 
NJ 07974, USA 

Multi-access broadcast channels have the property that only 
one user can successfully transmit on the channel at a time. We 
consider a hypothetical channel called a disjointly shared chan- 
nel in which more than one user pair can communicate  simulta- 
neously over physically disjoint parts of the channel. We con- 
sider the question of how much extra capacity such a channel 
has over that of a broadcast channel, as measured by the 
number  of user pairs on the channel. The amount  of extra 
capacity depends on the topology of the channel and the 
distribution of offered traffic. We analyze the problem for a 
pa'rticular disjointly shared channel having n users whose 
topology consists of k disjoint parallel cables. For an offered 
traffic pattern equally weighting each pair of users the capacity 
increases by at most a factor of three over that of k disjoint 
multi-access broadcast channels, i.e. on average at most 3k 
pairs of users will be communicating. For a specific offered 
traffic pattern which heavily weights connections between users 
close to each other the capacity is approximately akn for a 
constant  a k depending on the number  of cables k, and it is 
shown that 1 / 4  < a k < 1 / 2  with a k increasing to 1 / 2  as k ~ o¢. 
The analysis for the second traffic pattern leads to a permuta- 
tion enumeration problem which is solved using generating 
functions, continued fractions and Hermite polynomials. 

1. Introduction 

Multi-access broadcast  channels (such as 
E T H E R N E T  or Fasnet [5,6]) have the feature that 
a message is broadcast to all users, so that only 
one user can transmit on the channel at a time. 
The utilization of such a channel would be in- 
creased if it were possible for more than one user 
to occupy the channel at the same time. We con- 
sider the performance of a hypothetical channel 
having the property that users can simultaneously 
transmit without interference on physically dis- 
joint parts of the channel. We call a channel (or 
network) having this property a disjointly shared 
channel. The problem motivating this study is: 
how much extra capacity does a disjointly shared 
channel have compared to a multi-access broadcast 
channel? Here we measure capacity in terms of the 
number  of pairs of users simultaneously using the 
channel. 

We model a disjointly shared channel schemati- 
cally as a graph, as in Figure 1. The vertices of the 
graph represent sites of origin or destination of 
transmissions and the edges are the channel trans- 
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mission facilities. We model the disjointly shared 
property of the channel by supposing that when 
two users are transmitting to each other they seize 
all vertices and edges on a path connecting the two 
users, and no other users have access to these 
vertices or edges during their transmission. 
(Another model, which we do not consider, suppo- 
ses that the two users seize the edges on a path 
connecting the two users, but other user pairs do 
have access to the vertices on the path. This alter- 
nate model corresponds to a situation where the 
vertices can perform a switching function.) If the 
graph is a tree, as it is in both examples in Figure 
1, the choice of connecting path is unique, but it 
need not be in other network topologies, such as 
the graph in Figure 2. 

The problem of determining the extra channel 
capacity possessed by disjointly shared channels 
compared to broadcast channels does not have a 
simple answer. The amount of increase in channel 
capacity depends on the topology of the network 
and on the probability distribution of origin- 
destination pairs of the traffic offered to the net- 
work. 

That  network topology has an effect is clear. In 
the star network of Figure 1, at most one pair of 
users can transmit at a time, while on the linear 
network of Figure 1 four pairs of users can simul- 
taneously transmit, namely user 1 with 2, 3 with 4, 
5 with 6, and 7 with 8. Consequently, the star 
disjointly shared network of Figure 1 performs no 
better than a broadcast network with the same 
topology. It is clear that the distribution of offered 
traffic also has an effect, by examination of the 
linear network in Figure 1. Whenever users 1 and 
8 communicate they block all other users, while 
when user 1 communicates with user 2 any other 
disjoint user pair is free to transmit. Consequently 

2 

8 4 

7 "  ~ - 5  
6 

Fig. 1. Linear and Star Network Topologies. 
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Fig. 2. k-Cable Network. 

a network with a large traffic load between users 1 
and 2 will be better utilized than a network with 
heavy traffic between users 1 and 8. 

In the remainder of the paper we carry out a 
more detailed analysis of the effect of the offered 
traffic pattern on the capacity for a disjointly 
shared network with a simple network topology 
consisting of k parallel cables. 

2.  k - C a b l e  N e t w o r k  T o p o l o g y :  M a i n  R e s u l t s  a n d  

C o n c l u s i o n s  

We study in detail a particularly simple net- 
work topology that consists of k parallel disjointly 
shared channels, each one of which has n entry 
ports, shown schematically in Figure 2. There are 
n users individually located at n sites, and the user 
at site j has access to all k channels at the j t h  
entry port of each channel. For ease of reference 
we will call this network topology a k-cable net- 
work and each channel a cable. This network 
topology is suggested by analogy with a proposed 
two-cable network for Fasnet [5,6]. We define the 
expected load of the channel for a given distribu- 
tion of offered traffic to be the expected number 
of pairs of users communicating at any given time. 
We interpret the expected load as a measure of the 
message-carrying capacity of the channel for that 
distribution of offered traffic. 

Our object is to obtain upper bounds on the 
expected load for disjointly shared channels with 
the k-cable network topology. In doing the analy- 
sis we make several assumptions that in general 
can only increase the performance of the disjointly 
shared channels. First, we assume the network is 
synchronous, i.e., the channels are slotted into 
discrete time intervals. Second, we assume all mes- 
sages are of duration exactly one time interval. 
Third, we assume that the requests for message 
transmission are arranged in a queue by order of 
arrival and that an oracle (or central controller) 
can instantaneously reorder the requests in the 
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queue by a bounded amount, into whatever order- 
ing will maximize channel usage. Bounds for the 
performance of such a network give upper bounds 
for the performance of a network with no central 
controller and some decentralized method of re- 
solving message conflicts. Fourth, we model a 
"heavy  traffic" situation in which there are always 
messages available for transmission. We remark 
that many multiple access network performance 
analyses exhibit degradation of network capacity 
in "heavy traffic" situations. This degradation is a 
consequence of delays in resolving conflicts in 
scheduling traffic on the network. Our model as- 
sumes that all conflicts are instantaneously re- 
solved, so that the "heavy traffic" situation maxi- 
mizes channel usage in our model. In particular we 
will obtain upper bounds for the maximum ex- 
pected load attainable on the network for a given 
distribution of offered traffic. 

We first bound the maximum expected load 
attainable on the k-cable network in terms of the 
statistics of message requests. We suppose the 
queue of traffic requests between users is drawn 
independently from a probability distribution T on 
user pairs (i, j ) .  Given a pair t = (i, j )  of users we 
define the distance d(t) between them to be 

d( t )  = l i - j l .  

Let d* = E[d(T)],  the expected distance between 
pairs of users from the distribution T. Then we 
have the following bound. 

Theorem A. The expected load Ek. ,,(7") for offered 
traffic with distribution T satisfies 

kn 
, ,(T) <_ d-; 

where d* is the expected value of d(t), the distance 
between users in T. 

be transmitted in the first d * / k n  time intervals. 
Hence 

d*/k  d* " 

Letting R ~ o0 gives 

kn 
, ,(T) <_ d-;' 

the required result. [] 
This proof of Theorem A is actually valid in the 

more general situation where the message requests 
are generated by a stochastic process T which is 
stationary in the wide sense, so that 

as m ~ ~ .  This models more realistic situations in 
which correlation occurs between origin-destina- 
tion pairs of consecutive messages. 

We apply the bound of Theorem A to the case 
of the uniform offered traffic distribution U. 

Uniform Offered Traffic. All user pairs wish to 
communicate with equal probability, i.e., 

2 
p , i - n ( n _ l )  f o r l  <_i, j<_n. 

The following result shows that the maximum 
expected load attainable on a k-cable disjointly 
shared network is at most three times that possible 
over the maximum expected load k attainable on 
a k-cable network consisting of k broadcast chan- 
nels. 

Theorem B. The expected load Ek. ,,(U) for uniform 
offered traffic satisfies 

,,(v)_< 3k. 

To see this, we note that the total distance 
available at any time on the k cables to be used by 
messages is k(2n - 1). Now the first R messages 
in the queue of requests have expected length 
asymptotic to d* as R ~ ~ .  Hence they require at 
least d * / k n  time intervals to be transmitted. Since 
only a reordering of messages by a bounded num- 
ber B of positions in the queue is allowed, at most 
B other messages can be transmitted in the re- 
ordered queue before the first R messages are 
sent. Consequently at most R + B messages can 

This follows from Theorem A together with the 
observation that the expected value of the length 
I i - j l  between a pair of users drawn uniformly 
from [1, n] is (n + 1)/3. 

Theorem A shows that one can only obtain 
large expected loads for offered traffic distribu- 
tions T in which d* is small, i.e., distributions in 
which most messages travel a short distance on the 
network. We next analyze a traffic pattern on the 
network where this is so. To describe this traffic 
pattern, we introduce some terminology. A config- 
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uration is an a r rangement  of  the n users in which 
each user is ei ther not  interested in communica t ing  
with anyone,  or  else wishes to communica t e  with 
exact ly  one other  user, who in turn wishes to 
communica t e  with the first user. Conf igura t ions  
represent  the poss ib le  d e m a n d s  for service on the 
network.  A conf igura t ion  of user pairs  is k-realiz- 
able if there is some way to connect  all pairs  of 
users in the conf igura t ion  who wish to communi -  
cate  on a k-cable  ne twork  wi thout  blocking.  The 
channel  t raff ic  pa t t e rn  we cons ider  is given as 
follows. 

k-Realizable Traffic Pattern. Al l  k-realizable config- 
urations are equally likely to occur. Our reason for 
s tudying  this t raff ic  pa t t e rn  is that  it represents  a 
s i tua t ion  in which the k-cable  ne twork  would  seem 
to be used most  efficiently.  W e  assume for now 
that  there is some d i s t r ibu t ion  of offered traffic 
and  some mechan i sm for feeding this traffic on to  
the ne twork  that  permi t s  the k- rea l izable  traffic 
pa t t e rn  to be achieved,  and  discuss a f te rwards  to 
what  extent  these assumpt ions  are reasonable .  

The  main  analy t ica l  par t  of  the pape r  (Sect ions 
3 - 5 )  is devoted  to an analysis  of the expected load  
achieved by  the k-rea l izable  traff ic  pat tern .  We 
first note  that  a ne twork  with n users and  k > n / 2  

cables  funct ions like an infini te resource since all 
conf igura t ions  are  k-real izable .  Indeed  each con- 
f igurat ion conta ins  no more  than n / 2  pairs  of  
users who wish to communica te ,  and  one can then 
route  each one on a separa te  cable.  A k-cab le  
ne twork  with k less than [ n / 2 ]  does not  act like 
an infini te  resource in that  some conf igura t ions  
are not  real izable.  We  show that  the k- rea l izable  
t raff ic  pa t t e rn  the expected  load  is much higher  
than that  achieved for the un i form offered traff ic  
model .  

polynomial H k (x). The constants a k satisfy 

as k ~ ~ .  The f irs t  f ew  values o f  the a k are 

1 d 1 d + d g  
a, =¼, a 2 -  2 1 +vS- '  anda3-  2 1 + ¢~+¢~" 

Numer ica l ly  a 2 = 0 .31698. . .  and  a 3 --- 
0.35004 . . . .  The Hermi te  po lynomia l s  H k ( x  ) are 
def ined  in Section 4. 

Theorem C asserts that  for large n on the 
average a posi t ive fract ion a~n of the users are 
sending or receiving messages on the network in 
any given t ime interval .  Fu r the rmore  the result  
that  a ~ ½  as k ~  shows that  for large k 
essent ial ly  hal f  o f  the users are involved in a 
t ransmiss ion  in each t ime period,  ei ther as a sender  
or  a receiver. The  result 

E k , ,  ~ ot k n 

of  Theorem C is an asympto t ic  one is n ~ o0, but  
it is a l ready  quite a good app rox ima t ion  for small  
k and n, see Table  1. 

We now turn to the p rob lem of showing the 
existence of  an offered traffic d i s t r ibu t ion  T,, on n 
users that  would  permi t  the k-rea l izable  traff ic  
pa t t e rn  to be obta ined .  Assuming  all traffic gets 
on the network,  the d i s t r ibu t ion  T,, is uniquely 
specif ied by  the probabi l i t i es  

#k-realizable configurations on n users containing (~) 
P,/= -~k-realizable configurations on n users 

This  d i s t r ibu t ion  is very heavily peaked  towards  
users close together  in the ne twork  topology,  for 
Theorem A and Theorem C together  imply  that  

k 
d* _%-- 

Ot k 

T h e o r e m  C. The expected load Ek. ,, for  the k-real- 

izable traffic pattern satisfies 

Ek, ,, - a k n 

as n ~ ~ with k fixed. Here a~ is a positive con- 
stant given by 

~k 20~+1,+ ¢5- ' 

and O~ k) is the largest zero o f  the k t h  Hermite  

Table 1 
g/ IEt, ,, 

k /q 

4 8 12 16 20 limit as 

1 0.25 0,25 0.25 0.25 0.25 0.25 
2 0.3 0.316... 0.316... 0.316... 0.316... 0.316... 
3 0.3 0.343... 0.349... 0.350... 0.350... 0.350... 
4 0.3 0.348... 0.366... 0.369... 0.370... 0.370... 
5 0.3 0,348... 0.371... 0.381... 0.383... 0.384... 
6 0.3 0.348... 0.372... 0.386... 0.392... 0.394... 
7 0.3 0.348... 0.372... 0.387... 0.396... 0.402... 
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as n ~ ~ .  Even for this particular offered traffic 
distribution, is there a mechanism to achieve the 
k-realizable traffic pattern on this network? Exact 
attainment of this traffic pattern seems impossible 
by any physically realizable means. A centralized 
controller which sorted and batched arriving mes- 
sage requests using bounded delay B could achieve 
an arbitrarily close approximation to this traffic 
pattern as B ~ ~ .  Using a decentralized traffic 
access protocol (which is the kind of protocol we 
imagine being used with such a channel) a close 
approximation to the k-realizable traffic pattern is 
probably not possible. For this reason the results 
of Theorem C should be viewed only as upper 
bounds on the achievable expected load. These 
upper bounds may not be too unreasonable, be- 
cause a heuristic analysis (omitted here) suggests 
to us that there do exist simple decentralized traffic 
protocols which would attain expected loads at 
rates fl~n for very small constants fl~ for offered 
traffic with a distribution like T,, above. For ex- 
ample, one can consider schemes in which 
transmission from i to j could only be allowed in 
certain time slots, i.e. the protocol indirectly coor- 
dinates the behavior of different users. The con- 
struction and performance analysis of such pro- 
tocols are interesting areas for research which we 
do not consider further here. 

Theorem C is proved in Sections 3-6, which are 
quite technical and may be skipped. The problem 
is transformed into a combinatorial problem of 
counting those permutations on n letters having a 
special form, the k-realizable involutions, and of 
estimating the average value of a statistic attached 
to such permutations, the number of cycles. 

What may we conclude from these results about 
the capacity of a disjointly shared channel com- 
pared to that of a broadcast channel? Theorem B 
showed that the capacity of a k-cable disjointly 
shared network increased by only a constant over 
the capacity of k broadcast channels for uniform 
offered traffic, while the discussion following The- 
orem C suggested that enormous expected loads 
akn might be attainable for very special traffic 
distributions peaked toward short-distance traffic. 
The latter situation shows a huge increase in 
capacity over the corresponding k-cable broadcast 
network. However this is not a completely fair 
comparison: for such an offered traffic distribu- 
tion one could achieve a much greater capacity in 
a broadcast network by chopping up some of the k 

cables into smaller disjoint pieces. For example, 
with 2 k users and k cables, cut the j t h  cable into 
2 j segments of length 2 k-j, and have users attempt 
to transmit messages on the shortest cable con- 
necting them to their intended receiver. The short 
distance transmissions would then go on the short 
cable segments. Without making this quantitative, 
we may say that the relative advantage in capacity 
of a k-cable disjointly shared network over a 
properly specified broadcast network is much 
smaller than that suggested by Theorem C, and 
Theorem A suggests that it is bounded by a small 
constant for reasonable offered traffic distribu- 
tions. 

Finally we observe that this analysis suggests 
that, for this theoretical model, and for very special 
offered traffic patterns, some increase in usage of 
a multiply-connected broadcast channel network 
might be achieved by splitting it into several dis- 
joint segments in such a way that it is still possible 
for any two users to communicate over one seg- 
ment or another. However this observation seems 
of little practical importance, because the special 
traffic patterns needed are unlikely to occur, and 
because other (crucial) factors omitted in this 
model favor connected broadcast network topolo- 
gies. 

3. k-Realizable Involutions 

In the remaining sections, we prove Theorem C. 
We formulate the problems of estimating the ex- 
pected load for the k-realizables traffic distribu- 
tion in terms of permutations. We use standard 
terminology for permutations, cf. Berge [2, pp. 
110-123]. Let S,, denote the set of permutations 
acting on (1 . . . . .  n}. The permutations we enu- 
merate are the involutions; i.e., those o ~ S,, with 
02 = identity. To say this another way, an involu- 
tion is a permutation o whose cycle structure is a 
mixture of 1-cycles (fixed points) and 2-cycles. A 
configuration of 2n users corresponds to an in- 
volution on S,. We can formulate the notion that 
a configuration is reafizable on a k-cable network 
purely in terms of permutations by introducing the 
notion of crossing number. 

Definition. Let o E S,, be an involution. The cros- 
sing number ci(o ) of o at i, for 1 < i < n -  1, is 

c i ( o ) =  # ( j : j < i < o ( j ) } .  
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If we imagine the elements 1 . . . . .  n as being 
arranged in a line, with a wire running between 
each connected pair of users connected to each 
other, then cg(o) is the number of wires crossing 
the interval between i and i + 1. 

Definition. An involution o is k-realizable if c~(o) 
< k  for all i. 

The notion of a k-realizable permutation corre- 
sponds exactly to a configuration realizable on a 
k-cable network. 

Our main result estimates the expected number 
of 2-cycles in a k-realizable involution. We do this 
in Section 6. To carry out that estimation, we first 
study (in Sections 4 and 5) involutions with no 
fixed point. This of course requires that n be even, 
say n = 2N. 

Definition. i~(N)  is the number of k-realizable 
involutions o ~ S2N with no fixed points. We set 
i t ( 0 ) =  1 for k>__0 and i 0 ( N ) =  0 for N >  1. 

Theorem D. I f  

l , ( x )  = ~ i , ( N l x  N, 
N = 0  

then 

1 
I~ ( x )  = x 

1 
2 x  

1 
1 - -  " . 

More explicity, 

l ~ ( X l - Q ~ ( x ~  ) ,  

1 - k x  

T a b l e  2 
i , ( N )  

k N 

0 1 2 3 4 5 6 7 

0 1 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 1 

2 1 1 3 9 27 81 243 729 

3 1 1 3 15 81 441 2403 13095 

4 1 1 3 15 105 825 6675 54375 

5 1 1 3 15 105 945 9675 104175 
6 1 1 3 15 105 945 10395 130095 

7 1 1 3 15 105 945 10395 135135 

T a b l e 3  

Q , ( x ) a n d  R , ( x )  

k Qk(x) Rk(x ) 

0 1 1 

1 1 - x  1 

2 1 - 3 x  1 - 2 x  

3 1 + 6 x  +3x z 1 - 5 x  
4 1 - 10x  + 15x 2 1 - 9 x  + 8x 2 
5 1 - 15x + 4 5 x  2 - 1 5 x  3 1 - 1 4 x  + 3 3 x  2 

where Q o ( x ) =  l, Q l ( x ) =  l - x, R o ( x ) =  R l ( x  ) 
= 1, and both Qk(x)  and Rk(x  ) satisfy the recur- 
rence 

U~+,(x) = U ~ ( x ) - ( k  + 1)xU~_~(x)  for k >__ 1 

(see Tables 2 and 3). 
Since the total number of k-realizable involu- 

tions ~ ~ S,, is 
I n / 2 ]  

this yields an enumeration of all k-realizable in- 
volutions. 

P. Flajolet has pointed out that he previously 
obtained Theorem D as a corollary to very general 
permutation enumeration results [4, Theorem 5B]. 

Our goal is to prove Theorem C, which we 
reformulate in terms of permutations. Let Ek(n ) 
be the average number of 2-cycles in all k-admis- 
sible involutions of S,. Using this notation the 
expected load E~.,, of the k-admissible message 
distribution as a k-cable disjointly shared network 
with n users is just Ek(n). Theorem C is an 
immediate consequence of the following result 
concerning k-admissible involutions. 

Theorem E. For an arbitrary n, even or odd, the 
average E~ (n) of the number of 2-cycles among all 
k-admissible involutions o ~ S,, satisfies 

lim E~(n)  
t t ~  n 

where 

OL k - -  

201k+' l+ v~- ' 

and O~ kj is the largest zero of the Hermite poly- 
nomial HJx) .  As a consequence, as k ~ 

1--z+O(k 
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The first f ew  values of  the a~ are 

a ¢5 
al =¼'  % -  2 1 + v/-3 ' a n d ° t 3 -  

1 ~/3- + ~/6 

2 1 + V~-+ ~6- ' 

We  prove Theorem D in the next section, derive 
results  abou t  Hermi te  po lynomia l s  in Section 5 
and  f inal ly prove  Theorem E in Section 6. 

We remark  that  i ~ ( N )  stabil izes for k large (cf. 
Tab le  2). Indeed  if k > N, then there is no restric- 
t ion on the crossing number ,  and  i~ ( N )  counts  all 
involut ions  with no fixed points .  To count  them, 
note  that  there are 2 N -  1 choices for an e lement  
to pa i r  1 with. The  next unpa i red  user has 2 N -  3 
choices,  and  so on, so 

i ~ ( U )  = ( 2 N -  1 ) ! ! -  (2N)'T 
2 x .  N!  

= 1 . 3 - 5 . 7 . . . . . ( 2 N -  1) 

for k > N. Hence,  le t t ing k ~ ~ in Theorem D we 
obta in :  

Theorem F. The following is a formal  power series 
identity: 

1 
= L ( 2 N - 1 ) ! ! x  x 

X 
t -- n = 0 

2x 
1 

3x 
1 

1 - -  . . .  

We remark  that  this theorem can also be proved 
d i rec t ly  using s t anda rd  me thods  in the analy t ic  
theory  of con t inued  fractions.  Indeed  we have 

1 x - f 0 ~ e  ' ' - " ; d t ,  
1 +  

2x 
1 + - -  

1 + . . .  

val id for R e ( x ) >  0. (See [8, p. 353] for ana logous  
results.  Take  a = 1 /2 ,  x =  2z in (92.4).) If we 
d i f fe ren t ia te  the integral  on the right n t imes with 
respect  to x, and set x = 0, we ob ta in  

( - 1 ) " x " 2 - " f ~ t  2'' e - l d t  
" 0  

= ( - 1 ) " x " 2  " ( 2 n ) !  

= ( - 1 ) " - n ! ( Z n -  a)!!x", 

which yields Theorem F. 

4. Proof of Theorem D 

Associa te  to each f ixed-point - f ree  involut ion 

a ~ S2.v its vector  v ( o )  of  crossing numbers :  

v(o) = ( c , ( o ) ,  < ( , , )  . . . . .  c,,, , ( o ) ) .  (4.1) 

U n d e r  what  c i rcumstances  can a vector  

v =  (c,  . . . . .  c2 ,_L)  (4.2) 

arise as the crossing number  vector  v(o)  of some 
f ixed-point - f ree  involut ion o? We next show that  
necessary and sufficient condi t ions  are given by 

(i) cl = c2x i = 1, (4.3a) 

(ii) c, > 0 

i or 2 < i < 2 N -  2, (4.3b)  

(iii) c , + l = c i + l  

for 2 < i < 2 N  - 2. (4.3c) 

These  condi t ions  are clearly necessary.  (i) holds  
since both user 1 and user N are ta lking to some- 
one. (ii) is obvious.  (iii) holds  since c,+ i = c, + 1 if 
user  i + 1 is ta lking to user j with j > i + 1 and 
c,+~ = c , - 1  if j < i .  These condi t ions  are also 
sufficient.  We can construct  all the comple te  in- 
volut ions  with a given pa t te rn  (4.2) that  satisfies 
(4.3) as follows. We induct  on i, for 1 < i < 2 N - 2. 
Whenever  c,+~ = c, + 1, we have user i + 1 connect  
to person j with j > i + 1, j to be selected later. 
We  say user i +  1 calls to his right. Whenever  
cz+ ~ = c, - 1, we connect  user i + I to an), j < i 
such that  person j was connec ted  to his right but  
has not  yet been connec ted  to anyone  in par t icu-  
lar. (There is at least  one such user since c, > 1 is 
forced by c,+ 1 > 0.) Hence this cons t ruc t ion  can 
always be comple ted ,  and  in fact in exact ly 

U ( v ) =  I - I  c, (4.4) 
i 

CI • I "< (', 

dis t inct  ways. 

The  condi t ions  (4.3) can be viewed as those of  a 
r a n d o m  walk taking steps s, = + 1 with c o = c2,,, 
= 0 with the condi t ion  that  at all in te rmedia te  
s teps the cumula t ive  sums satisfy 

c , = s  1 + s2 + . . .  + s , > O  (4.5) 

We will count  f ixed-point - f ree  involut ions  by 
first in t roducing  an auxi l iary  count ing  funct ion for 
which we can derive a recurrence.  

Definition. Let C~$.x denote  the set of fixed- 
poin t - f ree  involut ioins  on 2 N  poin ts  with crossing 
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vectors  v = (c] . . . . .  c2N l) which sat isfy 
1. All  c,<k, 
2. Fo r  exact ly t d is t inct  i, q = k, 
3. I f t = 0 ,  t h e n s o m e  q = k - 1 .  
Let f A s ( N )  denote  the ca rd ina l i ty  of  Ck$.x. 

We show f~s(N) satisfies the fol lowing recur-  
sion. 

Lemma 4.1. For all t >_ 0, 

f A $ ( N )  = E f A l l . , l ( N - t ) k ' (  t + s - 1  ). (4.6) 
s _ >  1 t 

Proof .  View the crossing number  vector  v of a 
f ixed-point - f ree  involu t ion  counted  in fA$(N)  as a 
walk.  We say that  v has a run of r values of  k if 
there  is an i with 

C i ~ C i + 2  = . . .  = C i + 2 ( r _ l ) = k .  

As an example ,  the crossing n u m b e r  vector  in 
F igure  3, with k = 3, has a run of  length 2 s tar t ing 
at i =  3, and  a run of length 1 s tar t ing at i =  9. If 
r~ . . . . .  r~ denote  the lengths of max imal  runs in v 
then 

rl +. . l  +r/=t. 

We form a new crossing number  vector  v* with 
N* = N - t as follows. F o r  each maximal  run from 

c i to q+21,- ~) we delete  c, through q + z r - i .  Us ing  
the r a n d o m  walk charac te r iza t ion  of  crossing num- 

ber  vectors, we conc lude  that  the new vector  v* 
resul t ing from this opera t ion  is a crossing number  
vector.  As an example ,  F igure  4 shows the new 
cross ing number  vector  v* der ived from v in Fig-  
ure 1. If t = 0, then v* is s imply taken to be v. 

No te  that  the new vector  v* conta ins  at least 
one  crossing number  equal  to k - 1. Hence  v* is in 
CA-1. , ,x  , for s o m e s > l .  

We  can reverse this opera t ion .  Let v* be in 
Ck ~,,.N ,. In how many  ways can we ob ta in  a 
crossing number  vector  of  an e lement  in Ck$" x? At  
each of  the s peaks  of  v* where c* = k - 1, we can 
insert  a run of r~ peaks  wi th  crossing number  k. In 

I I I I  II 
, I I I [ 
ol 

I 2 3 4 5 6 7 8 9 I0 II 

Fig.  3 . 2 N  = 1 2 ,  v = (1 ,2 ,3 ,2 ,3 ,2 ,1 ,2 ,3 ,2 ,1) .  

2 I I I  l I 

01 1 
I 2 3 4 5 

Fig.  4. N*  = n - 3  = 3, v* = (1,2,1,2,1) .  

order  to ob ta in  en e lement  of Cks" N it is necessary 
and  sufficient that  

r 1 + r 2 + . . .  +r~ = t. (4.7) 

The  number  of  ways to choose a vector  of  non-  
negat ive integers ( r  1 . . . . .  r~) sat isfying (4.7) is 

N o w  let v* be the crossing number  vector  of a 

O" ~ C A. 1, .v, N -  1" This vector  arises from 

U ( v * ) =  I - I  c* (4.8) 
i 

d i f ferent  comple te  involut ions.  If  v is a crossing 
n u m b e r  vector  associa ted  to Ck$ ,x derived from 
v*, then 

N ( v ) =  1-I ci=k '  FI c* 
i cL, < c,* 

('1 ~ 1 <: ('1 

= k ' N ( v * ) ,  

since the vector  v is the same as v* except  that  t 
occurrences  of the crossing number  pa t t e rn  (k ,  k 
- 1) have been added.  Consequen t ly  the fA-1. , ( N  
- t)  e lements  of  C A l. ~. X- ,  yield 

k , ( t + s - 1 )  
s - 1  f ~ _ , . ~ ( N - t )  

dis t inct  e lements  of  CA$" U under  the reverse cor- 
respondence .  

The l emma follows by  summing  over s > 1. 
(No te  that  for s _> N we have fA$(N) = 0.) [] 

Note. We can always include s = 0 in the summa-  
t ion (4.6), since ' 1 (, )=0.  

Next  we in t roduce  the genera t ing  funct ion 

Fks(X ) = ~ .  f k s (N)x  N, (4.9) 
N = 0  

where  we make  the convent ion  that  f l .o(0) = 1 and 
fA$(0) = 0 otherwise.  

No te  that  fk + ] . 0 ( N ) =  ik(N ) - i  k_ i(N), so that  

FA+ ,.0 ( x )  = I k ( x )  -- IA_ , ( x ) .  (4.10) 

The  recursion of L e m m a  4.1 impl ies  that  FA$(x) 
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satisfies 
¢,o 

Fhs(x)=k'x'Y~. { ' + s - 1 } F h _ , . , ( x  ). (4.11) 
, = o t 

Direct evaluation of f l . s (N)  leads to the initial 
conditions: 

Fl . s (x  ) = x ' ,  0 < t < m. (4.12) 

Using the recurrence (4.11) we then calculate that 

F2. s (x)  = ~ , 0 < t < m .  

This suggests we try to obtain a solution of the 
recursion (4.11) of the form 

Fhs(x ) =Ah(x)Bk(x) ' ,  (4.13) 

where Ak(x ) and Bk(x ) are formal power series. 
Substituting (4.13) into (4.11) and using the bi- 
nomial theorem we find that 

A~B 'a=(kx ) '~  ( t + s - - l l A k  ,B~ , 
s = l  t 

=(kx ) 'Aa_ ,Bk_ , (1 -Bk_ , ) - '  '. (4.14) 

Hence (4.13) will be a solution of (4.11) if the 
functions Ak ( x ), Bk ( x ) satisfy the recursions 

Bh-,(x)  
Ak (x )=A h ,(x) (4.15) 

1 - B  h , ( x ) '  

kx 
Bk(x)-- 1 - B h_ ,(x) ' (4.16) 

together with the initial conditions 

A,(x)  = 1, (4.17) 

B , ( x ) = x ,  (4.18) 

implied by ( 4 . 1 2 ) .  

The recursion (4.15) with (4.17) implies that 

a. B,(x) (4.19) H 
i = 1  l 

while (4.16) yields 

kx 
Bk(x ) = (4.20) 

( k -  1)x 
1 

1 - .  

We now set 

2x 
1 - x  

P~(x) 
B A + , (x)  = Qh ( x - ~  ' (4.21) 

where Ph(x), Qh(x) are relatively prime poly- 
nomials with Ph(0)=0, Qk(0) = 1. Then (4.16) 
gives 

Ph(x) (k + l)xQh ,(x) 
Qk(x) Qh_l(x)-Ph i(x)" 

so that 

P h ( x ) = ( k +  l)xQk ~(x), (4.22) 

Q h ( x ) = Q , _ , ( x ) - P h  ,(x). (4.23) 

This implies that Qh(x) satisfies the recurrence 

Qk( x)=Qh , ( x ) - k x Q h . 2 ( x  ), (4.24) 

Q _ ~ ( x ) =  Q,,(x)= 1, (4.25) 

i.e. these are the polynomials Qh defined in Theo- 
rem A. Next substitute (4.22) into (4.21) to get 

Qk 2(x) 
Bh (x ) = kx Qh- ,(x) " (4.26) 

This formula and (4.24) yield 

Qh(x) 
1 --Bk(x ) -- - -  

Oh , ( x ) '  

so that 

Bh(x) Qh_2(x) 
- kx (4.27) 

1 --Bh(x ) Qh(x) 

Thus, using (4.27), the product (4.19) telescopes to 
yield 

1 
Ah+,(x) = k!x a (4.28) 

Qh(x)Qa l ( x ) "  

Now we introduce polynomials Ra(x) with 

R,,(x) = 1, R , (x )= 1, 

and which satisfy the recurrence (4.24) for k >_ 2. 
Then 

R° = x 

The recurrence (4.24) gives 

Oh 0h 2 0h - ,  I R a  i 

Hence 

[ Rh i 

Qh i 

R h 1 m x  

-kx] 
1 " 

(4.29) 
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Taking determinants of both sides, we get 

R k ( x ) Q a _ , ( x  ) - R k _ , ( x ) Q k ( x  ) = k ! x  k. (4.30) 

Then (4.28) and (4.30) yield 

R~(x)  R~_ , (x )  (4.31) 
A k + ' ( x ) =  Qa(x)  Qa_ , (x )"  

We also have 

A a + , ( x ) = F ~ + , . o ( X ) = & ( x ) - I  a , (x ) .  (4.32) 

But now (4.32) gives us a sum for &(x)  in terms of 
the A,,,(x), which by (4.31) telescopes to yield 

R~(x) 
I k ( x )  (4.33) 

Q k ( x )  

Now (4.29) implies that 

R~(x) 1 
x (4.34) 

Qk(x)  1 - 
2x 

1 - - - -  

1 (k  - 1)x  
1 - k x  

This completes the proof of Theorem D. 

5. Hermite Polynomials and Zeros 

The polynomials Qk(x) are related to the 
Hermite polynomials. 

1 
Lemma 5.1. Q k ( x ) =  ( x V r ~ - ) I ' + I H / , + I ( . ~ - ) ,  

where H~(x) is the k 'h Hermite polynomial. 

Proof. The Hermite polynomials satisfy H~(x)= 
2x, H2(x ) = 4x 2 - 2, so that the Lemma holds for 
k = 0, 1. Furthermore, we have [1,7] 

H a + , ( x ) = 2 x H a ( x ) - 2 k H  k ~(x), 

which in view of the recurrence (4.24) for the 
Qk(x) yields an immediate proof of the Lemma by 
induction. [] 

For our application we need to know the size of 
the smallest zero of Qa(x). By Lemma 5.1 this 
means we need information about the largest zero 
of Hk(x). We recall the following theorem [7, 
Thin. 6.32]. 

Proposition 5.2. All the zeros of Hx ( x ) are real and 
positive. The largest zero Or1 k) of H~(x) satisfies 

O~a'< (2k + 1) ' / z -  Co(2k + 1) '/6 , (5.1) 

with 

1 
Co = 3f6- 1° = 1.85575 . . . .  (5.2) 

where i o is the smallest zero of Airy's function 
A i(x). Furthermore 

Ol/~) :  ( 2 k  -q- 1) 1/2 - (c  O -{- { ( k ) ) ( 2 k  -~- 1) 1/6 (5 .3)  

where {(k) --* 0 as k --* oz. 

We now estimate &(N)  as N---, oc, with k 
fixed. 

Lemma 5.3. We have 

-~log(& ( N ) )  = log 2(0~ +')) 2. (5.4) 
1 

Proof. Using the formula for &(x)  given in Theo- 
rem C, and expanding in partial fractions, we have 

/ ~{kl2~lk) 
Ia(x)=d~} a , -  E c/ % (5.5) 

i = 1  X - -  6 ( k }  ' r t  

where q~l k} are the roots of Qk(x), which are 
positive real and distinct using Lemma 5.1 and 
Proposition 5.2. We suppose q~]k) is the smallest 
root. Now (5.5) gives for N >_ 1 that 

/ 

ia (N)  = ~2 c~a'[q}l k}]-N (5.6) 
i = 1  

Note clk}4 = 0 since (Qk(x),  R a ( x ) ) =  1 by (4.30). 
Hence 

1 
lim ~ l o g ( & ( N ) )  = - l o g  ~k). 

N ~  

Using Lemma 5.1 and Proposition 5.2, we have 

1 
_ _  _ - 0 ~  ~+~1,  

so that 

[4~]k}] - ' =  2(O~X+l)) 2, (5.7) 

which proves the lemma. [] 

6. Mean Value of the Number of User Pairs 

Proof of Theorem E. For an arbitrary n, the 
total number T k(n) of k-realizable configurations 
between n users is given by 

[-/21 n 
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since there are (~N) ways of picking 2N users and 
&.(N) ways of connecting them completely. Using 
(5.6) and (5.7), this is 

[n/2l  )2N 

N = 0  

+O(~=21(2nN)2N(o~a+'''ZN), (6.2) 

where the O-constant depends on k. Since 
{n/21 

N~=o(2N)XN=½{(I+vr£)"+(1--CT)"}, (6.3) 

we obtain 

T~(n) =1~.1_,k ,[ltl + V~-01~ + ~')" + O( 4," ), (6.4) 

where 4} = max( I 1 - v~-0~+'}l,1 + v~-0~ ~+1,) is 
smaller than 1 + v/20[ ~+1~ 

On the other hand, the total number of connec- 
tions in all these configurations is 

[n/2] 

UA(n) = Z N(2N)&(N)" (6.5) 
N = 0  

Proceeding as above we obtain 
In/2] 

U , ( n ) =  E N( n ~{kmNla{k+,))2N 2N]e, ~ to, +O(n,"), 
N=O 

and 

[n/2] I'/ N 
z d = ~X-~x ((1 + v~)"  + (1 - V/x-) '') 

N = 0  

= ¼nl/Sc-(1 + / / 7 )  ''-1 

+ O(nv/7 1 1 - ¢x- I " - ' ) .  

Hence 

Uk(FI ) = 1 -~(k ' . / r~ -~( /~+l ' (1  ,tt~ ! "~ + , - o , ' + " ,  ' ' 
1 

+ O ( n , " ) .  (6.6) 

Now 

u (n) 
e k ( , , )  = r , ( , , )  " 

Combining (6.4) and (6.6), we get 

Ea(n) 1 v~O~ a+'' 
lim 

N ~ o o  n 2 1 + 1/~-01 k+t)" 
(6.7) 

Table 4 

Ql( x ) = 1 - x q~l} = 1 ( q~]l})- I/2 = 1 

Q 2 ( x ) = l _ 3 x  ,#]2} = 1 /3  (q,]2}) i/2 = vc ~ 

Q 3 ( x ) = 1 - 6 x + 3 x 2  ~ ,  = 1 - ~ -  (q ,~3 ' ) -~ /2=v~-+¢6  

Next, using (5.7) to estimate 0~ k ÷ ~}, the asymptotic 
estimate for a~ follows. [] 

Remarks. 
1) In view of Table 4, we have 

i) a 1 = ¼. (In fact El(n )=¼n for all n.) 

ii) a 2 2 1 +~c5" 
1 ¢ 5 +  

iii) a s 
2 l + v ~ - + ¢  ~ " 

2) We can give exact formulae for T~(n), 
U,(n),  Ek(n ) for small k using the partial 
fraction expansion (5.10) along with formulae 
(6.3), (6.6). 
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