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INTRODUCTION

THE am of this article is to state a conjectural Grothendieck-Riemann-Roch theorem for
metrized bundles on arithmetic varieties, which would extend the known results of Arakelov
[3]. Faltings [19] and Deligne [17] in the case of arithmetic surfaces. The project of looking
for such a thcorem was first advocated by Manin in [29].

Let X be an arithmetic variety (i.c. a regular scheme, quasi-projective and flat over Z). In
a previous paper [20] we defined arithmetic Chow groups (/‘l\i"(X) for every integer p > 0,
gencrated by pairs of cycles and “Green currents™ (loc. cit.). We showed that these groups
have basically the same formal properties as the classical Chow groups. They are covariant
for proper maps (with a degree shift). In [21] we attached to any algebraic vector bundle E
on X, endowed with an hermitian metric h on the associated holomorphic vector bundle,
characteristic classes

HE e @ CI(X)®Q = CH(X)q,
p20

for every symmetric power series ¢(T;, . . ., T, ) with coefficients in Q. For instance we
have Chern character ¢h(E, hye CH(X )y- We also introduced in [21] a group Ko(X) of
virtual hermitian vector bundles on X and extended ¢h to Ko(X).

To state a Grothendieck~Riemann-Roch theorem one still needs two notions. First,
given a smooth projective morphism f: X — Y between arithmetic varieties, one needs a
direct image morphism

fi: Ko(X) = Ko(Y).

Given (E, h) on X, to get the determinant of fi(E, h) amounts to defining a metric on the
determinant of the cohomology of E (on the fibers of /). This question was solved by Quillen
[35] using the Ray-Singer analytic torsion [36]. In §3 below we shall define higher analogs
of Ray-Singer analytic torsion and get a reasonable definition of f; (this is a variant of ideas
from our work with Bismut [8,9,10]).

The second question we have to ask is what will play the role of the Todd genus. For this
we proceed in a way familiar to algebraic geometry (see for instance [25]), namely we
compute both sides of the putative Riemann -Roch formula for the trivial line bundle on the
projective spaces P over Z, n > 1. This normalizes the arithmetic Todd genus uniquely. To
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the obvious candidate ﬂ(E, h), with

x"

=1-Y {(l-n) ——

I—e* el (n—1!°

Td{x) =

where {(s) is the Riemann zeta function, it turns out that a secondary characteristic class has
to be added. It is constructed using the following characteristic power series (see 1.2.3)
x™m
Rx)= Y QU(—m+(—m(1+3+ ... +,},—))'—n—.

modd '
m2>1

The computations which yield this power series are pretty involved. We got the first
coeflicients of R{x) using a computer. To check the general expression we reduced the
problem to a difficult combinatorial identity. that D. Zagier was able to prove in general
(Appendix). The conclusion is that the Grothendieck-Riemann—-Roch theorem we con-
jecture is true for the trivial line bundle on P" (Theorem 2.1.1.).

The paper is organized as follows. In §1 we define Quillen’s metric on the determinant of
cohomology, recall the definitions from [20] and [21], and define the arithmetic Todd
genus. We then give a conjecture computing the Quillen metric (1.3). The holomorphic
variation of this equality is known to be true [35] [8, 9, 10] (sec. 1.4). When specialized to
the moduli space of curves of a given genus, the conjecture 1.3 gives the value of some
unknown constants in string theory (1.5). In fact, our computation on P" extends the work
of the string theorist Weisberger [38] on this question when n = 1.

In §2 we prove conjecture 1.3 for the trivial line bundie on P" (Theorem 2.1.1) by
reduction to an identity of Zagicer. In §3 we define higher analytic torsion using results of
[9]. compute its holomorphic variation (3.1) and define the map f (3.2). We then conjecture
a general arithmetic Grothendicck - Riemann - Roch identity (3.3) the holomorphic variation
of which holds.

§1. ON THE DETERMINANT OF COHOMOLOGY
1.1. Quillen’s metric
Let X be a compact complex manifold of complex dimension n, g a Kihler metric on X,
E an holomorphic vector bundle on X, and h a smooth hermitian metric on E. We orient X
using the convention that C" is oricnted by dx,dy,dx,dy, . .. dx,dy,, with z, = x, + iy,,
a=1,...,n, the complex coordinates. Define the normalized Kihler form w on X to be

e 0

i =
w =5 y q( —, )dz,d:ﬁ,

{z, 0zp

for any choice of local coordinates z,, = 1,. .., n Let u = w"/n!.
Consider the Dolbeault complex

= A(X, E) s A (X E)
where A”(X, E) is the vector space of smooth forms of type (p, ¢) with coefficients in E, and
¢ is the Cauchy -Riemann operator. For each ¢ > 0 we define the hermitian scalar product

on A™(X, E) by the formula

<n. n’):;:f < n'(x))p, ()
X
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where {n(x). n’(x))> is the pointwise scalar product coming from the metric on E and the
metric on differential forms induced by the metric on X.
The operator ¢ admits an adjoint ¢* for this scalar product:

N D =N E*n'Yps. n€A°YX,E), ' € A9 (X, E).

Let A, = 0C* + ¢*C be the Laplace operator on A(X, E) and #°%(X, E) = Ker A, the
set of harmonic forms. Let 4, < 4, < 4; < ... be the eigenvalues of A, on the orthogonal
complement to % °(X, E). indexed in increasing order and taking into account multi-
plicities (these are finite and 4, > 0 for all n > 1). For every complex number s such that
Re(s) > dim¢ X, the series
o)=Y A% (=X, E.5)
n>1
converges absolutely. This function of s admits a meromorphic continuation to the whole
complex plane, the zeta function of the operator A,. This function is holomorphic at s = 0,
so it makes sense to consider its derivative {;(0). Following Ray and Singer [36] one
considers the analytic torsion
W(E) = Y (= 1)q{(0).

q2

Remark. Notice that t(E)® depends on the metrics chosen on E and X. The number
exp(—{,(0)) may be taken as a definition for det’A,, the determinant of A, restricted
to the orthogonal complement of (X, E), since, for cvery finite sequence 0 < pu; <
< ... Sy of positive real numbers, the following holds:

d{ ¥
My By = exP(‘;‘lsj( Zl Hn !) )
* n= 3 » 0

1.1.2. Consider the cohomology groups HY(X, E) of X with coefficients in E, and the
onc¢-dimensional complex vector space

ME)= @ A™HYX, E)~1"
qz0
(when L is a line bundle we denote by L~! its dual). Since HY(X, E) is canonically
isomorphic to the cohomology of the Dolbeault complex, hence to #'°4(X, E), the scalar
product  , >, gives rise to a metric h.: on A(E). Quillen [35] defined a new metric hy, on
A(E) by the formula

hy = h,_zcxp( Zo (=1y*! qu,(O)) = hexp(—1t(E)P).

q2

1.1.3. Now et f: X — Y be a smooth proper map of complex analytic manifolds. Assume
that every point y € Y has an open neighborhood U such thatf ~ ! (U) can be endowed with a
Kibhler structure.

On the relative tangent space Ty,y (a bundie on X) choose an hermitian metric hyy
whose restriction to each fiber X, =f"'(y). ye Y, gives a Kihler mctric. Let E be a
holomorphic vector bundle on X and h an hermitian metric on E.

Let A(E) = det Rf, (E) be the determinant of the direct image of E, as defined in [28] and
[10]. This is a holomorphic line bundle A(E) on Y such that, for every ye Y,

AE),= ® A™HYX, E)~ '

q20
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It is shown in [8, 9, 10], Theorem 0.1, that the Quillen metric h, on i(E) (defined fiberwise
as in 1.1.2) is smooth. Furthermore its curvature was computed in loc. cit.

1.2. Characteristic classes

1.2.1. Let (4. Z. F_) be an arithmetic ring in the sense of [20], i.e. A is an excellent
noetherian integral domain, Z is a non-empty finite set of imbeddings 6: A —» C, and F_:
C* - C* is a conjugate linear involution fixing A (imbedded diagonally into C%). Let F be
the fraction field of A.

Let X be an arithmetic variety (loc. cit) i.e. a regular quasi-projective flat scheme over A.
Assume the generic fiber X is projective. Let X, be the set of complex points of X defined
using the imbedding s X and X, = || X,. In [20] we defined arithmetic Chow groups

oel

CH?(X) for every integer p > 0, which generalize those introduced by Arakelov [2] for
arithmetic surfaces. The group ChH P(X) is generated by pairs (Z, g), where Z is a cycle of
codimension p on X and g is a “Green current” for the corresponding cycle on X (i.e. dd‘g
plus the current given by integration on Z , is a smooth form; see loc. cit. for the relations).
There is a canonical morphism z: @”(X) — CH?(X) to the usual Chow group of codimen-
sion p sending (Z, g) to Z. On the other hand, let A??(Xy) be the set of real forms w of type
(p. p) on X, such that F%(w) = (- 1)?w. Denote by ,Z”(Xn) the quotient of A”?(Xy) by
Im? + Imd, ZP%(X ) the kernel of 8 in A77(Xg) and H"?(Xg) the quotient of Z??(Xg) by
Imd + Im¢. According to [20] there is a morphism w: @"(X) — ZP?(X ) and canonical
exact sequences:

AP=1r- (X ) S CHP(X) S CHP(X) - 0 )
HP =12~ 4 (Xg) % CHP(X) 225 CHP(X) @ 277(X ) 3)

Any projective map f X — Y of arithmetic varieties which is smooth on X, induces a
direct image morphism f,: ffl”(X)—»CH’“’(Y), where —9 is the relative dimension.
Furthermore

CA(X)e= @ CAP(X)®Q
p20 2
has a graded ring structure, contravariant for all morphisms of arithmetic varieties. The
product on CH(X)q satisfies the formula

a(x)y = a(xw(y), xe A(X) = @ AP~“P~Y(Xy), ye CH(X)q. (4)

p21

. . - . Pt
In particular Ima 1s a square zero ideal in CH(X)g.

1.2.2. Let E be a vector bundle of rank n on the arithmetic variety X and h an hermitian
metric on the associated holomorphic vector bundle E, on X . We assume h is invariant
under F . (We say that (E, k) is an hermitian vector bundle on X.) When E = L is a line
bundle one can define its first Chern class &, (L, h)eC/H‘(X) ([17].[21] 2.5). More gen-
erally, let e Q[[T, ..., 7T,1] be a symmetric power series in n variables. In [21] §4 we
defined a class ¢(E, h)e C/F’(X)Q. characterized by the following properties:

() S(f*ES*h) =[*$(E. h)

(i) Let ¢,, i = 0, be defined by the identity

KT +T... . T,+T)= 3 ¢(Ty,..., T)T"

iz20
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Then
HE®LKhOK)= T S(EWE (LK),

for every line bundle L.

(iii) Given two metrics h and A’ on E,

GE. h) — S(E. ) = a($(E. h. b)),
where ®(E, h, i')e A(XR) is a secondary characteristic class introduced by Bott and Chern
([1s, 18. 8. 21]).
L 1l

(iv) When (EEh=(L,® ... ®L,. h, ® ... ®h,) is an orthogonal direct sum of

hermitian line bundles,
SE k) = ¢, (L, hy). .. .. é (L b))

In particular the Chern character @(E, h)e(/‘FI(X)Q is defined using

ch(Ty,....,T) =3 exp(T})

i=1

and the Todd class ﬂ(ﬁ h)e(/‘?l(,\’ )o by means of

Td(T,, . ... Ty = [] (T/(1 = exp(=T).
Q=1

1.2.3. Let E be a holomorphic bundle on a complex manifold X. Let us define a
characteristic class R(E)e H*"(X) in the even complex cohomology of X by the following
properties:

(i) R(S*E)=[*R(E)

(i) Given any exact sequence 0 = S — E — Q — 0 of vector bundies over X, we have

R(E) = R(8) + R(Q)
(iii) When L is a line bundle on X with x = ¢,(L)e H*(X) its first Chern class,

m

RIL)= Y QI(=m+(—mI+i+ ... +,£*))'E~~ (5)
madd m!
mz 1

Here {(s) is the Riemann zeta function and {’(s) its derivative.

Then R(E, ) lies in H(X)= @ H”~'?~YXy). We define the arithmetic Todd genus of

p21
,(E, h) to be Py
TdA(E. h) = TAE, h)(1 — a(R(E ))) in CH(X)g. (6)

1.3. A conjecture.

Let £ X = Y be a smooth projcctive morphism of arithmetic varictics. Choose a
hermitian metric hy,y on the relative tangent space Ty,y which induces a Kihler metric on
cach fiber £ ~'(y). ye Y, . Let (E, h) be an hermitian vector bundle on X. The determinant
lin¢ bundle .

A(E) =detRfE
on Y [28] is endowed with the Quillen metric by as in 1.1.3. Given x€ CH(Y)g. denote 2
its component in C/‘FI"( Y)®,Q.

TOP 30:1-C
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Conjecture 1.3. &,(A(E), hg) = f,(Ch(E.h)Td*(Ty y, hy y )V

1.4. Some evidence for the conjecture

Let
S(E) = &,(A(E). hg) — [ (ch (E. Wy Td*(Tx,y, hy 4 ).

THEOREM 1.4

() [8.9, 10] The element 6(E) lies ina(H(Y)) < C/‘FI( Y)g. It is independent of h and hy,y.
Given any short exact sequence 0 =S — E —» Q — 0 on X, then d(E) = 5(S) + 6(Q).
(i) Let E* be the dual of E, d the rank of Ty,y, and K = A*T},, the relative dualizing
bundle. Then
S(E) = (= 1) *15(K ® E*).

(ii)) Let E’ be any bundle on Y. Then
HE®Sf*E') = rk(E’)d(E).
(iv) [17]) When f has relative dimension one and X contains a real imbedding, one has
J(E) = c.rk(E)
where c€ R depends only on the genus of the fibers of f.
Proof

(i) By the Grothendicck-Riemann Roch theorem for higher Chow groups [24] we get
2(6(E)) = 0. On the other hand, we know from [21] 4.1. that

W(G(E, h)) = ¢(E, h) )

is the closed form in A(X) = @ A"P(Xy) representing the ¢-characteristic class of E

p20
which is attached to the hermitian holomorphic connection on E .. Since w is multiplicative

and commutes with f, [20] we get
w(S(E)) = ¢ (AE), hy) = [ (ch(E, )y Td(Ty,y. hyy N2

This is zero by [8, 9, 10], Theorem 0.1. We conclude from (7) that 3(£) lies in the image of a.
When hy,y is replaced by hYy,, we have

¢V (AE), hg) = &, (A(E), hy) = a(G,(AE), hy, hy))
by 1.2.2 (iit). Similarly
Td*(Ty,y, hyyy) = Td*(Ty,y, Byy) = a(Td(Ty,p, hxps Hyy)).
Using (6) we get
S(E) = 8'(E) = a(& (AE), hg. hg) — [, (ch(E, h) Td(Ty,y, hy,y, Ky.x)).

Theorem 0.3in 8,9, 10] gives 6(E) — &'(E) = 0. By a similar argument, Theorem 0.2in [8,9,
10] implies that (E) does not depend on the metric h on E and 3(E) = 6(S) + 6(Q) for every
exact sequence
0-S—2E-Q~0
(i) For every point yeY, Secrre’s duality identifies H(X,, E) with the dual of
H*"9(X,, K ® E*), ¢ > 0. Hence one gets an isomorphism of line bundles on ¥

ME)~ AK® E*) -1t %)
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Up to sign, on X, Serre’s duality is induced by the pairing of Dolbeault complexes

AYX,E)® A" YX,,K®E*)-C 9)

i d
&) ]

(we forget the subscript «c). Let us endow E with a hermitian metric h. From the definition
of the (normalized) Kihler form w and the L?-metric (1.1), we see that the pairing (9) gives
an isometry

sending n ® n' to

A(X,, E) > A% (X, K Q E*)
for the L? metrics. Furthermore
Cq(xyv Ev s) = C,j-q(Xy. K ® E‘, S).

Therefore (8) is an isometry for Quillen’s metrics. Let x — x " be the involution on CH equal
to(—1)?on CHP. Then ¢h ((E.h)*) = ch(E, h)” ([21] 4.9) and, by a standard computation

SR E, T Ty k) = (= 1Sl CR(E. B Td(Topps hyry)”)
= (= fo (R ((E.h)*) R (K, ARy ) TA(Tapy b))

Therefore

S CCRENTU Ty, b)) = (= D (R (K ® E*, Ahyyy ® h)TA(Try, hyyy)). (10)
Furthermore
a(f(ch(E)Td(Ty, )R(Txy)))* = (= 1Y af, (ch(E)* Td(Ty,y)" R(Ty)").
Since R(x) = — R(—x) we get R(Ty,;y)” = R(Ty,y), hence

So(ch(E)Td(Txyy)R(Txp))* = (= 1Y/, (ch(K @ E*) Td(Ty,y)R(Tyy)). (n
Applying (10) and (11) in degree one we get
So(CR (E. R Td*(Tyyy. by DV
= (= D** Y (Ch(K @ E*, Ahyyy ® h*) TA(Tyyy, hyyy )V

and (i) follows.
(ii)) From the algebraic isomorphisms

HYX,,E®f*E)~H%X,,EY®E,, ye Y, >0
we get
ME @ f*E')~ {Ey*€ (et E'y®, (12)

Let us endow E and E’ with hermitian metrics h and h'. On X the isomorphism (12) is
induced by L? isometrics

AX, EQ*E)~AX,.E)®E,

from which we conclude that (12) is an isometry for Quillen’s metric.
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On the other hand
So(CRUE, W) ® f*(E, ) Td*(Ty y. hy N
=[fo(CR(E. Wy Td*(Ty.y. hy 1)) R (E, H)]V
= 1(E)e(E', B) + rk(E')Vf,( Ch(E, ) Td*(Ty,y. hy, e ).

This proves (iii).

The statement (iv) is Deligne’s result [17], since, by [21] Theorem 4.10.1,, the right hand
side of Conjecture 1.3 is the class of the corresponding metrized line bundle introduced
in [17]. ged.

1.5. Consequences of the Conjecture

1.5.1. Under the hypotheses of 1.3 assume that the rank of T,y is one, i.e. fis a family of
curves. Then Conjecture 1.3 is equivalent to the following:

Conjecture 1.5
CY(AE) hg)=f(ch(E, WTA( Ty hy ) = alrk(E)1—g) (4 (= 1) = H)),

where g(y) is the genus of f ~\(y) for every ye Y.
To see that the conjectures are equivalent notice that

S Ch(E. h)ﬂ(Tx,y. by AR(Ty )N = al fy (ch(E)Td(T ;) R(Ty ;)"
by (4). Since R(Ty,y) has degree at least 2 we get

“(L(rk(E)rlcx(Tx/y)))(“
where
M=20(=D+(-D)=20(-) -4

By the classical Riemann-Roch theorem in cohomology:
V=g =f(Td(Ty, )" =1 fule (T p)).
Hence Conjecture 1.5 is equivalent to Conjecture 1.3 when rk(Ty,y)=1.

1.5.2. We keep the hypotheses of 1.5.1 and let @ be the dual of Ty,y, with the dual
metric.

ProrosiTiON 1.5.2. Assume Conjecture 1.5 holds. Then, for every j>1, there is an

isomorphism,
M: o) i(w)ti? it

such that
ho(M(s), M(s')) = hyfs, s") exp((1 —g) (j* —j)(24J (- 1) = 1). (13)

Proof. The algebraic isomorphism A(w’)~ i(w)®* ~%* 1 is duc to Mumford [32]. By a
standard computation ({32, 12]) we get

SR N TUT gy b)) V=6 =6+ D) fu( R @) TAU Ty by .
Therefore, by applying the Conjecture 1.5 to @ and «,
&y (Aar), hg)=(6j% —6j + 1)¢ (). hg) + (6] — 62)(1 —g)(4l'(— 1) =)
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Let lfiz( Y) be the group of hermitian line bundles on Y, modulo the algebraic isomorphisms
which preserve the metrics. From [17] and [21] 2.5, we know that

¢,: Pic(Y)»CH\(Y)

is an isomorphism. Hence the Proposition follows.

1.5.3. The Mumford isomorphism M: ji(«’) = A(w)®* ~* ! is fixed up to sign when the
base is A=Z. In particular there is a unique metric on A(«’) such that M is an isometry
when A(w) has its L? metric. As shown in [5], when j =2, this metric on A(w?) gives rise to the
Polyakov measure on the moduli space of curves of genus g (cf. also [12]). If Conjecture 1.5
would hold. it would then normalize the constant which appears in several expressions for
the Polyakov measure ([5. 30, 14. 4, 31, 11, 1]). The meaning of such a normalization over Z
for string theory is a priori unclear. However Weisberger in [ 38] argues that “unitarity” can
be used to normalize the expression of the Polyakov measure. His method is based on the
computation of the determinant of the Laplace operator on P! (as in paragraph 2 below)
and the constants he gets are similar to those in (13) (Proposition 1.5.2).

§2. PROJECTIVE SPACES

2.1. Statement of the results

2.1, Tuvorem 211 For crery n=0 let f:P"=Spec(Z) be the projective space of
dimension n over Z. Then the conjecture 1.3 holds when E is the trivial line bundle € . on P,

2.1.2. Remarks. As shown in Theorem 1.4, it is enough to prove 2.1.1 with one choice of
metrics. On P*(C) we shall take the Fubini Study metric hy,.; and on ¢ . we take the trivial
metric.

Let R'(x)=ry+r x+ryx*+ ... eR[[x]] be an arbitrary power series with real coctli-
cients. Define a characteristic cluss R'(E)e H(X) as in 1.2.3, with R(L)=R'(c (L)) instead
of (5). Let

Td*(E, hy=TA(E, h)(1 —a(R'(E ).
In C/’Tl‘(Spcc Z)=R consider the equation
¢V (MO ) h) =f (Td* (T, hpa)) . (14)

For every n>0 this is a lincar equation in the variables ry, ry, . . ., r, and the coceflicient of
r, 1s not zero. Thercefore there is a unique sequence rg, 7y, r5, . . . such that (14) holds for all
n>0. Thecorem 2.1.1 computes these numbers, proving that R’ = R must be given by formula
(14). This is quite similar to the way the Todd genus is defined in [25] for instance: the Todd
genus is the unique multiplicative characteristic class such that the Riemann-Roch theorem
holds for the trivial line bundle on P" (¢f. Lemma 1.7.1 in loc. cit.).

2.1.3. CorotLARY. The conjecture 1.3 holds when f is the projection Py —Spec Z.

Proof. Let (1) be the standard line bundlc on P!. From Theorem 1.4(i) we only need to
check 8(E)=0 for any E in Ky(P')=2Z*. Since §(C:)=0 (Theorem 2.1.1) we are left with
showing (€ (1))=0. From Theorem 1.4(ii) and Thecorem 2.1.1 we get §(K)=0.
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From the relation
(Co]-[K]+2[C(1)]=0
in Ko(P!) (see (15) below) the Corollary follows. ged.

2.2. The right hand side

In this paragraph we shall compute
Su(Td*(Tpn, hp))  in CH"(Spec Z)=R

(the identification being given by the map a of 1.2.1.).
2.2.1. First we compute
R, =fu(Td(Tpn, hypr)a(R(Tp.))) = f Td(Tp.)R(Tp.)
P(C)

by (4) and (7). Consider the canonical exact sequence on P
&y 0-Co0(1)' - Tp—0. (15)
Let x=c,(C(1))e H*(P"). We get, from (15), R(Tg.)=(n+1)R(x). On the other hand
Td(Tp)=Td(x)""}, where Td(x)=x/(1 —e™*),

and
. l ifk=n
xt= .
e 0 otherwise .
So we have
n+1l
Lemma 2.2.1. R, =coefficient of x" in (n+ I)(| e") R(x).

2.2.2. Let us equip all bundles in &, with the standard metric invariant under SU(n + 1).
From [21] Theorem 4.8. and (15) we get

T Tpe, hyp) TAC, 1) =THCY ) + o TH(SE,)). (16)
Here Td(&,) is the secondary characteristic class considered in 1.2.2 (iii). Let
2=2,(0(1)).
We get from (16), since /TD(C, I.n=1,
TAT e, hpe) = Td(RY* ' +a(TA(L,)).
In [21] 5.4.6. we computed

n p l
Y Y- ifk=n+1

fg=] T
0 otherwise.

So we have proved
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LEmMaA 222 Let

t,=f(TAC))y 1),

R » 1 ) ] X n+1
t,,=< Yy —_>. (coefﬁcxent of x"*!in ( _,) )
p=1j=1J] 1-e

2.2.3. We still need to compute

Td,=f,a(Td(&,))".

Then

~ (! d(t)— (0
Prorosition 2.2.3. Td, = coefficient of x" in -‘b—(—)—[—d)udt,
JO

1 e—lx n X n+1
=] —— — _
¢(0) Iitx l—e'"‘d<l—e"‘)

Proof. To compute Td(&,) we apply the method of [15], §4. Let
8,y 0S8 FE-Q—-0

where

be the exact sequence (15). The metrics on §=C and Q = Ty, are induced by the metric on
E=C(1)*!, as in loc. cit. Let us write E as the orthogonal direct sum of § and $*~0Q.

The curvature of E (multiplicd by é;) dccomposes as a 2 by 2 matrix K=(K;)). Let K¢
(resp. Ky} the curvature of S (resp. Q) multiplied by il; Let Td(A)=det(A/(1 —e~ 1))
for any square matrix A. For every te[0, 1] consider

K +(1—0)K¢+ 4
K,

tK,,
$(t) = coeflicient of 4 in Td[ tK22+(ll.—t)KQ ]

and
l —
) =J. o) —#(0) dr.
o t
As in [15] loc. cit. one checks that

i do(I)=Td(K)— Td(Ks @ K).

Moreover the characteristic properties of Td given in [8] are easily seen to be satisfied
by the class of I in A(P"). Therefore Td(8,)=1, modulo Imd+Imé.

In our case K is equal (in any frame) to the product of the first Chern form w of ¢'(1) by
the identity matrix. Furthermore S has rank one and Kg=0. Therefore we get

tw+ 4
0

¢(t)=coeflicient of 4 in Td[

0
tw+(1-0Kq |
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Since Td(A & B)=Td(A)Td(B) we get

w4+ 4

d
HN=— ——— : —1)Ky).
é(1) d).l:l—e"“’":,“:o Tditw+(1 —1)Ky) (17)
We define a characteristic class 7d, .(E) with coefficients in the ring Q[ [u. v]] of power
series in two variables by the formula

ukK +v

Td, (E)=det

Then Td, , is multiplicative on exact sequences. From &, we get

v uo+e '
7d, (K = .
“-l( Q)l_e—v [l— —uw-l':l

4

Specializing to u=1~¢ and v=tw we get

g tw n + 1
Td(tw+(1 0K g) == [ “’_m] . (18)
tw

From (17) and (18) we get

Since

« |1 whenk=n
W= ]
e 0 otherwisce,

the Proposition 2.2.3 follows.

2.3, The left hand side.

2.3.1. Let w be the (1, 1) form of the Fubini Study metric on P*(C). By definition, w is
the first Chern form of (1) (with its standard metric), with cohomology class x =¢,(C(1)).
The associated density is g=w"/n!, hence

f u=1/n'. (19)
Py

Z if¢g=0
0 otherwise,

Since

HY(P", a,,.;:[

the line bundle A(¢ p.) is trivial, with section 1 € HY(P", (') of L?-norm

hLz(I.l)=J. pu=1/n'.
)
Therefore

— & (ACp), hy)=loghy(1. 1)= —log(n!)+ 3 (= 1)*"'q{(0), (20)
q20
where { (s) is the zeta function of the Laplace operator A,=0d¢* +¢*¢ acting upon
A®(P"), i.e. forms of type (0, g) on P"(C).
2.3.2. The spectrum of A, was computed by Ikeda and Taniguchi in [27]. Let
A;=x,+ ... +x;, [ <i<n, be the standard fundamental weights of the group SU(n+1)



ANALYTIC TORSION AND THE ARITHMETIC TODD GENUS 3

and A,=0 (hence x,....,x,,, are the usual characters of the diagonal subgroup of
SU(n+1),and x, +x,+ ... +x,,,=0). When k>g>0denote by A(k, 0, g) the irreducible
representation of SU(n+ 1) of highest weight

(k—q)A, + A+ kA,

According to [27], Theorem 5.2, A°%(P") contains as a dense subspace (stable under
SU(n+ 1)) the following infinite direct sum:

@ Ak 0,0 when ¢=0

k>0
(@ A(k.O.q))@( & A(k,O,q+l> when 1 <g<n,
k>q kzg+1

and

@ A(k.0,n) when g=n.

kzn

Furthermore the Laplace operator A, acting on A(k, 0, g). ¢>0, is the multiplication by
k(k+n+1—gq) (the subspace A(k,0,q+1) of A°(P") is mapped isomorphically by J to
Ak, 0,g+ 1) = A% Y(P"), g <n). We define

d, (k)=dime A(k, 0, q).

Therefore
2;“ (-7 ‘qC.,(S)=1§l (=1 (H’a_ilfl;:(—’:)_ a7 @1
2q
2.3.3. LemMma 2.3.3. When k>q and n>q,
.ol = (i Tk+n -:— - q) k! (k(f:—):')r:'((knt';;:z'— nr (22)

Proof. We apply the Hermann-Weyl formula. Let A=(k—q)A; + A, +kA,, § the half
sum of positive roots, and (,) the invariant scalar product on the root system of SU(n+1).
Then

[1(A+6, )
d".q(k)=a)0 i

[162

a>0

The standard positive roots of SU(n+ 1) are x;—x;, | Si<j<n+ 1. The basis A, is dual for

(,) to the basis x;—x;, ,,i=1,..., n. We have [26],
Moo= [ G-0
a>0 1gi<jsn+l

and, if

},=Zm,~/\,—.
i=1

[MG+s.0= ] <j_f(m,+1)).

a>0 1si<jsn+1l =
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ji—1
The factor Y (m;+1)isequal toj—iunlessi=1,j=n+1or 1 <i<g<j<n Hence we get
!

k—q+j—1 k—q+j
()
o) lgsq j—t q<jl:!-+l ji—1
(2k—q+n+1) n k+n+2—i
n 1<icq n+l—l

k+n+l—i 14j—i
(«;s'- n+1—i )<1<isl;l<isn j—i )

_2k—q+n+1l (k+n)!(k+n—qg)!
T kik+n—q+1) kl(k—q)'n'(n—q)(g—1)!

q.ed.

2.3.4. To compute ¢, (A(Pp.), hy) we need to know {(0). For this we use a result of Vardi
[37] (see also [38] when n=1, and an unpublished work of Bost [13]. Let P(X)e C[X] be a

polynomial and a>0 an integer. Let P(X)= Z ¢,X". Consider the real numbers

nz0

(P=3 cl(=n)

n20
where {(s) is the Riemann zeta function and {'(s) its derivative, and

art! 11 1
* = o e - —_— .-
P*a)= Y «, (|+2+3+...+n).

KR T
The scrics
Z(-\‘)=kz P(k) (k(k +a))"*
21

converges absolutely when Re(s) is big enough, and extends meromorphically to the whole
complex plane.

ProrosiTiON 2.3.4 ([37], Prop. 3.1)%

Z'0)= Z::l P(m—a)logm+{P+{P(.—a)—}P*(—a). (23)

Remark. Consider the formal sum

- Y P(k)logk— Y P(k)log(k+ua)

k21 k21t

==Y P(k)logk— ) P(m—a)logm+ Z P(m—a)logm.
k21 1 m=1

mz

If we replace in this formula — Y k"logk, n>0, by {'(—n) we get (P+({P(.—a)
k21
+ Y P(m—a)logm. The extra term —1 P*(—a)in (23) is the effect of regularizing this sum
m=1
by mecans of a zcta function.

M. Wodzicki tells us he had proved this result in 1982,




ANALYTIC TORSION AND THE ARITHMETIC TODD GENUS 35

2.4. Proof of Theorem 2.1.1.

When 1 <g<n we denote by d, ,(X) the polynomial such that d, (k) is given by (22)
when k is an integer and k>gq.

2.4.1. LemMma 2.4.1.

(i) d,,_,,(k):Owhenk:q—n,q—n+l,...,orq——l,andk;éO;d"‘q(O):(—l)"”.
(1] d,,'q(X—n—l+q)=-—d,,_q(—X)
!
i) 1+ 3 (=1 d,, q(k)-(n-H)(kT )
q21 k'

(k integer>n).

Proof.

{i) This follows from

1 1 n+k 1
d"‘“(k)=<E+k+n—q+l)>( n )(n—q)!(q— !

“k+n—gik+n—q—1)... (k—g+1).
(ii} One checks that

1 1
0=+ rrmry )0

HX —n—1+4q)=d(~X).

(iii) (The following proof, simpler than our original one, is due to D. Zagier). First notice
that

with

dn.q(k)+dﬂ‘l.0'l(k)
(=1 i !v+ 1 (k+n—=-1!k+n—g)! k+n+ qg-—1
T=g) g1 \k k+n—q/KI k=)= (n=q)'| n k—g+I
(n—l>[<k+n—l><k+n—q> (k+n—1)<k+n—-q+l>:|
= + .
q—1 n n—1 n—1 n
Call L, the left hand side of (iii). We get
_ _(k+n—1 2 “ k+n—q
S G Aty i ]
k+n-1 L . k+n—g+1
ashy DU any]
=<k+n—-l>+( +n )(k+l)
n n-—1
=(n+l)<k+n>_n<k+n—l)-
n n—1

When n=1, (iii) is easily checked, therefore it follows by induction on n.

2.4.2. To compute Y (—1)**1¢{,(0) using (21), (22) and Proposition 2.3.4, we have to
q9=0
study two different terms.
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The first term involves logarithms of integers. This is

" n-q+1
Y (=1t i d, (m—n—1+gq)logm
q=1 m=1

It
11a

(—1)%(—1)ylog(n+1—q) (by Lemma 2.4.1 (i))

¢=1
=log(n!).
This term cancels with log A, .(1, 1)= —log(n!) in (20).

The second term involves values of {'(s). First, since d, (X —n—1+¢)= —d, (- X)
(Lemma 2.4.1 (ii)), the Proposition 2.3.4, when applied to P=d, , and a=n+1—gq, gives

; . ‘ip [ ¢ .
E4HCphg)=2 T (=1 =5 T (=1 2 glg—n—1),
q= q9=1
where
233 (X)=d, o(X)—d, o(— X).
From Lemma 2.4.1 (iii) we get

. 1 \odd

7 iy
k!'n!

&~

[ M=

q=1

On the right hand side, from Lemma 2.2.1 and the definition (5) we get
R,=(P-s, (25)

with P(k)=cocthicient of x" in

x ! x"
2 0 — (e
(n+ )<l—e") ,,.;d.,k m!

m2z1
and
s,, = cocflicient of x" in (26)
n+l m
(n+l)(~-|—:)~i~;_-x) [m};d —C(—-m)<|+;~+ +%);;!]
me1
Clearly

x n+l odd
P(k):[coefﬁcicnt of x"in 2(n+ 1)(1 ‘e-x) ekx]

ekx odd

where the integral is taken on a small circle around the origin in the complex plane. We
perform the change of variable u=1-¢"* and we get

ekx (I-wy™" ' (n+k)!
J(l_—e")“'dx:j =T

k + n)t Jeed
P(k)=2(n+ 1)[‘—,\%?—] 27

Hence
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From (21), (23), 2.4.1(iii), (25) and (27) we conclude that the terms involving {'(s) are the same
on the left and right hand sides, and Theorem 2.1.1 is equivalent to the identity

}_: -1 dr (q—n—N)=s,+1,+ Td,, (28)

l\)l

where s,. t, and Td, are defined in (26). 2.2.2, and 2.2.3 respectively.

2.43. LemMma 243, Let T. y be two variables related by T=1—¢7". Define coefficients
Bi.a, and i, by the generating functions

Y By'=y(1-T)T
120

Y o, T"=y/[(1~T),

n20
and
}: AL,T'=y 'T/(1=T).

n20

Then the following holds:

Sy
.a|n+l

® =T*7k§: Ox-1Bivu-u

N Td, . A
o nel_ v Uk kK
@ 357 & k=Y

(i) t,=(n+ Dipii(o,0y—1)

Proof.
(i) Let
{ L \x™
m2i

From (26) we get

s,=(n+ I)J lﬁ(‘)"“—d:%;'r(.

the integral being taken on a small oriented loop C around Oe C. Define a new variable

u=1-—¢7* Then
Sn Yi(x) du
2 =3 [ 1=u ';':T]T

ssin+l ey uu
1
=r:7l//()')-
Since
1 1
a,=l+§+ +£
and

o= —{(—m)/(m!) when m=k~—1 is odd
*“lo otherwise,

we get (i).
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(i) We have

bt # 1 l

€ . Z ﬂ,ll_lxl_l.

1—e™ tx 5

Define
1
vxy=—| 3 B x! e,

otz2
From Proposition 2.2.3 we get
- dx
Td, = _
n J‘C .p(x)(l_e—x)n+l
hence, as in (i) above,

_—_
Zl Td,T"=1—2¥().

nz
Therefore
Td y
— Tz 2)dz
,.gl n+1 JO Vi)
_ B
e
(ii1) We have

Z": i 1.=(n+1)<l+;~+ +»I~>—n

p=1j=1J n

=(n+1)a,,,—1).

Furthermore, the cocfficient of x"* ' in (x/(1 —e ™ ®)"* ! is

dx _ du _J
x(1—e Pt Jx(u—tur+t b

Using Lemma 2.2.2, we get (iii). q.ed.

2.4.4. The equality (28), n> 1, is proved by D. Zagier in the Appendix (using the notation
é,,=d, ,+1-, and the definition of s,, Td, and ¢, coming from Lemma 24.3). This
concludes the proof of Theorem 2.1.1.

3. HIGHER DIRECT IMAGES OF HERMITIAN HOLOMORPHIC VECTOR BUNDLES

3.1. Higher analytic torsion.

Let f: X — Y be a smooth proper map of complex analytic manifolds, 7X the tangent
bundle to X, and T,y the relative tangent bundle. Let hy,y be a metric on Ty, whose
restriction to each fiber X, =f"1!(y), ye Y, is Kahler. Call wy,y the associated (1, 1) form.

Let 7% X be a smooth sub-bundle of TX such that TX = Ty,, @ T X. We shall assume
that (f; hy,y, T X) is a Kahler fibration in the sense of [9], Def. 2.4. p. 50, i.e. there exists a
closed form w on X such that Ty,, and T#X are orthogonal with respect to w, and
restricts to wy,y on Ty,y.

Let now E be a holomorphic vector bundle on X which is f~acyclic i.c. the coherent sheaf
RYfE vanishes for every g>1, and h a metric on E. By the semi-continuity of the Euler
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characteristic the sheaf f, E=R°fE is locally free on Y. We shall define a form t(E) in

A(Y,C)= @ A*(Y,C)

p20

whose component of degree zero is the Ray-Singer analytic torsion t(E)° considered in §1.
Let T% , be the complexification of the dual of Ty,,, T$$ V' its antiholomorphic compon-
ent, A’T%'Y ! its g-th exterior power. ¢ >0, and 27 the infinite dimensional C * bundle on ¥
whose sections on any open U < Y are

2YU)=C>(f"1U), AT}V @ E). (29)

Let &: 29— 29*! be the Cauchy-Riemann operator of E along the fibers of £ We shall be
interested in the relative Dolbeault complex:

& J

o2

Let & be the graded bundle @ %9 Each fiber X, having a Kihler metric, hence a density

q20
u, as in 1.1.1, we may define an L?-metric on 2¢=A4°(X, E) by the formula (1)in 1.1.1. We

let £, (h) denote the metric on the smooth bundle f,(E), < 2° attached to f,(E) which is
induced by the L3-metric on 2, and we denote by ¢* the adjoint of .

We now turn AT}V ® E into a Clifford module under the action of the smooth
scctions of Ty,y as follows. ([9] (2.42) and (2.43)). If v is a rclative tangent vector of type
(1,0), let v*e T3y ¥ be the one form sending we T,y to its scalar product with v, and ¢(v)
the endomorphism of AT3/Y V' ® E sending n to 2v*An. On the other hand, when v is a
relative tangent vector of type (0, 1), we let ¢(v) be the interior product by —2v. The map ¢
extends by lincarity to the whole tangent space.

Now let v and w be two vector ficlds on y. Call o' and w the vector ficlds on X obtained
by lifting v and w to T"X. Let [, w] be their commutator and T(v, w)e Ty,y be the
projection along T X of —[v, w]. The map Tdc,ﬁncs atensorin C*(X, Ty,y ® AX(T"X)*).
The action of T by Clifford multiplication on & and the exterior product of forms on Y
define an operator ¢(7T) in the algebra

Endc(2)® A*(Y, C),
C
where

A (Y, C)= @ A"(Y,C)
20
(see [7]. 3.Def.1.8., and [9] (3.7.) p. 69).
Let T=T"®4 TV be the decomposition of T according to its type in Ty, and

(‘(7')=C(T“‘o))+(‘(710' l))

the corresponding decomposition of (T').

We now define a connection V on the bundles 99, ¢ >0 ([7] Def. 1.10., [9] Def. 2.1.3.).
The metric on Ty,, gives an isomorphism between T%7 ! and the holomorphic relative
tangent bundle TV}, hence a holomorphic structure on every bundle AT} ), g>0. We
let V be the unique unitary connection on AT3- "' ® E which is compatible to its
holomorphic structure. Let 6 be a smooth section of 27 on some open subset Uc Y, i.e. a
section of A'T% )V ® E over f~Y(U) (cf. (29)). For every xe X, y=f(x) and ve T, Y denote
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by v# e TY X the horizontal lifting of v. We define
V.(0)=V ().

From [9]. Theorem 1.14., we know that V is unitary.
Let now p: X x C*— X be the first projection, & the differential on P!, and V+6 the
connexion on p*2 induced by V. By the Leibnitz’ rule we extend V + 8 to get an operator in

& =Endc (2 ® A*(Y x C*, C)). (30)
C

For cvery non zero complex number z€ C* we consider the following element of o/ (a
superconnection in the sense of Quillen [34]):

~ 1
A:=V+6+:F+z‘5*—%c(?‘"‘”)—zc(r"'“).

The curvature —A? defines an element in End(2)® A(Y x C*, C) whose exponential
exp(— AZ) happens to be trace class (see below). Let

a(z)=Tryexp(—A2)e A*(Y xC*, C). 31
be its supertrace for the Z/2 grading on 2 ® A(Y, C). For every positive real number ¢ >0,
we let

I(a)=f a(z)log |z|?
Izl>e

in A(Y, C). As we shall sce below this integral happens to converge and to have a finite
asymptotic development of the type
[(©)=Y a;e'+ Y byellog e+0(x) (32)
150 iso

which is uniform on every compact subsct of Y. We let 1(0)=a, be the finite part of ().
We now define two new characteristic classes ch’ and Td' as follows. The first is

ch'=Y (—1)qch,,
4z0

where ch, is the component of degree g of the Chern character. The second one is the one
coming from the invariant polynomial function on square matrices A:

Td’(A)=‘% Td(A +t 1d).
Given any form

n=Y n” in ®@ A®(Y,C) andieC*
p20 p20

we let

S, m=Y A Pyh.

p20
If y is the Euler constant, we define
YE)=0,i1(0)+ 7/, (ch(E, ) Td'(Tx ,y, hx,y)) —ycH (S E, [ h).

The following is a variant of [10] Theorem 1.27.
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THeOREM 3.1,

(i) The form t(E) lies in A(Y,C)= @ A’?(Y, C) and satisfies the equation

p20

dd T (E)=f,(ch(E, h) Td(Tx.y. hy y))— ch(f, E. fh). (33)

(it) The degree zero component of t(E) is the Ray-Singer analytic torsion 1(E)°.

Proof

(i) Since f, commutes with dd*and since (ch(E, h). Td (Tx.y, hy.y)) and ch'(f E, £, h) are
killed by dd‘, we just need to prove (33) with t(E) replaced by J,,.[(0).
The first thing we show is that exp(— A?) is trace class for z € C*. For this we notice that

A=|z*A+0,

where A=¢J0* +7* and @ is nilpotent (since it has positive degree as form over Y). From
Duhamel's formula we can write exp(— 42) as a finite sum

exp(—AZ)= Y e~ PAQett -~ | el Ay, dt,.
20 JOogt. s .. Stasl
Using the fact that the heat kernel ¢ ~ 1774 is a smooth family of smoothing operators, we
conclude that exp(— A2) is trace class. Furthermore a similar argument for derivatives with
respect to Y x C* shows that «¢(z) is a smooth form on ¥ x C*.
The form a(z) is closed since

direxp(= A =tr,[A..exp(—=AH]=0

where we use the fact that the supertrace vanishes on supercommutators (denoted [, 1.). For
more details on this argument sce [34] and [7] Prop. 2.9.
From the identitics of [9] Theorem 2.6, we get

- 3] ~ i |
Ar=| oo gy f__ (T, v by l~:d:'+5(7‘—-—c(T‘°'”) . (34)
: oz 4: o3 4:

Forany feR lct r,: Y x C*— Y x C* be the automorphism sending (y, 2) to (), ez).
The vector space 2 @ A*(Y x C*, C) is graded by N> with

P ® A*(Y xC*, C))™» 9 =" A*(¥ x C*, C).
C

Therefore the algebra .o is also graded by N3, We denote by # < .o/ the subalgebra
gencrated (as complex vector space) by elements 2 of degree (n, p, ) such that ¢ =p +n and
ré(a)=e""x (see (8]). From (34) we conclude that A2 lics in 4. Since tr, vanishes on the
subspace of # spanned by elements of degree (n, p, q). n>0, we conclude that a(Z) lies in

A(Y xC*, C)= ® A"(YxC* C)
P20
and

rg(a(z))=alz).

Let us study the behaviour of a(z) as r=|z| goes to infinity. For this we use a result of
Berline and Vergne ([5], Theorem 2.4). For any rcal number ¢>0 let §, be the auto-
morphism of A™(Y x C*, C) acting by multiplication by ¢~ "2, Extend §, to an auto-
morphism of .. Then (loc. cit.) as t goes to infinity the operator §, exp( —t A2) converges (for

Top 30:1-D
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the operator norm in &) to the orthogonal projection of exp(—(V +)?) on the kernel of £.
In particular the component [J, exp(—t A2)]* Y of degree (1.1) with respect to C*
converges to zero. In fact, looking at the proof of loc. cit. (see Lemma 1.1.1) we get

[, exp(—t A2)] V=0t~
as t— .
Now, since r#(a(z))=a(z) for every 6, we can write, with ==re®,

a(z)=tryexp—(R(r)+ S(r)dr),
where
£

R(r)=(V+60

2
do+r( 0+ 5’*)——1— c(T))
4r
and

? .|
S(r)=a—r(A,)=5+5 +4,2¢7)

Therefore the component involving dr in

tr (5, exp(—tAZ2))dr

try0,(—tS(ryexp(—tR(r)))

l
:c(T))cxp(—R(r\/;)))dr

4r2\/t

=t (V1 (E+ )+
=0t~ 2)dr,

Dividing by \/; and putting r=1 and s=1t""? we get
2
(T +3%)+5 AT)exp(= R(1/5)) =002,

i.e. the form tr (S(r)exp(— R(r)))dr is bounded as r goes to infinity (take s=1/r). Similarly
tr,(exp(— R(r))) is bounded as r goes to infinity, i.e. ¢(z) remains bounded as a form on
X x C* as | z] goes to infinity. Similar arguments apply to any derivative of a(z) with respect
to the parameter space Y x S! and the bounds we get are uniform on any compact subset of
Y xSt

We now consider the behaviour of a(z) as r=|z| goes to zero. We have

5,(A%)=rA3=r*(A—Bdr),
where A and B are smooth families of differential operators on ¥ x S, with 4 elliptic and
positive definite. From [22] and [23] we conclude that tr,exp(—r? A) and tr (B exp(—r*A4))

have finite asymptotic expansions in powers of r, which converge uniformly on any
compact subset of ¥ x S' as r goes to zero. Therefore the same holds for

a(z)=98;'(tryexp(—r?A) +tr (B exp(—r2A))dr).
Now let £>0 be any positive real number. The integral
I(e)= a(z)log|z|?
|zl>e

converges and is C™ on Y since a(z) and its derivatives with respect to Y are bounded as |z|
goes to infinity. From the asymptotic development of a(z) we may write [(¢) as in (32), the
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convergence being uniform on any compact subset of Y. Since a(z) lies in A(Y x C*, C), we
conclude that I(¢) and 1(0) lie in A(Y, C).

Now we compute dd<I(0). Since a(z) is closed on ¥ x C* we have

(d+06)(a(z))=0 (35)

If &° is the “complex conjugate™ of 4, it follows that
(d° + %) (a(z)) =0, (36)
since a(z) lies in A(Y x C*, C). Let R>¢ be any real number and
I(e, R)=J‘ a(z)log|z|%
e<|z|<R

We get from (35) and (36)

dde 1z, R)=J 6‘(11(:))|ogl:|2—j 5{a(z)) log|z]?
fzl=¢ |zl=R
——L a(z)dlo ["]2+~—lA i(z)8 log |z |2
20 Jipae BT oni s OBl
+J a(z)66 log|z|2. 37
e<|z|<R

Now 9 log|z|2=0, §a(z) = —d*a(z) is bounded as || goes to infinity, and the compon-
ent of a(z) of degree zero with respect to P! has a limit af ) when = goes to infinity ([6]
Thm. 2.4.). Therefore, letting R go to infinity in (37), we get

dd‘1(e)= —2log(c) j

d‘a(:)—-l-fj a(z)d log|z[2 +a(x). (38)
27 Jizy e

The component of d°a(z) which does not invelve dr has a finite asymptotic development in
powers of r, therefore the first summand in (38) is a sum of type

Y Bilogle)ek +0(x).

The component of a(z) of degree zero with respect to P! is
- 1 2
lr,exp—(V+r(9—+(7‘)—-Z; c(T)) .
By the local index theorem for families [7] we know that this form has a limit a(0) as r goes
to zero. By the unicity of the asymptotic development of I(z) we get from (38);
dd‘1(0) = a(0) — a(x).
Now from [7] we have
02,a0)=/f (ch(E, ) Td(Tx,y. hy,y))
and from [6]
dapia(x)=ch(f E, f,h). q.ed.
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(ii) Let a(z)° be the component of a(z) of degree zero with respect to Y. We have
a(z)° =trexp—(6+2¢ + 5%
Since a(z)° is invariant under the rotations r, we get
a(z)° =tr,exp—(r*A+(¢ + C*)Mr +ir(¢ — 5*)db).

Since ¢+ ¢* commutes with A, the component of a(z)° of degree 2 with respect to C* is

a(z)°* =tr,exp[(F = *)C+ %) exp(—~r2A)]rdrdd. (39)
Let N be the operator acting on £ by multiplication by ¢q. We have (see [8]).
[N, {}=¢,
and
[N.é*]= 7%,
hence

C—C*=[N.0+*]. (40)

Since tr, vanishes on supercommutators and ¢ +¢* commutes with A we get from (39)

and (40y:
a(z)?? = 2tr (NA exp(—r?A))rdrdo.

Let u=r* We get
f a(z)" log|z|? =J J“ tr.(NA exp( —riA) log(u)dudr
[ 0 0

=2z J " tr (N Acxp(— uA)) log(u)du.
0

Now let @ be the orthogonal projection of & onto the orthogonal complement of £, (£), .
Define

{(s)= N IJ )lrx(QN exp(—uANu' " 'du, (42)
() Jo
Clearly
L)=Y (= 1)qS,(s),

420
where { (s) is the zeta function of the Laplace operator A, as in §1.1. From the fact that
Trg(QON exp{ —uA)) has a finite aymptotic development in powers of u as u goes to zero, it
follows that

J(:;):Ju u~'tr,(QN exp(—uA))du

has a finite asymptotic development in terms of *log ¢ and &, ke Z. Furthermore its finite
part J(0) satisfics
J(0)="(0) + yag, (43)
where 7 is the Euler constant and 2, is the finite part of tr (QN exp{—uA)) as u goes to zero
(for a similar argument, sce [16] 3.5).
Integrating J(¢) by parts we get

J(&)=[log(uw)tr (QM exp(—uA))] — f v log(1) Tr(QN A exp(—ud))du

£
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The first term in this expression has a finite asymptotic development in terms of log(¢) £ and
QA =A, therefore

J(0)= _Jt tr (N A exp(—ud)) log(u)du

0
= —ZnJ‘ a(z)°log|z|*.
C.

Since A=0 on f,(E), =(1 —Q)}Z), we get
tr(Q.N exp(—ud))=tr (N exp(—ul))—tr (N on f (E) )

It was shown in [9]. Thm. 3.1.6. p. 87, that the finite part of tr (N exp(—uA)) as u goes to
zero is the component of degree zero in

SACRE, W Td (Ty,y. hy,yp)).

Since Tr (N] f,(E),) is the component of degree zero of ch'( f, E, f, h) we conclude, using (43)
and (44), that
T(E)O =0,i,¢"(0)

is the analytic torsion considered in §1.1.

Remarks. Assume R°f, E=0. Then an argument similar to the proof of (i) above shows
that t(E) =6,,,C(0), where {(s) is the form-valued zeta function considered in [9] Thm. 3.20.
Therefore (1) follows from loc. cit.

Onc may wonder whether the class of ©(E) in A(Y.C) depends on the choice of the

horizontal tangent space 7" X (sce Conjecture 3.3 below).

3.2. Arithmetic K-theory

Let (A4, X, F,) be an arithmetic ring (1.2.1). Given any arithmetic variety X over 4 we
defined in [21]. §6, a group K o(X) of virtual hermitian vector bundles over X as follows. A
generator of Ko(X) is a triple (E, h, n), where (E, h) is a hermitian vector bundle on X and
ne A(X). The relations are the following. Let

8:0-S—E-Q—0
be an exact sequence of vector bundles on X, K, h, h: arbitrary metrigs on S.E Q
respectively and & =(&, ', h, h”). Then, given any n', n” € A(X) one has, in Ky(X),
(S K. )V 4+(Q. ' ") =(E, h, i + 1"+ ch(&)).
Here c71(f)e Z(X) denotes (as in 1.2.2 above) the solution of the equation
—dd*ch(&)=ch(E, hy—=ch(S, h')—=chQ, h") (45)

defined by Bott and Chern in [15], and studied in [18], [8] and [20]§1. Onc can then define
a morphism

ch: K o(X)— A(X)
by the formula

ch(E h, py=ci(E, h)+dd(n)

(by (45) this is compatible with the relations defining l('(,(X)).
Let now
[ X=Y
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be a smooth projective map between arithmetic varicties over A. Let Ty, be the relative
tangent bundle, and hy , a metric on the associated holomorphic bundle on X . Let
fo: X ,— Y, be the map of complex varieties induced by fand T# X , a smooth sub-bundle
of TX , such that the triple (f,, hy,y. T# X ) is a Kéhler fibration in the sense of 3.1.
We shall now define a direct image morphism from Ky(X) to K,(Y). Given any triple
(E, h, n) on X with RUf, E=0 when ¢>0, we define f, (E, h. n) in Ko(Y) to be the class of
(L E Sh, T(E)+£(m)).
where f, h is defined as in 3.1. (the L*-metric on f E), t(E) is the class in A(Y) of the higher
analytic torsion introduced in Theorem 3.1 and

L) =A£,(n Td( Txy h,\'/y))el‘-f( Y).

THEOREM 3.2. The map f; induces a group morphism
J: Ko(X)=Ko(Y)
such that the following formula holds in A(Y):
ch(fi(@))=f (ch(x)Td(Ty,y. hy,y)) (46)
Jor any ae IQO(X).

Proof. We know already from Theorem 3.1 and the definition of ch that formula (46)
holds when a is replaced by (E, b, ), with RYf_E=0 when ¢>0.

Consider an exact sequence

8:0-+S+E—Q—0
of bundles on X, with RY, S =R, E=R‘,0Q=0 for cvery ¢>0. Choose arbitrary metrics
W, h h" on S, E, Q respectively. Taking the direct images by f we get an exact sequence of
vector bundles on Y:
S, 80—, S=f E~f,Q-0
with metrics f, i, fLh, fh". Let
E=(8, 0. h ) and [, E8=(f,& 1. fLhLh")
We shall prove below that the following equation holds in AY):
2(E)—1(S)—1(Q) - ch(f, &) = — f(ch(&)). (47)

Since fis projective, any vector bundle on X has a finite resolution by vector bundles E
which are acyclic for f, i.e. RYf, E=0 when ¢ >0([33], 7.27). Therefore Ko(X) is generated by
triples (E, h, n) with E acyclic for f; and the relation (47) means that, in K(Y),

FS K, 00+ £(Q, B, 0)=(£S, I, 1(5) +(£,0. 1", 1(Q))
=(f,E.f,h, 1(S)+1(Q) + ch(f,&))
=(f,E.fh, (E) +f(ch(&)))
=f(E, h, ch(§)).

In other words, f preserves the defining relations in Ko(X), and by (33) (Theorem 3.1),

Theorem 3.2 follows.
So let us prove (47). For this we may assume that the ground ring is C. We use a

definition of ch(#) introduced in [8] and [21]. Let P* be the complex projective line, O(1)
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the standard line bundle of degree one on P! and o a section of ¢'(1) vanishing only at
infinity. Let = be the standard complex parameter on P!, and i;: X—X x P! the map
sending x to (x. z). On X x P! consider the bundle

E=(E® S(1))/S.

where S is embedded in E as in € and in S(1)=8 ® (1) by id ® g. Choose on E a metric i
for which the isomorphisms i3E~ E and i* E ~ S @ Q are isometries (S @ Q being equipped
with the orthogonal direct sum A’ @ h”). Then ch(&) is the class in A(X) of

—J ch(E, R)log|z]?
pl

(cf. loc. cit))
Now consider the following commutative diagram of proper smooth analytic maps

X x P! X
7 lr
YxP!'—— Y

where f'=fx idy. and the horizontal maps are the first projections. We get
Sulch(E)Td(Ty;y, hy.y)) = _Llj;(ch(f. R)log|z|> Td(Ty,y, hyy)). (48)

The pull back of 7 X and hy,y by the projection X x P'— X define with f'a Kiihler
fibration in the sense of 3.1, and we have, for every neA(X xPY),

fT('I) =J7.('l Td(Tyy. hx/v))-

Furthermore R4f, E=0 when ¢ >0 since i E is cither E or S @ Q. Therefore we may apply
Theorem 3.1 to fund (E‘, h). We get

Flch(E, B))=dd t(EY+ch( f, E, f, h). (49)
From (48) and (49) we deduce

ﬁc7x(zf)=—f dd‘r(E)loglzlz—f ch(f,E.f,h)log|z|?
pl Pl

= -J r(E)dd‘logl:Iz—j ch(f,E.f,h)log|z|2.
pl pl
We now use the equation of currents
ddlog|z|*=6,-0,

where 4. is the Dirac mass at zeP', and we obtain

ﬁcTz(f)=-i;r(E)+i;r(E)—f ch(f,E, f,h)log|z|%.

pl

By dcfinition of t, E and A we get

i*t(E)y=tG2 E)=1(E)
and

i*(E)=1(i*E)=1(S® Q)=1(S)+ 1(Q).
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Finally
LAE=(LLE®LS)D)/LAS).
SR =f,h and L(fR)=fLh Df.K".

therefore

Jch(f,E,f,E)log1:|2=c%(L3>.
p!

We conclude that
flch( &)= —t(E)+1(S)+ (@) —ch(f, &)
as stated in (47). q.ed.

3.3. A Conjecture.

We keep the notations of 3.2. The Conjecture 1.3 may be extended to higher degrees as
follows.

Conjecture 3.3. For any ae K ol X), the following holds in CH (Yg:
R (fi@) =fo (R (@TdA(Ty,y. by ). (50)

From Theorem 3.2, the Grothendicck-Riemann-Roch Theorem in Chow groups, and
the exact sequence (3), we know that the difference between both sides of (50) lies in the
image of a.

The Conjecture 1.3 is a special case of Conjecture 3.3 since

& (FE)) = ¢ (ME), he)
(using Theorem 3.1(ii))

APPENDIX BY D. ZAGIER: PROOF OF THE IDENTITY (28)
§ 1. PRELIMINARIES

We will consistently use the notation, 7, y for two variables related by

e =
T=l-e= § oy ymlog = 3 T
11 a1

Define coefficients S,(n, I), S,(I, n) (n, 120) by the generating functions
Z Sin )T, T"=Y S, n)y,
1=0

so that {S;(n. D)}, .0 and {S,(L N} ,>0 are mutually inverse infinite triangular matrices. Define
coefficients f,, s,, 4, by the generating functions

x -7 il 1 o T

By = —— ¥, a,T"=——y, R T

PR o7 s LA

Alternatively, we can define these numbers by the recursions
nSn, N=IS (n—-1,I-D)+(n=1S,(n—-1L.D, IS,(.m=nS,(I-1,n=1)—nS,(I-1,n)

-1 3 1 "o o
Bi=— ———Lk-——— 0,=0, +-, A,=1-Y I (n 1z

Sol+ 1=k n mao N+1l—m
with the initial conditions

S,(r.0)=5,(0,r)=S,(r.0)=5,(0,r)=6, 5. Bo=1,0,=0,ig=1.
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1 1
Thus I' B, is the Ith Bernoulli number, a,,=l+5 + . + - and S ((n.1yand ——SZ(I n) are (up to

sign) the integers known as Stirling numbers of the first and second kind (=number of permutations
of {1,2.....n} having exactly [ cycles and number of partitions of {1, 2,...,!} into exactly n non-
empty subsets, respectively). The numbers S (n,[) are also the Taylor coefficients of binomial

coefficients:
X d ! x+n—1 LI |
( >=Z 1 S,(n. hxt, ( . ) ZFS(n D,

n i=0 =0

The first few values are as follows (note S (n. [})=0if n<l, S,(l. n)=0if I <n):

8, s, A, n 0 1 2 3 4 5 6
r {
0 | 0 1 0 1 0 0 0 0 0 0

—
|
~—
>
—
O/
—
o
—
—
-
-

(") (%)
o ok
o o
@ ot 2
ot (%)
[~=] [~
P |
~>/
[ —
-~ o
s *pa
of E

3
=t

Si(n.

4 -t i1 i3 4 | 0 ~14 T2 -1 1\2 ¥
5 Y 16"(17 ;;u 5 0 l'%() - } 2 -2 1 \;
6 Ioim 2: flﬂu)gg(: 6 0 - 7%0 )"hl(') - 3 10) - ; 1

Fornz 1,1z 1, and ve{—1,0, 1} define

a(nly=Y m'S,(n.m)S(I+m, n)

m-1
We will need the following proposition, which says that for fixed [ the function a,(n, 1) becomes
constant (respectively zero, respectively linear) for n>1 and v=0 (respectively v= —1, respectively
v=1), and also gives the values forn={1-1.

PROPOSITION. For 1 Sl<n+ 1 and —1Sv<, a(n, 1) is given by
0 (s,

=4
%ol 1) I‘+{'Z-n—;-nrl (I=n+1),

0 (I <n),
1

2_(nl)=( —-4, (I=n),
n

niy—i4, (=n+1),
(I<n),

0
a(n, = —nf(I- l)ﬂ‘+ﬁ‘-l]—wl+{in»1—3-.. (=n+1)

Proof. Form the gencrating function A,(x,y)= Y a,(n )x"y". Then the definitions of §,(n, {)
21,120

and S,{l. n) give

Alx, )= z m” Z S,(n,m)( Z S)(l+m, n)y’)x"
n=m {20

x L3 x { l ~
v S an n_ v -l
Z m 2 Jnom)y” me( Ogl—-xT>
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or

Aol y)=H(x, y) =1, A (x, y)=log H(x, ¥\ A,(x, y}=H(x,y)* ~H(x.y)

1 -t 1—xT\!
H(x, y)=| 1 +-log(1 —xT) =yl log .
y 1-T

with

We now develop everything in powers of 1 —x, obtaining

| 1—xrl<l T, > T 5 1(r)' 1
o = —(l=x) )=l =x) Y — | —— | (x=
T ST A b e Lt Py e - Al

and hence

Aoty =y =Tt 3 (-—T )’( ty
X y)=y : -—t= rety X— 3
NI T T e NITT

1-T 1 > T Y ,
A_(x, y)=log ,VT +log =</ Z K, -T (x—1y,
- gt -

Ay (l—T)’ 1 oy =T. ! o5 b 2)( T )'( Iy
Xy )= ) ———ee e — — ~ . l'& ‘,.‘1' Du— B v
WEVETT ) a T TN T I g e e T I

where g, k,, and g, are defined by the generating functions

(5) B (52 Eo (3.5) e

Sor+1 o Sor+l for+l

Comparing the cocflicients of X" (n2 1) gives

1

-1
L aoln =y gy 4O

t-0

- { I n nel "2
¥y az.,(n.l)y:n—x,,_v"+ (n+l)x,,,|—_’x,, Yy L0,
t-0 -

ry

{ I-.T ! l_’r ne| nt+2
L oadn ' =ty | =y =p) i ) 00,
1=0

1
The proposition now follows if we note that g,,,=4,,,—4, (from the definitions), x,=~4, (by
n

differentiation), and

-7 = 1=T\?2 dN\/1-T
(1 =y) — = =B | y———] = =2 e e )= = I=1)f,+ 8, )y
yl=y) 7 g,o(l, By x)}.(y T ) ¥ (l+dy)< 7 ) ';)(( Wi+ By )y

§2. PROOF OF THE IDENTITY

Define an operator f—f* on polynomials by
"+l

N N x
Sx)=Y e, x"=f*(x)= Y c,0,—,
n=0 nx0

n+1

and for integers | Sr<n define a polynomial §, ,(x) of degree 2n—1 by

n! (l 1 )(x+n)(x+r—l>
Op b(¥) = —r——| ~+ :
’ (n=r)'{r=10\x x+r n n

We wish to evaluate the expression

l L
L(n)=§ Z (~1y7 0% ,(=r)
rzi
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We first observe that

n—1 x+r\/x+n-1 x+r—1\/x+n-1
én.r(x)+én—l.r(x)= r—l n ( ’l—l )+< n-—l n

and hence, denoting the expression in square brackets by ¢, ,(x)
Q. _[(n—1
Lm-Lin—N=2 ¥ (=1 ( )é:..(—r).
2 r=1 r—1

Substituting the polynomial expansions of binomial coefficients in terms of Stirling numbers of the
first kind, we find

¢n.r(x)=n i (_l)" MM

T [ Yx+r)"+x'(x+r)"" 1]
Lbm=1 .

LEMMA. Denote by f; .(x) the polynomial x'(x+r)"(I, m=0). Then

( )“-ll' I+m+
Fh W(Ga—am)f m

Proof. If f(x) is the derivative of a polynomial g(x) with ¢(0)=0, then

1 -
f‘(x)=J‘ g—-—————'——~(x) u_glux) du
0

1 —u

n+l
(To see this, take flx)=x", g(x)='—:f.> Applying this to g=f . (mZ 1) gives
n

lf.‘.l.,(—r)+mfr.,.l(—r)=(-l)""“'_[ W L—u) N (m2 1),

0

NHm - 1)
The integral equals (~(I—~»l—(m l‘)“')_ (beta integral). The lemma now follows by induction on m, the case
+m—
m =0 being trivial.
Now apply the lemma to ¢, ,(x) to get

n—m-~1 1

2 (=r)=n Z ) —8,(n. )S,(n, m)[ (a,_,—a_)—--——(a,—a,,-,)]r""‘
Lmat ) m
_ 2 8,(n DS (n,m) i‘_‘_'_ﬂ o m
‘2‘_""",.,Z.~. I+ m)! [ 1 ]( v

where to get the second line we have interchanged the roles of l and m in two of the terms. This gives

L -Lin-1)= ¥ W@_T_ﬁ)[ 5 (_,y( )(_,),...1]_

Lm=1 (1+m)' m r=0

The expression in square brackets is the coefficient of y'*™*!/(l+m+1)! in (1 —e” 7Y, Le, it equals
(+m+1)!S,(/+m+1,n). Thus

" 1
Lim-Ln—1)= z S,(n, l)[—;(a,_,—-l)ao(n.l+ D+(+ Do (n 1+ l)—;a,_,a,(n,l+ I)]
i=1

with 2,(/, n) as in §1. The Proposition of §1 now gives

Lin)—L(n-1)= Z _’1“—[[3101*"71 ((n+1)IB . +nf))]

=1
1. ~1 1
+'—,(A ,,.,)——2—0',, lj' +(n+l)0' l‘l 51' .

We are now ready to prove the main identity.



52 H. Gillet, C. Soulé and D. Zagier

THEOREM. Define rational numbers s,, Td,. und t, (n2 1) by
s 1 Td B
Y T2 ¥ g, vl Tt e e,
T R R R Srktk—1)

ty=tn+ 1), o, =1

Then Lin)=s,+ Td, +1,. (See Table below.)

Proof. Let R(n) denote s, + Td, +t,: we will write R(n) in terms of Stirling numbers and then show
that R(n)—R(n—1) agrees with the above expression for L(n)—L(n—1), establishing the result by

Sy -

induction. The generating function for s, is equivalent to Y e =Y o, ,ﬂ,— as we see
nz1 n+ k22

by integration. Hence from the definition of S, (n, k) we get

n+

sa=(n+1)? Z Oy - lﬂ S,(n+1,k),

LEA!

B
TI—— +1 — S, 1.k
p (n+1) Zz TS (n+1,k)

and therefore, using the recursion satisfied by S, (n, k),

n f .
s, = Z [ n+o,/f,.,(n+|)]s‘ (m 0, Td,-Td,  =- Z {i LS.

Also,
"4

. S . € u
4, =cocflicient of 77 in -

y T B e

so - using the recursion of §,(n, {) again ~

(n+ Vi, ,, ='};‘ [(;’%]l)"v_(f:z')—'_]b'(" N
Combining these formulas and the formula for L{n)— L(n—1), we find after some work
R(mM—R(n-1)—L(n)+ Lin~ l)--»-—» Z [ [ A ;——L——]S,(n,l).
P 21+ 2)
But this is zero because

030 T Y L 1]r~ rd(iﬂ "'> ) S
,Z,,Z pPonSim D= sy S DT =T L BT ) =3 X s

o (1) e
—T, | 1oy 2dy 3 - y =1 y 2 2dy y? =0

This completes the proof of the theorem.

n 1 2 3 4 5 6
1 3 649 1445 162871 171311

s - - Nl — i .
" 6 8 10%0 1728 151200 129600
- 1 ( 329 149 56947 1933
Td, —— - —— - ———e R
12 8 2160 864 302400 9600

5 15 3263 7315 553523 172311
. 12 16 2160 3456 201600 345600

1

2

19 529 3203 2198159 4678657

16 270 1152 604800 1036800
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