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We give a parametric family of quintic polynomials of the form .Y’ + 68,~ + b 
(a, b E 0) with dihedral Galois group D,. Some properties of the fields defined by 
these polynomials are also described. 

The goal of this paper is to give explicitly an infinite family of quintic 
fields with dihedral Galois group. 

THEOREM 1. The quintic polynomials of the form x5 + ax + b. (a, b E 0) 
with Galois group D, are given parametrically by 

with a,/3EQ a#O,p#i, -2.’ 

ProojI Letf(x) = x5 + ax + b E U4[x] and let Gal(f) be its Galois group 
over Q. Then the necessary and sufficient conditions for Gal(f) E D, are the 
following: 

(i) f(x) is irreducible over Q. 

(ii) The discriminant Of= 44a5 + 55b4 of f(x) is a perfect square. 

(iii) f(x) is solvable by radicals. 

Indeed, the necessity is clear. For the suffkiency, observe that (i) implies 
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’ We must confine ourselves to those a, p E Q for which S(x) is irreducible over 10. This 
was pointed to us by Lenstra Jr. 
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that Gal(f) has an element of order 5 acting transitively on the set of zeros 
of f(x), and (ii) guarantees that Gal(f) L A,. The transitive subgroups of A, 
are Z,,D, and A,. But condition (iii) excludes A,, and since 
df/dx = .5x4 + a has at least two imaginary zeros, Gal(f) contains an 
involution, so Gal(f) 3$ Z, . Therefore, Gal(f) % D,. 

Weber [2, p. 6761 ( see also cebotarev [ 1, p. 3443) proved that x’ + ax + b 
is solvable by radicals if and only if a and b are of the form 

5s&14 55&ls 
a = (,I - 1)‘(,i2 - 61 + 25) ’ b = (,I - 1)4(L2 - 6A + 25) 

with A, @ E Q, A# 1,~ # 0. Making the change of variables 

we can rewrite this equivalently as 

5 (u+ l)(U- 1) a=--- b=i(~+wu+3)v, 
4 u2 + 4 V4, 2 u2+4 . 

The discriminant off is then given by 

D =56(u+1)4(2U3+4U2+11U+8)2 *0 
f 24(u2 + 4)5 

v . 

Hence D, is a perfect square if and only if u2 + 4 is a perfect square, i.e., if 
u =/I - l/p with some p E Q. Setting a = v/(,8’ + l), we recover the formula 
of the theorem. 

Writing p = m/n (m, n E Z. (m, n) = l), d = 2n2/a, we can rewrite a and b 
in the theorem in the form 

a = 20(m2 + n2)2(m2 + mn - n’)(m’ - mn - n2)/d4, 

b = 16(m2 + n2)3(m2 + mn - n*)(2m - n)(m + 2n)/d5 (1) 

with m,nEL, dEQX. Since the substitution actp4a, bt-+p5b @EQX) 
does not change the field generated byf(x), the choice of d does not matter. 
The easiest choice is d = 1; the “best” choice is to take for d the largest 
integer such that the numbers a, b defined by (1) are integral. This d has the 
form d = 2’5’d, d,, where i, j E {0, I} and d,, d, are the largest natural 
numbers with d:lm2 + n2,dG) m* + mn -n*, Then (1) becomes 

a = 22-4i51-4j. d, . (m’ - mn - n’) . E2 . F, 

b = 24-5i5 -‘j . d, . (2m - n)(m + 2n) . E3 . F (2) 
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with 

E= 
mZ+n2 

F= 
m2fmn-n2 

d; ’ d; ’ 

and the formula for the discriminant becomes 

D,= 2 16--2Oi56--2W. (~~6 + 4m5n + 5m4n2 _ 5m2n4 

+ 4mn5 - 2r1~)~ . E” . F4. (3) 

Let f(=fm,,) be the polynomial x5 + ax + b with a and b as in (2). Set K 
(=K,,,) = Q[a]/(f(a)) and N the normal closure of K (splitting field of 
f(x)). Denote by L the unique quadratic subfield of N. We list without 
proofs some of the properties of the field K,,,. 

5 N\: 
/ K = Km., 

L 
\/ 

5 
2 

Q 

(a) We have L = Q(d-5(m2 + n*)). Thus a quadratic field L 
corresponds to some K,,, if and only if L is imaginary quadratic and no 
prime z 3 (mod 4) divides the discriminant of L. In particular, 2 always is 
ramified in L. 

(b) For p # 5, we have 

P = p5 (NP =P) -PI& 

P=pIP:P:(NPi=P)op(2E, 

p unramified otherwise. 

We denote by AK (AL) the discriminant of K (L). In the first case we have 
p4 )/ AK. In the second case we have v,(A,) = 2v,(A,) (=2 if p # 2, 4 or 6 if 
p = 2). In the last case, of course, p If A,. Finally, the ramification of 5 is 
given as follows: 

5unramifiedom=3n(mod5) or mr57n(mod125) and 51E 

5=p,pip: om=3n(mod5) or m=57n(mod125) and 5%E 

5 = p5 u m f 3n (mod 5), m f 57n (mod 125). 
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(c) Let AL denote the discriminant of L (so AL = - 20E or 
AL = - 5E). Then the splitting of non-ramified primes is given by 

=- 1 uP=P1P2P3 WP, =A NP, = NP, =P*), 

=lop=p (NP=P’) Or P=PIPzP~P~Ps (NPi=P)* 

The density of the three kinds of primes are 50%, 40% and 10%. If 
(A,/p) = 1, then Q(x, y) =p for some quadratic form Q of discriminant AL 
and some x,y E Z (this representation is essentially unique). Then the 
question whether p is inert or splits completely depends on Q and on 
congruences on x,y modulo 25F (at most). We illustrate the situation with 
some examples. 

EXAMPLE 1. m=l, n=l, f(x)=x-5x+12. In this case, E=2. 
F = 1 and L = a(&@). Here 2 and 5 are the only ramified primes (5 
ramifies both in L/Q and N/L) and for p # 2,5 we have 

p inert up = x2 t 10Vv2 or 2x2 + 5y2 with 5 ty, 

p splits up =x2 + 250~~ or 2x2 + 125~~. 

In particular, if p = N(r) ({E II + Z m), then p splits if and only if 
t” = 1 (mod 5). 

EXAMPLE 2. m = 3, n = 1, f(x) =x5 t 1 Ix + 44. In this case, E = 10, 
F=ll andL=Q(p).H ere 2 and 11 ramify and for p # 2, 11 we have 

p = p1 p2p3 (Np, =R Np, =Np, =p’) op = 5 or 7 (mod 8), 

p inertop=x*+2-y’,xyfO(mod ll), 

p splits op = 121x2 + 2y2 or x2 + 242~~. 

EXAMPLE 3. m = 2, n = 1, f(x) =x’ + 2500x + 120000. (Note thatf(x) 
is equivalent to 4x5 f x + 5.) In this case, E = 5, F = 5 and L = Cl(G) = 
Q(i). Here for p # 2, 5 we have 
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P=P,P~P~(N~,=P,NF?~=NP,=P*)~P=~(~~~~), 

p inert op = x2 + y*, 25 txy(x - y)(x + y), 

p splits op =x2 + 625~~ or 313~~ - 2zt + 2t2. 

Thus the smallest prime which splits in K is 3 13. 

EXAMPLE 4. If m and n are relatively prime integers with m = 3n 
(mod 5) or m = 57n (mod 125) and m* + mn - n* equal to a fifth power 
times a power of 5, then (b) and (c) above imply that N/L is unramified and 
hence that the class number of L is divisible by 5. These Diophantine 
equations/congruences can be solved parametrically by 

m+nw=w-2(r+so)5 ((r, s) = 1, r & 2s (mod 5)) 

and 

m+no=w *(r + so)’ \/5 ((r,s)=l,r=3s(mod5)), 

respectively, where CLI = (1 + fi)/2. Explicitly, this gives 

(i) m =f(r, s), n =f(s, -r), m2 + n2 = 5d(r, s), 

(ii) m = -S(r, s) + 2f(s, -r), n = 2f(r, s) +f(s, -r>, m’+ n2 = 
25d(r, s) withf(r, s) = 2r5 - 5r4s + 10r3s2 + 5rs4 + s5 and 

d(r, s) = (f(r, s)’ +f(s, -r)‘)/5 = rl’ - 6r9s + IQ’s* - 24r’s’ 

+ 42r6s4 + 42r4sh + 24r3s7 + 18r2sn + 6rs9 + s”. 

We deduce: 

THEOREM 2. If r and s are coprime integers with r f 2s (mod 5), then 
the class number of the imaginar.v quadratic field Q(~~ is divisible by 
5. If r = 3s (mod 5), then the same holds for Q(dw). 

Since A(-r + 2s, 2r + s) = 55 d(r, s) (this follows from the identity A = 
5A5 - 5A”B2 +AB4, where A = r2 + s2, B = r2 + rs -s2), we see that in 
fact at least one of the class numbers in question is divisible by 5 for an? 
integers r, s. 

We give some numerical examples: 



142 ROLAND.YUI,AND ZAGIER 

r s m n m2+mn-nn’ m’+n’ h(C9(&TJzT7j,, 

1 I (i) I3 21 1 5x 122 10 

I 2 (i) 144 233 -1 5? x 3001 80 

(ii) 322 521 5 5” x 3001 40 

3 1 (i) 361 269 11’ 5’ x 8282 120 

(ii) 171 1003 -5 x llZ 5’ x 8282 60 
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