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Let L(S) = L&) be the Dirichlet L-series associated to the quadratic field 
of discriminant d and set 

Ad(S) = (Jy r (+) L&s) (d < O), 

= (~.)a’z r ($) Ld(S) (d > 0). 

Numerical evidence [I] indicates that A&) is convex upwards for real S, 
0 -=c s -C 1. One cannot hope to prove this easily since one consequence 
would be that &(J) has at most one real zero 3 l/2. However, we will show 
here that Ad(s) is convex upward on the real line if L&) satisfies the Riemann 
hypothesis or even if L&T) # 0 in the triangle / t 1 < u - 8 Q + where 
s = (z + it (see Fig. 1). Indeed we will show that if for some a, > $, the 
function A&) has no zeros in the hyperbolic region 

(u - g)” - t2 > (a, - 4))” 

(see Fig. 2), then Ad(u) is monotone increasing and convex for u > a, . 

THEOREM. Let A(s) be an entire function of order 1 which is real andpositive 
for large real s and which satisfies the functional equation 

R(s) = -&A(k - s) (1) 
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for some k > 0. Suppose that for some a,, > k/2 the function A(s) has no 
zeros in the hyperbolic region 

(0 - k/2Y - t2 > (a, - k/2)2. (2) 

Then &Q(u) > Ofor all CT > q, and all n > 0. In particular, A(u) is monotone 
increasing and convex for u > a,, . 

Proof. It is convenient to translate s by k/2. We let 

and 

z = s - k/2 

%9 = 4~ + k/2), 

so that the functional equation (1) becomes 

F(z) = fF(-z). 

FIGURE I FIGURE 2 

(3) 

By the Hadamard product theorem, 

F(z) = AzmeBz fl (1 - z/a) ezla, 
a 

where m > 0 and the product runs over all zeros 01 # 0 of F(z) counted 
according to multiplicity and converges absolutely and uniformly on compact 
sets. If OL = p + ir then the condition that a: + k/2 not be in the region (2) is 

p - y2 < xoa (4) 

where x,, = a,, - k/2. 
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If o1 is a zero of F(z), then so are Or, --01 - Cu. We define the equivalence class 
[a] of ac to be the set 

L%] = {a, or, -a, -5) 

of four elements (if /3r # 0) or two elements (if one of p and y equal zero) or 
one element (if OL = 0). Set 

Then 

f,(z) = n (1 - z/@ if yf0 
=[a1 

= - 8J-! (1 - z/S) if y = 0, /? f 0 

Z if 01 = 0. 

F(z) = Ce*z ~.L(z), 
[=I 

where C = &A. Sincef,(z) =f=(- z ) f or (Y # 0, Eq. (3) shows that B = 0. 
Further, for x > x,, , fa(x) > 0 and hence C > 0. We have thus arrived at 

where each 01 is taken according to multiplicity and where the product 
converges absolutely and uniformly on compact sets. 

Thus if we can show that each of the infinitely manyI, has positive first 
derivatives and nonnegative derivatives of all other orders for z = x > x,, , 
the theorem will follow. But 

f,(z) = I 01 I-%+ + 2(y2 - B”) z2 + (y2 + P”)“] if P#O,yfO 
= y2(z2 + p) if /3=O,yfO 
= p-“(9 - p> if /3fO,y=O 

=z if cr=O 

from which it is easily seen that f?)(x) > 0 for x > x0 with inequality for 
n = 1. 

It is possible to prove the monotonicity and convexity results using the 
logarithmic derivative of F(X) but the proof is essentially the same. For 
instance, from (5) we obtain 
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and this returns us to the question of showing that eachf:(x) > 0 for x > x,, . 
Likewise, we have 

where &, means that if [a] has multiplicity m then [a’] = [a] should be 
taken with multiplicity m - 1. Again we come to the question of showing 
that each f:(x) > 0 and f:(x) a 0 for x > x,, . 
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