A Property of L-Functions on the Real Line

H. M. STARK

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

AND

D. ZAGIER

Mathematisches Institut der Universität Bonn, 53 Bonn, Wegelerstrasse 10, West Germany Received September 29, 1979

DEDICATED TO PROFESSOR S. CHOWLA ON THE OCCASION OF HIS 70TH BIRTHDAY

Let $L(s) = L_d(s)$ be the Dirichlet L-series associated to the quadratic field of discriminant d and set

$$egin{aligned} &\Lambda_d(s) = \left(egin{aligned} &| d \mid \ & \pi \end{array}
ight)^{s/2} \Gamma \left(egin{aligned} &s+1 \ & 2 \end{array}
ight) L_d(s) & (d < 0), \ & = \left(egin{aligned} &| d \mid \ & \pi \end{array}
ight)^{s/2} \Gamma \left(egin{aligned} &s \ & 2 \end{array}
ight) L_d(s) & (d > 0). \end{aligned}$$

Numerical evidence [1] indicates that $\Lambda_d(s)$ is convex upwards for real s, 0 < s < 1. One cannot hope to prove this easily since one consequence would be that $L_d(s)$ has at most one real zero $\ge 1/2$. However, we will show here that $\Lambda_d(s)$ is convex upward on the real line if $L_d(s)$ satisfies the Riemann hypothesis or even if $L_d(s) \ne 0$ in the triangle $|t| \le \sigma - \frac{1}{2} \le \frac{1}{2}$ where $s = \sigma + it$ (see Fig. 1). Indeed we will show that if for some $\sigma_0 \ge \frac{1}{2}$, the function $\Lambda_d(s)$ has no zeros in the hyperbolic region

$$(\sigma - \frac{1}{2})^2 - t^2 > (\sigma_0 - \frac{1}{2})^2$$

(see Fig. 2), then $\Lambda_d(\sigma)$ is monotone increasing and convex for $\sigma > \sigma_0$.

THEOREM. Let $\Lambda(s)$ be an entire function of order 1 which is real and positive for large real s and which satisfies the functional equation

$$\Lambda(s) = \pm \Lambda(k-s) \tag{1}$$

0022-314X/80/010049-04\$02.00/0 Copyright © 1980 by Academic Press, Inc. All rights of reproduction in any form reserved. for some k > 0. Suppose that for some $\sigma_0 \ge k/2$ the function $\Lambda(s)$ has no zeros in the hyperbolic region

$$(\sigma - k/2)^2 - t^2 > (\sigma_0 - k/2)^2.$$
⁽²⁾

Then $\Lambda^{(n)}(\sigma) > 0$ for all $\sigma > \sigma_0$ and all $n \ge 0$. In particular, $\Lambda(\sigma)$ is monotone increasing and convex for $\sigma > \sigma_0$.

Proof. It is convenient to translate s by k/2. We let

$$z=s-k/2$$

and

$$F(z) = \Lambda(z+k/2),$$

so that the functional equation (1) becomes

$$F(z) = \pm F(-z). \tag{3}$$

By the Hadamard product theorem,

$$F(z) = Az^m e^{Bz} \prod_{\alpha} (1 - z/\alpha) e^{z/\alpha},$$

where $m \ge 0$ and the product runs over all zeros $\alpha \ne 0$ of F(z) counted according to multiplicity and converges absolutely and uniformly on compact sets. If $\alpha = \beta + i\gamma$ then the condition that $\alpha + k/2$ not be in the region (2) is

$$\beta^2 - \gamma^2 \leqslant x_0^2 \tag{4}$$

where $x_0 = \sigma_0 - k/2$.

If α is a zero of F(z), then so are $\bar{\alpha}$, $-\alpha - \bar{\alpha}$. We define the equivalence class $[\alpha]$ of α to be the set

$$\alpha] = \{\alpha, \, \bar{\alpha}, \, -\alpha, \, -\bar{\alpha}\}$$

of four elements (if $\beta \gamma \neq 0$) or two elements (if one of β and γ equal zero) or one element (if $\alpha = 0$). Set

$$f_{\alpha}(z) = \prod_{\delta \in [\alpha]} (1 - z/\delta) \quad \text{if } \gamma \neq 0$$
$$= -\prod_{\delta \in [\alpha]} (1 - z/\delta) \quad \text{if } \gamma = 0, \quad \beta \neq 0$$
$$= z \quad \text{if } \alpha = 0.$$

Then

$$F(z) = Ce^{Bz} \prod_{[\alpha]} f_{\alpha}(z),$$

where $C = \pm A$. Since $f_{\alpha}(z) = f_{\alpha}(-z)$ for $\alpha \neq 0$, Eq. (3) shows that B = 0. Further, for $x > x_0$, $f_{\alpha}(x) > 0$ and hence C > 0. We have thus arrived at

$$F(z) = C \prod_{[\alpha]} f_{\alpha}(z), \qquad (5)$$

where each α is taken according to multiplicity and where the product converges absolutely and uniformly on compact sets.

Thus if we can show that each of the infinitely many $f_{\alpha}(z)$ has positive first derivatives and nonnegative derivatives of all other orders for $z = x > x_0$, the theorem will follow. But

$$\begin{aligned} f_{\alpha}(z) &= |\alpha|^{-4} [z^4 + 2(\gamma^2 - \beta^2) z^2 + (\gamma^2 + \beta^2)^2] & \text{if } \beta \neq 0, \ \gamma \neq 0 \\ &= \gamma^{-2} (z^2 + \gamma^2) & \text{if } \beta = 0, \ \gamma \neq 0 \\ &= \beta^{-2} (z^2 - \beta^2) & \text{if } \beta \neq 0, \ \gamma = 0 \\ &= z & \text{if } \alpha = 0 \end{aligned}$$

from which it is easily seen that $f_{\alpha}^{(n)}(x) \ge 0$ for $x > x_0$ with inequality for n = 1.

It is possible to prove the monotonicity and convexity results using the logarithmic derivative of F(x) but the proof is essentially the same. For instance, from (5) we obtain

$$\frac{F'(z)}{F(z)} = \sum_{[\alpha]} \frac{f'_{\alpha}(z)}{f_{\alpha}(z)}$$

and this returns us to the question of showing that each $f'_{\alpha}(x) > 0$ for $x > x_0$. Likewise, we have

$$\frac{F''(z)}{F(z)} = \left(\frac{F'(z)}{F(z)}\right)^2 + \sum_{[\alpha]} \left[\frac{f''_{\alpha}(z)}{f_{\alpha}(z)} - \left(\frac{f'_{\alpha}(z)}{f_{\alpha}(z)}\right)^2\right]$$
$$= \sum_{[\alpha]} \frac{f'_{\alpha}(z)}{f_{\alpha}(z)} \sum_{[\alpha']} \frac{f'_{\alpha'}(z)}{f_{\alpha'}(z)} + \sum_{[\alpha]} \frac{f''_{\alpha}(z)}{f_{\alpha}(z)}$$

where $\sum_{[\alpha']}'$ means that if $[\alpha]$ has multiplicity *m* then $[\alpha'] = [\alpha]$ should be taken with multiplicity m - 1. Again we come to the question of showing that each $f'_{\alpha}(x) > 0$ and $f''_{\alpha}(x) \ge 0$ for $x > x_0$.

Reference

1. G. PURDY, R. TERRAS, A. TERRAS, AND H. WILLIAMS, Graphing L-functions of Kronecker symbols in the real part of the critical strip, *Math. Student*, in press.