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1. Introduction

In the last few years the Donaldson invariants of smooth 4-manifolds have been very
powerful tools. They are defined using a Riemannian metric g on the 4-manifold
X , but in the case b+(X) > 1, they are independent of g. Recently a great deal
of progress has been made in the understanding of these invariants. In particular
Kronheimer and Mrowka [Kr-M1], [Kr-M2] and Fintushel and Stern [F-S2] have
shown some important structure theorems.

For C ∈ H2(X,Z) and c2 ∈ Z we denote by ΦXC,d the Donaldson invariant of
X with respect to a complex rank 2 bundle E with Chern classes C and c2 with
4c2−C2− 3

2 (1+b+(X)) = d. ΦXC,d is a linear map from the set Ad(X) of polynomi-
als of degree d in H2(X,Q)⊕H0(X,Q) to Q, where the classes in H2(X,Q) are of
degree 1 and the class p ∈ H0(X,Z) corresponding to a point is of degree 2. We put
ΦXC,d := 0 if b+(X) is even or if d is not congruent to −C2− 3

2 (1+b+(X)) modulo 4,
and set ΦXC :=

∑
d≥0 ΦXC,d, thought of as a linear map from A∗(X) =

∑
d≥0Ad(X)

to Q. The polynomials ΦXC,d depend only on C modulo 4H2(X,Z) and up to sign
only on C modulo 2H2(X,Z).

Kronheimer and Mrowka introduced the notion of simple type: The mani-
fold X is of simple type if ΦXC (α(p2 − 4)) = 0 for all α ∈ A∗(X) and all C ∈
H2(X,Z). In [Kr-M1], [Kr-M2], [F-S2] the structure of the Donaldson invariants
of 4-manifolds of simple type is then described in a compact way: There exist
finitely many so-called basic classes Ki ∈ H2(X,Z) (independent of C) and ra-
tional numbers ai (depending on C) such that, for all x ∈ H2(X,Z), there is an
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identity
ΦXC ((1 + p/2)exz) = eQ(x)z2/2

∑
i

aie
Kixz,

of formal power series in z, where Q is the quadratic form on H2(X,Z). Note
that this formula determines ΦXC completely since ΦX

C,d(p
ixn) is 0 unless 2i+ n ≡

−C2 − 3
2 (1 + b+(X)) modulo 4. Many 4-manifolds with b+ > 1 have been shown

to be of simple type, and the class of 4-manifolds of simple type is closed under
several natural operations on 4-manifolds, like connected sum with P̄2 and rational
blowdown [F-S3].

Fintushel and Stern and Kronheimer and Mrowka have also introduced a gen-
eralization of the concept of simple type, the k-th order simple type, where one
requires instead that ΦXC ((p2 − 4)kα) = 0. They showed that all manifolds with
b+ > 1 are of k-th order simple type for some k, but it is not known whether k > 1
is ever needed.

A new light has been shed on these structure theorems by the Seiberg-Witten
invariants [S-W], [W1]. A class K in H2(X,Z) is called SW -basic if the corre-
sponding Seiberg-Witten invariant does not vanish, and X is of SW -simple type
if for all SW -basic classes the corresponding moduli space is 0-dimensional. It is
conjectured that the SW -basic classes are the same as the basic classes in Don-
aldson theory, and that the condition of simple type in Donaldson theory and in
Seiberg-Witten theory are equivalent. From the viewpoint of theoretical physics the
precise relation between the Donaldson and the Seiberg-Witten invariants should
be given in terms of the modular curve H/Γ(2). There is a project towards giving
a mathematical proof of this relationship (see [P-T1], [P-T2], [Fe-Le1], [Fe-Le2],
[O-T1], [O-T2], [Te]). All symplectic 4-manifolds with b+ > 1 are known to be
of SW -simple type [T2], and no 4-manifold with b+ > 1 is known not to be of
SW -simple type.

In this paper we study the case b+ = 1, where the invariants have been in-
troduced in [K1]. In this case the invariants are no longer independent of the
metric, but in [K-M] they were shown to depend only on the so-called period
point of the metric in the positive cone H2(X,R)+. We will therefore denote
them by ΦX,LC,d , where L is the period point. In fact there is a collection of
cohomology classes ξ ∈ H2(X,Z) defining “walls” (hyperplanes), and ΦX,LC,d de-
pends only on the chamber (= connected component of the complement of the
walls) to which L belongs. The change of the Donaldson invariants when pass-
ing through a wall is given by wall-crossing terms δXξ,d. Kotschick and Morgan
made a conjecture about the structure of the δXξ,d. In particular they should only
depend on ξ2, d and the homotopy type of X . Morgan and Ozsváth have an-
nounced a proof of this conjecture [M-O]. In this paper we will assume the conjec-
ture.

In [K-L] the wall-crossing formulas were used in combination with the blowup
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formulas to compute Donaldson invariants of P2 and P1 × P1 and to show in par-
ticular that P2 is not of simple type and P1 × P1 is not of simple type for any
chamber. In [E-G1], [F-Q], [E-G2] the δSξ,d were studied in the case of algebraic
surfaces S with pg = 0. In [E-G1], [F-Q] they were expressed in terms of Hilbert
schemes of points on S, and the leading terms were computed. In [E-G2] the Bott
residue formula is applied to computing the δSξ,d, and the Donaldson invariants,
for rational surfaces with help of the computer. In [G], assuming the conjecture of
Kotschick and Morgan and using the blowup formulas, the δXξ,d were determined
completely (for arbitrary X) in terms of modular forms. On a rational algebraic
surface one can, after possibly blowing up, always find a chamber where the Don-
aldson invariants vanish. Therefore the Donaldson invariants of rational surfaces
can always be expressed in terms of modular forms. In particular this gives the
Donaldson invariants of P2. The results made it look very unlikely that P2 or
P1 × P1 can be of k-th order simple type for any k. By just straightforwardly
applying the results from [G] one will in general get a very complicated expres-
sion for the Donaldson invariants, from which it is very hard to read off structural
results.

On the other hand Morgan and Szabó showed [M-Sz] that, for some ratio-
nal surfaces admitting an elliptic fibration with CF odd (F ∈ H2(X,Z) dual to
the class of a fibre), the limit of the Donaldson invariants ΦX,LC , for the period
point L tending to F , fulfills the simple type condition ΦX,LC (α(p2 − 4)) = 0,
and the corresponding Donaldson power series is given by formulas analogous to
those of [Kr-M2] and [F-S2]. In fact this is a special case of their more general
results.

In the current paper we want to apply the results of [G] to understand the
structure of the Donaldson invariants of 4-manifolds with b+ = 1. Looking at the
previously known results (e.g. [K-L], [E-G2]), it seems very unlikely that results
analogous to [Kr-M2] and [F-S2] can hold for period points in the inside of the
positive cone, while the results of [M-Sz] and the structure of the formulas in [G]
suggest that one should restrict attention to the boundary. One first has to find
the correct definition of the Donaldson invariants for a period point F there. If, for
a primitive representative F ∈ H2(X,Z), the number CF is odd, then F lies in the
closure of a unique chamber and on no wall, and one just takes the values of the
invariants in this chamber. In case CF is even, F will in general lie in the closure
of infinitely many chambers, and one has to take a certain kind of “renormalized
average” over all of them.

With this correction the Donaldson invariants are well-defined, and we show
that for F,G ∈ H2(X,Z) on the boundary of the positive cone, the difference
ΦX,FC − ΦX,GC always fullfils the k-th order simple type condition for k = (W 2 −
σ(X))/8, where σ(X) is the signature of X and W is a characteristic element with
W 2 maximal in a certain sector of H2(X,Z) determined by F and G. We also give
a universal formula for the precise structure of this difference in terms of modular
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forms and an explicit set of basic cohomology classes, which are again characteris-
tic elements in the above sector of H2(X,Z). With k as above, the leading terms
of this formula give an expression for (ΦX,FC − ΦX,GC )(exz(1 + p/2)(1 − p2/4)k−1)
analogous to that of [Kr-M2] and [F-S2]. There is however one difference: While
in the case b+ > 1 there is only a finite number of basic classes, one can in-
terpret the formulas in our case as saying that there are infinitely many (all
but finitely many orthogonal to F or G), and that the Donaldson invariants are
obtained as a “renormalized” (by analytic continuation) sum of their contribu-
tions.

We note that the basic classes not orthogonal to F or G are precisely the char-
acteristic cohomology classes whose corresponding Seiberg-Witten invariants (with
respect to the unperturbed equations) for metrics with period points near F and
near G differ. This leads to a conjectural formula for the relationship between
Seiberg-Witten and Donaldson invariants in the case b+ = 1 on the boundary of
the positive cone.

If X is a rational algebraic surface, it is easy to show that there always exists
a point on the boundary of the positive cone such that all Donaldson invariants
vanish. Therefore for these surfaces the formulas above give the Donaldson invari-
ants and not just their differences. In particular the above-mentioned conjecture
about the relation of Donaldson and Seiberg-Witten invariants holds for rational
surfaces. In particular this shows that, for any k, many (X,F ) are of strictly k-th
order simple type, related to the fact that in case b+ = 1, the chamber structure in
Seiberg-Witten theory will very often make SW -basic classes of arbitrary expected
dimension appear.

In the case of P2#P̄2 or P1 × P1, the limit of the Donaldson invariants at the
boundary of the positive cone is also defined without the correction, but the results
of [K-L] show that they are not of simple type, whereas with the correction they
vanish. The limit can therefore be computed as the negative of the correction we
introduce, proving a conjecture from [E-G2]. We conclude by giving a number of
examples for our formulas.

To prove our results we observe that by the results of [G], the formula for the
difference of the Donaldson invariants at two boundary points is very closely re-
lated to a new kind of theta functions, associated to a lattice L of type (r − 1, 1)
and a pair (f, g) of elements in L with self-intersection 0 (in fact the lattice is
H2(X,Z) with the negative of the intersection form). We show that these theta
functions are Jacobi forms for the theta group Γθ. Using this fact one can show
that the difference of the Donaldson invariants has a development in terms of
modular functions for a subgroup Γu ⊂ Γθ which are holomorphic except at the
cusps −1, 1, ∞ of Γu. It follows that they can be expressed as a rational func-
tion in a certain modular function u, and that the relevant information about
the Donaldson invariants can be read off from the poles at the cusp −1. We
note that Γu is conjugate to Γ(2) by an element of GL(2,Z), which maps the
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cusps −1, 1,∞ to ∞, 0, 1, thus giving a connection to the description from theo-
retical physics. In particular all the computations could be rephrased in terms of
Γ(2).

We also mention the connection with the recent work of Borcherds on auto-
morphic forms on orthogonal groups ([Bo], in particular the results of §10 and the
examples and problems concerning Donaldson polynomials in §15 and §16).

The first named author would like to thank Barbara Fantechi, with whom he
had useful discussions on several aspects of this paper, Ronald Stern, who told
him about the notion of higher order simple type, Victor Pidstrigach and Andrei
Tyurin who explained the program for proving the relationship of Donaldson and
Seiberg-Witten invariants to him, and John Morgan and Zoltan Szabó, who in-
formed him about their results about the structure of some Donaldson invariants
e.g. on P2#9P2; in fact this paper was motivated in part by trying to understand
that result. With Zoltan Szabó he also had some further discussions, which helped
to clarify our ideas. This work was started while the first named author was at
the Max-Planck-Institut für Mathematik Bonn, and carried out during his stay at
Pisa, with a grant of MAP.

2. Preliminaries

In this paper let X be a simply connected smooth 4-manifold with b+(X) = 1.

Notation 2.1. We will usually denote by upper case letters the classes in H2(X,C),
unless these appear as walls (see below), when we denote them by Greek letters.
Elements of H2(X,C) are denoted by lower case letters. We usually denote the
Poincaré dual class of A ∈ H2(X,C) by the corresponding lower case letter a. For
A,B ∈ H2(X,C) and the corresponding dual classes a, b ∈ H2(X,C), the canon-
ical pairing of H2(X,C) and H2(X,C) and the intersection product on H2(X,C)
are just denoted by Ab and AB respectively. We denote by Q(a) the quadratic
form (given by A2) on H2(X,C) and by σ(X) the signature of X . We denote
X̂ := X#P̄2, and E the canonical generator of H2(P̄2,Z). We will always identify
H2(X,Q) with the orthogonal subspace E⊥ ⊂ H2(X̂,Q). We trust that there will
be no confusion between the exponential function and the Poincaré dual of E.

Let E be a complex rank 2 bundle with first Chern class C and second Chern
class c2. We put d := 4c2 − C2 − 3, and denote by ΦX,gC,d the Donaldson invariant
corresponding to E and the (generic) metric g (cf. [Do]). They depend up to sign
only on C modulo 2, and the sign is determined by C modulo 4 and by a so-called
homology orientation. We use the conventions of e.g. [F-S1]. Let p ∈ H0(X,Z)
be the class of a point. Let Ad(X) be the set of polynomials of weight d in
H2(X,C) ⊕H0(X,C), where a ∈ H2(X,C) has weight 1 and p has weight 2, and
put A∗(X) :=

⊕
d≥0Ad(X). Then ΦX,gC,d is a linear map Ad(X) −→ Q. The letters

z and t will denote indeterminates; z will also be sometimes a complex variable,
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and x usually denotes an element of H2(X,C). We will often write 1a instead of
e2aπi for a rational number a.

2.1. Walls and chambers

In the case b+ = 1 the Donaldson invariants are no longer independent of the
metric.

Definition 2.2. Firstly we recall that a Riemannian metric g determines a ray in

H2(X,R)+ = {H ∈ H2(X,R) | H2 > 0},

namely the set of self-dual harmonic forms. This ray, or any representative in
H2(X,R)+, is called the period point of g and denoted by ω(g). The quotient
H2(X,R)+/R+ has two connected components. The choice of a homology orienta-
tion amounts to the choice of one of them, which we call HX . If H0 ∈ H2(X,R)+

is a representative of any point in HX , then HX is the quotient of the set of
H ∈ H2(X,R)+ with HH0 > 0 by R+. We will always assume that we have chosen
a homology orientation, and view the period points as lying in the corresponding
component HX .

The space HX is a model of hyperbolic r-space, where r = b2(X) − 1. In
particular we can complete it to HX := HX ∪ SX , where

SX := ({H ∈ H2(X,Q) |H2 = 0, HH0 > 0} \ {0})/Q+

is the set of cusps. We will usually not distinguish between an element HX and a
representative in H2(X,R)+, and similarly for SX .

Definition 2.3 (see e.g. [K1], [K-M]). By a wall in HX we mean the intersection
of HX with a set

W ξ := {L ∈ H2(X,R)+
∣∣ ξL = 0

}
/R+,

where ξ ∈ H2(X,Q) with ξ2 < 0. If C ∈ H2(X,Z), and d ∈ Z≥0, we will say that
an element ξ ∈ H2(X,Q) is of type (C, d) if C/2−ξ ∈ H2(X,Z) and (d+3)/4+ξ2 ∈
Z≥0. A chamber of type (C, d) is a connected component of the complement of the
walls in HX defined by elements of type (C, d).

Theorem 2.4 [K-M].

1) ΦX,gC,d depends only on the chamber of the period point ω(g).

2) For all ξ ∈ 1
2H

2(X,Z) of type (C, d) there exists a linear map δXξ,d :
Ad(X) −→ C such that for all generic metrics g1 and g2

ΦX,g1C,d − ΦX,g2C,d = 1C
2/8
∑
ξ

(−1)(ξ−C/2)C δXξ,d,

where the sum runs through all ξ of type (C, d) with ξω(g2) < 0 < ξω(g1).
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Note that the conventions are different from [G], [K-M], [K-L]. We have changed
the sign conventions and replaced ξ by ξ/2 to get a more direct relation to theta
functions later.

Actually in [K-M] the result is only proven for the restriction of ΦX,gC,d to
Symd(H2(X,Q)); see [G] for the extension to Ad(X). We mention that this ex-
tension also works outside of the so-called stable range, i.e. when C ≡ 0 modulo
2 and for classes α ∈ Ad(X) containing monomials xkpr with x ∈ H2(X,Q) and
k < 2(r + 1).

Kotschick and Morgan make a conjecture about the structure of the wallcrossing
terms.

Conjecture 2.5 [K-M]. δXξ,d|Symd(H2(X,Q)) is a polynomial in ξ and the quadratic
form Q whose coefficients depend only on ξ2, d, and the homotopy type of X.

In this statement, polynomials in ξ and Q are considered as maps on
Symd(H2(X),Q) by Qkξ`(xd) = Q(x)k (ξx)` if 2k+` = d (and 0 otherwise) for x ∈
H2(X,Q), and then by multilinearity for arbitrary elements of Symd(H2(X),Q).
A proof of Conjecture 2.5 has been announced [M-O]. We will assume 2.5 for the
rest of the paper.

By Theorem 2.4 the Donaldson invariant ΦX,gC,d depends only on the chamber of
the period point ω(g) ∈ HX . For H ∈ HX not on a wall defined by a class of type
(C, d), we will put ΦX,HC,d = ΦX,gC,d , where g is a generic metric whose period point
lies in the same chamber of type (C, d) as H. Apparently it is not known whether
every element of HX appears as the period point of a metric. If there is no period
point in the chamber of H, then we define ΦX,HC,d by requiring that

ΦX,HC,d − ΦX,gC,d = 1C
2/8
∑
ξ

(−1)(ξ−C/2)C δXξ,d, (2.5.1)

the sum running through all ξ of type (C, d) with ξω(g) < 0 < ξH, where g is any
generic Riemannian metric on X . Theorem 2.4 implies that in this way ΦX,HC,d is
well-defined.

Finally, we mention that if C ≡ 0 modulo 2 then ΦX,H0,d (α) was originally defined
only for α in the stable range but can be defined for arbitrary α by

ΦX,HC,d (α) := ΦX̂,H+εE
C+E,d+1(eα) (ε > 0 sufficently small) (2.5.2)

(see [G] definition 2.7). Note that now, by the blowup formulas (e.g. [F-S1], [T1]),
the formula (2.5.2) holds for all d and all α ∈ Ad(X).

We put ΦX,HC,d = 0 if d is not congruent to −C2 − 3 modulo 4 and, if Hξ 6= 0
for all ξ ∈ H2(X,Z) +C/2 (i.e. H does not lie on a wall defined by a class of type
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(C, d) for any d), we put ΦX,HC :=
∑
d≥0 ΦX,HC,d . We also put δXξ :=

∑
d≥0 δ

X
ξ,d. For

an indeterminate z and an ∈ A∗(X) for all n ≥ 0 we put

ΦX,HC

(∑
n≥0

anz
n
)

:=
∑
n≥0

ΦX,HC (an)zn, δXξ

(∑
n≥0

anz
n
)

:=
∑
n≥0

δXξ (an)zn.

With this convention we define, for x ∈ H2(X,Z) and any polynomial P (p) in p
(the class of a point), the following two formal power series in variables z, t:

ΨX,H
C (x · z, P (p)) := ΦX,HC (exzP (p)),

Ψ
X,H

C (x · z, t) :=
∞∑
r=0

ΨX,H
C (x · z, pr) tr+1.

(2.5.3)

(The change of argument from exz in Φ to x · z in Ψ will become important in
Section 4, where the invariant Ψ — but not Φ — is defined for H belonging to the
boundary of the positive cone.)

Following [Kr-M1], [Kr-M2] we will say that the pair (X,H) is of k-th order
simple type if ΦX,HC (α(p2 − 4)k) = 0 for all α ∈ A∗(X) and all C ∈ H2(X,Z). It
is of strictly k-th order simple type if it is of k-th order simple type but not of
(k − 1)-th order simple type.

2.2. Some elementary computations with modular forms

Let H :=
{
τ ∈ C

∣∣ Im(τ) > 0
}

be the complex upper half-plane. For τ ∈ H let

q := e2πiτ and q1/n := e2πiτ/n. Elements A =
(
a b

c d

)
∈ SL(2,Z) act on H by

Aτ :=
aτ + b

cτ + d
and, given k ∈ Z, on functions g : H −→ C by

(g|kA)(τ) := (cτ + d)−kg (Aτ) .

For k ∈ 1
2Z and (c, d) 6= (0,−1) we define (g|kA) by the same formula, where

(cτ + d)−k stands for
√
cτ + d

−2k
, with the principal branch of the square root

(whose real part is positive on complex numbers with argument strictly between
−π and π). Note that this in general does not define an action any more. If g is a
modular form of weight k or k is otherwise understood, we just write g|A. Let

T :=
(

1 1
0 1

)
, V := T 2 =

(
1 2
0 1

)
,

S :=
(

0 −1
1 0

)
, W := T−1S =

(
−1 −1
1 0

)
. (2.5.4)
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Let Γθ = 〈V, S〉 ⊂ SL(2,Z) be the theta group. The quotient H/Γθ has two cusps:
−1 and ∞. Let η(τ) := q1/24∏

n>0(1 − qn) be the Dirichlet eta function and
∆ := η24 the discriminant. We denote σk(n) :=

∑
d|n d

k and by σodd
1 (n) the sum

of the odd divisors of n. For even k ≥ 2 let

Gk(τ) := −Bk
2k

+
∑
n>0

σk−1(n)qn

be the classical Eisenstein series, where Bk is the k-th Bernoulli number. For odd
k we put Gk(τ) := 0. Note that Gk is a modular form of weight k for SL(2,Z) for
k ≥ 4, but is only “quasi-modular” for k = 2, i.e., it transforms by equation 3.11.1.

Recall the classical theta functions

θµν(τ, z) :=
∑
n∈Z

(−1)nνq(n+µ/2)2/2e2πi(n+µ/2)z (µ, ν ∈ {0, 1}) (2.5.5)

and their “Nullwerte”

θ(τ) := θ00(τ, 0) =
η(τ)5

η(τ/2)2η(2τ)2 , θ0
01(τ) = θ01(τ, 0) =

η(τ/2)2

η(τ)

θ0
10(τ) = θ10(τ, 0) = 2

η(2τ)2

η(τ)
, θ0

11(τ) = 0.

We set

f(τ) := 1−1/8 η(τ)3

θ(τ)
= 1−1/8 η(τ/2)2η(2τ)2

η(τ)2 =
1−1/8

2
θ0

01(τ)θ0
10(τ). (2.5.6)

The transformation laws

η(τ + 1) = 11/24η(τ), η(−1/τ) =
√
τ

i
η(τ)

(where we again use the principal branch of the square root) imply the following.

1) θ|V =θ, θ|S = 1−1/8θ, θ|T = θ0
01 and θ|W (τ) = 1−1/8θ0

10(τ) = 1−1/8 2η(2τ)2

η(τ) .

2) f |V = if , f |S = −if , f |T−1 = 1−1/4 η(τ)3

θ0
01

and f |W (τ) = − η(τ)4

2η(2τ)2 . In
particular f4 is a modular form of weight 4 for Γθ.

3) The function

R(τ) :=
∆(τ)2

∆(τ/2)∆(2τ)

is a modular function for Γθ and R|W (τ) = −212∆(2τ)/∆(τ).
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Finally let e1, e2, e3 be the 2-division values of the Weierstraß ℘-function at 1/2,
τ/2 and (1 + τ)/2 respectively, i.e.

e1(τ) = −1
6
− 4

∑
n>0

σodd
1 (n)qn,

e2(τ) =
1
12

+ 2
∑
n>0

σodd
1 (n)qn/2,

e3(τ) =
1
12

+ 2
∑
n>0

(−1)nσodd
1 (n)qn/2.

We write

U(τ) := −3e3(τ)
f(τ)2 , u(τ) :=

1
U(τ)

, G(τ) := G2(τ) + e3(τ)/2. (2.5.7)

The first two are modular functions, the third a quasi-modular form.

Lemma 2.6.

1) e3 is a modular form of weight 2 for Γθ and e3|T = e2, e3|W = e1.

2) We have the identities

U(τ)2 − 4 = − 1
16
R(τ), (2.6.1)

q
d

dq
U(τ) = − 1

16
R(τ)f(τ)2. (2.6.2)

Proof. 1) is standard and can be shown e.g. by observing that e3(τ) = −2G2(τ/2)+
8G2(τ)−8G2(2τ) and using the transformation behavior of the quasi-modular form
G2.

For 2), we note that the four functions f4, e2
3 = U2f4/9, Rf4 and f2q ddqU are

modular forms of weight 4 on Γθ. Therefore they are linear combinations of the
two Eisenstein series G4(τ) and G4((τ+1)/2), which generate the space of modular
forms of weight 4 for Γθ. The identities (2.6.1) and (2.6.2) are then obtained by
comparing the first few Fourier coefficients. �

Remark 2.7. Let Γu = ±〈V 2, V S, SV 〉; this is a subgroup of index 2 of Γθ. The
quotient H/Γu has 3 cusps 1, −1 and ∞. From the above it is clear that U(τ) is
a modular function for Γu and that f(τ)2 is a modular form of weight 2 for Γu.
We note that U(τ) defines an isomorphism of from H/Γu ∪ {1} ∪ {−1} ∪ {∞} to
P1, as the smallest power of T contained in Γu is T 4 and the lowest power of q in
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the Fourier development of U(τ) is −1/4. We see that U(∞) = ∞, U(−1) = 2,
U(1) = −2. In fact W maps ∞ to −1 and VW maps ∞ to 1, and

Ũ(τ) := U |W (τ) = −12e1(τ)η(2τ)4

η(τ)8 = 2 + 64q + 512q2 + 2816q3 + . . . ,

U |VW (τ) = −Ũ(τ).

We denote ũ(τ) = u|W (τ) = 1/Ũ(τ). In particular every modular function for Γu
will be a rational function in U(τ), and a polynomial in U(τ), (U(τ) − 2)−1 and
(U(τ)+2)−1 if it is holomorphic on H. We note that Γu is conjugate to Γ(2) via the
matrix

(
1 −1
1 1

)
∈ GL(2,Q), which sends the cusps ∞, 1,−1 to 1, 0,∞ respectively.

We finish this section by listing the leading terms of the Fourier developments
of some of the modular forms and functions we introduced, which will play a role
in our later computations. This should help the reader to check and apply our
computations and results.

θ(τ) = 1 + 2q
1
2 + 2q2 + 2q

9
2 + 2q8 + . . .

f(τ) = 1−
1
8 q

1
8 (1− 2q

1
2 + q − 2q

3
2 + 2q2 + 3q3 − 2q

7
2 − 2q

9
2 + 2q5 − 2q

11
2

+ q6 − 2q
13
2 + . . . )

R(τ) = q−
1
2 + 24 + 276q

1
2 + 2048q+ 11202q

3
2 + 49152q2 + 184024q

5
2

+ 614400q3 + 1881471q
7
2 + 5373952q4 + 14478180q

9
2 + . . .

e1(τ) = −1
6
− 4q − 4q2 − 16q3 − 4q4 − 24q5 − 16q6 − 32q7 − 4q8 − . . .

e3(τ) =
1
12
− 2q

1
2 + 2q − 8q

3
2 + 2q2 − 12q

5
2 + 8q3 − 16q

7
2 + 2q4 − 26q

9
2

+ 12q5 − 24q
11
2 + . . .

U(τ) = 1
1
4 q−

1
4 (−1

4
+ 5q

1
2 +

31
2
q + 54q

3
2 +

641
4
q2 + 409q

5
2 +

1889
2

q3 + 2062q
7
2

+
17277

4
q4 + 8666q

9
2 +

33439
2

q5 + 31328q
11
2 + 57313q6 + . . . )

u(τ) = 1
1
4 q

1
4 (4 + 80q

1
2 + 1848q+ 42784q

3
2 + 990100q2 + 22911600q

5
2

+ 530190104q3 + 12268965984q
7
2 + 283912371144q4 + . . . )

G(τ) = −q 1
2 + 2q − 4q

3
2 + 4q2 − 6q

5
2 + 8q3 − 8q

7
2 + 8q4 − 13q

9
2 + 12q5

− 12q
11
2 + 16q6 + . . .

Ũ(τ) = 2 + 64q + 512q2 + 2816q3 + 12288q4 + 45952q5 + 153600q6 + 470528q7

+ 1343488q8 + 3619136q9 + 9280512q10 + . . .
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θ0
10(τ) = q

1
8 (2 + 2q + 2q3 + 2q6 + 2q10 + . . . )

η(τ)4

η(2τ)2 = 1− 4q + 4q2 + 4q4 − 8q5 + 4q8 − 4q9 + 8q10 + . . .

2.3. Wall-crossing formula

In [G] definition 2.7 we extended the definition of the wall-crossing terms δXξ,d to
all classes ξ ∈ H2(X,Z) by using the blowup formulas [F-S1], [T1]. If ξ2 < 0 we
have in particular δXξ,d = 0, if ξ is not of of type (2ξ, d). The main theorem of [G]
is:

Theorem 2.8 [G]. Let X be a simply connected 4-manifold with b+ = 1 and
signature σ(X). For x ∈ H2(X,Z) put

∆X
ξ (τ, x · z) := −4θ(τ)σ(X)

f(τ)
· q−ξ2/2e−ξxz/f(τ) · e−Q(x)G(τ)z2/f(τ)2

.

Then
δXξ (exzpr) = Coeffu(τ)r+1

[
∆X
ξ (τ, x · z)

]
. (2.8.1)

Here the symbol “Coeff” means that we expand the following expression (or
more precisely, the coefficient of zn in it for each fixed power n) as a fractional
Laurent series in q, rewrite it as a fractional Laurent series in u(τ) = 4iq

1
4 + · · · ,

and take the coefficient of the indicated power of u(τ).
Theorem 2.8 was stated in [G] (up to some differences in conventions) in the

form
δXξ
(
exzpr) := Resq=0

[1
4
f(τ)2U(τ)rR(τ)∆X

ξ (τ, x · z)
dq

q

]
. (2.8.2)

Equation (2.8.1) follows by

Proposition 2.9. Let F be a meromorphic function on H having a Laurent devel-
opment in powers of q1/n for some n ∈ Z>0. Then

Resq=0

[1
4
f(τ)2U(τ)rR(τ)F (τ)

dq

q

]
= Coeffu(τ)r+1

[
F (τ)

]
.

Proof. We use the formula (2.6.2) to obtain

1
4

Resq=0

[
f(τ)2 R(τ)

u(τ)r
F (τ)

dq

q

]
= 4 Resq=0

[
F (τ)

( d
dq
u(τ)

)
/u(τ)r+2 dq

]
= Resu(τ)=0

[
F (τ)

du(τ)
u(τ)r+2

]
= Coeffu(τ)r+1

[
F (τ)

]
.

�
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Remark 2.10.

1) The term q−ξ
2/2e−ξxz occurring in ∆X

ξ (τ, x · z) looks like the summand
corresponding to a vector ξ ∈ L in the theta series for the lattice L =
H2(X,Z) with the negative of the intersection form as quadratic form.
Therefore the difference Ψ

X,H1

C −Ψ
X,H2

C for two points H1,H2 ∈ HX should
be given in terms of a theta function Θh1,h2

L,c,c (where as usual the small
letter denotes the Poincaré dual class in L. In the next section we will
define such theta functions and show that, at least for f and g rational
points with Q(f) = Q(g) = 0, Θf,g

L,c,c has the properties of usual theta
functions, enabling us to prove our main structural results.

2) Conjecture 5.1 from [G] can be interpreted as saying that Theorems 2.4 and
2.8 hold more generally in the case H1(X,Q) = 0, if by H2(X,Z)+C/2 we
mean the set of all expressions (2ξ+C)/2 (counted with repetitions), with
ξ running through H2(X,Z).

3. Theta functions for indefinite lattices

The classical theta series associated to a positive definite lattice L with quadratic
form Q and associated bilinear form x · y (see notation 3.1 below) is the sum

ΘL(τ, x) :=
∑
ξ∈L

qQ(ξ)e2πiξ·x , (τ ∈ H, x ∈ LC = L⊗ C).

These theta series have well-known transformation properties. In particular the
“Nullwert” ΘL(τ, 0) is a modular form of weight r/2, where r is the rank of L. In
this section we give a generalization to the case when L is allowed to be indefinite.
In particular we will consider the case when the type of Q is (r − 1, 1). The theta
series that we define depends not only on L, but also on two vectors f , g ∈ LQ
with Q(f) = Q(g) = 0, f · g < 0. It is defined in a certain open subset of H × LC
by

Θf,g
L (τ, x) :=

( ∑
ξ·f≥0>ξ·g

−
∑

ξ·g≥0>ξ·f

)
qQ(ξ)e2πiξ·x (3.0.1)

(ξ running through L). We will also sketch a generalization to the case of type
(n − s, s) with n − s ≥ s > 1, but this is not needed for our applications to the
Donaldson invariants.

The main properties of Θf,g
L are proved by using an alternative definition. The

idea of the construction is simple. When L is the standard hyperbolic lattice H
generated by vectors f, g with Q(f) = 0, Q(g) = 0, f ·g = −1 then Θf,g

L will be the
function F (τ ;u, v) studied in [Z] (but in fact going back to Kronecker, see [We]). If
L is the direct sum H⊕L0, with L0 positive definite, then Θf,g

L is just the product
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of this function with the usual theta series of L0. The general case is reduced to
this by considering the sublattice L′ = 〈f, g〉 ⊕ 〈f, g〉⊥ of L and averaging over
cosets of L′ in L.

3.1. The function F

The main building block for the construction of theta functions will be the function
F (τ ;u, v) : H × C2 −→ C, studied in [Z], which is defined for 0 < −<(u)/=(τ) <
2π, 0 < <(v)/=(τ) < 2π by

F (τ ;u, v) :=
∑

n≥0,m>0

qnme−nu−mv −
∑

n>0,m≥0

qnmenu+mv. (3.0.2)

(This formula is not given explicitly in [Z], but is easily proved to be equivalent
to 3) below.) This function has the following properties (see [Z]):

1) F (τ ;u, v) has a meromorphic continuation to H×C2 with simple poles for
u or v in 2πi

(
Zτ + Z

)
and no other poles.

2) F (τ ;u, v) = F (τ ; v, u) = −F (τ ;−u,−v).

3) For |<(u)/=(τ)| < 2π, |<(v)/=(τ)| < 2π it has the Fourier expansion

F (τ ;u, v) := − 1
1− eu +

1
1− e−v − 2

∑
n>0,m>0

sinh(nu+mv)qnm. (3.0.3)

4) F
(
aτ+b
cτ+d ; u

cτ+d ,
v

cτ+d

)
= (cτ + d)e

cuv/2πi
cτ+d F (τ ;u, v) for all

(
a b

c d

)
∈ SL(2,Z).

5) F (τ ;u+ 2πi(nτ + s), v + 2πi(mτ + t)) = q−nme−nu−mvF (τ ;u, v) for all
n,m, s, t ∈ Z.

6) F (τ ;u, v) =
η(τ)3θ11(τ, u+ v)
θ11(τ, u)θ11(τ, v)

.

7) F (τ ;u, v) =
u+ v

uv
exp

(∑
k>0

2
k!

[(uk + vk − (u+ v)k]Gk(τ)
)
.

3.2. Definition of the theta functions

Notation 3.1. For us a lattice is a free Z-module L together with a quadratic form
Q : L→ 1

2Z, such that the associated bilinear form x · y := Q(x+ y)−Q(x)−Q(y)
is nondegenerate and Z-valued. The extensions of the quadratic and bilinear form
to LC := L⊗C, or more generally LR := L⊗Z R for any Z-module R, are denoted
in the same way. Let L∨ :=

{
µ ∈ LQ

∣∣ µ · L ⊆ Z}. L is unimodular if and only if
L = L∨. The type of L is the pair (r − s, s), where r is the rank of L and s the
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largest rank of a sublattice of L on which Q is negative definite, and the signature
σ(L) is the number r − 2s.

From now on we assume that s = 1, i.e., that L has type (r − 1, 1). Then the
set of vectors f ∈ LR with Q(f) < 0 has two components, the scalar product of any
two such vectors being negative if they belong to the same component and positive
if they belong to opposite components. We fix a vector f0 ∈ LR with Q(f0) < 0
and let

CL :=
{
f ∈ LR

∣∣ Q(f) < 0, f · f0 < 0
}

(“positive light-cone”) be the component containing f0; we further set

SL :=
{
f ∈ L

∣∣ f primitive, Q(f) = 0, f · f0 < 0
}
.

(The (r−1)-dimensional hyperbolic spaceCL/R+ is the natural domain of definition
of automorphic forms with respect to O(L), and SL is a set of representatives for
the corresponding set of cusps {f ∈ LQ | Q(f) < 0, f · f0 < 0}/Q+.) For f ∈ SL
put

D(f) :=
{

(τ, x) ∈ H× LC
∣∣ 0 < =(f · x) < =(τ)

}
,

and for f ∈ CL put D(f) := H× LC.

Notation 3.2. For t ∈ R we put

µ(t) :=
{

1, t ≥ 0,
0, t < 0.

Definition 3.3. Let f, g ∈ CL ∪SL. For (τ, x) ∈ D(f)∩D(g), we define the theta
function of L with respect to (f, g) by (3.0.1). More generally we put for c, b ∈ L
and (τ, x) ∈ D(f) ∩D(g)

Θf,g
L,c,b(τ, x) :=

∑
ξ∈L+c/2

(
µ(ξ · f)− µ(ξ · g)

)
qQ(ξ) e2πiξ·(x+b/2), (3.3.1)

so that Θf,g
L,0,0 = Θf,g

L . It is clear that Θf,g
L,c,b depends up to sign only on the class

of c and b in L/2L. We will later want to show that in case f, g ∈ SL the function
Θf,g
L,c,b(τ, x) has nice analytical properties. To see that Θf,g

L,c,b(τ, x) is well-defined
we have to see that the sum (3.3.1) converges absolutely and locally uniformly on
D(f) ∩D(g).

Case 1: f, g ∈ SL.
We check the convergence only for (3.0.1) (for (3.3.1) this is analogous). Let

N := −f · g. It is enough to show the absolute convergence of (3.0.1) with ξ
running in 1

N

(
〈f, g〉⊕〈f, g〉⊥

)
instead of in L. So it is enough to check the absolute
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convergence of
∑
η∈ 1

N 〈f,g〉⊥
qQ(η)e2πiη·x (which holds even on H× LC as 〈f, g〉⊥ is

positive definite), and that of

∞∑
a=1

∞∑
b=0

qab/Ne2πi(af−bg)·x/N ,
∞∑
b=1

∞∑
a=0

qab/Ne2πi(−af+bg)·x/N ,

which converge absolutely on D(f)∩D(g). We shall see in 3.4 that Θf,g
L and Θf,g

L,c,b

have meromorphic continuations to H× LC.

Case 2: f, g ∈ CL.
Then Θf,g

L,c,b(τ, x) depends only on the classes of f and g modulo R+. To check
the absolute and locally uniform convergence of (3.3.1) on H×LC, we write ξ ∈ LR
as af + bg + ξ⊥ with a, b ∈ R and ξ⊥ ∈ 〈f, g〉⊥R . Since then Q(ξ) = Q(af + bg) +
Q(ξ⊥), it is enough to show that there is an C > 0 such that for ξ = af + bg ∈
〈f, g〉R with (ξ · f)(ξ · g) ≤ 0 we have Q(ξ) > C(a2 + b2). On 〈f, g〉 the quadratic
form has type (1, 1). Therefore we have (f · g)2 > 4Q(f)Q(g). The inequality
(af · g + 2bQ(g))(2aQ(f) + bf · g) ≤ 0 can be rewritten (f ·g)2+4Q(f)Q(g)

f ·g ab ≥
−2Q(f) a2 − 2Q(g) b2. Therefore we get

Q(ξ) = Q(f) a2 + (f · g) ab+Q(g) b2 ≥ (f · g)2 − 4Q(f)Q(g)
(f · g)2 + 4Q(f)Q(g)

(
−Q(f) a2−Q(g) b2

)
,

and, using that Q(f) < 0, Q(g) < 0, the result follows. Note that the argument also
shows that, in case f, g ∈ CL, the sum (3.3.1) makes sense as a formal power series:
for each integer k it contains only a finite number of summands qQ(ξ)e2πiξ·(x+b/2)

with Q(ξ) ≤ k.

Case 3: f ∈ SL, g ∈ CL.
To see that (3.3.1) converges, we note that Θg,f

L,c,b(τ, x) = Θh,f
L,c,b(τ, x) +

Θg,h
L,c,b(τ, x) if h ∈ CL and any two of the three theta series converge. By the

absolute convergence of (3.3.1) for f, g ∈ CL we can therefore assume that g ∈ L.
We split the sum (3.3.1) into two parts, the first consisting of the summands with
ξ · f 6= 0 and the second consisting of those with ξ · f = 0. The first sum converges
for |=(f · x)/=(τ)| < 1. The second sum can be rewritten for (τ, x) ∈ D(f) as

∑
n≥0

e2πinf ·(x+b/2)
∑
ξ·f=0

f ·g≤ξ·g<0

qQ(ξ)e2πiξ·(x+b/2)

=
1

1− e2πif ·(x+b/2)

∑
t∈P0

∑
ξ∈〈f,g〉⊥

qQ(ξ+t)e2πi(ξ+t)·(x+b/2),
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for a suitable finite set P0. Thus the result follows since 〈f, g〉⊥ is positive definite.
This also shows that Θf,g

L,c,b(τ, x) for f ∈ SL and g ∈ CL has a meromorphic
extension to |=(f · x)/=(τ)| < 1, and is given there by the Fourier expansion

Θf,g
L,c,b(τ, x) :=

∑
ξ·f 6=0

(
µ(ξ · f)− µ(ξ · g)

)
qQ(ξ)e2πiξ·(x+b/2) (3.3.2)

+
1

1− e2πif ·(x+b/2)

∑
ξ·f=0

f ·g≤ξ·g<0

qQ(ξ)e2πiξ·(x+b/2),

the sums running through ξ ∈ L+c/2. The argument also shows that (3.3.2) makes
sense as a formal power series, i.e., for every k ∈ Z>0 there are only finitely many
ξ in the sum with Q(ξ) < k.

Remark 3.4. For f, g, h ∈ CL ∪ SL and (τ, x) ∈ D(f)∩D(g)∩D(h) we have the
cocycle condition Θf,g

L,c,b(τ, x) + Θg,h
L,c,b(τ, x) = Θf,h

L,c,b(τ, x).

Proof. This is immediate from the definitions. �

Note that the set D(f)∩D(g)∩D(h) is always nonempty. Therefore the cocycle
condition continues to hold after meromorphic extension of the Θf,g

L,c,b(τ, x).

3.3. Jacobi forms

We briefly recall the notion of a Jacobi form in the form in which we need it. (For
more details in the one variable case see [E-Z]. In the one-variable case Q(x) is just
mx2, where m is the index.)

Definition 3.5. Let L be a lattice of rank r, and denote the quadratic form
on L by Q : L −→ 1

2Z as usual. Denote by ML the set of meromorphic maps

f : H×LC → C. For v = (λ, µ) ∈ LR2 and for A =
(
a b

c d

)
∈ Γ, and k ∈ Z we define

maps |v : ML −→ML and |kA : ML −→ML by putting

f |v(τ, x) := qQ(λ) exp(2πi(λ · (x+ µ/2))f(τ, x+ λτ + µ), (3.5.1)

f |kA(τ, x) := (cτ + d)−k exp
(
−2πi

cQ(x)
cτ + d

)
f

(
aτ + b

cτ + d
,

x

cτ + d

)
.

(3.5.2)

We view elements v = (v1, v2), w = (w1, w2) ∈ LR2 as row vectors with entries
in LR and denote by 〈v, w〉 := v1 ·w2−v2 ·w1 the corresponding “determinant” and
by vA the application of A ∈ SL(2,R) to v. Then |v and |kA have the following
compatibility properties:
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Remark 3.6.

1) |kA defines an action of the group SL(2,R) on ML.
2) (f |v)|w = eπi〈v,w〉f |(v + w) = e2πi〈v,w〉(f |w)|v,
3) (f |v)|kA = (f |kA)|vA.

Proof. The proof is elementary and is completely analogous to that of Theorem 1.4
in [E-Z]. �

In the situation of Definition 3.5, we call a function f ∈ ML a holomorphic
Jacobi form of weight k with respect to (Γ, L) if

1) f |(λ, µ) = (−1)λ·µf for all (λ, µ) ∈ L2.
2) f |kA = f for all A ∈ Γ.
3) f is holomorphic in H × LC and holomorphic in the cusps (in a suitable

sense).
A function f ∈ ML satisfying only 1) and 2) will be called a meromorphic Jacobi
form of weight k. In this paper we use only meromorphic Jacobi forms and hence
do not explain the holomorphy condition at the cusps in 3).

Remark 3.7. It is evident from the definitions that, for a Jacobi form f of weight
k for a lattice L and Γ ⊂ SL(2,Z), the function (τ, z) 7→ f(τ, yz) on H × C will
be for every y ∈ L a Jacobi form of weight k and index Q(y) for Γ in the sense
of [E-Z].

Example 3.8. Let L be a positive definite lattice of rank r, and let T, V, S be as
in (2.5.4). The theta function ΘL : H× LC → C of L is given by

ΘL(τ, x) :=
∑
ξ∈L

qQ(ξ)e2πiξ·x =
∑
ξ∈L

1|(ξ, 0).

We obviously have ΘL|(λ, µ) = (−1)λ·µΘL for all (λ, µ) ∈ L× L, and θ−rΘL|V =
ΘL, θ−rΘL|T = (θ0

01)−rΘL|(0, w/2) for a characteristic vector w of L. Note that

ΘL =
∑
l∈P

ΘL′ |(l, 0)

for any sublattice L′ ⊂ L and P a system of representatives of L/L′.
Let N be the index of L in L∨, and let P be a system of representatives for L∨

modulo L. Then it is a standard fact that(
θ−rΘL

)∣∣S =
1√
N

∑
t∈P

(
θ−rΘL

)∣∣(t, 0).

In particular, if L is unimodular, then θ−rΘL is a (meromorphic) Jacobi form of
weight 0 for Γθ, and if L is in addition even, it is a Jacobi form of weight 0 for
SL(2,Z).
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3.4. Properties of Θf,g
L for f, g ∈ SL

Theorem 3.9. Let L be a unimodular lattice of type (r − 1, 1); let f, g ∈ SL and
c, b ∈ L. Then

1) Θf,g
L and Θf,g

L,c,b have meromorphic extensions to H× LC.

2) Θf,g
L,c,b(τ, x) = −(−1)c·bΘf,g

L,c,b(τ,−x).

3) For |=(f · x)/=(τ)| < 1, |=(g · x)/=(τ)| < 1 we have the Fourier develop-
ments

Θf,g
L (τ, x) =

1
1− e2πif ·x

∑
ξ·f=0

f·g≤ξ·g<0

qQ(ξ)e2πiξ·x

− 1
1− e2πig·x

∑
ξ·g=0

f·g≤ξ·f<0

qQ(ξ)e2πiξ·x

+ 2
∑

ξ·f>0>ξ·g
qQ(ξ) sinh(2πiξ · x), (3.9.1)

Θf,g
L,c,b(τ, x) =

1
1− e2πif ·(x+b/2)

∑
ξ·f=0

f·g≤ξ·g<0

qQ(ξ)e2πiξ·(x+b/2)

− 1
1− e2πig·(x+b/2)

∑
ξ·g=0

f·g≤ξ·f<0

qQ(ξ)e2πiξ·(x+b/2)

(3.9.2)

+ 2
∑

ξ·f>0>ξ·g
qQ(ξ) sinh(2πiξ · (x+ b/2)),

where in (3.9.1) and (3.9.2) the ξ run through L and L+ c/2 respectively.

4) Θf,g
L /θσ(L) is a meromorphic Jacobi form of weight 1 for (L,Γθ).

5) For all λ, µ in L and for any characteristic vector w of L we have

Θf,g
L,c,b|(λ, µ) = (−1)cµ−bλ+λµΘf,g

L,c,b,

(Θf,g
L,c,b/θ

σ(L))|1S = 1−b·c/4Θf,g
L,b,c/θ

σ(L),

(Θf,g
L,c,b/θ

σ(L))|1T = 13Q(c)/4−c·w/4Θf,g
L,c,b−c+w/(θ

0
01)σ(L),

(Θf,g
L,c,b/θ

σ(L))|1V = 1Q(c)/2Θf,g
L,c,b/θ

σ(L),

(Θf,g
L,c,b/θ

σ(L))|1W = 1−Q(c)/4−c·b/4Θf,g
L,w−c+b,c/(θ

0
10)σ(L).

Proof. The main idea in the proof is to give an alternative definition of the functions
Θf,g
L and Θf,g

L,c,b, which allows us to relate them to the function F (τ ;u, v) from
Section 3.1 and theta functions of positive definite lattices.
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In this proof |A with A ∈ SL(2,Z) always stands for |1A. If H is the hyperbolic
lattice of type (1, 1), and f, g are generators of H with Q(f) = Q(g) = 0, f ·g = −1,
then we get immediately from the formulas (3.0.1) and (3.0.2) that

Θf,g
H (τ, x) = F (τ ;−2πif · x, 2πig · x)

for all (τ, x) ∈ H×HC with 0 < =(f · x) < =(τ), 0 < =(g · x) < =(τ), and by the
results cited in Section 3.1 this shows properties 1), 2), 3) and 4) for Θf,g

H (τ, x).
Similarly, let f and g be vectors generating a lattice L with quadratic form

given by Q(f) = Q(g) = 0, f · g = −N ∈ Z<0. Then we also see from the results
of Section 3.1 that

Θf,g(τ, x) := F (Nτ ;−2πif · x, 2πig · x)

fulfills Θf,g|(λ, µ) = (−1)λ·µΘf,g for all (λ, µ) ∈ L × L∨. For a system R of
representatives of L modulo L∨ we also get immediately that

Θf,g|S =
1
N

∑
t∈R

Θf,g|(t, 0),

and Θf,g|T = Θf,g

Now let L be arbitrary of type (r− 1, 1) and f, g ∈ SL with f · g = −N ∈ Z<0.
Let L0 := 〈f, g〉 ⊕ 〈f, g〉⊥. Let P be a system of representatives for L modulo L0.
For each x ∈ LC we denote by xf,g and x⊥ the orthogonal projections to 〈f, g〉C
and 〈f, g〉⊥C . We write Θ⊥ for Θ〈f,g〉⊥ . For τ ∈ H, x ∈ LC, t ∈ LQ we denote

(Θf,g �Θ⊥)(τ, x) := Θf,g(τ, xf,g) ·Θ⊥(τ, x⊥),(
(Θf,g �Θ⊥)|(t, 0)

)
(τ, x) :=

(
Θf,g|(tf,g, 0)

)
(τ, xf,g) ·

(
Θ⊥|(t⊥, 0)

)
(τ, x⊥).

Note that for t ∈ L the function (Θf,g �Θ⊥)|(t, 0) depends only class of t in L/L0.
We define the function Θ̃f,g

L on H× LC by

Θ̃f,g
L :=

∑
t∈P

(Θf,g �Θ⊥)|(t, 0), (3.9.3)

and for c, b ∈ L we write Θ̃f,g
L,c,b := Θ̃f,g

L |(c/2, 0)|(0, b/2).

Claim. For 0 < =(f · x) < =(τ), 0 < =(g · x) < =(τ) we have Θf,g
L,c,b(τ, x) =

Θ̃f,g
L,c,b(τ, x) (in particular we get the meromorphic continuation of Θf,g

L,c,b to H×LC).
To prove the claim we can choose a system of representatives P of L/L0 such

that all t ∈ P satisfy −f · g > (t+ c/2) · f ≥ 0, −f · g > (t+ c/2) · g ≥ 0. Then we
get for every ξ ∈ L0 that ξ · f ≥ 0 if and only if (ξ+ t+ c/2) · f ≥ 0 and ξ · g ≥ 0 if
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and only if (ξ + t+ c/2) · g ≥ 0. Using this the formula (3.5.1) gives for t ∈ P and
(τ, x) ∈ D(f) ∩D(g) that(

(Θf,g �Θ⊥)|(t, 0)|(c/2, 0)|(0, b/2)
)
(τ, x) =∑

ξ∈L0+c/2+t

(
µ(ξ · f)− µ(ξ · g)

)
qQ(ξ)e2πiξ·(x+b/2),

and the claim follows by summing over t ∈ P . We will in future also write Θf,g
L

and Θf,g
L,c,b for their meromorphic extensions Θ̃f,g

L and Θ̃f,g
L,c,b

Proof of 2). By Section 3.1 we have Θf,g(τ,−xf,g) = −Θf,g(τ, xf,g) and by
Example 3.8 we have Θ⊥(τ,−x⊥) = Θ⊥(τ, x⊥). Thus the definition of Θ̃f,g

L gives
that Θf,g

L (τ,−x) = −Θf,g
L (τ, x). Therefore

Θf,g
L,c,b(τ,−x) =

(
Θf,g
L |(c/2, 0)|(0, b/2)

)
(τ,−x)

= −
(
Θf,g
L |(−c/2, 0)|(0,−b/2)

)
(τ, x) = −(−1)b·cΘf,g

L,c,b(τ, x).

Proof of 3). We can assume b = 0. By definition we have on D(f) ∩D(g):

Θf,g
L,c,0(τ, x) =

( ∑
ξ·f=0
ξ·g<0

−
∑
ξ·g=0
ξ·f<0

)
qQ(ξ)e2πiξ·x + 2

∑
ξ·f>0>ξ·g

qQ(ξ) sinh(2πiξ · x),

the sums running over ξ ∈ L + c/2. The last sum converges obviously for |=(f ·
x)/=(τ)| < 1, |=(g · x)/=(τ)| < 1, and on D(f) ∩D(g) we have∑

ξ·f=0
ξ·g<0

qQ(ξ)e2πiξ·x =
1

1− e2πif ·x

∑
ξ·f=0

f·g≤ξ·g<0

qQ(ξ)e2πiξ·x.

The sum on the right hand side converges on H× LC, since it can be rewritten as∑
t∈P+c/2
t·f=0

( ∑
ξ∈〈f,g〉⊥

qQ(ξ)e2πiξ·x

)
|(t, 0)

for a suitable system P of representatives of L/L0, where the inner sum converges
absolutely because 〈f, g〉⊥ is positive definite.

To prove the theorem it is now enough to show 5). Let (λ, µ) ∈ L2. Then

Θf,g
L,c,b|(λ, µ) =

∑
t∈P

(Θf,g �Θ⊥)|(t, 0)|(c/2, 0)|(0, b/2)|(λ, µ)

=
∑
t∈P

(−1)c·µ−b·λ+λ·µ(Θf,g �Θ⊥)|(0, µ)|(λ+ t, 0)|(c/2, 0)|(0, b/2)

=
∑
t′∈P ′

(−1)c·µ−b·λ+λ·µ(Θf,g �Θ⊥)|(t′, 0)|(c/2, 0)|(0, b/2)

= (−1)c·µ−b·λ+λ·µΘf,g
L,c,b,
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where P ′ is another system of representatives. Let w be a characteristic vector of
L. Then

(Θf,g
L,c,b/θ

σ(L))|T =
∑
t∈P

(
(Θf,g �Θ⊥)/θσ(L))|(t, 0)|(c/2, 0)|(0, b/2)|T

=
∑
t∈P

(
(Θf,g �Θ⊥)/θσ(L))|T |(t, t)|(c/2, c/2)|(0, b/2)

= (θ0
01)−σ(L)

∑
t∈P

(Θf,g �Θ⊥)|(0, w/2)|(t, t)|(c/2, c/2)|(0, b/2)

= (θ0
01)−σ(L)

∑
t∈P

(−1)t·(t−w)(Θf,g �Θ⊥)|(t, 0)|(0, w/2)|(c/2, c/2)|(0, b/2)

= 13Q(c)/4−c·w/4(θ0
01)−σ(L)Θf,g

L,c,b−c+w.

Applying |T twice we get

(Θf,g
L,c,b/θ

σ(L))|V = 1Q(c)/2(Θf,g
L,c,b/θ

σ(L)).

Let R be a system of representatives for L∨0 /L0 and let N be the index of L0 in L.
Then

(Θf,g
L,c,b/θ

σ(L))|S =
∑
t∈P

(Θf,g|S � (Θ⊥/θσ(L))|S)|(0,−t)|(0,−c/2)|(b/2, 0)

=
∑
t∈P

∑
r∈R

1
N
θ−σ(L)(Θf,g �Θ⊥)|(r, 0)|(0,−t)|(0,−c/2)|(b/2, 0)

= 1−b·c/4
∑
r∈R

(∑
t∈P

1
N

1−ir·tθ−σ(L)(Θf,g �Θ⊥)|(r, 0)

)
|(b/2, 0)|(0, c/2).

The inner sum is zero unless r ∈ L∨ = L. Thus we get (Θf,g
L,c,b/θ

σ(L))|S =
1−b·c/4Θf,g

L,b,c/θ
σ(L).

Finally we get

(Θf,g
L,c,b/θ

σ(L))|W = (Θf,g
L,c,b/θ

σ(L))|V −1|T |S

= 1Q(c)/4−c·w/4
(

(θ0
01)−σ(L)Θf,g

L,c,b−c+w

)
|S

= 1−Q(c)/4−b·c/4(θ0
10)−σ(L)Θf,g

L,w−c+b,c.

�
Remark 3.10. We mention a (very) partial generalization of the theta functions
to unimodular lattices L of type (r−s, s) with r−s ≥ s. Let F := (f1, . . . , fs), G :=
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(g1, . . . , gs), where the fj, gj are primitive elements of L with Q(fj) = Q(gj) = 0,
fj · gj < 0 and fj · fl = fj · gl = gj · gl = 0 if j 6= l. On the set of (τ, x) with
0 < =(fj · x) < =(τ), 0 < =(gj · x) < =(τ) for all j we define ΘF,G

L and ΘF,G
L,c,b for

c, b ∈ L by

ΘF,G
L (τ, x) =

∑
ξ∈L

( s∏
i=1

(
µ(fi · ξ)− µ(gi · ξ)

))
qQ(ξ)e2πiξ·x, (3.10.1)

ΘF,G
L,c,b(τ, x) =

∑
ξ∈L+c/2

( s∏
i=1

(
µ(fi · ξ)− µ(gi · ξ)

))
qQ(ξ)e2πiξ·(x+b/2).

(3.10.2)

Now let f := fs, g := gs, Fs := (f1, . . . , fs−1), Gs := (g1, . . . , gs−1), and let
L0 = 〈f, g〉 ⊕ 〈f, g〉⊥ and Θ⊥ := ΘFs,Gs

〈f,g〉⊥ . Then the same arguments as above

show that ΘF,G
L is defined inductively by the right hand side of (3.9.3) and that

ΘF,G
L,c,b = ΘF,G

L |(c/2, 0)|(0, b/2). Furthermore 1), 2), 3) and 5) of Theorem 3.9 still
hold, if we replace everywhere Θf,g

L by ΘF,G
L and Θf,g

L,c,b by ΘF,G
L,c,b and interpret

3) as an inductive definition of a Fourier development of ΘF,G
L , ΘF,G

L,c,b on the set of
(τ, x) with |=(fj · x)/=(τ)| < 1, |=(gj · x)/=(τ)| < 1 for all j, using the notations
just introduced. We also have to replace |1 by |s, and instead of 4) we obtain that
ΘF,G
L /θσ(L) is a meromorphic Jacobi form of weight s for L and Γθ. The proofs are

straightforward generalizations of the proof of Theorem 3.9.

3.5. The structure theorem for the theta functions

Notation 3.11. In this section let L be a unimodular lattice of type (r − 1, 1),
let c ∈ L, and let f, g ∈ SL. Let x ∈ L, and assume f · x 6= 0 if c · f is even and
g · x 6= 0 if c · g is even. Then we put for (τ, z) ∈ H× C

ϕf,gL,c(τ, x · z) := 1−3/8c·c 2θ(τ)−σ(L)

f(τ)
Θf,g
L,c,c

(
τ,

xz

2πif(τ)

)
e2Q(x)G(τ)z2/f(τ)2

.

When in future we write ϕf,gL,c(τ, x · z) we will assume implicitly that the above
conditions on f, g, c, x are fulfilled.

It is well known that for a (one-variable) Jacobi form φ(τ, z) of weight k and
index m for Γ ⊂ SL(2,Z) the coefficient wn(τ) of zn in the Taylor development

φ(τ, z)e−8π2mz2G2(τ) :=
∑
n≥0

wn(τ)zn

is a modular form of weight k+n for Γ. This follows readily from the transformation
behavior

G2

(
aτ + b

cτ + d

)
= (cτ + d)2G2(τ) − c(cτ + d)

4πi
,

(
a b
c d

)
∈ SL(2,Z) (3.11.1)
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of the quasi-modular form G2. We show a similar result for ϕf,gL,c(τ, x · z), giving
however a much more precise description of the coefficients.

Definition 3.12. Let m = m(L, f, g) := min
{
w ·w

∣∣ w ∈ L characteristic, w · f ≥
0 ≥ w · g

}
. Note that (σ(L) −m)/8 is an integer. Let

B(L, f, g) :=
{
w ∈ L characteristic

∣∣ w · w < σ(L), (w · f)(w · g) ≤ 0
}
,

Bi(L, f, g) :=
{
w ∈ B(L, f, g)

∣∣ w · f < 0 < w · g
}
,

Bf (L, f, g) :=
{
w ∈ B(L, f, g)

∣∣ 0 = w · f > w · g ≥ 2f · g
}
,

Bg(L, f, g) :=
{
w ∈ B(L, f, g)

∣∣ 0 = w · g > w · f ≥ 2f · g
}
.

The elements w ∈ B(L, f, g) are called basic classes for (L, f, g). Usually we drop
(L, f, g) in the notation. Note that the sets Bi, Bf and Bg are finite. For (τ, x) ∈
H⊗ LC we put

Ωf,gL,c(τ, x) :=−
∑
w∈Bf

(−1)c·(w+c)/2qQ(w)/4e−w·x

1− (−1)c·fe−2f ·x +
∑
w∈Bg

(−1)c·(w+c)/2qQ(w)/4e−w·x

1− (−1)c·fe−2g·x

+
∑
w∈Bi

qQ(w)/4((−1)c·(w+c)/2e−w·x − (−1)c·(−w+c)/2ew·x
)
.

(3.12.1)

For x ∈ LC we also write

Of,gL,c(x) :=−
∑
w∈Bf
w·w=m

(−1)c·(w+c)/2e−w·x

1− (−1)c·fe−2f ·x +
∑
w∈Bg
w·w=m

(−1)c·(w+c)/2ew·x

1− (−1)c·ge−2g·x

+
∑
w∈Bi
w·w=m

(
(−1)c·(w+c)/2e−w·x − (−1)c·(−w+c)/2ew·x

)
,

(3.12.2)

so that Of,gL,c(x) is the leading term of Ωf,gL,c(τ, x) (coefficient of qm/2) as q → 0.

Theorem 3.13.

1) ϕf,gL,c(τ, x · z) has a Laurent development

ϕf,gL,c(τ, x · z) =
∑
n≥−1

wn(τ)zn,

where each wn(τ) is a modular function for Γu. More precisely,
2)

wn(τ) = Pn
( 1
U(τ)− 2

)
− 1(c·c−1−n)/4Pn

( 1
−U(τ)− 2

)
+Rn(U(τ)),



Vol. 4 (1998) Jacobi forms and Donaldson invariants 93

where Pn(t) is a polynomial of degree (σ(L) −m)/8 in t without constant
term and Rn(t) is a polynomial of degree ≤ (n+ 1)/2.

3) The polynomials Pn(t) are determined by the fact that
∑∞
n=−1Pn

(
1

Ũ(τ)−2

)
zn

is the principal part in (Ũ(τ) − 2) of the development of

4η(2τ)2

θ0
10(τ)σ(L)η(τ)4 Ωf,gL,c

(
τ, xz

η(2τ)2

η(τ)4

)
exp

(
Q(x)

(
8G2(τ) + 4e1(τ)

)η(2τ)4

η(τ)8 z
2
)

as a Laurent series
∑∞
n=−1

(∑∞
k=−(σ(L)−m)/8 an,k(Ũ(τ) − 2)m

)
zn in z

and Ũ(τ)− 2 .

4) The leading coefficients an of t(σ(L)−m)/8 in Pn(t) are given by

∞∑
n=−1

an z
n = 22−(σ(L)+3m)/4Of,gL,c(xz) e−Q(x)z2

.

Proof. 1) The properties of f from Section 2.2 and Theorem 3.9 show that for
l ∈ Z congruent to 2Q(c) modulo 2 the function θ(τ)−σ(L)f(τ)lΘf,g

L,c,c(τ, x) is a
(meromorphic) Jacobi form of weight l + 1 for Γu and L. Now let x satisfy the
conditions of notation 3.11. The Fourier development of Θf,g

L,c,c(τ, x) from part 2) of
Theorem 3.9, the fact that e3 is a modular form for Γθ and (3.11.1) and (3.5.2)
show that we get a Laurent development

θ(τ)−σ(L) f(τ)l Θf,g
L,c,c(τ, xz) e−8π2Q(x)G(τ)z2

=
∑
n≥−1

vn(τ)zn,

where each vn(τ) has the transformation behavior of a modular form of weight
l+ n+ 1 for Γu, which has only poles at the zeroes of θ(τ)σ(L)f(τ)−l. We see that
wn(τ) = 1−

3
8 c.c

2vn(τ)
(2πi)nf(τ)1+l+n , and the result follows as f(τ)2 is a modular form of

weight 2 for Γu (vn is zero unless 1 + l + n ∈ 2Z by part 3) of Theorem 3.9).

2) As U(τ) defines an isomorphism H/Γu ∪ {−1} ∪ {1} ∪ {∞} → P1 we see
that wn(τ) is a rational function in U(τ). The functions θ(τ) and f(τ) are holo-
morphic and nonzero on H, so wn(τ) can have poles only in the cusps. As U(τ)
sends the cusps ∞, 1, −1 to ∞, −2, 2 respectively, this shows that wn(τ) =
Pn
( 1
U(τ)−2

)
+ Qn

( 1
U(τ)+2

)
+ Rn(U(τ)) for suitable polynomials Pn, Qn and Rn.

As θ(τ) is holomorphic and nonzero at q = 0, and the q-developments of f(τ) and
U(τ) start in degree 1/8 and −1/4, the degree of Rn is at most (n + 1)/2. To
determine Pn and its degree we apply W ∈ SL(2,Z), which sends ∞ to −1. As
U |W = Ũ , and the q-development of Ũ(τ)−2 starts in degree 1, the degree of Pn is
the order of pole of the q-development of wn|W (τ). By definition the wn|W (τ) are
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the coefficients in the Laurent development in z of ϕf,gL,c(Wτ, x ·z), and by Theorem
3.9, and the results of Section 2.2 we get that

ϕf,gL,c(Wτ, x · z) := −
(

1c·c/4
4η(2τ)2

θ0
10(τ)σ(L)η(τ)4 Θf,g

L,w,c

(
τ,−xz η(2τ)2

πiη(τ)4

)
·
(3.13.1)

· exp
(
Q(x)(8G2(τ) + 4e1(τ))

η(2τ)4

η(τ)8

))
.

By 3.9 the lowest power of q occurring in the Fourier development of Θf,g
L,w,c(τ, x)

is qm/8. On the other hand the Fourier development of (θ0
10)−σ(L) starts with

q−σ(L)/8, and G2 (τ), e1 (τ), η (2τ)2/η (τ)4 are holomorphic and nonzero at
q = 0. Therefore the degree of Pn is (σ (L) − m) / 8. The formula Qn(t) =
1(c·c−n−1)/4Pn(−t) follows from the fact that VW transports∞ to 1 and f |V (τ) =
if(τ), U |V (τ) = −U(τ), Θf,g

L,c,c|V = 1c·c/4Θf,g
L,c,c, and therefore ϕf,gL,c(VWτ, x · z) =

1(c·c−1)/4ϕf,gL,c(Wτ,−ix · z), and finally U |V (τ)− 2 = −(U(τ) + 2).
The formula (3.13.1) shows that 3) holds if we replace Ωf,gL,c(τ, x) by

−
(
1c·c/4Θf,g

L,w,c(τ,− x
πi )
)
. But by definition their q-developments are congruent

modulo the ideal generated by qσ(L)/8. Therefore the result follows.
To show 4) we just have to compute the leading terms of the expressions occur-

ring in 3). So we use the congruences

η(τ)4/η(2τ)2 ≡ 1, G2(τ) + e1(τ)/2 ≡ −1/8, qσ(L)/8(θ0
10)−σ(L)≡2−σ(L)

modulo the ideal generated by q and Ũ(τ) − 2 ≡ 64q modulo the ideal generated
by q2, and the result follows. �

4. Application to Donaldson invariants

We want to apply the results about theta functions from Section 3 to get structural
results for the Donaldson invariants of a simply connected 4-manifold with b+ =
1. For this our lattice L will be the lattice H2(X,Z) with the negative of the
intersection form, i.e. Q = −2Q, σ(X) = −σ(L) and for a, b in H2(X,Z) we have
a · b = −AB where AB is the intersection product of the Poincaré duals.

4.1. Extension of the Donaldson invariants

The Donaldson invariant ΦX,HC is defined for H ∈ HX with Hξ 6= 0 for all ξ ∈
H2(X,Z) + C/2. In (2.5.3) we used it to define new formal power series ΨX,H

C

and Ψ
X,H

C . In this section we extend the definition of these invariants to arbitrary
H ∈ HX . To do this we apply the wall-crossing formulas Theorem 2.8 (we also use
the notations from there) and use the theta functions of Section 3.
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Definition 4.1. Fix H ∈ HX with Hξ 6= 0 for all ξ ∈ H2(X,Z) + C/2. Let
M ∈ HX and x ∈ H2(X,C), if M ∈ SX and a primitive representative of M has
even intersection with C, we also assume that xF 6= 0. Denote again by h, f, c ∈ L
the Poincaré duals of H,F,C. Then we put

ΨX,M
C (x · z, pr) := ΨX,H

C,r (x · z, pr)

+ 1−3Q(c)/4 Coeffu(τ)r+1

[
2θ(τ)σ(X)

f(τ)
Θm,h
L,c,c(τ,

xz
2πif(τ) ) e2Q(x)G(τ)z2/f(τ)2

]
,

Ψ
X,M

C (x · z, t) :=
∑
r≥0

ΨX,M
C (x · z, pr)tr+1. (4.1.1)

Here we view the expression in square brackets as a formal Laurent series in
q1/8 and z (i.e. it is a Laurent series in z, and the coefficient of zn is for every n
a Laurent series in q1/8) using the formulas (3.3.1) and (3.3.2) (in case M ∈ SX)
for Θm,h

c,c (τ, x), which, as we have seen, also make sense as formal power series.
We also define ΦX,MC (α) for α ∈ A∗(X) by putting ΦX,MC (xspr) to be s! times the
coefficient of zs in ΨX,M

C (x · z, pr) and extending linearly (this is compatible with
our previous definition of ΦX,MC ).

We check that Ψ
X,M

C (x · z, t) is well defined. If M ∈ HX with Mξ 6= 0 for all
ξ ∈ H2(X,Z) + C/2, we have to see that the definition coincides with (2.5.1). By
Theorem 2.8 we get (with the old definition) that

ΨX,M
C (x · z, pr)−ΨX,H

C (x · z, pr) =∑
M·ξ>0>H·ξ

1C
2/8(−1)(ξ−C/2)C Coeffu(τ)r+1

[
∆X
ξ (τ, x · z)

]
,

the sum running through ξ ∈ L + c/2. As f(τ) and u(τ) are power series in q
multiplied with q1/8 and q1/4, respectively, we can replace [∆X

ξ (τ, x·z)] by
[
∆X
ξ (τ, x·

z)− (−1)C
2
∆X
−ξ(τ, x · z)

]
/2, i.e. we get (4.1.1).

Now it follows immediately from the cocycle condition 3.4 that the definition
of ΨX,M

C (x · z, pr) above is independent of the choice of H.

Remark 4.2. The definition is motivated as follows:

1) For M ∈ HX lying on a wall defined by a class of type (C, d), the definition
gives ΦX,MC,d = ΦX,HC,d +

∑
δXξ,d/2 for H in any chamber containing L in

its closure, and ξ running through the classes of type (C, d) through M
with ξH < 0; in other words, we take the average over all chambers which
contain M in their closure.

2) If F ∈ SX , and its primitive representative has odd intersection with C,
then F lies in the closure of a unique chamber of type (C, d). Our definition
gives ΦX,FC,d := ΦX,HC,d for H in this chamber.
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3) If F ∈ SX , and its primitive representative in L has even intersection with
C, then F will in general lie on infinitely many walls defined by classes of
type (C, d), for every d. We would formally get from the definition (3.3.1)
that

ΨX,F
C (x · z, pr)−ΨX,H

C (x · z, pr) = Coeffu(τ)r+1[ ∑
ξ∈H2(X,Z)+C/2

(
µ(F · ξ)− µ(H · ξ)

)
1C

2/8(−1)(ξ−C/2)C∆X
ξ (τ, x · z)

]
,

if the sum in square brackets converged as a formal power series in z and
q. Instead, we first make an analytic continuation. Therefore we can view
the part of degree d−2r in z of ΨX,M

C (x ·z, pr) as a “renormalized average”
over the infinitely many chambers of type (C, d) having F in their closure.

Note that by (3.3.2) the function ΨX,M
C (x · z, pr) will, in the case that

both CF and C2 are even, usually be meromorphic in z (with a simple
pole at z = 0). This is the main reason why we introduced the notation
ΨX,M
C (x · z, pr) instead of ΦX,MC (exzpr) for the Donaldson invariants.

With this definition the connection between the difference of the Donaldson
invariants at period points F,G ∈ SX on the one hand and the theta functions
Θf,g
L,c,c and also the associated function ϕf,gL,c on the other becomes evident:

Corollary 4.3. Let F,G ∈ SX and f , g Poincaré duals of representatives in
H2(X,Z). Then

ΨX,F
C (x · z, pr)−ΨX,G

C (x · z, pr) = Coeffu(τ)r+1

[
ϕf,gL,c(τ, x · z)

]
.

Proof. This is straightforward from Definition 4.1, 3.11 and the cocycle condi-
tion 3.4. �

4.2. Blowup formulas

The blowup formulas relate the Donaldson invariants of a 4-manifold Y and Ŷ =
Y#P2. We have already used a small part of them in (2.5.2). In the case b+(Y ) > 1,
when the invariants do not depend on the chamber structure, they have been shown
in the most general form in [F-S1]. In [T1] they are shown also to hold in the case
b+(Y ) = 1, if one takes the chamber structure into account (see also [K-L]). We
cite only a weakened form, also avoiding the concept of related chambers.

Theorem 4.4 ([F-S1], [T1]). There exist universal polynomials Bk(t), Sk(t) ∈
Q[t] (k = 0, 1, . . . ) such that the following holds. Let X be a simply connected
4-manifold, let C ∈ H2(X,Z) be not divisible by 2, and, in case b+(X) = 1, let
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M ∈ H2(X,R)+ with Mξ 6= 0 for all ξ ∈ H2(X,Z)+C/2. Then for all α ∈ A∗(X)
we have

ΦX̂,MC (αek) = ΦX,MC (αBk(p)), ΦX̂,MC+E(αek) = ΦX,MC (αSk(p)). (4.4.1)

Here, as usual, p ∈ A∗(X) denotes the class of a point. Using the notation of
(2.5.3) and replacing α by exzpr, and rewriting everything in terms of the generating
series B(u, t) :=

∑
Bk(u)tk/k!, S(u, t) :=

∑
Sk(u)tk/k! ∈ Q[[u, t]], we can write

the blowup formulas as

ΨX̂,M
C (xz + te, pr) = ΨX,M

C (xz, B(p, t)pr),

ΨX̂,M
C+E(xz + te, pr) = ΨX,M

C (xz, S(p, t)pr) .
(4.4.2)

We now show that these formulas are compatible with our extension of the Don-
aldson invariants to HX , and give a formula for the power series B(u, t) and S(u, t)
in terms of theta functions. [F-S1] also gave explicit formulas for these power se-
ries, but in terms of elliptic functions. It is a (not completely trivial) exercise in
elliptic functions to show that these formulas are equivalent to ours. However, our
formulation, which we derive directly, is more practical for our purposes.

Proposition 4.5. The power series B(u, t), S(u, t) are determined by

B(U(τ), t) = et
2G(τ)/f(τ)2

θ00(τ, t
2πif(τ))/θ(τ), (4.5.1)

S(U(τ), t) = 1−1/8 et
2G(τ)/f(τ)2

θ11(τ, t
2πif(τ) )/θ(τ). (4.5.2)

Proof. We determine the formulas by making use of the universality. Let X be a
4-manifold with b+ = 1. We denote by X̂ the connected sum X#P̄2 and by E the
generator of H2(P̄2,Z); similarly, let X̃ := X̂#P̄2, and let F be the corresponding
generator. Let C ∈ H2(X,Z), C /∈ 2H2(X,Z). Let H,M ∈ HX with Mξ 6= 0 for
all ξ ∈ H2(X,Z) + C/2. By the proof of Lemma 4.1 of [G], Theorem 4.4 implies
that for all x ∈ H2(X,C)∑

Hξ<0<Mξ

(−1)ξCδXξ (exzprB(p, t)) =
∑

Hξ<0<Mξ

(−1)ξC
∑
n∈Z

δX̂ξ+nE(exz+tepr)

∑
Hξ<0<Mξ

(−1)ξCδXξ (exzprS(p, t)) =

1−1/8
∑

Hξ<0<Mξ

(−1)ξC
∑
n∈Z

(−1)nδX̂ξ+(n+1/2)E(exz+tepr),
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the sums running as usual over ξ ∈ H2(X,Z) + C/2 (note again the different
conventions from [G]). Now using Conjecture 2.5 in the same way as in the proof of
Lemma 4.5 of [G], we see that we can remove the sums

∑
Hξ<0<Mξ on both sides

in both equalities, so that

δXξ (exzprB(p, t)) =
∑
n∈Z

δX̂ξ+nE(exz+tepr)

for all ξ ∈ 1
2H

2(X,Z) with ξ2 < 0, and similarly for S(p, t). Specializing this to
x = 0 and applying Theorem 2.8, we get

Coeffu(τ)r+1

[
q−ξ

2/2θ(τ)σ(X)B(U(τ), t)/f(τ)
]

(4.5.3)

= Coeffu(τ)r+1

[
q−ξ

2/2
∑
n∈Z

qn
2/2ent/f(τ)et

2G(τ)/f(τ)2
θ(τ)σ(X)−1/f(τ)

]
= Coeffu(τ)r+1

[
q−ξ

2/2θ00(τ, t
2πif(τ) )et

2G(τ)/f(τ)2
θ(τ)σ(X)−1/f(τ)

]
If we assume that σ(X) < 0 (as we may, since the formula is supposed to be
universal), then all negative integers appear as 4ξ2, so this last formula holds for
all r and with ξ2 replaced by −N/4 for any integer N > 0. As f(τ) and u(τ) are
power series in q1/2 with nonvanishing constant term multiplied with q1/8 and q1/4,
respectively, and θ00(τ, t) is even in t, this implies the identity (4.5.1). The same
argument and the fact that θ11(τ, t) is odd in t imply the identity (4.5.2). �
Proposition 4.6. Let X be a simply connected 4-manifold with b+ = 1. Then
(4.4.2) holds for all M ∈ HX and all C ∈ H2(X,Z).

Proof. First we want to remove the assumption that C is not congruent to 0 modulo
2. Let M ∈ HX with Mξ 6= 0 for all ξ ∈ H2(X,Z), fix d, k ∈ Z ≥ 0. By (4.4.1)
with E replaced by F together with formula (2.5.2), we have for all α ∈ Ad(X)
and all ε > 0 sufficiently small

ΦX,M0 (αBk(p)) = ΦX̂,M+εE
E (eαBk(p)) = ΦX̃,M+εE

E (eαfk) = ΦX̂,M0 (αek),

ΦX,M0 (αSk(p)) = ΦX̂,M+εE
E (eαSk(p)) = ΦX̃,M+εE

E+F (eαfk) = ΦX̂,ME (αek).

To show that the blowup formulas hold for allM ∈ HX amounts to showing their
compatibility with Definition 4.1. Let L be a unimodular lattice and h,m ∈ CL∪SL.
Let L1 be the orthogonal direct sum L ⊕ 〈e〉, where Q(e) = 1/2. In view of
Proposition 4.5, compatibility with Definition 4.1 amounts to the identities

Θh,m
L1,c,c

(τ, xz + te) = θ00(τ, t) Θh,m
L,c,c(τ, xz),

Θh,m
L1,c+e,c+e(τ, xz + te) = 11/4θ11(τ, t) ΘH,M

L,c,c(τ, xz)

for c ∈ L and x ∈ L, and these are obvious from the definition of Θh,m
L,c,c

(eq. (3.3.1)). �
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4.3. The structure theorem for the differences

Let X be a simply connected 4-manifold with b+ = 1 and F,G ∈ SX , and use
the same letters for their primitive representatives in H2(X,Z). Since we want to
describe the differences of the Donaldson invariants at F and at G, we write

ΦX,F,GC := ΦX,FC − ΦX,GC , ΨX,F,G
C := ΨX,F

C −ΨX,G
C , Ψ

X,F,G

C := Ψ
X,F

C −Ψ
X,G

C .

Definition 4.7. Let M = M(X,F,G) := max
{
W 2

∣∣ W ∈ H2(X,Z) characteris-
tic, WF ≥ 0 ≥WG

}
. Note that M ≤ 0, M ≡ σ(X) (mod 8). Put

B = B(X,F,G) :=
{
W ∈ H2(X,Z)

characteristic
∣∣W 2 > σ(X), (WF )(WG) ≤ 0

}
,

BI = BI(X,F,G) :=
{
W ∈ B

∣∣WF > 0 > WG
}
,

BF = BF (X,F,G) :=
{
W ∈ B

∣∣ 0 = WF < WG ≤ 2FG
}
,

BG = BG(X,F,G) :=
{
W ∈ B

∣∣ 0 = WG < WF ≤ 2FG
}

(cf. Definition 3.12). The elements W ∈ B are the basic classes for (X,F,G). For
(τ, x) ∈ H× LC we put

ΩX,F,GC (τ, x) :=

−
∑

W∈BF

(−1)C(W+C)/2qW
2/8eWx

1− (−1)CF e2Fx +
∑

W∈BG

(−1)C(W+C)/2qW
2/8eWx

1− (−1)CGe2Gx

+
∑
W∈BI

qW
2/8((−1)C(W+C)/2eWx − (−1)C(−W+C)/2e−Wx).

(4.7.1)

For x ∈ LC we also write

OX,F,GC (x) :=−
∑
W∈BF
W2=M

(−1)C(W+C)/2eWx

1− (−1)CF e2Fx +
∑
W∈BG
W2=M

(−1)C(W+C)/2eWx

1− (−1)CGe2Gx

+
∑
W∈BI
W2=M

((−1)C(W+C)/2eWx − (−1)C(−W+C)/2eWx).
(4.7.2)

We put

A(τ, x · z) = θ0
10(τ)σ(X) 4η(2τ)2

η(τ)4 exp
(
−Q(x)

(
4G2(τ) + 2e1(τ)

)η(2τ)4

η(τ)8 z
2
)
.
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Theorem 4.8 (Structure theorem). Let x ∈ H2(X,Z). If BF 6= ∅ and CF is
even, assume that Fx 6= 0 and if BG 6= ∅ and CG is even, assume that Gx 6= 0.
Let k = (M − σ(X))/8.

1) ΦX,F,GC fulfills the k-th order simple type condition, i.e. ΦX,F,GC vanishes
identically if k ≤ 0 and ΦX,F,GC (α(p2− 4)k) = 0 for all α ∈ A∗(X) if k > 0.

2)

Ψ
X,F,G

C (x · z, t) =
∑
n≥−1

(
Pn

(
t

1− 2t

)
− 1−(C2+1+n)/4Pn

(
−t

1 + 2t

))
zn

for suitable polynomials Pn(y) (n ≥ −1) of degree ≤ k with no constant
term.

3) The polynomials Pn(y) are determined by the fact that Ψ
X,F,G

C (x · z, ũ(τ))
is the principal part in the development of A(τ, x ·z)ΩX,F,GC

(
τ, xz η(2τ)2

η(τ)4

)
as

a Laurent series in Ũ(τ)− 2.

4) ΨX,F,G
C

(
x · z, (1 + p/2)(p2 − 4)k−1

)
= 21+MOX,F,GC (x · z) eQ(x)z2/2.

Proof. We apply Theorem 3.13 to ϕf,gL,c(τ, x ·z) for L = H2(X,Z) with the negative
of the intersection form and f , g, c the Poincaré duals of F , G and C, respectively.
We obtain

Ψ
X,F,G

C (x · z, u(τ)) = ϕf,gL,c(τ, x · z)−
∑
n≥−1

Rn(U(τ)) zn,

where Rn(t) is the polynomial from Theorem 3.13. Therefore 2) and 3) follow
directly from parts 2) and 3) of Theorem 3.13. To show 1), note that by 2)

ΦX,F,GC

(
pr(p2 − 4)kxn/n!

)
= Coeffzntr+1

[
(t−2 − 4)k Ψ

X,F,G

C (x · z, t)
]

= Coefftr+1

[
(t−2 − 4)k

(
Pn

(
1

t−1 − 2

)
− 1−(C2+1+n)/4Pn

( −1
t−1 + 2

))]
,

which is 0 because Pn(y) has degree ≤ k and has no constant term.

To prove 4), let an be the coefficient of the leading term in Pn(y) as in Theorem
3.13. Then we get

ΨX,F,G
C

(
x · z, (1 + p/2)(p2 − 4)k−1) =

1
2

Coefft

[
(t−1 + 2)k(t−1 − 2)k−1

·
∑
n≥−1

(
Pn

(
1

t−1 − 2

)
− 1−(C2+1+n)/4Pn

(
−1

t−1 + 2

))]

=
1
2

Coefft

[
(t−1 + 2)k

∑
n≥−1

an (t−1 − 2)−1 zn

]
= 22k−1

∑
n≥−1

anz
n,
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so the result follows by part 4) of Theorem 3.13. �

Remark 4.9.

1) Now we view z as a complex variable. By the obvious identity

(−1)C(C+W )/2eWxz

1− (−1)CF e2Fxz =
∑
n≥0

(−1)C(C+W+2nF )/2e(W+2nF )xz (<(Fxz) < 0)

we can (again for <(Fxz) < 0) write

ΩX,F,GC (τ, x · z) =
∑
W∈B

(−1)C(C+W )/2 εW qW
2/8 eWxz,

εW =


1 WF > 0 ≥WG

−1 WF ≤ 0 < WG

0 otherwise.

Therefore we get that Ψ
X,F,G

C (x · z, ũ(τ)) is the principal part of the devel-
opment of

∑
W∈B

(−1)C(C+W )/2 εW qW
2/8 exp

(
Wxz

η(2τ)2

η(τ)4

)
A(τ, x · z)

as a Laurent series in Ũ(τ)−2, where the sum converges. We can therefore
view the elements of B as basic classes in the sense of the introduction. Note
that in general the signs εW will depend on the signs of <(Fxz), <(Gxz).

2) The principal part of the Laurent development of exp
(
Wxz η(2τ)2

η(τ)4

)
A(τ, x·z)

(i.e., up to a factor (−1)C(C+W )/2εW , the contribution of the basic class W
to Ψ

X,F,G

C (x · z, ũ(τ))) is

eWxzeQ(x)z2/2QkW ((Ũ (τ)− 2)−1, σ(X), z2Q(x),Wxz)

where kW = (W 2−σ(X))/8 and Qk(z1, z2, z3, z4) is a universal polynomial
of degree k. This can be seen by writing

A(τ, x · z) = q(σ(X)−W2)/8(q−1/8θ0
10(τ))σ(X) 4η(2τ)2

η(τ)4 ·

· exp
(
−Q(x)

(
4G2(τ) + 2e1(τ)

) η(2τ)4

η(τ)8 z
2
)
,
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and using the developments

q =
y

64
− y2

512
+ . . . ,

q−1/8θ0
10(τ) = 2 +

y

32
− y2

256
+ . . . ,

η(2τ)2

η(τ)4 = 1 +
y

16
− 5y2

1024
+ . . . ,

(4G2(τ) + 2e1(τ))
η(2τ)4

η(τ)8 =
1
2

+
y

8
− y2

256
+ . . . .

in y := Ũ(τ)− 2. The only term in the expression for A(τ, x · z) containing
negative powers of y will then be q(σ(X)−W2)/8. Writing

exp
(
bz
(

1 +
∑

aiy
i
))

= ebz · exp
(
bz
(∑

aiy
i
))

and expanding the second factor, the result follows. Using part 2) of
Theorem 4.8 we can also rewrite this result as follows: Up to a factor
(−1)C(C+W )/2εW the contribution of the basic class W to Ψ

X,F,G

C (x · z, t)
is

eWxzeQ(x)/2QkW ((t−1 − 2)−1, σ(X), z2Q(x),Wxz)

−1−C
2−1e−iWxze−Q(x)/2QkW ((−t−1−2)−1, σ(X),−z2Q(x),−iWxz).

3) As we noted in Remark 2.7, Γu is conjugate to Γ(2) via a matrix M ∈
GL(2,Z) sending ∞, 1,−1 to 1, 0,∞, respectively. Therefore we could re-
express our results in terms of developments of modular functions for Γ(2)
in powers of the modular function ū(τ) = u(Mτ), thus getting a connection
to the computations [W1], [W2] in theoretical physics.

Corollary 4.10. If σ(X) > −8, then Ψ
X,F

C is independent of F ∈ SX .

Proof. This is immediate from part 2) of Theorem 4.8, since k < 1. �
We also get another version of the blowup formulas.

Corollary 4.11. Let F,G ∈ SX and C ∈ H2(X,Z) and x ∈ H2(X,Z); we de-
note by the same letters the pullbacks to X̂ = X#P2, and by E the class of the
exceptional divisor. Let t be an indeterminate and set s = t η(2τ)2/η(τ)4. Then
we have

1) With respect to the developments in powers of Ũ(τ)−2, the function Ψ
X̂,F,G

C(
x · z + te, ũ(τ)

)
is the principal part of

Ψ
X,F,G

C

(
x · z, ũ(τ)

)
exp
(
s2(4G2(τ) + 2e1(τ))

)
·

· cosh(s)
∏
n>0

(1 + qne2s)(1 + qne−2s)
(1 + qn)2
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and Ψ
X̂,F,G

C+E
(
x · z + te, ũ(τ)

)
is the principal part of

Ψ
X,F,G

C

(
x · z, ũ(τ)

)
exp
(
s2(4G2(τ) + 2e1(τ))

)
·

· sinh(s)
∏
n>0

(1− qne2s)(1− qne−2s)
(1 + qn)2 .

2) In particular, putting M := M(X,F,G) and k := (M − σ(X)/8), we get

ΦX̂,F,GD (α(p2 − 4)k) = 0 for all α ∈ A∗(X̂) and all D ∈ H2(X̂,Z) and

ΦX̂,F,GC

(
exz+te(1 + p/2)(1− p2/4)k−1) =

ΦX,F,GC

(
exz(1 + p/2)(1− p2/4)k−1) cosh(t) e−t

2/2 ,

ΦX̂,F,GC+E

(
exz+te(1 + p/2)(1− p2/4)k−1) =

ΦX,F,GC

(
exz(1 + p/2)(1− p2/4)k−1) sinh(t) e−t

2/2 .

Proof. This follows from Propositions 4.5 and 4.6 by applying W and using the
standard identities(

θ−1θ00|W
)
(τ, t) = cosh(πit)

∏
n>0

(1 + qne2πit)(1 + qne−2πit)
(1 + qn)2 ,

(
θ−1θ11|W

)
(τ, t) = 11/8 sinh(πit)

∏
n>0

(1− qne2πit)(1− qne−2πit)
(1 + qn)2 .

We omit the details, which are not difficult. Notice that the principle used here
(as in the proof of Theorem 3.13) is that if the expansions of two functions at ∞
coincide and if both functions are known to be modular, then their expansions at
any other cusp also coincide. �

4.4. Speculations about the relation to Seiberg-Witten theory

Theorem 4.8 is closely related to expectations from Seiberg-Witten theory. The
elements W ∈ B are characteristic elements of H2(X,Z) and thus correspond to
Spinc-structures, and (W 2 − σ(X))/8 − 1 is the expected dimension of the cor-
responding Seiberg-Witten moduli space. The SW -basic classes are those classes
W for which the Seiberg-Witten invariant is not zero. X is of SW -simple type if
only classes for which the expected dimension is 0 give rise to nonzero invariants.
At least in the case b+ > 1, the set of SW -basic classes together with the corre-
sponding invariants and expected dimensions are conjectured [W1] to determine
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the Donaldson invariants of X by a universal formula, similar to Theorem 4.8. In
case b+ > 1 there is only a finite number of SW -basic classes.

In the case of b+ = 1 this relationship should still be there, but obscured by the
chamber structure both in Seiberg-Witten and Donaldson theory. According to the
program for proving the relation of Donaldson- and Seiberg-Witten invariants (see
[P-T1], [P-T2], [Fe-Le1], [Fe-Le2], [O-T1], [O-T2], [Te]) the Donaldson invariants
should be determined from the Seiberg-Witten invariants after a large perturbation
of the equation; the Donaldson invariants ΦX,gC,d for a metric should be more or
less given in terms of Seiberg-Witten invariants for perturbed equations, with the
perturbation depending on d. This also makes it possible that an infinite number
of basic classes contribute to ΦX,gC . Our formulas suggest however that for period
points F,G ∈ SX , the situation again becomes easier. Denote by SWL(W ) the
unperturbed Seiberg-Witten invariant for the Spinc-structure with first Chern-
class W , for the metric with period point L ∈ HX . It is well known that SWL(W )
is constant on both connected components of HX \ W⊥, and that for L+W >
0 > L−W we have SWL+(W ) = SWL−(W )± 1. This also shows that 4-manifolds
with b+ = 1 are, for essentially trivial reasons, usually not of SW -simple type.
Theorem 4.8 says that, for each class W for which SWL(W ) changes when going
from F to G, we get a contribution to the difference Ψ

X,F,G

C (x · z, t) given by a
universal formula. Classes orthogonal to F and G are treated in a special way.
Therefore we conjecture that our formula indeed yields the conjectured relation
between Donaldson and Seiberg-Witten invariants, viz.:

Conjecture 4.12. Let X a simply-connected 4-manifold with b+ = 1, F a primi-
tive representative of a class in SX , and B1 = {W ∈ H2(X,Z)| W characteristic,
W 2 > σ(X), WF = 0}. Then there is a system RF of representatives of B1

modulo 〈2F 〉 such that ΨX,F
C (ũ(τ), x · z) is the principal part in the development of

A(τ, xz) ΩX,FC

(
τ, xz η(2τ)2

η(τ)4

)
as a Laurent series in Ũ(τ) − 2, where

ΩX,FC (τ, x) :=−
∑

W∈RF

(−1)C(W+C)/2qW
2/8eWx

1− (−1)CF e2Fx

+
∑
W

qW
2/8(−1)C(W+C)/2SWNW (W )eWx.

In the second sum W runs through the characteristic elements of H2(X,Z) and, for
each W , the period point NW ∈ HX is chosen in such a way that (WNW )(WF ) > 0
(for a representative of NW with NWF > 0). If CF is odd and Fx = 0, we can
replace the first sum by −

∑
W (−1)C(W+C)/2qW

2/8eWx/2, with W now running
through any system of representatives of B1 modulo 〈2F 〉.

Note that this is compatible with the predictions of Witten in the simple type
case. One can suspect that a modification of this formula should work in the case
b+ > 1 (if 4-manifolds with b+ > 1 not of simple type do indeed exist).
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5. The case of rational algebraic surfaces

For rational algebraic surfaces X we shall see that there are always some G ∈ S(X)
such that ΦX,GC = 0 for all C ∈ H2(X,Z). Therefore Theorem 4.8 will give us
the structure of the Donaldson invariants ΦX,FC for F ∈ SX instead of only the
differences.

5.1. Donaldson invariants of P1 × P1 and P2#P̄2

As a first application of Theorem 4.8 we want to study the Donaldson invariants
of P1 × P1 and P2#P̄2, and thus of all rational ruled surfaces. We compute the
limit of these Donaldson invariants for the period point going to the boundary of
the positive cone. We also show that they satisfy certain relations, also for period
points in the inside of the positive cone. We use the following elementary result
from algebraic geometry:

Lemma 5.1 [Q2]. Let X −→ P1 be a rational ruled surface, F ∈ H2(X,Z) the
class of a fibre and H the class of a section of the ruling. If C ∈ H2(X,Z) fulfills
CF odd, then the moduli space MNF+H(C, c2) of NF + H stable rank 2 sheaves
on X is empty for all N ∈ Z>0 sufficiently large with respect to the second Chern
class c2. In particular, for any given d, the invariant ΦX,F+εH

C,d vanishes for all
sufficiently small ε > 0.

Notation 5.2.

1) Let F and G be the Poincaré duals of the classes of the fibres of the pro-
jections of P1 × P1 to its factors. We denote by P̂2 the blowup of P2
in a point and by E1 the class of the exceptional divisor. We denote
by F̄ := H − E1 the Poincaré dual of the fibre of the ruling of P̂2 and
Ḡ := H + E1, for H the pullback of the hyperplane class. Let σ : P̃2 → P̂2
be the blowup in a general point, with exceptional divisor E2. Then there
is a blowup ε : P̃2 → P1 × P1 in a point with exceptional divisor E such
that ε∗(F ) = σ∗(F̄ ), ε∗(G) = σ∗(H)− E2, E = ε∗(F )−E2.

2) We denote by f, g, f̄ , ḡ the Poincaré duals of F,G, F̄ , Ḡ respectively.

3) For X = P1 × P1 or X = P̂2 and L ∈ {F,G, F̄ , Ḡ}, C ∈ H2(X,Z) and
α ∈ Ad(X) we denote by ΦX,L+

C,d (α) := ΦX,L+εM
C,d (α) for M an ample divisor

and ε > 0 sufficiently small. As before we put ΦX,L+
C :=

∑
d ΦX,L+

C,d . Note
that if LC is odd then ΦX,L+

C = ΦX,LC .

Theorem 5.3.

1) For X = P1 × P1 and L ∈ {F,G} or X = P̂2, and L ∈ {F̄ , Ḡ} and for all
C ∈ H2(X,Z), the Donaldson invariants ΦX,LC vanish.
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2) For all r ≥ 0 and indeterminates s, t we have

ΦP1×P1,F+
0 (esf+tgpr) = −Coeffu(τ)r+1

[
coth

(
t

2f(τ)

)
e−2stG(τ)/f(τ)2

/f(τ)
]
,

ΦP̂2,F̄+
0 (esf̄+tḡpr) = ΦP1×P1,F+

0 (esf+2tgpr),

ΦP1×P1,F+
F (esf+tgpr) = −Coeffu(τ)r+1

[ e−2stG(τ)/f(τ)2

sinh( t
2f(τ))f(τ)

]
,

ΦP̂2,F̄+
F̄

(esf+tgpr) = ΦP1×P1,F+
0 (esf+2tgpr).

3) More generally we have for all a, b ∈ R>0

ΦP1×P1,aF+bG
F (esf+tgpr) = ΦP1×P1,aG+bF

G (esg+tfpr),

ΦP1×P1,aF+bG
0 (esf+tgpr) = ΦP1×P1,aG+bF

0 (esg+tfpr),

ΦP̂2,aF̄+bḠ
F̄

(esf̄+tḡpr) = ΦP1×P1,aF+2bG
F (esf+2tgpr)

− ΦP1×P1,2aF+bG
G (e2sf+tgpr)

= ΦP1×P1,2aF+bG
0 (e2sf+tgpr)

− ΦP1×P1,aF+2bG
0 (esf+2tgpr),

ΦP̂2,aF̄+bḠ
0 (esf̄+tḡpr) = ΦP1×P1,2aF+bG

0 (e2sf+tgpr)

− ΦP1×P1,aF+2bG
F (esf+2tgpr).

One can check that these formulas are compatible up to conventions with the
known results (e.g. [L-Q], [K-L], [E-G2]). Note that part 2) of the theorem implies
in particular Conjecture 6.2 from [E-G2].

Proof. 1) By Lemma 5.1 we get that

ΦP1×P1,F
F+G = ΦP1×P1,F

G = ΦP1×P1,G
F = ΦP̂2,F̄

H = ΦP̂2,Ḡ
H = ΦP̂2,F̄

E1
= ΦP̂2,Ḡ

E1
= 0.

Applying Corollary 4.10 it follows that ΦP1×P1,F
F = ΦP1×P1,G

G = 0. In the following
let x ∈ H2(P1 × P1,C) and y ∈ H2(P̂2,C). We apply Proposition 4.6 to obtain

ΦP̃2,ε
∗(F )

ε∗(F ) (exz+tepr) = ΦP1×P1,F
F (exzB(p, t)pr) = 0,

i.e. ΦP̃2,ε
∗(F )

ε∗(F ) = 0. Therefore we have by again using 4.6

ΦP̂2,F̄

F̄
(eyzpr) = ΦP̃2,ε

∗(F )
ε∗(F ) (eyzpr) = 0.
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Furthermore we have by repeating essentially the same argument

ΦP̃2,ε
∗(F )

E2
(exz+tepr) = −ΦP1×P1,F

F (exzS(p, t)pr) = 0,

and thus ΦP̂2,F̄
0 (eyzpr) = ΦP̃2,ε

∗(F )
E2

(e2e
yzpr) = 0. Finally we get

ΦP̃2,ε
∗(F )

E (eyz+tepr) = −ΦP̂2,F
F (eyzS(p, t)pr) = 0,

and thus ΦP1×P1,F
0 (exzpr) = ΦP̃2,ε

∗(F )
E (exzepr) = 0. The other cases follow by

symmetry.

2) Putting X = P1 × P1 and L := aF + bG for a, b ∈ R>0 and writing ν(t) :=
1 t > 0,

1/2 t = 0

0 t < 0,

we get by part 1), Definition 4.1 and formula (3.3.2) the formulas

ΦP1×P1,L
0 (exzpr) =∑
n,m>0

ν(bn− am) δP1×P1
nF−mG,d(e

xzpr)− Coeffu(τ)r+1 [L0(τ, xz)],

ΦP1×P1,L
F (exzpr) =∑
n,m>0

(−1)m ν
(
b(n− 1

2 )− am
)
δP1×P1
(n−1/2)F−mG,d(e

xzpr)− Coeffu(τ)r+1 [LF (τ, xz)],

where we have put

L0(τ, xz) = e−Q(x)z2G(τ)/f(τ)2 1 + e−Fxz/f(τ)

f(τ)
(
1− e−Fxz/f(τ)

) ,
LF (τ, xz) = 2

e−Q(x)z2G(τ)/f(τ)2

f(τ)
(
eFxz/(2f(τ)) − e−Fxz/(2f(τ))

) .
If a/b is sufficiently large, then for all n,m occurring in the sums above the number
nm is larger then (d + 3)/4 and thus δP1×P1

nF−mG,d = 0 and δP1×P1
(n−1/2)F−mG,d = 0.

Therefore
ΦP1×P1,F+

0 (exzpr) = −Coeffu(τ)r+1 [L0(τ, xz)],

ΦP1×P1,F+
F (exzpr) = −Coeffu(τ)r+1 [LF (τ, xz)].

The argument for P̂2 is analogous.

3) The first two identities are obvious by symmetry. Part 2) implies that, given
d, the other formulas hold until degree d in s, t for a/b sufficiently large. Note that
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by Theorem 2.4

ΦP1×P1,aF+bG
0 − ΦP1×P1,F+

0 =
∑
n,m>0

ν(bn− am)δP1×P1
nF−mG,

ΦP1×P1,aF+bG
F − ΦP1×P1,F+

F =
∑
n,m>0

(−1)m ν
(
b(n− 1

2 )− am
)
δP1×P1
(n−1/2)F−mG,

ΦP̂2,aF̄+bḠ
0 − ΦP̂2,F̄+

0 =
∑
n,m>0

(
ν(bn− am)δP̂2

nF̄−mḠ

+ ν
(
b(n− 1

2 )− a(m− 1
2 )
)
δP̂2
(n−1/2)F̄−(m−1/2)Ḡ

)
,

ΦP̂2,aF̄+bḠ
F̄

− ΦP̂2,F̄+
F̄

=
∑
n,m>0

(
ν
(
b(n− 1

2 )− am
)
δP̂2
(n−1/2)F̄−mḠ

− ν
(
bn− a(m− 1

2 )
)
δP̂2
nF̄−(m−1/2)Ḡ

)
.

Using Theorem 2.8, this reduces the proof to the easy identities∑
n,m>0

(
ν
(
b(n− 1

2 )− am
)
q(2n−1)me(2n−1)t−2ms

− ν
(
bn− a(m− 1

2 )
)
qn(2m−1)e2nt−(2m−1)s

)
=
∑
n,m>0

(
(−1)m ν(b(2n− 1)− am) q(n−1/2)me(2n−1)t−ms

− (−1)m ν(bn− a(2m− 1)) q(n−1/2)ment−(2m−1)s
)

=
∑
n,m>0

(
ν(bn− 2am) qnment−2ms − ν(2bn− am) qnm e2nt−ms

)
,

∑
n,m>0

(
ν(bn− am) q2nm e2nt−2ms + ν

(
b(n− 1

2 )

− a(m− 1
2 )
)
q(n−1/2)(2m−1) e(2n−1)t−(2m−1)s

)
=
∑
n,m>0

(
ν(bn− 2am) qnm ent−2ms

− (−1)m ν(b(2n− 1)− am) q(n−1/2)m e(2n−1)t−ms
)
.

�

5.2. The structure theorem for rational surfaces

We want to determine the structure of the Donaldson invariants of rational alge-
braic surfaces X at period points F in the boundary of the positive cone. We



Vol. 4 (1998) Jacobi forms and Donaldson invariants 109

already know that all the Donaldson invariants ΦP1×P1,F
C for F ∈ SP1×P1 vanish.

As the Donaldson invariants depend only on the diffeomorphism type of the pair
(X,F ), we can assume that X is P2 blown up in N points.

Notation 5.4. Let X be the blowup of P2 in N points. Let H ∈ H2(X,Z) be the
pullback of the hyperplane class from P2, and denote by E1, . . . , EN the classes of
the exceptional divisors. A class D ∈ H2(X,Z) is written as

D = (d0, d1, . . . , dN ) := d0H +
N∑
i=1

diEi

(uppercase and lowercase letters correspond). If d0 ≥ d1 ≥ . . . ≥ dN , we write
also D = (αn0

0 , . . . , αnkk ), where the αj are the different integers occurring in
d0, d1, . . . , dN with multiplicity nj > 0.

Corollary 5.5.

1) ΦX,H+Ej
C = 0 for all j ∈ {1 . . .N} and all C ∈ H2(X,Z).

2) If N < 9, then ΦX,FC = 0 for all F ∈ SX .

Proof. 1) holds by Theorem 5.3 in case N = 1 and follows by Proposition 4.6 in
the general case.

2) follows from 1) by Corollary 4.10. �
Definition 5.6. Let F ∈ H2(X,Z) be a representative of an element in SX , with
f0 ≥ f1. Let

B(X,F ) :=
{
W ∈ H2(X,Z)

∣∣ all wi odd, W 2 > −N + 1, (w0 − w1)WF ≤ 0
}
,

BI(X,F ) :=
{
W ∈ B(X,F )

∣∣ w0 − w1 < 0 < WF
}
,

BF (X,F ) :=
{
W ∈ B(X,F )

∣∣ 0 = WF < w0 − w1 < 2(f0 − f1)
}
, BG(X,F ) = ∅.

The nonnegative integer (W 2 + N − 1)/8 is the order of W ∈ B(X,F ). Usually
we will drop (X,F ) in the notation. We define ΩX,FC (τ, x) and OX,FC (x) by the
formulas (4.7.1) resp. (4.7.2) replacing BI(X,F,G), BF (X,F,G), BG(X,F,G), by
BI(X,F ), BF (X,F ), BG(X,F ) respectively.

Theorem 5.7. For a rational surface X and F ∈ SX , we can replace (X,F,G) by
(X,F ) everywhere in Theorem 4.8, Remark 4.6 and Corollary 4.11.

Proof. We put G := H +E1 in Theorem 4.8 and apply Corollary 5.5. �
Corollary 5.8. Let X be a rational surface. Then Conjecture 4.12 holds with
RF = BF . The set of characteristic elements W ∈ H2(X,Z) with SWNW (W ) 6= 0
is BI ∪ −BI .
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5.3. Examples

We want to finish the paper by giving a number of examples that illustrate our
main results. Also they should make it clear that, for any given pair (X,F ) of a
rational algebraic surface X and F ∈ SX , it is an elementary task to determine all
the basic classes for (X,F ) and their orders, and thus to compute the corresponding
Donaldson invariants completely. We will always give the elements in BF and −BI .

Remark 5.9. The following observations simplify the task of determining the
basic classes W for a given (X,F ) with F ∈ SX .

1) We can always assume that f0 ≥ f1 ≥ . . . ≥ fN ≥ 0 (if necessary change
the numbering of the Ei), and in this case an element W in BF ∪−BI must
satisfy w0 > 0 and w0 > wi for all i > 0.

2) If N − 1 ≥ 8 is divisible by 8 and (X,F ) is of strictly (N − 1)/8-th order
simple type, then all the fi are odd, and F is the only class in BF ∪−BI of
maximal order: any other such basic class V would have to satisfy V 2 = 0
and this already determines F .

3) For W ∈ BF also 2F −W ∈ BF , and thus we can get all elements W ∈ BF
from those with 0 ≤ w0 ≤ f0 of the same order.

4) If W ∈ BF ∪ −BI would fulfill w0 − w1 = 2(f0 − f1), then V := W − 2F
would be a basic class orthogonal to G, which does not exist. If W ∈ −BI
with w0 −w1 > 2(f0− f1), then also (W − 2F ) ∈ −BI , (in fact of a higher
order then W ). Therefore we obtain all W ∈ BF ∪ −BI from those with
0 < w0 − w1 < 2(f0 − f1).

5) If W ∈ −BI with WF ≤ 2wifi < 0 for some i, then V := W + 2wiEi ∈
BF ∪ −BI . If many of the fi are 1, this reduces considerably the number
of cases to consider; often one can exclude the existence of certain basic
classes by excluding that of corresponding elements of BF , which is easy
by 3).

To determine the basic classes in the following examples, we have used the above
observations and some additional elementary arguments.

(1) If F = (f0, f1, . . . , fs, 0, . . . , 0) with s ≤ 8, then ΦX,FC = 0 for all C (this
follows from Corollary 4.10 and Proposition 4.6).

(2) If f1 ≥ f0 − 1, then ΦX,FC = 0 for all C (use Remark 5.9, parts 3) and 4) ).

(3) If all fi are odd and N ≥ 9, then N − 1 is divisible by 8 and (X,F ) is of
strictly (N −1)/8-th order simple type. The only element of BF ∪−BI of maximal
order is F . Therefore we get for if CF odd,

ΦX,FC (exz(1 + p/2)(1− p2/4)(N−9)/8) = −(−1)C(C+F )/2eQ(x)z2/2/ cosh(Fxz)
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A particular case is that of N = 9 and F = (3, 19), where (X,F ) is of simple
type. In this case the result was, for CF odd, brought to our attention by John
Morgan, and later Zoltan Szabó informed us of some similar results in other cases
(see [M-Sz]). This has been one of the principal motivations for this work.

(4) If f0 = 2n (with n ≥ 2) and
∑
i≥1 fi ≥ 4n2 − 2n, and all fi are strictly

positive, then (X,F ) is strictly of
(
n
2

)
-th order simple type. (We omit the proof.)

One basic class of maximal order is (2n− 1, 1N).

(5) If F = (4, 22, 18) then (X,F ) is of simple type (see (4)). BF consists of
W = (3, 110) and 2F −W and BI = ∅. Therefore we obtain e.g.

ΦX,FE10
(exz(1 + p/2)) = eQ(x)z2/2 cosh((H +E1 +E2)xz)

cosh(Fxz)

(6) If F = (4, 2, 112) then (X,F ) is of simple type (see (4)). BF ∪−BI consists
of

W1 := (3, 113),

W i
1 := W1 − 2Ei (i = 2, . . . , 13),

W i
2 := (5, 3, 112) + 2Ei (i = 2, . . . , 13).

Of these, all but W1 lie in BF . So we obtain, e.g.,

ΦX,FE2

(
exz(1 + p/2)

)
=

eQ(x)z2/2

8

(
2 cosh(W1xz) +

13∑
i=2

(
1− 2δi,2

) cosh((H +E1 + 2Ei)xz)
cosh(Fxz)

)
.

(7) F = (4, 116): Also here (X,F ) is of simple type. BF ∪ −BI consists of

W1 := (3, 116),

W i
1 := W1 − 2Ei (1 ≤ i ≤ 16),

W i,j
1 := W1 − 2Ei − 2Ej (1 ≤ i < j ≤ 16),

W i,j
2 := W1 + 2H + 2Ei + 2Ej (1 ≤ i < j ≤ 16).

The W i,j
1 and the W i,j

2 lie in BF .

(8) F = (5, 25, 15). Also here (X,F ) is of simple type. The elements ofBF∪−BI
are W = (3, 110) and 2F −W .
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(9) If F = (5, 3, 116) then (X,F ) is of second order simple type. The unique
class in BF ∪ −BI of order 2 is F . The classes of order 1 are

W1 := (3, 117),

W i
1 := W1 − 2Ei (2 ≤ i ≤ 17),

W i,j
1 := W1 − 2Ei − 2Ej (2 ≤ i < j ≤ 17),

W i
2 := F + 2Ei (2 ≤ i ≤ 17),

W i,j
2 := F + 2Ei − 2Ej (2 ≤ i, j ≤ 17, i 6= j),

W i,j
3 := F + 2H + 2E1 + 2Ei + 2Ej (2 ≤ i < j ≤ 17).

The classes in BF are F , the W i,j
1 , the W i,j

2 and the W i,j
3 .

(10) If F = (5, 125) then (X,F ) is of 3-rd order simple type. The unique class
in BF ∪ −BI of order 3 is F . The classes of order 2 are

W i
1 := F + 2Ei, (1 ≤ i ≤ 25),

W i,j
1 := F + 2Ei − 2Ej , (1 ≤ i, j ≤ 25, i 6= j).

The classes of order 1 are

W J
2 := (3, 125)−

∑
j∈J

2Ej (J ⊂ {1, . . . , 25}, |J | ≤ 5),

W J1,J2
3 := F +

∑
j1∈J1

2Ej1 −
∑
j2∈J2

2Ej2

(J1, J2 ⊂ {1, . . . , 25} disjoint, |J1| = 2, |J2| ≤ 2),

W J
4 := (7, 125) +

∑
j∈J

2Ej , (J ⊂ {1, . . . , 25}, |J | = 5).

We finish by giving a list of the types of all boundary points F with 1 ≤ f0 ≤ 6
for which the ΦX,FC do not vanish identically. The verifications are elementary,
though quite tedious.

1-st order :

(3, 19), (4, 116), (4, 2, 112), (4, 22, 18), (5, 23, 113), (5, 24, 19), (5, 25, 15), (5, 3, 2, 112),
(5, 3, 22, 18), (5, 32, 17), (6, 26, 112), (6, 27, 18), (6, 28, 14), (6, 3, 24, 111), (6, 3, 25, 17),
(6, 3, 26, 13), (6, 32, 2, 114), (6, 32, 22, 110), (6, 32, 23, 16), (6, 33, 19).
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2-nd order :

(5, 2, 121), (5, 22, 117), (5, 3, 116), (6, 24, 120), (6, 25, 116), (6, 3, 2, 123), (6, 3, 22, 119),
(6, 3, 23, 115), (6, 32, 118), (6, 4, 120), (6, 4, 2, 116).

3-rd order :

(5, 124), (6, 136), (6, 2, 132), (6, 22, 128), (6, 23, 124), (6, 3, 127).

Note. Recently Moore and Witten [M-W] have used the methods of quantum field
theory to give a physical derivation of the structure of the Donaldson invariants
and of their relation to the Seiberg-Witten invariants in the case b+ = 1. They
identify the Donaldson invariants as automorphic forms with singularities given by
regularized integrals over a fundamental domain for Γu, as in [Bo]. These integrals
are then studied to derive the relation to Seiberg-Witten invariants in a form similar
to Conjecture 4.12. They also obtain explicit results in the case of P1×P1 and P2.
The formulas they obtain are the same as ours in the case of P1 × P1. For P2 they
are different from the corresponding formulas in [G], and the equality of the two
expressions is an interesting number-theoretical identity involving class numbers,
which has been checked numerically, but not yet rigorously proved.
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[G] L. Göttsche. Modular forms and Donaldson invariants for 4-manifolds with b+ = 1. J.
Amer. Math. Soc. 9 (1996), 827–843.

[H-B-J] F. Hirzebruch, T. Berger and R. Jung. Manifolds and Modular forms. Vieweg, Braun-
schweig-Wiesbaden, 1992.

[K1] D. Kotschick. SO(3)-invariants for 4-manifolds with b+ = 1. Proc. London Math. Soc.
63 (1991), 426–448.

[K2] D. Kotschick. On manifolds homeomorphic to CP 2#8CP 2. Invent. Math. 95 (1989),
591–600.

[K-L] D. Kotschick and P. Lisca. Instanton Invariants of CP2 via Topology. Math. Ann. 303
(1995), 345–371.

[K-M] D. Kotschick and J. Morgan. SO(3)-invariants for 4-manifolds with b+ = 1, II. J. Diff.
Geom. 39 (1994), 433–456.

[Kr-M1] P. Kronheimer and T. Mrowka. Recurrence relations and asymptotics for four-manifold
invariants. Bull. Amer. Math. Soc. 30 (1994), 215–221.

[Kr-M2] P. Kronheimer and T. Mrowka. Embedded surfaces and the structure of Donaldson’s
Polynomial invariants. J. Diff. Geom. 41 (1995), 573-734.

[L-Q] W.P. Li and Z. Qin. Lower-degree Donaldson polynomials of rational surfaces. J. Alg.
Geom. 2 (1993), 413–442.

[M-W] G. Moore and E. Witten. Integration over the u-plane in Donaldson theory. Preprint
hep-th/9709193.

[M-O] J. Morgan and P. Ozsváth. Private communication.
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