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1 Introduction

To every finite Coxeter group of rank n one can associate a (classical and quantum) maximally
superintegrable mechanical system known as a (rational) Calogero-Moser model (Calogero
model for short) living in 2n-dimensional phase space with momenta pi and coordinates xi

collected into x P Rn [1–3]. It is determined by the Hamiltonian

H “ 1
2

n
ÿ

i“1
p2

i ` V pxq with V pxq “ 1
2

ÿ

αPR
gαpgα´ℏq

α¨α

2pα¨xq2 , (1.1)

where ‘¨’ denotes the standard Euclidean scalar product in Rn, and the sum runs over the
root system R consisting of all nonzero roots α belonging to the Coxeter-group reflections1

sα : Rn Ñ Rn via sαx “ x ´ 2 x¨α
α¨αα . (1.2)

The real coupling constants gα are constant on each Weyl-group orbit, so in an irreducible
simply-laced case they all agree, gα“g. For the classical Hamiltonian, ℏ“0, while in the
quantum case we represent the momenta by differential operators,

pi “
ℏ
i

B
Bxi “: ´iℏ Bi such that rxi, pjs “ iℏ δi

j . (1.3)

Henceforth we set ℏ “ 1 for convenience.
1With Don Zagier.
1We sum over both positive and negative roots and correct the overcount due to the pair pα,´αq by a

factor of 1{2.
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There exist a variety of generalizations for these models, but we like to mention only
their restriction to the unit sphere Sn´1 given by x¨x “ 1,

HΩ “ ´1
2L2 ` Upϑq with L2 “

ÿ

iăj

pxiBj´xjBiq
2 and Upϑq “ x¨x V pxq , (1.4)

which has been named the (spherical) angular Calogero model [4–6]. In the quantum version,
L2 is the (scalar) Laplacian on Sn´1, and the potential U depends only on its angular
coordinates ϑ “ tϑ1, . . . , ϑn´1u. Since V pxq is singular at the mirror hyperplanes α¨x“0 of
the Coxeter group, Upϑq blows up at their intersection with the unit sphere. The full as well
as the angular Calogero model and their generalization have a rich history as paradigmatic
many-body integrable models (for a review, see [7, 8]).

Generalizing to infinite Coxeter groups of the affine type renders the coordinates periodic,
x P T n, which turns rational Calogero models into Sutherland models [9, 10]. However, to the
author’s knowledge, hyperbolic Coxeter groups [11] have not been employed to this purpose,
except for [12] on Toda field theories and [13]2 on a more general class of Calogero models.

In the present paper, we propose a rational Calogero model based on one of the simplest
hyperbolic Coxeter groups, namely the paracompact right triangular hyperbolic group labelled
by rp, q, rs “ r2, 3,8s and Coxeter-Dynkin diagram ‚—

8
‚—

3
‚ (see figure 1). This happens to

be the Weyl group of the simplest hyperbolic rank-3 Lie algebra AE3, a double extension
of A1 ” sl2 [14].3 Its root space is of Lorentzian signature, which we take as p´,`,`q.
Denoting the phase-space coordinates by pxµ, pµq for µ “ 0, 1, 2, the Minkowski metric by ηµν

and the Lorentzian scalar product again by ‘¨’, the Hamiltonian then has the form (employing
the Einstein summation convention and pulling the coupling out of the potential)

H “ 1
2ηµνpµpν ` gpg´1qV pxq “ 1

2
`

´p2
0 ` p2

1 ` p2
2
˘

` 1
2

ÿ

αPR

gpg´1q
pα ¨ xq2 , (1.5)

where the sum is restricted to the set R of real roots, which we normalize to α¨α “ 2. Since
R for AE3 decomposes into two Weyl orbits R` and R´ [20], we may actually split the
potential into two pieces and weigh them individually. However, for the sake of simplicity
we keep the couplings equal for this paper, g`“g´“g. We also do not consider the possible
inclusion of imaginary roots in the potential.

Like the Euclidean theory can be reduced to the unit sphere, the Minkowskian variant
can be restricted to the one-sheeted hyperboloid (x¨x “ 1) or (one sheet of) the two-sheeted
hyperboloid (x¨x “ ´1). In order to produce a model on a Riemannian manifold (with
Euclidean signature), we consider the future hyperboloid H2 given by x¨x “ ´1 and x0 ą 1.
Let us parametrize the Minkowski future by

x0 “ r cosh θ , x1 “ r sinh θ cos ϕ , x2 “ r sinh θ sin ϕ

with r P Rą0 , θ P Rě0 , ϕ P r0, 2πs (1.6)

2Which appeared some time after the submission of this article to the arXiv.
3Other names for this algebra are F [15], H3 [16], HA

p1q
1 [17, 18] or A^̂

1 [19].
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group r2, 3,8s.

so that we may restrict to r“1 and obtain the quantum Hamiltonian of a “hyperbolic
Calogero model”4

HΩ “ ´1
2L2 ` gpg´1qUpθ, ϕq with L2 “ B2

θ ` coth θ Bθ ` csch2θ B2
ϕ

and Upθ, ϕq “ r2 V pxq ,
(1.7)

where L2 is just the (scalar) Laplacian on H2. Our task will be to compute and characterize
the potential V respective U .

2 The real roots of the Kac-Moody algebra AE3

In order to formulate the Calogero potential for the real roots of AE3 we need to collect
some facts about this simplest of hyperbolic Kac-Moody algebras [14–16]. Starting from
its Cartan matrix,

A “

¨

˚

˝

2 ´2 0
´2 2 ´1

0 ´1 2

˛

‹

‚

, (2.1)

4Not to be confused with the hyperbolic Calogero-Sutherland model [2, 3].
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we parametrize the three simple roots αµ of length-square 2 in three-dimensional Minkowski
space R1,2 with a Minkowski-orthonormal basis teµu “ te0, e1, e2u,

eµ¨ eν “ ηµν for pηµνq “ diagp´1,`1,`1q , (2.2)

via

α0 “
?

2
´

1?
3e0 ´ e1 ´

1?
3e2

¯

, α1 “
?

2 e1 , α2 “
?

2
´

´1
2e1 `

1
2
?

3 e2

¯

. (2.3)

For symmetry reasons we add the non-simple root

α3 “ ´α1´α2 “
?

2
´

´1
2e1 ´

1
2
?

3 e2

¯

, (2.4)

so that the overextended simple root can be rewritten as

α0 “

b

2
3 e0 ´

2
3 α1 `

2
3 α3 . (2.5)

The three roots αi, i “ 1, 2, 3, belong to an A2 subalgebra and obey the relations

α1 ` α2 ` α3 “ 0 , αi¨αi “ 2 , αi¨αj “ ´1 pi‰jq , pαi ´ αjq¨αk “ 0 pi‰k‰jq .

(2.6)
The real roots of AE3 lie on the one-sheeted hyperboloid x¨x“2 and are given by

α “ ℓ α0 ` m α1 ` n α2 with ℓ, m, n P Z and α ¨ α “ 2 , (2.7)

where the length condition translates to the diophantine equation

pℓ ´ mq2 ` n pn ´ mq “ 1 . (2.8)

Since the roots come in pairs pα,´αq, it suffices to analyze ℓ ě 0 only. At any given
“level” ℓ the solutions furnish (generically several) highest weights of the “horizontal” A2 ” sl3
subalgebra plus their images under its S3 Weyl-group action,

pm, nq Ñ pm, m´nq Ñ p2ℓ´n, m´nq Ñ p2ℓ´n, 2ℓ´mq

Ñ p2ℓ´m`n, 2ℓ´mq Ñ p2ℓ´m`n, nq .
(2.9)

Such a sextet of weights belongs to an A2 representation with Dynkin labels

rp̄, q̄s “ r´2ℓ`2m´n,´m`2ns ô pm, nqhw “ 1
3 p4ℓ`2p̄`q̄, 2ℓ`p̄`2q̄q (2.10)

for the highest-weight values pm, nqhw in (2.9). Figure 2 shows the distribution of the real
roots for low levels.

We obtain a parametrization more symmetric under spatial rotations by replacing α0
with e0 using (2.5) and employing a kind of barycentric coordinates,

x “ x0 e0 ` x̄i αi with x̄1`x̄2`x̄3 “ 0 . (2.11)

In these coordinates, the real roots take the form

α “

b

2
3 ℓ e0 ` ᾱ with ᾱ “ 1

3 p̄ α1 `
1
3 q̄ α2 `

1
3 r̄ α3 and p̄ ` q̄ ` r̄ “ 0 , (2.12)
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Figure 2. Hyperboloid x¨x “ 2 (green) and real roots α (red) for 0 ď ℓ ď 12 (left) and 0 ď ℓ ď

122 (right).
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number of A2 irreps

Figure 3. Multiplicity of A2 representations occurring at level ℓ.

where p̄ and q̄ coincide with the Dynkin labels in case ᾱ is a highest A2 weight. The S3 Weyl
group action simply permutes the coefficients pp̄, q̄, r̄q and multiplies them with the sign of the
permutation. On a given level ℓ the A2 weights ᾱ all have the same length-square ᾱ¨ᾱ “ 2` 2

3ℓ2.
On may translate the diophantine equation (2.8) to the Dynkin labels and obtain

´p̄q̄ ´ p̄r̄ ´ r̄p̄ ” p̄2 ` q̄2 ` p̄ q̄ “ ℓ2 ` 3 as well as 3 | ℓ ´ p̄ ` q̄ . (2.13)

The number of A2 representations grows erratically with the level, as displayed in figure 3.
Two representations appear first at ℓ“6, three at ℓ“12, four at ℓ“30, eight at ℓ“72 and so on.

At level zero one simply finds the adjoint representation,

ℓ “ 0 : pm, nqhw “ p1, 1q ô rp̄, q̄s “ r1, 1s . (2.14)

– 5 –



J
H
E
P
0
6
(
2
0
2
4
)
0
9
3

Figure 4. Projective view α
|α¨e0|

´e0 of the real roots α for 1 ď ℓ ď 100 (the red circle is the lightcone).

Although the number of solutions grows quickly with ℓ it is easy to give a few infinite families
of real roots (see also [14]),

ℓ ě 1 : pm, nqhw “ p2ℓ, ℓ`1q ô rp̄, q̄s “ rℓ´1, 2s ,

ℓ “ 3k ě 3 : pm, nqhw “ p5k`1, 4kq ô rp̄, q̄s “ r2, 3k´1s ,

ℓ “ kpk`1q ě 6 : pm, nqhw “ p2kpk`1q´1, kpk`2qq ô rp̄, q̄s “ rk2´2, 2k`1s ,

(2.15)
where at ℓ“6 the second and third series coincide for k“2, the k“1 solution is contained in
the first series at ℓ“3, and the ℓ“1 solution is degenerate under the Weyl group action,

pm, nq “ p2, 2q, p2, 0q, p0, 0q ô rp̄, q̄s “ r0, 2s . (2.16)

With increasing level the real roots hug the lightcone, as is apparent from figure 4. The
roots of the first family are also neatly expressed as

α “ ℓ ni ˘ αi for i “ 1, 2, 3 with αhw “ ℓ n2 ` α2 (2.17)

in terms of a triplet of null vectors

n1 “ α0 ´ α2 ´ α3 “

b

2
3 e0 `

1
3pα3 ´ α2q “

?
2
´

1?
3e0 ´

1?
3e2

¯

,

n2 “ α0 ` α1 ´ α3 “

b

2
3 e0 `

1
3pα1 ´ α3q “

?
2
´

1?
3e0 `

1
2e1 `

1
2
?

3e2

¯

,

n3 “ α0 ` α1 ` α2 “

b

2
3 e0 `

1
3pα2 ´ α1q “

?
2
´

1?
3e0 ´

1
2e1 `

1
2
?

3e2

¯

,

(2.18)
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which satisfy the relations

ni¨ni “ 0 , ni¨nj “ ´1 pi‰jq , αi¨nj “
ř

kϵijk , n1`n2`n3 “
?

6 e0 , pℓ ni˘αiq
2 “ 2 .

(2.19)
Since the real roots

α “
?

2
`

sinh η e0 ` cosh η cos χ e1 ` cosh η sin χ e2
˘

(2.20)

are spacelike and located on a one-sheeted hyperboloid, the fix planes of the corresponding
reflections sα,

α¨x “ 0 ô tanh η “ tanh θ cospχ´ϕq , (2.21)

are timelike planes through the origin, which we call “mirrors”. They intersect the lightcone
and the two-sheeted hyperboloid x¨x “ ´1. The reflections sα act on the Minkowskian
components xµ of a point x as psαxqµ “ Sµ

νxν with

`

Sµ
ν

˘

“

¨

˚

˝

1 0 0
0 cos χ ´ sin χ

0 sin χ cos χ

˛

‹

‚

¨

˚

˝

cosh 2η ´ sinh 2η 0
sinh 2η ´ cosh 2η 0

0 0 1

˛

‹

‚

¨

˚

˝

1 0 0
0 cos χ sin χ

0 ´ sin χ cos χ

˛

‹

‚

. (2.22)

Each such hyperbolic reflection preserves the radial coordinate r “
?
´x¨x and the time

orientation but reverses the spatial orientation (det S “ ´1), hence it represents an involution
on the future hyperboloid. A collection of such mirrors is displayed in figure 5, and figure 6
shows their intersections with the x0“1 plane.

3 The potential

The “horizontal” A2 slicing of the root space into levels ℓ P Z leads to a decomposition
of the potential,

V pxq “
ÿ

ℓPZ

Vℓpxq with Vℓpxq “
1
2

ÿ

αPRℓ

1
pα ¨ xq2 , (3.1)

where Rℓ denotes the set of real roots α with α¨e0 “

b

2
3 ℓ. Clearly, V´ℓ “ Vℓ.

Let us take a look at levels zero and one. Summing over the adjoint representation of A2,

V0pr, θ, ϕq “
ÿ

i“1,2,3

1
pαi ¨ xq2 “

csch2θ

2 r2

ˆ

1
cos2ϕ

`
1

cos2pϕ´2π
3 q

`
1

cos2pϕ`2π
3 q

˙

“
9

2 r2
csch2θ

cos23ϕ

(3.2)
is just the celebrated Pöschl-Teller potential, modulated by a θ dependence. For level one we
sum over the three extremal weights of the r0, 2s representation,

V1pr,θ,ϕq“
ÿ

i“1,2,3

1
prni`αis¨xq2

“
3

2r2

ˆ

1
pcoshθ`2sinhθ sinϕq2 `

1
pcoshθ`2sinhθ sinpϕ´2π

3 qq2 `
1

pcoshθ`2sinhθ sinpϕ`2π
3 qq2

˙

“
18
r2

cosh4 θ`3sinh4 θ`4coshθ sinh3 θ sin3ϕ

pcosh3θ´3coshθ`4sinh3 θ sin3ϕq2
. (3.3)

– 7 –
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Figure 5. The real-root mirrors for levels |ℓ| ď 3 (the green hyperboloid is x¨x “ 2).

Figure 6. Intersection of the mirror planes (blue) for |ℓ| ď 5 and the lightcone (red) with the x0“1
plane. The standard fundamental alcove is shaded.
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Figure 7. Contour lines of log V for the standard fundamental alcove intersecting the x0“1 plane.

It is also possible to sum over whole families of solutions to the diophantine equation (2.8).
Let us do so for the first family in (2.15), extending it to negative levels (to include the
negative real roots) and including levels zero and one with their proper weight inside V ,

V1st family “ ´V0 ´ V1 `
8
ÿ

ℓ“0

ÿ

i“1,2,3

ˆ

1
prℓ ni`αis ¨ xq2 `

1
prℓ ni´αis ¨ xq2

˙

“ ´V0 ´ V1 `
ÿ

i“1,2,3

2
pni¨xq2

8
ÿ

ℓ“0

ℓ2 `
`

αi¨x
ni¨x

˘2

“

ℓ2 ´
`

αi¨x
ni¨x

˘2‰2

“ ´V0 ´ V1 `
ÿ

i“1,2,3

1
pni¨xq2

ˆ

1
`

αi¨x
ni¨x

˘2 `
π2

sin2`π αi¨x
ni¨x

˘

˙

“
ÿ

i“1,2,3

ˆ

π2

pni¨xq2 sin2`π αi¨x
ni¨x

˘ ´
1

prni`αis ¨ xq2

˙

,

(3.4)

where the V0 contribution got cancelled on the way. Although this is only a part of the full
potential, it does show some characteristic features of V :

• the A2 subgroup’s Weyl group S3 yields a dihedral symmetry and six-fold mirrors,

• infinitely many mirrors intersect in the three null lines λni,

• in the ℓ Ñ 8 limit the mirrors accumulate in the three null planes ni¨x “ 0.

• the mirrors tessalate the interior of the lightcone with infinitely many triangular Weyl
alcoves

• a fundamental Weyl alcove is spanned by te0, 2e0`e2, 2e0`
?

3e1`e2u

A contour plot of log V on the plane x0“1 is given in figure 7 for one Weyl alcove.
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-3 -2 -1 1 2 3
w, v

-1

1

2

3
t

Figure 8. Stereographic projection of the hyperboloid (green) to the disk (red), with the light-
cone (yellow).

4 Mapping to the complex half-plane

Since our model is scale invariant, for the potential we can restrict ourselves to the future
hyperboloid r2 “ ´x¨x “ 1 and x0 ě 1. It is convenient to pass to complex embedding
coordinates

t “ x0 and w “ x1 ` ix2 with t2 ´ w̄w “ 1 . (4.1)
By a stereographic projection (see figure 8) the hyperboloid gets mapped to the unit disk
v̄v ď 1 for v P C,

w

t`1 “
v

1 ñ w “
2v

1 ´ v̄v
, v “

w

1 `
?

1`w̄w
, t “

1 ` v̄v

1 ´ v̄v
. (4.2)

The metric induced from the Minkowski metric turns this into the Poincaré disk model of
the hyperbolic plane H2. The intersection curves with the mirrors of level zero and one
are easily computed as

ℓ “ 0 : v ` v̄ “ 0 , ρ̄ v ` ρ v̄ “ 0 , ρ v ` ρ̄ v̄ “ 0 ,

ℓ “ 1 : |v ´ 2i|2 “ 3 , |v ´ 2iρ|2 “ 3 , |v ´ 2iρ̄|2 “ 3 ,
(4.3)

where
ρ “ e2πi{3 ñ ρ2 “ ρ̄ , ρ ` ρ̄ “ ´1 , 1 ` ρ ` ρ2 “ 0 . (4.4)

Adding the infinity of real-root mirrors produces a paracompact triangular tessalation of type
rp, q, rs “ r2, 3,8s. Each of the hyperbolically congruent triangles has angles π

2 , π
3 and 0,

and at the corresponding vertices there meet 4, 6 and infinitely many triangles, thus one
vertex is always at the boundary, as is visible from figure 9.

We employ a variant of the Cayley map to further pass to the complex upper half
plane H Q z,

v “ ´i ρ z ` 1
z ` ρ

ô z “
1 ´ iρ v

i v ´ ρ
, (4.5)

– 10 –



J
H
E
P
0
6
(
2
0
2
4
)
0
9
3

Figure 9. The mirror lines (blue) for |ℓ| ď 5 in the Poincaré disk v̄vă1 (with red boundary v̄v“1).

such that the boundary |v|“1 becomes the real axis Im z“0. The direct relation between
w and z reads

w “
2
?

3
p1`ρ zqpρ̄`z̄q

z ´ z̄
“

2
?

3
ρ zz̄ ` pz`z̄q ` ρ̄

z ´ z̄
“

2 ρ
?

3
pz`ρ̄qpz̄`ρ̄q

z ´ z̄
, (4.6)

and the mirror curves at level zero and one become (in the same order as in (4.3))

ℓ “ 0 : z z̄ “ 1 , z ` z̄ “ 1 , pz´1qpz̄´1q “ 1 ,

ℓ “ 1 : z ` z̄ “ 0 , p2z´1qp2z̄´1q “ 1 , z ` z̄ “ 2 .
(4.7)

The first two curves in the ℓ“0 list and the first one at ℓ“1 bound a standard fundamen-
tal domain

F “
␣

z P H
ˇ

ˇ |z| ě 1 and 0 ď ℜ z ď 1
2
(

, (4.8)

which is co-finite (with a hyperbolic volume of π
6 ) but not co-compact due to a cusp at i8.

Figure 10 shows the mirror lines of figure 9 mapped to the upper half plane H. Any other
triangle in the tessalation is reached by applying a suitable element of PGL(2,Z), the group
of integral 2ˆ2 matrices with determinant `1 or ´1 modulo t˘1u:

z ÞÑ

$

&

%

az`b
cz`d if

ˇ

ˇ
a b
c d

ˇ

ˇ “ `1
az̄`b
cz̄`d if

ˇ

ˇ
a b
c d

ˇ

ˇ “ ´1
with a, b, c, d P Z . (4.9)

This happens to be the Weyl group of our hyperbolic Kac-Moody algebra. It can be generated
by the three reflections

s1 “ sα1 : z ÞÑ 1{z̄ , s2 “ sα2 : z ÞÑ 1´z̄ , s3 “ sα0´2α3 : z ÞÑ ´z̄ , (4.10)

– 11 –
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Figure 10. The mirror lines (blue) for |ℓ| ď 5 in the upper half plane ℑ z ą 0 (with red bound-
ary ℑ z “ 0).

Figure 11. Contour lines of log U for a fundamental domain in the v disk (left) and the z plane (right).

whose fixpoints form the three mirror curves mentioned above, which bound the fundamental
triangle (4.8). The two generators of the even subgroup PSL(2,Z) are

T “ s2s3 : z ÞÑ z`1 and S “ s1s3 : z ÞÑ ´1{z , (4.11)

and its standard fundamental domain is cut in half by the extra reflection s3. In matrix
representation p a b

c d q we have

s1 p“ p 0 1
1 0 q , s2 p“ p 1 ´1

0 ´1 q , s3 p“ p 1 0
0 ´1 q , T p“ p 1 1

0 1 q , S p“ p 0 ´1
1 0 q , (4.12)

up to multiplication by ´1 of course. The simple-root reflection sα0 : z ÞÑ z̄
2z̄´1 appears in

the middle of our ℓ“1 lists (4.3) and (4.7). Choosing it instead of s3 leads to a fundamental
domain with the cusp sitting at 1 rather than i8. In any case, it is clear that the potential
Upzq “ V

`

r“1, θpzq, ϕpzq
˘

is a real automprphic function with respect to PGL(2,Z). We
end this section by displaying log U in the Poincaré disk and in the upper half plane for
the standard fundamental domain in figure 11.
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ℓ m n p q r

e o o o e o
R` e e o o o e

e o e e o o
R´ o e e o e e

Table 1. Assignment of Weyl orbit to a root αpℓ, m, nq or to a reflection Rpp, q, rq (e = even, o = odd).

5 The potential as a Poincaré series

Our potential is a sum over all real roots α of AE3, thus each reflection sα inside PGL(2,Z)
provides one summand. These reflections are given by traceless matrices R of determinant ´1,5

sα ” sR : z ÞÑ
pz̄ ` q

rz̄ ´ p
with R “

˜

p q

r ´p

¸

and p2 ` q r “ 1 . (5.1)

The scalar product in root space is an invariant bilinear form,

α¨α1 “ trpsα sα1q “ 2 p p1 ` q r1 ` r q1 P Z . (5.2)

From (4.6) we see that the real function α¨x odd under sα becomes a real quadratic polynomial
in z and z̄ divided by |z´z̄|. A quick computation shows that

α¨x “
?

2 i
z´z̄

“

r z z̄ ´ ppz`z̄q ´ q
‰

(5.3)

is indeed odd under the reflection (5.1). Therefore, on the upper half plane the potential
is expressed as

Upzq ” V
`

xpzq
˘

“
1
4
ÿ

R

|z ´ z̄|2

rr z z̄ ´ ppz`z̄q ´ qs2
“

1
4
ÿ

R

4 y2

rrpx2`y2q ´ 2p x ´ qs2
“: 1

4
ÿ

R

uRpzq

(5.4)
where z “ x` i y and the sum runs over all reflections R in (5.1), with R and ´R contributing
the same. Comparison with

´α¨x “
?

2 i
z´z̄

“

p2ℓ´mq zz̄ ` pn´ℓqpz`z̄q ` pm´nq
‰

(5.5)

provides the translation between the labels pp, q, rq and pℓ, m, nq, up to a common sign of
course. As an aside, we characterize in table 1 the two orbits (e for ℓ even, o for ℓ odd) of
the Weyl group on the set R of real roots. Restricting our potential to one of the two Weyl
orbits removes either the ℓ“odd or the ℓ“even mirror lines from all diagrams and doubles the
fundamental domain. In an appendix with Don Zagier we outline how far one can proceed
with an explicit computation of the potential function Upzq.

The potential Upzq is a real modular function under the action of GL(2,Z), which
is manifest via

uRpMzq “ uM´1R M pzq for Mz “ az`b
cz`d with a, b, c, d P Z . (5.6)

5The matrix entries pp, q, rq are not to be confused with the tessalation labels.
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Hence, we can replace the sum over R with sums over appropriate orbits by the adjoint
action of GL(2,Z) for a suitable reference, say

R0 “
` 1 0

0 ´1
˘

ô z ÞÑ ´z̄ ô uR0pzq “
y2

x2 “: upzq , (5.7)

and obtain6

2 Upzq “
1
4
ÿ

M

uM´1R0M pzq “
1
4
ÿ

M

upMzq “
1
4
ÿ

M

pad´bcq2 y2

racpx2`y2q ` pad`bcqx ` bds2
. (5.8)

The question is: over which subset of GL(2,Z) matrices does this sum run? Since our
fundamental domain F in (4.8) is half of the standard one for PSL(2,Z), all reflections R

should be covered using adjoint orbits by matrices Mn of determinant n “ ad´bc equal
to one or two. Indeed, for R P R`, we can find a unique (up to sign and the footnote)
matrix M2 such that R “ M´1

2 R0M2. In the case of R P R´, in constrast, there are two
such matrices M2, which have the form

´

2a1 2b1

c1 d1

¯

and
´

a1 b1

2c1 2d1

¯

ñ det
´

a1 b1

c1 d1

¯

“ 1 , (5.9)

so such reflections R are covered twice by summing over M2. However, they also make up
(again uniquely) the M1 orbit of R0. Therefore, we can correct the overcount by subtracting,

2 Upzq “ F2pzq ´ F1pzq for Fnpzq :“ 1
4

ÿ

Mn

upMzq . (5.10)

The function F2 can be obtained from F1 by applying a Hecke operator T2 (for weight
k“0),

F2pzq “ pT2F1qpzq “
ÿ

ad“2
a,dą0

ÿ

b pmod dq

F1
`

az`b
d

˘

“ F1p2zq ` F1p
z
2q ` F1p

z`1
2 q , (5.11)

and thus we have

2 Upzq “ F1p2zq ` F1p
z
2q ` F1p

z`1
2 q ´ F1pzq . (5.12)

Therefore, it suffices to compute the Poincaré series

F1pzq “
1
4

ÿ

MPSLp2,Zq

upMzq . (5.13)

There is another path to this result, which provides a useful connection to binary
quadratic forms.7 Let us define [21]

rFDpzq “
1
2

ÿ

QpDq

D y2

rApx2`y2q ` B x ` Cs2
“

1
2

ÿ

QpDq

D y2

|A z2 ` B z ` C|2 ´ y2 , (5.14)

6The left-hand side is doubled because tc, d,´a,´bu yields the same adjoint action as ta, b, c, du.
7I thank Don Zagier for pointing out this and (5.11).
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where QpDq denotes the set of binary quadratic forms As2`Bst`Ct2 over Z with discrimi-
nant D “ B2´4AC. For D“1 there is a bijection between Qp1q and PSL(2,Z) by solving

a c “ A , b d “ C , a d “ 1
2pB`1q , b c “ 1

2pB´1q . (5.15)

We conclude that rF1 “ F1. For D“4 we have a bijection between Qp4q and our reflections R

in (5.1),

r “ A , ´2p “ B , ´q “ C . (5.16)

Therefore, the potential can also be expressed as

2 Upzq “ rF4pzq “
1
2
ÿ

Qp4q

4 y2

rApx2`y2q ` B x ` Cs2
. (5.17)

Now, Qp4q can be reduced to Qp1q, and it is not too hard to check that indeed [21]

rF4pzq “ pT2 rF1qpzq ´ rF1pzq “ rF1p2zq ` rF1p
z
2q `

rF1p
z`1

2 q ´ rF1pzq , (5.18)

confirming (5.12). It thus suffices to compute the generalized real-analytic Eisenstein series

rF1pzq “
1
2
ÿ

Qp1q

y2

rApx2`y2q ` B x ` Cs2
“

1
2
ÿ

Qp1q

y2

|A z2 ` B z ` C|2 ´ y2 , (5.19)

where Qp1q indicates a discriminant B2 ´ 4AC “ 1. As was shown in [21], this sum converges
almost everywhere.8 However, it does not decay at i8, but grows as rF1px`iyq „ y2 for y Ñ 8.

The form (5.17) can be translated back to the unit hyperboloid and indeed the Minkowski
future, with the result

V pxq “
ÿ

Qp4q

3
“

p2A´B`2Cqx0 `
?

3pA´Cqx1 ´ pA´2B`Cqx2
‰2 , (5.20)

where the sum runs over all integers A, B and C subject to the Qp4q condition B2 ´4AC “ 4.
In this way, the real roots are parametrized by binary quadratic forms, which is of course
equivalent to the solutions of the diophantine equation (2.8) but may be more convenient
or manageable.

6 Dunkl operators

Calogero models in a Euclidean space are known to be maximally superintegrable. This
is also the case for the spherical reduction of the rational models. One key instrument to
establish this property is the linear Dunkl operators [22, 23]

Di “ Bi ´
g
2

ÿ

αPR

αi

α¨x
sα for i “ 1, . . . , n (6.1)

8On the mirror curves one summand is infinite. The critical part is the A“0 subsum,
ř

CPZ
y2

px`Cq
´2

“

π2y2 sin´2πx.
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and their angular versions

Lij “ xiDj ´ xjDi , (6.2)

respectively. For rational models, the crucial property is the commutation rDi, Djs “ 0,
while the Lij deform the angular momentum algebra to a subalgebra of a rational Cherednik
algebra [24]. It is known that every Weyl-invariant polynomial in the Di or in the Lij

will, upon its restriction ‘res’ to Weyl-invariant functions, provide a conserved quantity,
i.e. an operator which commutes with the Hamiltonian H or HΩ, respectively. Indeed, the
Hamiltonians themselves can be expressed in this way,

´2 H “ res
n
ÿ

i“1
D2

i “

n
ÿ

i“1
B2

i ´ res
ÿ

αPR

α¨α

2pα¨xq2 gpg´sαq ,

´2 HΩ “ res
ÿ

iăj

L2
ij ´ 2E0 “ L2 ´ res

ÿ

αPR

α¨α x¨x

2pα¨xq2 gpg´sαq ,

(6.3)

with the ground-state energy

E0 “ 1
2 res gSpgS`n´2q for S “ 1

2
ř

αsα . (6.4)

Let us repeat this construction for R1,2 and the restriction to the hyperboloid x¨x “ ´r2 “

´1. We follow the standard construction and define the ‘hyperbolic Dunkl operators’ (i “ 1, 2)

C “ x1B2´x2B1´
g
2

ÿ

αPR

x1α2´x2α1

α¨x sα and Bi “ ´x0Bi´xiB0`
g
2

ÿ

αPR

x0αi´xiα0

α¨x sα (6.5)

with α¨x “ ´α0x0`αixi as deformed rotation and boost generators. Lorentz indices are raised
and lowered with the Minkowski metric. In complex coordinates (4.1) on the hyperboloid
these Dunkl operators read9

C “ ipwBw´w̄Bw̄q ´ i g
4

ÿ

αPR

wαw̄´w̄αw

α¨x sα and

B` “ B1`iB2 “ 2
?

1`ww̄ Bw̄ `
g
2

ÿ

αPR

tαw´wαt

α¨x sα “ pB´q
˚ .

(6.6)

In half-plane coordinates they take the form
?

3 C “ pz`ρqpz`ρ̄qBz ` pz̄`ρqpz̄`ρ̄qBz̄ `
g
2

ÿ

αPR

pr´2pqzz̄ ´ pq`rqpz`z̄q ` pq`2pq

r zz̄ ´ p pz`z̄q ´ q
sR ,

?
3 B` “ ρ pz`ρ̄q2Bz ` ρ pz̄`ρ̄q2Bz̄ `

g
2

ÿ

αPR

p2r`2ρpqzz̄ ` pρq`ρ̄rqpz`z̄q ` p2q´2ρ̄pq

r zz̄ ´ p pz`z̄q ´ q
sR ,

?
3 B´ “ ρ̄ pz`ρq2Bz ` ρ̄ pz̄`ρq2Bz̄ `

g
2

ÿ

αPR

p2r`2ρ̄pqzz̄ ` pρ̄q`ρrqpz`z̄q ` p2q´2ρpq

r zz̄ ´ p pz`z̄q ´ q
sR .

(6.7)
These operators obey the algebra

rC , B˘s “ ˘i B˘ ` Opgq and rB` , B´s “ ´2i C ` Opgq , (6.8)
9The differential parts are C “ Bϕ and B˘ “ e˘iϕ

pBθ ˘ i coth θBϕq.
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which at g“0 reduces to the sop1, 2q algebra. The Opgq deformations are determined by
the action of the differential parts on the reflection parts and by the commutators of the
reflection parts themselves.

A standard computation shows that the commutator of two linear Dunkl operators,
rDµ, Dνs, reduces to the antisymmetric part (under µ Ø ν) of

g2Yµν :“ g2

4

ÿ

α,β

1 αµβν

α¨x sαpβ¨xq
sαsβ “

g2

4

ÿ

α,β

1αµβν ´ pα¨βqαµαν

α¨x β¨x
sβsα , (6.9)

where the prime indicates excluding pairs with β“˘α. In the last step, under the sum we
substituted β Ñ sαβ “ β ´ pβ¨αqα, i.e. sβ Ñ sαsβsα, and used sαα “ ´α or s2

α “ 1. Hence,
the criterion for linear Dunkl operators to commute is the vanishing of a two-form,

Y ” Yµν dxµ^dxν “ 1
8

ÿ

α,β

1 α ^ β

α¨x β¨x
rsα, sβs

!
“ 0 (6.10)

where we abbreviated αµdxµ“α and βνdxν“β. Note that the four pairs pα,˘βq and p´α,˘βq

contribute equally to the double sum.
In order to generate the angular Hamiltonian HΩ in (1.4), we compute

ÿ

µăν

LµνLµν “ C2 ´ 1
2pB`B´ ` B´B`q “ ´L2 `

ÿ

αPR

x¨x

pα¨xq2 gpg´sαq ` gSpgS`1q ´ g2 ηµνYµν

(6.11)
by generalizing the results in [24] to R1,2. We remark that, due to the indefinite root-space
signature and x¨x“´1, the relative sign between

ř

L2 and the angular Hamiltonian is flipped
and the ground-state energy E0 “ ´1

2 res gSpgS`1q is negative and formally infinite. Besides
this energy shift, our hyperbolic Dunkl operators can generate the angular Hamiltonian
provided that pYµνq is not only symmetric but also traceless, i.e.

ηµνYµν “ ´1
8

ÿ

α,β

1 α ¨ β

α¨x β¨x
tsα, sβu

!
“ 0 . (6.12)

7 Integrability?

The commutativity of the linear Dunkl operators of rational Calogero models is a key property
for their integrability in Euclidean space. It also assures the integrability of the angular
models constructed by reduction to the sphere. It is therefore reasonable to perform this
test also for our hyperbolic Kac-Moody Calogero model.10 We shall now investigate the
conditions (6.10) and (6.12), i.e. Y “ 0 and Y µ

µ “ 0.
For classical root systems indeed Y “ 0, because the double sum in (6.10) can be recast

as a sum over planes of contributions stemming from the real root pairs lying in a given
plane Π, which add up to zero for any such plane. In our hyperbolic model, this is obvious
only for root pairs pα, βq at level ℓ“0, which form the A2 subalgebra with a hexagon of roots

10To be sure, this is at best a sufficient condition. Already for Sutherland or elliptic models, the linear
Dunkl commutators are not vanishing but still take a simple form.

– 17 –



J
H
E
P
0
6
(
2
0
2
4
)
0
9
3

and α¨β“˘1 throughout. Generically however, two arbitrary real roots α and β generate
an infinite planar collection of real roots,

α ÝÑ sβα ÝÑ sαsβα ÝÑ sβsαsβα ÝÑ . . .

and β ÝÑ sαβ ÝÑ sβsαβ ÝÑ sαsβsαβ ÝÑ . . .
(7.1)

and their negatives. The roots in either string are related by hyperbolic reflections and
rotations, but α and β need not be. All these comprise the real roots of a rank-2 subalgebra
whose Cartan matrix reads [25]

Am “

˜

2 ´m

´m 2

¸

for m “ |α¨β| P t0, 1, 2, 3, 4, . . .u (7.2)

and whose Weyl group is
␣

psαsβq
k´1 , psαsβq

k´1sα

(

for k P Z (7.3)

because psαsβq
´1 “ sβsα and s2

α “ s2
β “ 1. Each odd element is a reflection on a hyperplane

orthogonal to some real root γk, while the even elements are elliptic, parabolic or hyperbolic
elements of PSLp2,Zq, for mď1, m“2 or mě3, respectively.

Without loss of generality we can choose the signs of α and β such that α¨β “ ´m ď 0.
Any real root in Πm “ xαβy is a linear combination

γ “ ξ α ` η β with pξ, ηq P Z2 and ξ2 ` η2 ´ m ξ η “ 1 . (7.4)

Rather than finding the integral points on this quadric, we may compute the coefficients ξ

and η recursively from (7.1). We recombine these two sequences in an alternating fashion
(and flipping half of the signs) into a double-infinite sequence

γ2ℓ´1 “ psαsβq
ℓ´1α and γ2ℓ “ psαsβq

ℓ´1sαβ ô sγk
“ psαsβq

k´1sα (7.5)

with k, ℓ P Z. Due to sαα “ ´α and sββ “ ´β it reads
␣

γk

(

“
␣

. . . ,´sβsαsβα ,´sβsαβ ,´sβα,´β , α , sαβ , sαsβα , sαsβsαβ , . . .
(

(7.6)

and reproduces the ordering of the corresponding Weyl reflections in (7.3), with γ0 “ ´β and
γ1 “ α. The real roots γk are the integral points on the positive branch of the quadric (7.4),
while the negative branch contains the set t´γku.

Remembering sγx “ x ´ px¨γq γ we combine the reflections

γk
sβ
ÞÝÑ ´γ´k and γk

sα
ÞÝÑ ´γ´k`2 with γk

αØβ
ÞÝÑ ´γ1´k (7.7)

and find for γk “ ξkα ` ηkβ the recursion

ξk`1 “ m ξk ´ ηk and ηk`1 “ ξk for γk “ ξkα ` ηkβ . (7.8)

This yields the three-term recursion relation

ξk`1 ´ m ξk ` ξk´1 “ 0 with ξ1 “ 1 and ξ0 “ η1 “ 0 . (7.9)
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We note that the recursion can be iterated to the right as well as to the left, with

ξ´k “ ´ξk and η´k`1 “ ´ηk`1 . (7.10)

One may check that

γk¨γk1 “ 2 pξkξk1 ` ξk´1ξk1´1q ´ m pξkξk1´1 ` ξk´1ξk1q “ ξk´k1`1 ´ ξk´k1´1 (7.11)

due to (7.9), so that indeed γk¨γk “ ξ1´ξ´1 “ 2. The recursion can be solved explicitly,

ξk`1 “

tk{2u
ÿ

ℓ“0
p´1qℓ

ˆ

k´ℓ

ℓ

˙

mk´2ℓ for k “ 0, 1, 2, 3, . . . (7.12)

giving
ξk`1 “ 1 , m , m2´1 , m3´2m , m4´3m`1 , m5´4m3`3m , . . . , (7.13)

or via a generating function

F pzq :“
8
ÿ

k“0
ξk`1 zk ñ F pzq “

`

1 ´ m z ` z2˘´1
. (7.14)

The zeros of the characteristic polynomial provide a simple closed expression,

z2
˘ ´ m z˘ ` 1 “ 0 ñ z˘ “ 1

2

´

m ˘
a

m2´4
¯

ñ ξk`1 “
1 ´ z2k`2

˘

zk
˘ p1 ´ z2

˘q
,

(7.15)
equally valid for both signs. Another useful parametrization of the real roots in Πm “ xαβy is

γk “ ηkγ̄ ` pξk´ηkqα “ ξk´1γ̄ ` pξk´ξk´1qα with γ̄ “ α`β , (7.16)

which exhibits the symmetry axis γ̄ of the quadric (7.4).
Equipped with these tools, we can further specify

Y “
ÿ

tΠu

Y Π “

8
ÿ

m“0

ÿ

tΠmu

Y Πm (7.17)

with, representing Πm “ xαβy,

Y Πm “ 1
2 α^β

ÿ

k,k1PZ

pξkηk1 ´ ξk1ηkq rsγk
, sγk1

s

pξk α¨x ` ηk β¨xq pξk1 α¨x ` ηk1 β¨xq

“ 1
2 α^β

ÿ

k,k1PZ

ξk1´k

␣

psαsβq
k´k1

´ psβsαq
k´k1(

pξk α¨x ` ξk´1 β¨xq pξk1 α¨x ` ξk1´1 β¨xq

“ ´α^β
8
ÿ

ℓ“1

ÿ

kPZ

ξℓ

␣

psαsβq
ℓ ´ psβsαq

ℓ
(

“

ξk´1 γ̄¨x ` pξk´ξk´1qα¨x
‰ “

ξk´ℓ´1 γ̄¨x ` pξk´ℓ´ξk´ℓ´1qα¨x
‰ ,

(7.18)

where we used that ξkξk1´1´ξk1ξk´1 does not change under a common shift of k and k1.
For m“0,

ξk “ . . . , 1 , 0 , ´1 , 0 , 1 , 0 , ´1 , 0 , 1 , 0 , ´1 , . . . , (7.19)
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Figure 12. Real root system tγ “ ξα ` ηβu for “elliptic planes” from |α¨β| “ 0 (left) or 1 (right).

and the situation is trivial since αKβ, thus rsα, sβs “ 0 and no further roots are generated,
so the subalgebra is A1 ‘ A1. For m“1,

ξk “ . . . , 0 , ´1 , ´1 , 0 , 1 , 1 , 0 , ´1 , ´1 , 0 , 1 , . . . , (7.20)

so the ellipse in (7.4) contains one additional root α`β (and all negatives), making up an
A2 subalgebra. Its contribution to Y is proportional to

1
α¨x β¨x

`
1

β¨x γ¨x
`

1
γ¨x α¨x

“
pα`β`γq¨x

α¨x β¨x γ¨x
“ 0 for γ “ ´pα`βq . (7.21)

Therefore, Y Πm vanishes for m “ 0 and 1. The corresponding finite root systems are shown
in figure 12. A more interesting case occurs for m“2. Here, the real roots lie on two straight
lines (see figure 13 left),

ξk “ k ñ ˘γk “ k α ` pk´1qβ “ pk´1qγ̄ ` α (7.22)

where γ̄ “ α`β happens to be null and orthogonal to α and β. This set of roots creates the
affine extension psl2 ” pA1 ” A

p1q
1 of sl2. Obviously, any pair of roots in this set has a scalar

product of 2 or ´2. Such an psl2 subsystem is generated by any non-orthogonal pair of real
roots from levels ℓ“˘1 and |ℓ|ď1. Its contribution to Y evaluates to

Y Π2 “ ´α^β
8
ÿ

ℓ“1
ℓ
␣

psαsβq
ℓ ´ psβsαq

ℓ
(

ÿ

kPZ

“

k γ̄¨x ` α¨x
‰´1“

pk´ℓq γ̄¨x ` α¨x
‰´1

“ α^β
8
ÿ

ℓ“1
ℓ
␣

psαsβq
ℓ ´ psβsαq

ℓ
( π

ℓ pγ̄¨xq2

!

cot
`

πrℓ´α¨x
γ̄¨x s

˘

` cot
`

πrα¨x
γ̄¨x s

˘

)

“ 0
(7.23)

due to cotpxq ` cotpℓπ´xq “ 0. Hence, also the affine subalgebras do not obstruct a
commutativity of the linear Dunkl operators.
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Figure 13. Real roots for a “parabolic plane” (|α¨β|“2, left) and for a “hyperbolic plane”
(|α¨β|“3, right).

As soon as we go beyond level one, real root pairs with mą2 show up, and the associated
quadric (7.4) is a hyperbola (see figure 13 right for m“3). Let us inspect the simplest such
case, m“3, where the coefficient sequence happens to be the even half of the Fibonacci
sequence (k “ 1, 2, 3, . . .),

ξk`1 “ 3ξk ´ξk´1 with ξ1 “ 1 & ξ0 “ 0 ñ ξk “ 1,3,8,21,55,144,377,987, . . . “ f2k ,

(7.24)
where fn`1 “ fn ` fn´1 with f0 “ 0 [26, 27]. The root scalar products take the values
˘2,˘3,˘7,˘18,˘47 etc.. In this case, the contribution to the two-form Y becomes

Y Π3 “ ´α^β
8
ÿ

ℓ“1

ÿ

kPZ

f2ℓ

␣

psαsβq
ℓ ´ psβsαq

ℓ
(

“

f2k γ̄¨x ` f2k`1 α¨x
‰ “

f2k´2ℓ γ̄¨x ` f2k´2ℓ`1 α¨x
‰ , (7.25)

with the understanding that f´n “ p´1qn`1fn extends the Fibonacci sequence to the left.
As numerical checks show, the individual sums over k P Z do not vanish, nor does the
total expression. Turning off one of the two Weyl orbits in the root-sum for the Dunkl
operator (6.1) does not help since odd values of m require both α and β to lie in R`, and
thus only this orbit contributes here. We are forced to conclude that Y ‰ 0 for our model, so
its linear Dunkl operators Dµ do not commute to any simple expression, and so we cannot
construct higher conserved charges in this way. Likewise, Y µ

µ does not vanish either, and
thus res

ř

L2 in (6.11) does not reproduce the Hamiltonian HΩ. This points to a lack of
integrability, but falls short of disproving it.

8 Conclusions

Spherical angular Calogero models are obtained by reducing a rational Calogero model in Rn

to the sphere Sn´1. Analogously, we have defined a hyperbolic angular model by reducing a
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Calogero Hamiltonian in R1,n´1 to the (future) hyperboloid Hn´1. The main difference to the
conventional angular model is the non-compactness of hyperbolic space and the replacement
of a finite spherical Coxeter reflection group by an infinite hyperbolic one. As a consequence,
the Calogero-type potential of the model is an infinite sum over all hyperbolic reflections
and not easily obtained in a closed form. However, it is a real automorphic function of an
associated hyperbolic Kac-Moody algebra.

We have worked out the details for the rank-3 case of AE3 leading to a PGL(2,Z) invariant
quantum mechanical model on the Poincaré disk or the complex upper half plane. In this
case, the potential can be reformulated as a Poincaré series, which converges outside the
mirror lines of PGL(2,Z). We then asked whether the integrability of the spherical angular
models extends to the hyperbolic ones. To this end, we introduced the Dunkl operators for
the AE3 algebra, on R1,2 and on H2, and computed their commutators. It turned out that
the presence of hyperbolic rank-2 subalgebras in AE3 prevents a simple result (like zero).
This may be an obstacle to integrability, but is not enough to rule it out.

We comment that the energy spectrum of the AE3 hyperbolic Calogero model is a
deformation of the discrete parity-odd part of the spectrum of the hyperbolic Laplacian on
square-integrable automorphic functions, because the singular lines of the potential impose
Dirichlet boundary conditions on the boundary of the fundamental domain. It remains to be
seen whether the spectral flow with the coupling g is isospectral under integral increments of g.

Since the Weyl-alcove walls of certain hyperbolic Kac-Moody algebras are the cushions of
the billard dynamics in the BKL approach [28, 29], the small-g limit of our hyperbolic Kac-
Moody Calogero system provides a model for cosmological billards [14]. The chaotic dynamics
of such billards seems to be consistent with a formal integrability of the corresponding
hyperbolic Toda-like theories [14]. Furthermore, an alternative description of BKL dynamics
leads instead to Euler-Calogero-Sutherland potentials of the sinh´2 type, which also produce
sharp walls in the BKL limit [30, 31]. This nurtures the hope that also our Calogero-type
potentials retain a kind of integrability. Finally, the well-known quantum chaotic behavior of
hyperbolic billards [32] may be “tamed” by turning on our Kac-Moody Calogero potential,
since in the large-g limit the wave function will get pinned near the bottom of the potential.
We hope that this opens a door to interesting further studies in this field.

A Computing the potential11

In this appendix we investigate the numerical evaluation of the potential function Upzq.
We have to sum over infinitely many triples pℓ, m, nq or pp, q, rq subject to a diophantine
equation, see (5.3)–(5.5),

Upzq “
ÿ

p,q,r

p2`qr“1

y2

rrpx2`y2q´2px´qs2
“

˜

ÿ

r“0
`2

ÿ

rą0

¸

ÿ

p,q

p2`qr“1

y2

rrpx2`y2q´2px´qs2

“: U0pzq`2Uąpzq ,

(A.1)

11With Don Zagier.
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where we used that pp, q, rq and p´p,´q,´rq contribute equally. The r“0 part is easily
summed up since then p “ ˘1, which yields

U0pzq :“ 2
ÿ

qPZ

y2

r2 x ` qs2
“

2π2y2

sin2p2πxq
. (A.2)

For Uą we do not know how to compute the sum in closed form. The decomposition of the
root space detailed in section 2 suggests to slice the space of triples according to fixed values of

ℓ “ r ´ p ´ q ñ q “ r ´ p ´ ℓ , (A.3)

in which case the discussion there shows that for each fixed value of ℓ we are left with only
a sum over finitely many pairs pp, rq. Specifically, if we rewrite the diophantine equation
p2 ` qr “ 1 as

3 r2 ` pr ´ 2pq2 “ 4pℓ r ` 1q ď 4 r pℓ`1q , (A.4)

then we see that for r ą 0 we must have ℓ ě 0 and also r ď 4pℓ ` 1q{3, reducing the
sum over r to a finite one. Then only those r for which 4ℓ r ` 4 ´ 3r2 is a square give a
contribution. Thus we obtain

Uąpzq “
8
ÿ

ℓ“0

t4pl`1q{3u
ÿ

r“1

ÿ

s2“4ℓr`4´3r2

y2
“

rpx2`y2q ´ pr´sqx ´ r`s
2 `ℓ

‰2 , (A.5)

where the inner sum is almost always empty and never has more than two terms.
The expression (A.5) converges rather slowly. But one can do better, by going back

to (A.1) and reducing the inner sum to a finite one in the following way. For each fixed rą0
we denote this inner sum by Urpzq and rewrite it as

Urpzq “
y2

r2

ÿ

p PZ

p2”1 pmod rq

1
“

px ´
p
r q

2 ` y2 ´ 1
r2

‰2 “
y2

r2

ÿ

p pmod rq

p2”1 pmod rq

S
´

x ´
p
r ,
a

y2 ´ 1
r2

¯

(A.6)

where the function S is defined on CˆC by Spx, aq :“
ř

n PZ

“

px´nq2`a2‰´2, which obviously
depends only on x (mod 1). Using a partial fraction decomposition of the summand together
with Euler’s formulæ for

ř

nPZ 1{px`nq and
ř

nPZ 1{px`nq2, we find the closed formula

Spx, aq “
π

2 a3
sinhp2π aq

coshp2π aq ´ cosp2π xq
`

π2

a2
coshp2π aq cosp2π xq ´ 1
`

coshp2π aq ´ cosp2π xq
˘2 . (A.7)

Inserting this into (A.6) then expresses each Urpzq as a finite sum of elementary functions,
and formula (A.1) takes on the more explicit form

Upzq “
2π2 y2

sin2p2πxq
` 2

8
ÿ

r“1

y2

r2

ÿ

p pmod rq

p2”1 pmod rq

S
´

x ´
p
r ,
a

y2 ´ 1
r2

¯

(A.8)

in which we now simply define Spx, aq by the trigonometric formula (A.7).
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R 10 000 20 000 50 000 100 000 200 000 500 000 1 000 000
Upz1, Rq 52.24167922 52.24327256 52.24429208 52.24465475 52.24484553 52.24496635 52.24500890
Upz2, Rq 52.24339662 52.24417862 52.24467954 52.24485793 52.24495185 52.24501138 52.24503236

Table 2. Values of truncated sums for the potential, at z1 “ 0.1 ` 0.7 i and z2 “ ´1{z1.

Formula (A.8) is both simpler and more rapidly convergent than the original expres-
sion (A.1), since the internal infinite sums have been evaluated explicitly, and it also converges
more rapidly than the “slicing by ℓ ” formula (A.5). As a demonstration, we list in table 2
ten-digit values of the partial sums Upz, Rq defined by truncating (A.8) at r“R for a typical
point z1 “ 0.1 ` 0.7 i and values of R going up to one million. We have also included the
values Upz2, Rq at the modular image z2 “ ´1{z1 “ ´0.2 ` 1.4 i, both as a test of the
modularity of Upzq and as a confirmation of the accuracy of the computation. It takes PARI
about 17 minutes for R“105 and about 28 hours for R“106 on a standard workstation to
compute the values for each point zi given in this table. The output suggests that the final
numbers are correct to about 7 significant digits.

The very erratic dependence of the numbers Urpzq on r, due to the sum over square-roots
of 1 modulo r in (A.6), prohibits further analytic simplification. For the same reason, the
infinite sum for Upzq, although convergent, is not very tractable numerically. However,
the convergence of the partial sums Upz, Rq for R Ñ 8 can be accelerated by adding a
suitable correction term. The following heuristic argument suggests what this correction
term should be. If the inner sum in (A.8) were over all values of p (mod r) then, since
the value of

a

y2 ´ 1
r2 « y is close to y for r large, this inner sum for large r would simply

be r times a Riemann sum for the integral
ş

R{Z
Spx, yqdx “

ş

R
px2`y2q´2dy “ π{2y3 and

hence could be approximated by rπ{2y3. The actual inner sum is only over Nprq rather
than r values of p (mod r), where Nprq denotes the number of square-roots of 1 modulo r.
Hence, if these square-roots are more or less uniformly distributed on the interval r1, rs on
the average, which is a reasonable heuristic assumption, then the value of the inner sum
should be roughly Nprqπ{y3 on average. Therefore, the contribution of the terms in (A.8)
with rąR (the “tail”) should be approximately π{y times

ř

rąR Nprq{r2 for R large. The
value of the arithmetic function Nprq fluctuates a lot, but its average behavior is quite
regular, and one can give the asymptotic value of the sum

ř

rąR Nprq{r2 without difficulty.
Specifically, from the Chinese remainder theorem we find that Nprq is multiplicative, meaning
that N

`
ś

pνi
i

˘

“
ś

Nppνi
i q, and Nppνq in turn is easily evaluated as 2 for p an odd prime

and νě1 (the only two square-roots of 1 in this case being ˘1 (mod pr)), and as 1 or 2
or 4 for p“2 and ν“1, 2, or ě3, respectively (the only square-roots of 1 in the latter case
being ˘1 and ˘1`2r´1 (mod 2r)). This gives

N psq :“
8
ÿ

r“1

Nprq

rs
“

ˆ

1 `
1
2s

`
2
4s

`
4
8s

`
4

16s
` . . .

˙

ź

pą2

ˆ

1 `
2
ps

`
2

p2s
`

2
p3s

` . . .

˙

“
1 ` 2´2s ` 21´3s

1 ´ 2´s

ź

pą2

1 ` p´s

1 ´ p´s
“
`

1 ´ 2´s ` 21´2s
˘ ζpsq2

ζp2sq
,

(A.9)
where ζpsq denotes the Riemann zeta function. In particular, N psq has a double pole at
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R 10 000 20 000 50 000 100 000 200 000 500 000 1 000 000
U p0qpz1, Rq 52.24419214 52.24462358 52.24488249 52.24496886 52.24501205 52.24503796 52.24504659
U p0qpz2, Rq 52.24465308 52.24485413 52.24497474 52.24501499 52.24503511 52.24504718 52.24505121

Table 3. Values of firstly improved truncated sums for the potential, at z1 “ 0.1`0.7 i and z2 “ ´1{z1.

R 10 000 20 000 50 000 100 000 200 000 500 000 1 000 000
U p1qpz1, Rq 52.24499640 52.24502571 52.24504334 52.24504929 52.24505226 52.24505404 52.24505464
U p1qpz2, Rq 52.24505521 52.24505520 52.24505517 52.24505520 52.24505522 52.24505522 52.24505523

Table 4. Values of secondly improved truncated sums for the potential, at z1 “ 0.1 ` 0.7 i and z2 “

´1{z1.

s“1 with principal part ζp2q´1

ps´1q2 ` O
` 1

s´1
˘

, so Nprq behaves “on the average” like ζp2q´1 log r,
and

ř

rąR

Nprq
r2 is asymptotically equal to ζp2q´1 log R

R . This suggests that we can improve the

convergence of
ř

Urpzq by replacing the partial sums Upz, Rq by

U p0qpz, Rq “ Upz, Rq `
6

πy

log R

R
. (A.10)

This is indeed the case, as we see from table 3, in which we have tabulated the corrected
partial sums with the same parameters as before.

We can improve these values further by adding an appropriate term C{R to (A.10),
where C is a constant depending on z but not on R. For this, we must first give a more
precise estimate of

ř

rąR Nprq{r2 for R large. The function ζpsq is holomorphic except for
a simple pole at s“1, with ζp1`εq “ ε´1 ` γ ` Opεq as ε Ñ 0, where γ is Euler’s constant.
It has no zeros in the half-plane ℜpsq ą 1 (or even ℜpsq ą 1

2 if we assume the Riemann
Hypothesis), so N psq has the same poles as ´c ζ 1psq ` c1 ζpsq in the half-plane ℜpsq ą 1

2
(resp. ą 1

4 on RH), where

c “
1

ζp2q “
6
π2 “ 0.6079271 . . . and c1 “ c

ˆ

2γ ´
1
2 log 2 ´ 2 ζ 1p2q

ζp2q

˙

“ 1.184108 ¨ ¨ ¨ .

(A.11)
This implies that Nprq behaves on the average like c log r ` c1, and that we have the
asymptotic estimate

8
ÿ

r“R`1

Nprq

r2 „
c log R ` c ` c1

R
, (A.12)

with an error of the order of R´3{2`ε unconditionally or R´7{4`ε if we assume the Riemann
Hypothesis. This suggests that we can further improve the convergence of

ř

Urpzq by
replacing U p0qpz, Rq of (A.10) with

U p1qpz, Rq “ U p0qpz, Rq `
π

y

c ` c1
R

, (A.13)

and this is indeed confirmed by the values shown in table 4. However, although these values
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Figure 14. Plot of the improved truncated sums
U p0qpz1, 1{Rq and U p1qpz1, 1{Rq.

Figure 15. Plot of the improved truncated sums
U p1qpz1, 1{Rq and U p2qpz1, 1{Rq.

R 10 000 20 000 50 000 100 000 200 000 500 000 1 000 000
U p2qpz1, Rq 52.24509364 52.24507433 52.24506279 52.24505901 52.24505712 52.24505599 52.24505561
U p2qpz2, Rq 52.24505562 52.24505540 52.24505525 52.24505524 52.24505524 52.24505523 52.24505523

Table 5. Values of thirdly improved truncated sums for the potential, at z1 “ 0.1 ` 0.7 i and z2 “

´1{z1.

are better, we see clearly from the graphs shown in figure 14 that even U p1qpz1, Rq, though
much more nearly constant than U p0qpz1, Rq, is still off by a linear term in 1{R.

To understand the reason for this, we must refine the heuristic argument given above.
We begin by noting that the values of p

r for p2 ” 1 (mod r) are in fact not completely
uniformly distributed modulo 1, even on the average, because the two values corresponding
to p ” ˘1 (mod r) are always very near to 0. For the remaining Nprq´2 values the
heuristic assumption of equidistribution at first sight still seems plausible, in which case the
corresponding contribution to each term Urpzq with r large would have the same average
behavior as

`

Nprq´2
˘

π
r2y

, but the two values of p{r near 0 give a contribution to Urpzq of
approximately 2y2Spx, yq{r2 each. This suggests the improved correction

U p2qpz, Rq “ U p1qpz, Rq `
4y2S˚px, yq

R
with S˚px, yq :“ Spx, yq ´

π

2y3 (A.14)

instead of (A.13), and this indeed does give a further improvement of the convergence, as
one sees in table 5 and also in the graph in figure 15. But this same graph makes it clear
that we still do not have the right linear correction term. The reason for this is more subtle
and is the most interesting part of the discussion.

This final heuristic argument depends on the observation that not only are the two
obvious square-roots ˘1 of 1 (mod r) not randomly distributed modulo r, but that there
are infinitely many other non-randomly distributed square-roots, each occurring for a set of
integers r of positive asymptotic density. For instance, if r” 10 pmod 25q, which happens for
4% of all integers, then the two further numbers ˘pr{5 ´ 1q are also square-roots of 1 (mod r),
because r{5 ´ 1 is congruent to ´1 modulo r{5 and to `1 modulo 5. For these two values
of p, one has p

r ” ˘1
5 ` O

`1
r

˘

, which are indeed not randomly distributed. More generally,
for any rational number α “ N{D with N and D coprime and D ą 0, we consider integers
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rą0 of the form D n with n ” ´2N´1 pmod Dq. Then the number p “ Nn ` 1 is congruent
to 1 modulo n and to ´1 modulo D, so that p2 ” 1pmod rq, while p

r “ N
D ` 1

r is extremely
close to α if r is large. For fixed α, the set of integers r of this form constitutes a single
congruence class modulo D2 and hence has asymptotic density 1{D2. Hence, approximating
x´

p
r by x´α and

a

y2 ´ 1
r2 by y in (A.6), we see that the total contribution of these terms

to the “tail” r ą R in (A.6) is approximately 2 y2

D2R
Spx ´ α, yq. To get the final answer, we

must sum this over all rational numbers α pmod 1q, i.e., over all denominators D ą 0 and
all numerators N pmod Dq prime to N .

The easiest way to do this is to use the Fourier expansion of the periodic function
Spx, aq which is given by

Spx, aq “
π

a3

˜

1
2 `

8
ÿ

n“1

`

1 ` 2πna
˘

e´2πna cosp2πnxq

¸

. (A.15)

(There are two ways to see this: either one writes the Fourier expansion of Spx, aq as
ř

nPZ Snpaq e2πinx with Snpaq “
ş

R{Z
Spx, aq e´2πnx dx “

ş

R
e´2πnx

px2`a2q2 dx and computes the
integral by the Cauchy residue theorem, or else one simply evaluates the expression on
the right-hand side of (A.15) in closed form using the formulæ for the sum of a geometric
series or its derivative, obtaining precisely the right-hand side of (A.7).) The constant term
π{2a3, in this expansion, with a replaced by

a

y2 ´ 1
r2 « y and inserted into (A.8), gives

exactly the approximation π
y

ř

rąR
Nprq

r2 to Upzq´Upz, Rq that we used in our initial heuristic
argument and that led via (A.12) to the function U p1qpz, Rq defined in (A.13). The further
correction term coming from all rational numbers α pmod 1q as explained above therefore
has the form Cpzq{R, with Cpzq given by

Cpx`iyq “ 2y2
8
ÿ

D“1

1
D2

ÿ

N (mod D)
pN,Dq“1

S˚
`

x´N
D , y

˘

(A.16)

with S˚px, aq as in (A.14). Replacing S˚px, aq by its expression as a sum of exponentially
small terms given in (A.15) and interchanging the order of summation, we find

Cpx`iyq “ 2π

y

8
ÿ

n“1
εpnq p1`2πnyq e´2πny cosp2πnxq

with εpnq :“
8
ÿ

D“1

1
D2

ÿ

N (mod D)
pN,Dq“1

e2πinN{D .
(A.17)

The sum over N pmod Dq is the well-known Ramanujan sum, whose value is given as the
sum of d µpD{dq (µ “ Möbius function) over all common divisors d of D and n. Therefore,
writing D as d k with k ą 0 we find

εpnq “
ÿ

d|n

8
ÿ

k“1

µpkq

d k2 “
6
π2 σ´1pnq , (A.18)
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R 10 000 50 000 100 000 500 000 1 000 000
U p8qpz1, Rq 52.2450557618857 52.2450552157850 52.2450552237500 52.2450552285072 52.2450552288639
U p8qpz2, Rq 52.2450554614623 52.2450552195214 52.2450552255882 52.2450552288339 52.2450552288596

Table 6. Values of the finally refined truncated sums for the potential, at z1 “ 0.1 ` 0.7 i and z2 “

´1{z1.

where σipnq :“
ř

d|n di as usual. This finally gives (z “ x`iy)

Cpzq “
12
πy

8
ÿ

n“1

`

σ´1pnq ` 2π σ1pnq y
˘

e´2πny cosp2πnxq “ ´
12
πy

log
ˇ

ˇηpzq
ˇ

ˇ ´ ℜ
`

E2pzq
˘

,

(A.19)
where ηpzq “ eπiz{12 śp1 ´ e2πinzq24 and E2pzq “ 1 ´ 24

ř

σ1pnq e2πinz denote the Dedekind
eta-function and the quasimodular Eisenstein series of weight 2 on the full modular group,
respectively. Note that each of the two terms on the right-hand side of (A.19) is the sum of a
constant ˘1 and an exponentially small term of the order of e´2πy, but that their sum Cpzq

decays exponentially as y“ℑpzq grows. This explains why in tables 4 and 5 the convergence
of both U p1q and U p2q was much faster for z2 (y2“1.4) than for z1 (y1“0.7).

Summarizing, we have given an argument suggesting that the “correct” refinement of
the truncated sum Upz, Rq should be given by

U p8qpz, Rq “ U p1qpz, Rq `
Cpzq

R
(A.20)

with Cpzq defined by (A.19) for z in the complex upper half-plane. Table 6 and the graph
in figure 16 both confirm that this improved version of the previous functions U piqpz, Rq

(i “ 0, 1, 2) does indeed converge very much faster to its limiting value Upzq than any of them
did, with the error now decaying faster than 1{R. (Both the numerical experiments and
a heuristic argument suggest that the true order of magnitude of this difference should be
something more like plog Rq2{R2.) Finally, the graph in figure 17 gives one last improvement.
Here, we have replaced the function U p8qpz, Rq by a function Upz, Rq defined as the average
value of the numbers U p8qpz, R1q for R1 in the (somewhat arbitrarily chosen) interval r2R{3, Rs.
The calculations up to the same limit R“106 as before now yield at least 12 significant digits
rather than the original 7.

For the sake of honesty it should perhaps be mentioned that, if our goal were simply to
obtain a better convergence of Upz, Rq to Upzq as R Ñ 8, then we could have avoided the
whole discussion of the “right” linear correction term C{R to (A.10). One can simply use a
least-squares fit to obtain C numerically from our tabulated values (as we in fact did originally,
with results that were not all that much worse than U p8q). Alternatively, at the cost of a
little loss of accuracy, one can replace U p0qpRq by the expression 2 U p0qpRq´U p0qpR{2q, which
eliminates any linear term in 1{R and is unchanged by employing U p1q, U p2q, or U p8q instead
of U p0q. However, our analysis leading to the final correction term as given by (A.10), (A.13)
and (A.20) with (A.19) is mathematically interesting and seemed worth giving, especially in
view of the unexpected occurrence of the nearly modular functions log

ˇ

ˇηpzq
ˇ

ˇ and ℜ
`

E2pzq
˘

.
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Figure 16. Plot of the finally refined truncated
sum U p8qpz1, 1{Rq.

Figure 17. Plot of the averaged truncated sum
Upz1, 1{Rq.
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