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VORWORT 

Die mathematische Arbeitstagung in Bonn hatte seit ihrem Anfang im 

Jahre ]957 bis hin zum 25. Treffen 1984 stets ihren eigenen unver- 

wechselbaren Charakter. Das Programm wird nicht im voraus festme- 

legt, sondern Vortragende und Themen ergeben sich spontan aus einer 

Programmdiskussion aller Teilnehmer unter Leitung von F. Hirzebruch. 

Dies erm~glicht, auf neueste Entwicklungen in einzelnen mathemati- 

schen Gebieten unmittelbar einzugehen,und sie auf der Tagung vorzu- 

stellen. Dar~ber hinaus ist die Arbeitstagung nicht ausschlieSlich 

einem speziellen mathematischen Thema gewidmet, sondern es finden 

sich vonder Zahlentheorie [ber die Topologie und Geometrie bis hin 

zur Analysis ~ber die Jahre hinweg Beitr~ge aus fast allen Gebieten 

der Mathematik. Gerade diesem informellen und arbeitsmiBigem Charak- 

ter der Tagung h~tte die Ver~ffentlichung von Ergebnisberichten 

widersprochen. Da jedoch immer wieder stark danach gefragt wurde, 

hat man, erst seit dem Jahre 1974, einen Kompromi8 gefunden. Die 

Sprecher fassen ihre Vortr~ge - meist nur handschriftlich - kurz 

zusam~,en, und diese werden gesammelt zum Abschlu8 eines jeden Tref- 

fens an die Teilnehmer verteilt. 

Anl~81ich der 25. mathematischen Arbeitstagung im Jahre 1984 

wurde und wird hiervon in mehrfacher Hinsicht abgewichen: Einige 

Mathematiker wurden im voraus gebeten, in Uberblicksvortr~qen Ent- 

wicklungen und Probleme in ihren eigenen Arbeitsgebieten darzustel- 

len. Diese Beitr~ge finden sich im ersten Teil des vorliegenden 

Bandes. Den zweiten Teil bilden Ausarbeitungen der meisten der ad- 

hoc Vortr~ge, deren Sprecher erst w~hrend der Arbeitstagung aus- 

gewihlt wurden. Vielleicht spiegelt sich trotz dieser ~nderungen 

im Procedere ein wenig der Charakter der Arbeitstagung wider. Im 

Anhang sind die Programme der Arbeitstagungen 1957 - 1984 wieder- 

gegeben. 

Die M~he der Schreibarbeit fast aller Beitr~ge haben mit viel 

Geduld und Sorgfalt Frau K. Deutler und Frau C. Pearce auf sich 

genommen, denen wir daf~r sehr dankbar sind. 

Bonn, November 1984 Die Herausgeber 
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INTRODUCTION TO NON COMMUTATIVE 

DIFFERENTIAL GEOMETRY 

A. Connes 

Institut des Hautes 

Etudes Scientifiques 

35, Route des Chartres 

F-91440 Bures-Sur-Yvette 

France 

This is the introduction to a series of papers in which we shall extend 

the calculus of differential forms and the de Rham homology of currents 

beyond their customary framework of manifolds, in order to deal with 

spaces of a more elaborate nature, such as, 

a) the space of leaves of a foliation, 

b) the dual space of a finitely generated non-abelian discrete group 

(or Lie group), 

c) the orbit space of the action of a discrete group (or Lie group) on 

a manifold. 

What such spaces have in common is to be, in general, badly behaved as 

point sets, so that the usual tools of measure theory, topology and 

differential geometry lose their pertinence. These spaces are much 

better understood by means of a canonically associated algebra which 

is the group convolution algebra in case b). When the space V is an 

ordinary manifold, the associated algebra is commutative. It is an 

algebra of complex-valued functions on V, endowed with the pointwise 

operations of sum and product. 

A smooth manifold V can be considered from different points of view 

such as 

~) Measure theory (i.e. V appears as a measure space with a fixed 

measure class), 



8) Topolog~ (i.e. V appears as a locally compact space), 

T) Differential geometry (i.e. V appears as a smooth manifold). 

Each of these structures on V is fully specified by the corresponding 

algebra of functions, namely: 

~) The commutative von Neumann algebra L~(V] of classes of essentially 

bounded measurable functions on V, 

8) The C*- algebra C0(V) of continuous functions on V which vanish 

at infinity, 

y) The algebra C~(V) of smooth functions with compact support. 
C 

It has long been known to operator algebraists that measure theory and 

topology extend far beyond their usual framework to: 

A) Th__e theory of weights and yon Neumann algebras. 

B) C*- algebras, K theory an d index theory. 

Let us briefly discuss these two fields, 

A) The theory of weights and yon Neumann algebras. 

To an ordinary measure space (X,~) correspond the von Neumann algebra 

L (X,~) and the weight ~ : 

~(f) : SX fd~ Vf 6 L~(x,~) + 

Any pair (M,~) of a commutative yon Neumann algebra M and weight 

is obtained in this way from a measure space (X,~). Thus the place 

of ordinary measure theory in the theory of weights on von Neumann 

algebras is similar to that of commutative algebras among arbitrary ones. 

This is why A) is often called non-commutative measure theory. 

Non-cO~autative measure theory has many features which are trivial in 

the commutative case. For instance to each weight ~ on avon Neumann 

~C Aut M algebra M corresponds canonically a one-parameter group ot 



of automorphisms of M, its modular automorphism group. When M is 

~(x) = x, Vx 6 M, and for any weight ~ on M. commutative, one has a t 

We refer to [13] for a survey of non-commutative measure theory. 

B) C*-algebras, K theory and index theory_u. 

Gel'fand's theorem implies that the category of commutative C*-algebras 

and *-homomorphisms is dual to the category of locally compact spaces 

and proper continuous maps. 

Non-commutative C~algebra~ have first been used as a tool to construct 

von Neumann algebras and weights, exactly as in ordinary measure theory, 

where the Riesz representation theorem [38], Theorem 2.14, enables to 

construct a measure from a positive linear form on continuous functions. 

In this use of C*-algebras the main tool is positivity. The fine topo- 

logical features of the "space" under consideration do not show up. 

These fine features came intoplay thanks to Atiyah's topological K-theory 

[2]. First the proof of the periodicity theorem of R. Bott shows that 

its natural set up is non-commutative Banach algebras (cf. [46]). Two 

functors K0,K I (with values in the category of abelian groups) are de- 

fined and any short exact sequence of Banach algebras gives rise to an 

hexagonal exact sequence of K groups. For A = C0(X) , the commutative 

C*-algebra associated to a locally compact space X, Kj(A) is (in a 

natural manner) isomorphic to KJ(x) , the K theory with compact sup- 

ports of X. Since (cf. [41]) for a commutative Banach algebra B, Kj(B) 

depends only upon the Gel'fand spectrum of B, it is really the C*-alge- 

bra case which is most relevant. 

Secondly, Brown, Douglas and Fillmore have classified (cf. [8]) short 

exact sequences of C*-algebras of the form: 

0÷ K+A÷ C(X) ÷ 0 

where K is the C*-algebra of compact operators in Hilbert space, and 

X is a compact space. They have shown how to construct a group from 

such extensions. When X is a finite dimensional compact metric space, 

this group is naturally isomorphic to KI (X) , the Steenrod K homology 

of X , cf. [19],[24]. 



Since the original classification problem of extensions did arise as 

an internal question in operator and C*-algebra theory, the work of 

Brown, Douglas and Fillmore made it clear that K theory is an in- 

dispensable tool even for studying C*-algebras per se. This fact was 

further emphasized by the role of K theory in the classification of 

C*-algebras which are inductive limits of finite dimensional ones 

(cf. [7] [22] [21]),and in the work of Cuntz and Krieger on C*- 

algebras associated to topological Markov chains [18]. 

Finally the work of the Russian school, of Miscenko and Kasparov in 

particular, ([30] [26] [27] [28]), on the Novikov conjecture, has shown 

that the K theory of non-commutative C*-algebras plays a crucial role 

in the solution of classical problems in the theory of non-simply-con- 

nected manifolds. For such a space X , a basic homotopy invariant is 

the F-equivariant signature q of its universal covering X, where 

r = z1(X) is the fundamental group of X. This invariant ~ lies in 

the K group, K0(C*(F)), of the group C*- algebra C*(F). 

The K theory of C*-algebras, the extension theory of Brown, Douglas 

and Fillmore and the Ell theory of Atiyah ([I]) are all special cases 

of Kasparov's bivariant functor KK(A,B) . Given two 2/2 graded 

C*-algebras A and B, KK(A,B) is an abelian group whose elements are 

homotopy classes of Kasparov A-B bimodules (cf. [26] [27]). 

After this quick overview of measure theory and topology in the non- 

commutative framework, let us be more specific about the algebras 

associated to the "spaces" occuring in a) b) c) above. 

a) Let V be a smooth manifold, F a smooth foliation of V. The 

measure theory of the leaf space "V/F" is described by the yon Neumann 

algebra of the foliation (cf.[I0][11][12]). The topology of the leaf 

space is described by the C*-algebra C*(V,F) of the foliation 

(cf. [11] [12] [43]). 

b) Let F be a discrete group. The measure theory of the (reduced) 
A 

dual space F is described by the yon Neumann algebra I(F) of opera- 

tors in the Hilbert space i2(r) which are invariant under right trans- 

lations. This von Neumann algebra is the weak closure of the group ring 

• F acting in £2(r) by left translations. 



The topology of the (reduced) dual space 

algebra c*(r), the norm closure of {F 
r ~2 

operators in (F). 

A 
r is described by the C*- 

in the algebra of bounded 

b') For a Lie group G the discussion is the same, with C ~c(G) 

of ~F. 

instead 

c) Let F be a discrete group acting on a manifold W. The measure 

theory of the "orbit space" W/F is described by the yon Neumann 

algebra crossed product L~(W) ~ F (cf. [33]). 

The situation is summarized in the following table: 

Space V V/F 

Measure v.N.algebra 
theory L~(V) of (V,F) 

Topology C0(V) C*(V,F) 

A A 
F G W/F 

}< (F) ~ (G) L(W) ~ F 

Cr(F) C*(G)r C0(W) ~ F 

It is a general principle (cf. [3] [14] [4]) that for families of 

elliptic operators (Dy)y6y parametrized by a "space" Y such as those 

occuring above, the index of the family is an element of K0(A) , the 

K group of the C*-algebra associated to Y. For instance the F-equivari- 

ant signature of the universal covering X of a compact oriented mani- 

fold is the F-equivariant index of the elliptic signature operator on 

X. We are in case b) and 0 6 K0(C~(F)) . The obvious problem £hen is to 

compute K(A) for the C*-algebras of the above spaces, and then the 

index of families of elliptic operators. 

After the breakthrough of Pimsner and Voiculescu ([34]) in the computa- 

tion of K groups of crossed products, and under the influence of the 

Kasparov bivariant theory, the general program of computation of the 

K groups of the above spaces (i.e. of the associated C*-algebras) has 

undergone rapid progress in the last years ([12] [43] [31] [32] [45] [44]). 

So far, each new result confirms the validity of the general conjecture 

formulated in [4]. In order to state it briefly, we shall deal only with 

case c) above. We also assume that F is discrete and torsion free , 

cf. [4] for the general case. By a familar construction of algebraic 

topology a space such as W/F, the orbit space of a discrete group action, 



can be realized asa simplicialcomplex, up to homotopy. One lets F act freely 

and properly on a contractible space EF, and forms the homotopy 

quotient W AF EF which is a meaningful space even when the quotient 

topological space W/F is pathological. In case b) (F acting on 

W = {pt)) this yields the classifying space BF. In case a), see [12] 

for the analoguous construction. In [4] (using [12] and [14]) a map 

is defined from the twisted K homology K*,T(W ×F EF) to the K 

group of the C*-algebra C0(W)~F. The conjecture is that this map 

is always an ismorphfsm. 

~:K,, ~ (W ~.EF) ÷ K, (C O (W) ~ F) 

At this point it would be tempting to advocate that the space w ×FEF 

gives a sufficiently good description of the topology of W/F and 

that we can dispense with C* algebras. However, it is already clear 

in the simplest examples that the C*-algebra A = C0(W) ~ F is a 

finer description of the "topological space" of orbits. For instance, 

with W = S I and F = Z , the actions given by two irrational rotations 

R01,R 9 yield isomorphic C*-algebras if and only if 01 = ±0 ([34] 

[35]) 2 and Morita equivalent C*-algebras iff 8 I and 82 belong to 

the same orbit of the action of PSL(2,~) on PI (~)[36]. On the contrary, 

the homotopy quotient is independent of e (and is homotopic to the 

two torus) . 

Moreover, as we already mentioned, an important role of a "space" such 

as Y = W/F is to parametrize a family of elliptic operators, (Dy) y6y. 

Such a family has both a topological index Indt(D) , which belongs to 

the twisted K homology group K,(WI F EF), and an analytic index 

Inda(m) = ~(Indt(m)), which belongs to K,(C0(W) ~ F) (cf. [4] [16]). 

But it is a priori only through Inda(D) that the analytic properties 

of the family (Dy)y6y are reflected. For instance, if each Dy is the 

Dirac operator on a Spin Riemannian manifold M of strictly positive 
Y 

scalar curvature, one has Ind (D) = 0 (cf. [37][16]), but the equality a 
Indt(D) = 0 follows only if one knows that the map ~ is injective 

(cf. [4][37][16]). The problem of injectivity of b is an important 

reason for developing the analogue of de Rham homology for the above 

"spaces". Any closed de Rham current C on a manifold V yields a 



map @C from K*(V) to 

ec(e) = <C,che> Ve £ K*(V) 

where ch:K*(V) + H*(V,]R ) is the usual Chern character. 

Now , any "closed de Rham current" C on the orbit space W/F should 

yield a map ~C from K.(C0(W) ~ F) to {. The rational injectivity 

of ~ would then follow from the existence, for each ~ 6 H*(W×E EF) , 

of a "closed current" C(~) making the following diagram commutative, 

K.,T(W ×I,EI') .......... ~ K.((C0(W) n V) 

]ch. I <0C(~) 

H.(Wx F El', ~) ~ 

Here we assume that W is ~-equivariantly oriented so that the dual 

Chern character ch.:K., T ÷ H. is well defined (See [16]). Also, we 

view ~6 H*(W×F EF,~) as a linear map from H.(W ×F EF,~) to ~. 

This leads us to the subject to our series of papers which is; 

I. The construction of de Rham homology for the aboye__spaces I 

2. Its applications to K theory and index theory__ t. 

The construction of the theory of currents, closed currents, and of the 

maps ~C for the above "spaces", requires two quite different steps. 

The first is purel~ algebraic: 

One starts with an algebra A over C, which plays the role of C~(V), 

and one develops the analogue of de Rham homology, the pairing with the 

algebraic K theory groups K0(A), KI (A), and algebraic tools to per- 

form the computations. This step yields a contravariant functor H~ 

from non commutative algebras to graded modules over the polynomial ring 

{~(u) with a generator ~ of degree 2. In the definition of this functor 

the finite cyclic groups play a crucial role, and this is why H* is 

called cyclic cohomology_m Note that it is a contravariant functor for al- 

gebras and hence a covariant one for"spaces". It is the subject of part II 

under the title, 
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De Rham homology and non-commutative algebra 

The second step involves analysis: 

The non-commutative algebra A is now a dense subalgebra of a C*- 

algebra A and the problem is, given a closed current C on A as 

above satisfying a suitable continuity condition relative to A, to 

extend ~c:K0(A) ÷ { to a map from K0(A) to ~. In the simplest 

situation, which will be the only one treated in parts I and II, the 

algebra A cA is stable under holomorphio functional calculus (cf. 

Appendix 3 of part I) and the above problem is trivial to handle since 

the inclusion A cA induces an isomorphism K0(A)~ K0(A) . However, 

even to treat the fundamental class of W/F, where r is a discrete 

group acting by orientation preserving diffeomorphisms on W, a more 

elaborate method is required and will be discussed in part V (cf. [16]). 

In the context of actions of discrete groups we shall construct C(~) 

and ~C(~) for any cohomology class ~ 6 H*(W ×F EF,~) in the subring 

R generated by the following classes: 

a) Chern classes of r-equivariant (non unitary) bundles on W. 

b) r-invariant differential forms on W. 

c) Gel'fand Fuchs classes. 

As applications of our construction we get (in the above context): 

~) If x 6K,,~(W x r EF) and <ch,x,~> ~ 0 for some ~ in the above 

ring R then Z(x) ~ 0. 

In fact we shall further improve this result by varying W; it will 

then apply also to the case W = {pt}, i.e. to the usual Novikov con- 

jecture. All this will be discussed in part V, but see [16] for a pre- 

view. 

8) For any ~ 6 R and any family of elliptic operators para- (Dy)y£y 

metrized by Y = w/r , one has the index theorem. 

~c(Inda(D)) = <ch,Indt(D),~> 
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When Y is an ordinary manifold, this is the cohomological form of 

the Atiyah Singer index theorem for families ([3]). 

It is important to note that, in all cases, the right hand side is 

computable by a standard recipe of algebraic topology from the symbol 

of D. The left hand side carries the analytic information such as 

vanishing, homotopy invariance,... 

All these results will be extended to the case of foliations (i.e. 

when Y is the leaf space of a foliation) in part VI. 

As a third application of our analogue of de Rham homology for the 

above spaces we shall obtain index formulae for transversally elliptic 

operators; that is elliptic operators on the above "spaces" Y. In part 

IV we shall work out the pseudo-differential calculus for crossed pro- 

ducts of a C*-algebra by a Lie group, (cf. [15]), thus yielding many 

non-trivial examples of elliptic operators on spaces of the above type. 

Let A be the C*-algebra associated to Y, any such elliptic operator 

on Y yields a finitely summable Fredholm module over the dense sub- 

algebra A of smooth elements of A. 

In part I we show how to construct canonically from such a Fredholm 

module a closed current on the dense subalgebra A. The title of part I, 

the Chern character in K homology is motivated by the specialization 

of the above construction to the case when Y is an ordinary manifold. 

Then the K homology K,(V) is entirely described by elliptic opera- 

tors on V ([6] [14]) and the association of a closed current provides 

us with a map, 

K, (V) ÷ H, (V,~) 

which is exactly the dual Chern character ch,. 

The explicit computation of this map ch, will be treated in part III 

as an introduction to the asymptotic methods of computations of cyclic 

cocycles which will be used again in part IV. As a corollary we shall, 

in part IV give completely explicit formulae for indices of finite 

difference, differential operators on the real line. 
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If D is an elliptic operator on a "space" Y and C is the closed 

current C = ch,D (constructed in part I), the map ~c:K,(A) ÷ 

makes sense and one has, 

~c(X) = <x,[D]> : Index D x V x 6 K,(A) 

where the right hand side means the index of D with coefficients in 

x, or equivalently the value of the pairing between K homology and 

K cohomology. The integrality of this value, Index D x6~, is a basic 

result which will be already used in a very efficient way in part I, 

to control K.(A) . 

The aim of part I is to show that the construction of the Chern character 

ch, in K homology dictates the basic definitions and operations - 

such as the suspension map S - in cyclic cohomology. It is motivated 

by the previous work of Helton and Howe [23], Carey and Pincus [9] and 

Douglas and Voiculescu [20]. 

There is another, equally important, natural route to cyclic cohomology. 

It was taken by Loday and Quillen ([29]) and by Tsigan ([42]). Since 

the latter work is independent from ours, cyclic cohomology was dis- 

covered from two quite different points of view. 

There is also a strong relation with the work of I. Segal [39] on 

quantized differential forms, which will be discussed in part IV and 

with the work of M. Karoubi on secondary characteristic classes [25], 

which is discussed in part II, Theorem 33. 

Our results and in particular the spectral sequence of part II were 

announced in the conference on operator algebras held in Oberwolfach 

in September 1981 ([17]). 

Besides parts I and II, which will soon appear in the IHES Publications, 

our set of papers will contain: 

I. 

II. 

III. 

IV. 

The Chern character in K homology. 

De Rham homology and non commutative algebra. 

Smooth manifolds, Alexander Spanier cohomology and index theory. 

Pseudodifferential calculus for C* dynamical systems, index 
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V° 

VI. 

VII. 

theorem for crossed products and the pseudo torus. 

Discrete groups and actions on smooth manifolds. 

Foliations and transversally elliptic operators. 

Lie groups. 
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In this article we attempt to explain the formalism of Deligne's ratio- 

nality conjecture for special values of motivic L-functions (see [DI]) 

in the particular case of L-functions attached to algebraic Hecke charac- 

ters ("Gr~Bencharaktere of type A0"). In this case the conjecture is 

now a theorem by virtue of two complementary results, due to D. Blasius 

and G. Harder, respectively: see §5 below. 

For any "motive" over an algebraic number field, Deligne's conjecture 

relates certain special values of its L-function to certain periods of 

the motive. Most of the time when motives come up in a geometric situa- 

tion, we tend to know very little about their L-functions. In the special 

case envisaged here, however, the situation is quite different: The L- 

functions of algebraic Hecke characters are among those for which Hecke 

proved analytic continuation to the whole complex plane and functional 

equation. But the "geometry" of the corresponding motives has emerged 

only fairly recently - see §3 below. 

The relatively good command we now have of the motives attached to alge- 

braic Hecke characters reveals that many non-trivial period relations 

are in fact but reflections of character-identities. This point of view 

is systematically perused in [Seh], and we shall illustrate it here by 

the so-called formula of Chowla and Selberg: see § 6. 

This formula, in fact, goes back to the year 1897, as does the instance 

of Deligne's conjecture with which we start in § I. Tying up these two 

relations in the motivic formalism, we hope to make it apparent that 

both results really should be viewed "comme les deux volets d'un m~me 

diptyque '~, as A. Weil has pointed but in [WIII], p. 463. 
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§ I A formula of Hurwitz 

§ 2 Algebraic Hecke characters 

§ 3 Motives 

§ 4 Periods 

§ 5 The rationality conjecture for Hecke L-functions 

§ 6 A formula of Lerch 

§ 1o A formula of Hurwitz 

In 1897, Hurwitz [Hu] proved that 

1 4v 
(I) E' 4v ~ × (rational number), 

a,b6~ (a+bi) 

for all ~ = 1,2,3,... , where 

£ (  r l  d x  
( 2 )  ~ = 2 1 _  - 2 . 6 2 2 0 5 7 5 5 , . .  = 

u 

Notice the analogy of these identities with the well-known formula for 

the Riemann zeta-function at positive even integers: 

1 2 v  
(3) E' 2~ - (2~i) x (rational number). 

a£ ~ a 

Both formulas are special cases of Deligne's conjecture. To understand 

this in Hurwitz' case, we look at the elliptic curve A given by the 

equation 

A : y2 = 4x 3 _ 4x . 

A is defined over ~ , but we often prefer to look at it as defined over 

the field k = ~(i)c ~ . Over this field of definition, we can see that 

A admits complex multiplication by the same field k : 
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k > End (A) ® 

- - X  

i I > 

I---> i y  

Deligne's account of Hurwitz' formula would start from the observation 

that both sides of (I) express information about the homology 

H I (A) ®49 c H4~ (A 4~) 

The left hand side of (I) carries data collected at the finite places of 

k , as does the right hand side for the infinite places. 

In fact, look at the different cohomology theories: 

- Etale cohomology: Fix a rational prime number ~ , and denote, for 
n 

n~ 1 , by A[£ n] the group of ~ -torslon points in A(~), ~ being the 

algebraic closure of ~ in ~ . Then 

V£(A) = I<lim A[£n])®ZZ£ ~£ 
n 

is the dual of the first £-adic cohomology of A×k~ 

in ~£ 

with coefficients 

By functoriality, the isomorphism k ~ ~ ®~ End A makes Vi(A) into 

a k ® ~£-module, free of rank I. The natural continuous action 

of Gal (W/k) on V£(A) is k ® ~ -linear, and therefore given by a 

continuous character 

~£: Gal (~/k)ab - - >  GL k®~£(V Z(A)) = (k®~z)* . 

This character was essentially determined - if from a rather different 

point of view - on July 6, 1814 by Gauss, [Ga] . The explicit analysis of 

the Galois-action on torsion-points of A was carried out (in a stunning- 

ly "modern" fashion) in 1850 by Eisenstein, [El]. - In any case, if 

is a prime element of ~ [i] not dividing 2Z , normalized so that 

~ I (mod (I+i) 3) , and if F 6 Gal (~/k)ab is a geometric Frobenius 
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element at (~) (i.e., F-1(x)~ ~ x ~ ~ (mod P ) for any prime P of kab 

dividing (~), any algebraic integer x 6 kab), then one finds 

~ (F) = -I 6 k* c > (k® Q£)* 

The characters ~£ all fit together to give an "algebraic Hecke charac- 

ter" ~ defined on the group 12 of ideals of k that are prime to 2: 

I ~ > k* 
2 

F ~ 
I2~ > Gal  (~ /k )ab  > ( k ® ~ g ) *  

Then for all ~ Z I, the character ~4~ can be defined on all ideals of 

k by (~) ~__> -4v . Remember that k is embedded into ~ , so that it 

makes sense to consider the L-functions 

L(~ 4~ ,s) = ~ I 
~ (~) 4~ 

p I s 

(Re(s) > I-2~) , 

where p ranges over all prime ideals of ~ [i] . Then the left hand side 

of Hurwitz formula (I) is simply 4 L(~ 4~ ' . ,0). We have shown how this is 

a special value, of the L-function afforded by the l-adic cohomologies 

V~(A)®k®~ 4~ 

- Betti and de Rham cohomology. Here we shall use the fact that the 

curve A (if not its complex multiplication) is already defined over ~. 
B Denote by HI(A) = HI(A(~),~) the first rational singular homology of the 

Riemann surface A(~) , with the Hodge decomposition 

B 
H I (A) ®~ • = 

Complex conjugation on A×~ 

F : HI(A) ~ 

H -I'0 @ H 0'-I 

induces an endomorphism 

(the "Frobenius at ~"). 
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B 
Call HB the fixed part of HI(A) under F 

this onedimensional G-vector space. 

, and let be a basis of 

1 (A)V be the dual of the first algebraic de Rham cohomo- Let H R(A) = HDR 

logy of A over ~ , given with the Hodge filtration 

DR + 
H I (A) ~F D {0} 

where F + ®~ ~ H 0'-1 under the GAGA isomorphism over ¢: 

I : H~(A) ®~ (1 > HIR (A) ®(~(E 

I induces an isomorphism of onedimensional ~-vector spaces 

i + + : HB(A) ®~ .... > (HIR(A)/F +) ®~ 

Then, ~I . i +(n) 6 HIR(A)/F + , for ~ defined by (2) . In fact, 

= f 1 ~  dx is a real fundamental period of our curve, and so, up to 

~* , Q is the determinant of the integration-pairing 

(HB(A) ®(~(~) x (H0(A,~ I) ®(~(Z) S > (~ 

calculated in terms of R-rational bases of both spaces. This determinant 

equals that of the map I + since H0(A,~ I) cH I (A) is the dual of 
DR 

H~R (A) /F + 

Passing to tenser powers of the onedimensional vector spaces above we find 

the periods ~4~ occuring in (I). 

In a sense, we have cheated a little in deriving the period ~ from the 

cohomological setup: In the ~tale case we have used the action of k via 

complex multiplication to obtain a onedimensional situation (i.e., the 

k-valued character ~ ). In the calculation of the period, too, we should 

have considered H~R(A/k). = H~R(A)j ®~ k , endowed with the further action 
B 

of k via complex multiplication, and two copies of HI(A), indexed by 

the two possible embeddings of the base field k into • .... But in the 
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presence of an elliptic curve over ~ , this would have seemed too arti- 

ficial, and the general procedure will be treated in § 4. 

As a final remark about formula (I), it should be noted that it is proved 

fairly easily. Any lattice F = I . (ZZ +~i) gives a WeierstraB ~func- 

tion such that 

3 
~' (z,F) = 4~(z,r) - g2lF) ~(z,F), 

and for I = ~ we get g2(F) = 4. The rational numbers left unspecified in 

(1) are then essentially the coefficients of the z-expansion of ~(z,F) . 

It is these numbers that Hurwitz studied in his papers. 

§ 2. Algebraic Hecke Characters 

Let k and E be totally imaginary number fields (of finite degree over 

~) , and write 

Z = Hom (k,~) and T = Hom (E,~) 

the sets of complex embeddings of k and E. The group Gal(~/~) acts 

on Z×T , transitively on each individual factor. An algebraic homomor- 

phism 

8 : k* > E* 

is a homomorphism induced by a rational character 

: Rk/~ (~m) > RE/~ (~m)- 

This means that, for all • 6T, the composite 

is given by 

• oS : k* > ~* 

(4) ~oB (x) = ~E-~ O(x) n(~,~) , 
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for certain integers 

p6 Gal (~/~) . 

n(o,T) , such that n(~o,~) = n(a,T) for all 

Let k~ ,f ~,, > k~ be the topological group of finite id~les of k - 

i.e., those id~les whose components at the infinite places are I. For 

x 6k*, let x also denote the corresponding principal idele in k~ ,and 

xf the finite id~le obtained by changing the infinite components of x 

to 1. 

An algebraic Hecke character ~ of k with values in E , of (infinity-) 

type ~ , is a continuous homomorphism 

: k* > E* ~,f 

such that, for all x £ k*, 

(xf) = B (x) 

If ~ is the infinity-type of an algebraic Hecke character Y , then, by 

continuity, 8 has to kill a subgroup of finite index of the units of k. 

It follows that the integer 

(5) w = n(o,T) + n(co,T) = n(o,T) + n(o,cT) 

(where c : complex conjugation on ~) is independent of ~,T. It is 

called the weight of 

For any T6 T , we get a complex valued Gr~Sencharakter Toy which extends 

to a quasicharacter of the id~le-class-group: 

* ToY ~. 
k]A,f .......... > 

klA 

* ToY ~. 
klA/k. > 

Consider the array of L-functions, indexed by T: 
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L (~,s) = (L(To~,S))~6 T , 

W 
where, for Re(s)> ~ + I , 

I 

# 

the product being over all prime ideals p of k for which the 

value ~(~p) does not depend on the choice of uniformizing parameter 

wp of kp 

The point s = 0 is called critical for ~ , if for any T , no F- 

factor on either side of the functional equation of L(To~,s) has a 

pole at s = 0 . This is really a property of the infinity-type B of 

, for it turns out that s = 0 is critical for ~ if and only if 

there is a disjoint decomposition 

Z ×T : { (o,T) n(o,T) <0} 0 { (d,T) I n(co,7) < 0} 

In other words, for every TET , there is a "CM-type" ~(TOB)C Z such 

that 

(6) 

• (~ToB) = ~(ToB) ~ , for ~6 Gal(~/~) 

• O6~(~8) ¢¢ n(d,T) <0 ~ n(co,<) ->0 

For ~ such that s =0 is critical Deligne defined an array of periods 

~(~) : (Q(~}''T))T6T 6 ({*)T = (E®~{)* , and conjectured that 

(7) L(~,0) 6 E c > E®{ 
~(~) 

In other words, he conjectured that there is x 6 E such that for all 

Y : E r~ >{ , 

L(To~,0) = T(X) . ~(~,T) 
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The definition of ~(~) is discussed in § 4. It requires attaching a 

motive to an algebraic Hecke character. 

§ 3. Motives 

3.1 In the example of § 1, we constructed a "motive" for our Hecke 

characters ~4m by taking tensor powers of HI (A) , i.e., a certain di- 

rect factor of H4~(A4m), in the various cohomology theories. This 

illustrates fairly well the general idea of what a motive should be: 

Starting from an algebraic variety over a number field, we have the 

right to consistently choose certain parts of its cohomology. Just 

what "consistenly" means constitutes the difference between various 

notions of motive. Here we shall be concerned with a fairly weak and 

therefore half way manageable version: motives defined using "absolute 

Hodge cycles" - see [DMOS], I and II. In this theory motives 

can often be shown to be isomorphic when their L - func- 

tions and periods coincide. A little more precisely, giving a homo- 

morphism between two such motives M and N amounts to giving a fa- 

mily of homomorphisms 

H O (M) --> H ° (N) 

HDR(M) --> HDR(N) 

H£ (M)--> H£ (N) 

(Betti cohomology depends on the choice of 
o : k--> ~ yielding M}--> Mxo~ ) 

(for all £ ) 

compatible with all the natural structures on these cohomology groups: 

Hodge decomposition, Hodge filtration, Gal(k/k)-action, as well as 

with the comparison isomorphisms between H B and HDR , H B and the 

His • 

3.2 Let us state more precisely what a motive attached to an alge- 

braic Hecke character ~ should be[ - In the example of § I, the curve 

A/~ defines the motive HI (A) over ~ whose L-function is L(~,s). 

(This is really what Gauss observed in 1814; nowadays this follows from 

a result of Deuring, which has been further generalized by Shimura 

[Sh I]...) But this is not what we are looking for. The complex multi- 

plication of A and therefore the Hecke character ~ are not visible 
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over ~ . That is why we considered A over k in our treatment of 

the @tale cohomology, and used the field of values of ~ (which again 

happened to be k ) to obtain onedimensional Galois-representations, 

and thus 

Given a general algebraic Hecke character ~ like in § 2, a motive M 

for ~ has to be a motive defined over the base field k such that 

the field E acts on all the realizations of M in the various eoho- 

mology theories, and such that for all Z, Hz(M) is an E®~i-module 

of rank I with Gal (T/k) acting via ~ . The action of E on the 

various realizations of M should of course be compatible with their 

extra structures and with the various comparison isomorphisms. In other 

words (see 3.1), E should embed into End M . Thus the rank-condition 

on HI(M ) can also be stated by saying that Betti cohomology H (M) 

should form a onedimensional E-vector space. 

3.3 The typical example is HI (A) , for an abelian variety A/k with 

E ~ ~®~ End/kA and 2 dim A = [E : Q]. The fact that these motives 

always give rise to an algebraic Hecke character was one of the main 

results of the theory of complex multiplication by Shimura and Taniyama. 

The Hecke characters occuring with abelian varieties of CM-type are 

precisely those of weight -I such that n(o,7) 6 {-1,0} , for all 

(o,T) 6 Z×T . 

In fact, given such an algebraic Hecke character ~ of k with 

values in E , we can assume without loss of generality that E 

is the field generated by the values of ~ on the finite id~les of 

k . Then E is a CM-field (i.e., quadratic over a totally real subfield), 

and a theorem of Casselman, [Sh 1], can be applied to get an abelian 

variety A defined over k such that: . 2 dim A = [E : ~] 

• there is an isomorphism 
N 

E > ~®~ End/kA 

• HI (A) is a motive for ~ . 
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3.4. When ~ has arbitray weight (%0) the homogeneity condition (5) 

above still forces the infinity-type 8 to be of the form 6 = lilB i , 

with lweight (Bi) I : I , ni(d,7) 6 {±1,0} . Since twisting with finite 

order characters is easy to control motivically one would naively expect 

to be able to assemble a motive for any given algebraic Hecke character 

essentially as tensor product of constituents of the form HI(A) or 

HI(A) like in 3.3. 

There is however the nasty problem of controlling the fields of values 

E . For example, if k is imaginary quadratic with class number h > I , 

then a Hecke character of k with {n(d,7) } = {-1,0} or 

{n(J,T) } = {1,0} can never take all values in E = k , but its h-th 

power may. 

Constructing a motive for the h-th power as an E-linear tensor power 

of a motive for the character of weight ±I , one still has to show that 

the field of coefficients E can be "descended" to k in weight ±h . 

3.5 This "descent" of the field of coefficients can be dealt with 

directly. But we gain much more insight if we use a very elegant 

formalism due to Langlands, [La] § 5, and Deligne, [DMOS] IV. Langlands 

defined a group scheme over ~ , the "Taniyama group" T , of which 

Deligne was subsequently able to show that the category of its ~-rational 

representations is equivalent to the category of those motives as can 

be obtained (eventually after twisting by a character of finite order) 

from abelian varieties over ~ which admit complex multiplication over 

. Since the Taniyama group - along with many other beautiful proper- 

ties - has, for every k , a certain subquotient S k (isomorphic to a 

group scheme constructed by Serre in [S£]) whose irreducible represen- 

tations are given precisely by the algebraic Hecke characters ~ of k, 

we "find" the motive attached to a given ~ by lifting the correspon- 

ding representation of S k back to the subgroup of T whose repre- 

sentations give the motives defined over k . 

3.6 SO, for every algebraic Hecke character ~ of k with values in 

E , a motive over k equipped with an E-action can be constructed from 

CM-abelian varieties over k, whose £-adic Galois representations are 

onedimensional E ®Q£-modules given by ~ . Furthermore, the Tate-conjec- 

ture would imply that the £-adic realizations determine a motive up to 
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isomorphism - even in the strictest sense of "motives" (algebraic cycles). 

As we are dealing with motives for absolute Hodge cycles, it is perhaps 

not too surprising that one can actually prove: in the category of mo- 

tives that can be obtained from all abelian varieties over k (not 

necessarily CM) , any two motives attached to the same Hecke character 

are actually isomorphic - see [Sch], I. Still, this does not seem to be 

known in any larger category of motives. In fact, it hinges on Deligne's 

theorem that "every Hodge cycle on an abelian variety over an algebra- 

ically closed field is absolutely Hodge" - see [DMOS], I. Anyway, 

whenever we find two motives constructed from the cohomology of abelian 

varieties that belong to the same Hecke character they will have the 

same periods... 

§ 4. Periods 

As in the example of § I, periods are going to arise from a comparison 

of the Betti and de Rham cohomology groups of our motive. So, let us 

first look at these cohomologies more closely in the case of a motive 

for an algebraic Hecke character. We are going to use some facts which 

are well-known for the cohomology of algebraic varieties, and which 

carry over to motives. 

4.] As in § 2, let k and E be totally imaginary number fields, 

and ~ an algebraic Hecke character of k with values in E . Let 

M be a motive over k attached to ~ (in the sense of 3.2 above) . 

Then for any embedding o6Z , the singular rational cohomology H (M) 

is an E-vector space of dimension 1. The E-action respects the Hodge- 

decomposition 

HP,q Ho(M) ® ~ : 
P,q 

H (M) ® ~{ is an E ®~{ = {T -module of rank I. ( ~ and T were de- 

fined at the beginning of § 2.) 

Starting from the special case where M = HI (A) with an abelian variety 

A/k of CM-type, and using the uniqueness of the motive attached to a 

Hecke character (see 3.6) , one finds that, for any embedding T 6 T , 
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the direct factor of Ho(M) ®~ on which E acts via T lies in 

Hn(o,x) , w-n(c,T) 

(The n(o,T) are given by the infinity-type of ~ : see § 2, formula 

(5) .) 

4.2 Let us note in passing that, if M(~) and M(~') are motives 

for Hecke characters ~ and T' of k with values in E , then the 

following are equivalent: 

• M(~) ~ M(~') over ~ . 

• For some 06~ , H@(M(~)) ~ H (M(T')) , as rational Hodge-structures. 

• ~ and ~' have the same infinity-type B . 

4.3 Coming back to our motive M for ~ , suppose now that s = 0 

is critical for ~ (see § 2, formula (6)), and consider the comparison 

isomorphism 

I : @ H u(M) ®~{ > HDR(M) ®~ 

Note that HDR(M) is by definition a k-vector space, and that 

k®~ ~ {Z . So, I is an isomorphism of k ® E ®{ - modules of rank 1. 

For ~EZ , let e be an E-basis of H (M) , and put e : (~® I)~6 ~ 

On the right hand side, choose a basis ~ of HDR(M) over k ®~E , 

and decompose 

L0 : ~ £0 r 
(@,T)6ZxT 0,7 

with ~o,T 6 T-eigenspace of HDR(M ) ®kl { . Writing I(e ) = Z 
T6T 

for the corresponding decomposition of I(e) , we find for all 

(0,T)EZxT that 

I(e~) T 
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, for some p(O,7) 6 {* 

C(~*) ZxT = (k®E®~)* 
(p(~,T))(~,T)E E×T 

gives the "matrix" of I and, up to multiplication by 

pends only on ~ . 

(k®E)* , de- 

4.4 Modulo such a factor one has the relation 

(8) p(o,T) • p(co,T) N (2 zi) w 

This amounts essentially to Legend~e's period relation, and can be 

proved in our context (using uniqueness of motives for Hecke characters) 

from the identity ~ = ~w . _ The motive ~(-I) attached to the 

norm character is discussed in more detail, e.g., in [DI], § 3. For (8), 

it is enough to know that ~(-1) is a motive defined over ~ , with 

coefficients in ~ such that 

I 
HB(~(-I)) = ~ ~ and HDR(~(-I)) = ~ , 

with trivial comparison isomorphism. Incidentally, ~(-I) has no cri- 

tical s , if considered over a totally imaginary field k . 

With (8) and 3.4, calculating the p(o,T) 's (or their inverses) usually 

reduces to integrating holomorphic differentials on which E acts via 

7 or cT . 

4.5 In terms of these p(O,T) , Deligne's period ~(%~)C(E®~)*/E* 

(see (7) above) can be defined componentwise by 

(9) ~(~{,T) = D(~') T - o6~(~ToB) p(o,'~) 
-I 

For the definition of the "CM-types" ¢('~oB) , see § 2, formula (6). 
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Note that the product in (9) is, in fact, well-defined up to a factor 

in (E ® 1)* - One definition of the "discriminant factor" 

D(~) = (D(~)T)T 6 T can be found in [DI], 8.15. This factor arises when 

one computes the cohomology of Rk/Q M by the K~nneth formula: among 

other things, one has to choose an ordering of Z . A definition of 

D(~) which was born out by these cohomological computations - cf. [Ha], 

esp. 2.4.1 and Cor. 5.7.2B - is as follows. Start with one TET , and 

let K cE ~ be the fixed field of 

{p 6Gal(~/~) I P @ (T°O) : ~(~o~) } 

mK GaI(~/K T) permutes the set @('loB) . Let L T 

of the kernel of the character 

be the fixed field 

GaI(~/K T) > ~(~(ToB)) s@n> {-+I} 

Then [L : K ] < 2 , and L = K[(D(~) ) for some D(~) T with 
2 ~ ~[ T 

D (~) 6 K* 
T T 

NOW, any p 6 Gal(~/~) induces a permutation of the set of infinite 

places of k : both ~(To~) and O(pTo6) are in bijection with this 

set. Call 8(p) the sign of this permutation. Then we set 

D(~) = a(p) (D(~))P 
pT T 

The array (D(T) T)< 6T is independent, up to a factor in 

the choices made in defining its components. 

(EOI)* ,9f 

Let us list some properties of D(%') - ef. also [Sch]. 

4.6 a) D(~) depends only on k,E , and the collection of "CM-types" 

{¢(~o~) I • CT} 
2 

b) m(~) 6(E® I)* c (E~)* 

c) If k is a CM-field, with maximal totally real subfield ko, 

then D(~) N6discr(koT , up to a factor in (E® I)* 

d) Let F/k be a finite extension of degree n . Then 
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c ('[o 8) TIT 

up to a factor in (E ® I)* . Here, the right hand side means the 

following: 

Let d(k*) 2 6 k*/(k*) 2 be the relative discriminant of F/k . For any 

infinite place v of k , choose a square root 6 = /d-6k* . For 
V V 

6Z , let Icl be the infinite place of k determined by ~ and c~ , 
w 

and denote by o(6toi) £ 6" the well-defined image of 61~16 klo I under 

the continuous isomorphism kjo I --~--~ > { given by ~ . - Note that 

changing the representative of d or the signs of 6 , at some places 
V 

v , multiplies the right hand side of our formula only bya factor in 

(E ® I)* 

Assume the situation of 4.6,d) . From the very definition of the p(c,~) , 

and the properties 4.6,a) and d), one finds the following formula for 

the behaviour of the periods under extension of the base field: 

(10) 

A(F/k,B) • - 
(~ ONF/k) D (~ONF/k) 

(~n) D (~n) 

D(~°NF/k) D(~) n 
= 77 ~(6 • D(~) 

D(p) n D(~ n) Ic IT6T 

n-1 

The array A(F/k,B) 6 (E~6)* will reappear in the second theorem of 

§ 5 below. Note that, if k is a CM-field, the second factor of 

A(F/k,B) can be evaluated by 4.6,c). Both factors of A are already 

present in [Ha], in the case n = 2 , although the formalism there is 

still somewhat clumsier than the one employed here. 

4.7 Let us close this section with a few words on the behaviour of 

our periods under twisting. For the Tate twist, one finds 

(11) 2(~.~ m) ~ (2 ~i) m ~(~) 
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If ~ is a character of finite order on K* /k* with values in E* 
~,f 

one passes from ~(T) to Q(~T) by leaving D(T) unchanged, and 

multiplying the p(0,T) by certain algebraic numbers with eigen- 

properties under ~ . The details can be found in [Sch]. All we need 

to know is the following invariance lemma: 

If F is a finite extension of k, X a character of finite order on 

F~,f* /F* with values in E* , and ~ the restriction of X to 

k~,f* (in other words, considering X and ~ on Gal(k/F) , Gal(k/k) , 

resp., via class field theory, ~ : Xo Ver , where 

Vet : Gal(kab/k) --> Gal(Fab/F) is the transfer map), then 

(12) 
~(X" (To NF/k) ) ~q(TONF/k) 

2(~-~ n) ~q(T n) 
: £ (F/k,B) 

Let us mention in passing that the proof of (12) also shows that the 

quotients 

~(T) 

may always be expressed by Gauss sums. 

§ 5. The rationality conjecture for Hecke L-functions 

The proof of Deligne's conjecture (see end of § 2) for the critical 

values of L-functions of algebraic Hecke characters falls into two parts: 

The case where the base field k is a CM-field is treated first. From 

there one passes to the general case by a theorem about the behaviour 

of special values under extension of the base field. 

(I) Let us briefly describe the CM-case: 

Historically, the main idea for the CM-case goes back to Eisenstein. 

But it was Damerell who, in his thesis [Da], published the first 
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comprehensive account of algebraicity results for critical values of 

Hecke L-functions of imaginary ~uadratic fields. He also announced 

finer rationality theorems in that case, but never published them. 

(The case of imaginary quadratic k was later settled completely in 

[GS] and [GS'].) In the Fall of 1974, Andr@ Well gave an exposition of 

work of Eisenstein and Kronecker including, among other things, 

Damerell's theorem as an application. This course at the IAS - which was 

later on developed into the book [WEK] - inspired G. Shimura to gene- 

ralize Damerell's algebraicity results to critical values of Hecke L- 

functions of arbitrary CM-fields: [Sh 3] (At that point, he still 

needed a technical assumption on the infinity-type of the Hecke cha- 

racter.) 

To explain the starting point of this method of proof, recall our 
I 

example in § I: the L-value there appeared (up to a factor of ~ ) as 

an Eisenstein series : 

v 

a,b6Z (a+bi) 
4~ 

relative to the lattice Z + Zi . Now, sometimes the relation between 

L-value and Eisenstein series is not quite as straightforward - e.g., 

if, in § I, we were to study the values L(~a,0) for integers a # 0 

such that s = 0 is critical for ~a , then we would have to trans- 

form the Eisenstein series by certain (non holomorphic) differential 

operators. But except for such operators it remains true that, in any 

pair of critical values of an Hecke L-function of a CM-field k which 

are symmetric with respect to the functional equation, there is a value 

which can be written as a linear combination of Eisenstein series (viz., 

Hilbert modular forms with respect to the maximal totally real subfield 

of k ), relative to lattices in k . 

When k is imaginary quadratic, the algebraicity properties of the 

Eisenstein series can be derived directly from explicit polynomial re- 

lations among them (see, e.g., Well's treatment of Damerell's theorem 

in [WEK]). But in general the proof of their algebraicity depends on a 

theory of canonical models for the Hilbert modular group (as in [Sh 3]) 

or, equivalently, on an algebraic theory of Hilbert modular forms. 
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This latter approach was used by Katz in [KI], [K2]. Just like Shimura, 

Katz did not stop to look at more precise rationality theorems about 

the special values he had determined up to an algebraic number. In fact, 

Katz' main concern was with integrality properties and p-adic inter- 

polation. 

When Deligne formulated his conjecture in 1977 he felt the need to check 

that, up to a factor in ~* , it predicted Shimura's theorem. This 

turned out to be a confusing problem, for the following reason. Shimura 

expresses the L-values in terms of periods of abelian varieties con- 

structed from lattices in k , which therefore have complex multiplica- 

tion by k , and are defined over some number field E' . On the other 

hand, the L-function in question is that of a Hecke character of the 

field k , with values in some number field E . The motive of such a 

character arises from abelian varieties defined over k , with complex 

multiplication b_~ E (or some field closely related to E ). This 

double role of k as field of definition and of coefficients was dealt 

with by Deligne - up to factors in ~* - by an ad hoc dualization, 

see [DI], 8.19. (Its refinement for more precise rationality state- 

ments remained the most serious obstacle in the attempt to prove 

Deligne's conjecture made in [Sch I].) 

Don Blasius managed to solve this problem by writing down an analogue 

of Deligne's dualization on the level of motives over k , resp. E : 

his "reflex motive". Thus he was able to prove 

Theorem I: Let k be a CM-field, and ~ a Hecke character of k , 

with values in some CM-field E . If s = 0 is critical 

for ~ , then 

L('~,o) 6E ~ > E®¢ . 
~(~) 

(Note that any algebraic Hecke character of any number field takes 

values in a CM-field.) 

As Blasius' paper [B] is about to be available we shall not enter into 
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describing the technique of his proof in detail. Suffice it to say 

that, apart from the "reflex motive" mentioned above, he needs, of 

course, a very careful analysis of the behaviour of the Eisenstein 

series under Gal(~/~) (i.e., Shimura's reciprocity law in CM-points), 

and also the explicit description - due to Tate and Deligne - of the 

action of Gal(~/~) on abelian varieties of CM-type: see [LCM], 

chapter 7. 

(II) We shall now describe a little bit more in detail the second 

part of the proof of Deligne's conjecture for Hecke L-functions. It 

relies on a generalization of [Ha], § 3, from GL 2 to GL n , and 

might not be published completely before some time. 

Consider the following situation: Let k be a totally imaginary num- 

ber field, and F/k a finite extension of degree n ~ 2 . Let ~ be an 

algebraic Hecke character with values in a number field E , of in- 

finity-type 8 . Assume s = 0 is critical for Y . Let 

X : F~* /F* > E* be a character of finite order, and put ~ =Xlk~* ' 

like in § 4.7 above. Recall the array 

A(F/k,8) : (A(F/k, Yo8))76T 

defined in § 4.6, formula (10). 

Theorem 2: 

A (F/k, B) 
L F(X- (~ONF/k) ,0) 

Lk(~-~n,0) 
6E m > E®~ 

Remarks: (i) As the Euler product for L(T,s) converges for 
w 

Re(s) >~ + I , and s = 0 is critical for Y , it is well-known that 

the denominator in the theorem is not zero. 

(ii) Here is how theorems I and 2 imply Deligne's conjecture for all 

critical values of all Hecke L-functions: Given any totally imaginary 
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number field F , and any Hecke character ~ of F , with values in 

a number field E o , of infinity-type 8 o , the homogeneity condition 

(5) of § 2 forces Bo to factor through the maximal CM-field k 

contained in F : 

8o = ~o NF/k , 

for some algebraic homomorphism 

8 : k* > E'o* 

Choose a Hecke character ~{ of k with infinity-type B , write 

= X -( ~ o NF/k ) , for some finite order character X of F , and 

choose E mE big enough to contain the values of T as well as those 
o 

of X - Define e : Xlk* . Put n = [F : k] . By theorem I, 

L(~0"T n,0) 6 E 

~(w.y n) 

But we know the behaviour of the periods Q under twisting and base 

extension: see end of § 4. Theorem 2 therefore implies that 

L(~,0) L(X-( ~ o NF/k),0) 

[2(X- ( T o NF/k)) 

6E > E@{ • 

Finally, E may now be replaced by E o because Deligne's conjecture 

is invariant under finite extension of the field of coefficients: 

[D1] ,  2 . t 0 .  

This gives Deligne's conjecture for Hecke L-functions of totally ima- 

ginary number fields. These are the only fields with honest regard 

Hecke L-functions. But it should be said, for the sake of completeness, 

that Deligne's conjecture for Hecke (=Dirichlet) L-functions of totally 

real fields follows from results of Siegel's (cf. [DI], 6.7) and, in 

the case of number fields which are neither totally real nor totally 
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imaginary, no Hecke (=Dirichlet) L-function has any critical value. 

The remainder of this section is devoted to sketching the proof of 

theorem 2. Let us set up some notation. 

We consider the following algebraic groups over k : 

Go/k : GLn/k - 

To/k = standard maximal torus 

Bo/k = standard Borel subgroup of upper triangular matrices, 

and the two maximal parabolic subgroups 

.~ 
<>ik : (Op) p 6GLn_ I , t 6 GL I } 

q 6 GLn_ 1 , t 6 GL I } 

Dropping the subscript zero will mean taking the restriction of scalars 

to ~ . So, 

G/(~ : Rk/, ~ (G O/k) 

and so on. 

We introduce the two characters 

and 

<0 tn 
7P : g = } > det(g) 

t n 
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which we view as characters on the torus extending to Po (resp. Qo ) • 

The representations of Go/k with highest weight ~Tp (resp. ~TQ ) 

are the ~-th (resp. b-th) symmetric power of the standard repre- 

sentation of Go/k on k n (resp. its dual (kn) ~ ) 

Coming back to the situation of theorem 2, define a homomorphism 

by 

: P(~ih,f) = Po(klA,f) > E* 

> ~I (tf) ~ (det(gf)) 

We require that the central character of ~ be our ~ . This means 

that ~I is determined by 

"" "t = w(tf)_ = ~I (tf)_ ~ (tf) n_ 

We may view • as an "algebraic Hecke character" on P/~ , and it 

has an infinity-type 

type (~) = 7 6 Hom(P/~ , RE/~({m)) 

Hence we get an array of types, indexed by T 6 T , with components 

Recall that 

type(To~) = 'to T 6 HOrn(P,{ m) 

Hom(P,G m} = @ Hom(Po ,~m } , 
gCZ 

and that the type 8 of is given by the integers n(a,<) - see § 2. 
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It is then easy to check that 

TOy : (n(o,T) .yp)o6E , 

for every • 6T . 

Given T , define an array of dominant weights 

by the rule 

i(~) = (l(o,<))oE Z 

{ (-n(@,~)-1)yQ 
n(o,~)yp 

if n(o,T) < 0 

if n(o,T) > 0 

This affords a representation 

p : Gx~ = ~ (GLn/k) > GL(M(A(T))) , 
oGZ 

where M(A (T)) = ® M(I(O,T)) , M(I(O,T)) being the representation 
o6Z 

with highest weight k(O,T) . The system {M(A(T))~6 T is a ~-ratio- 

nal system of representations in the sense of [Ha], 2.4 - i.e., the 

representations are conjugate under Gal(~/~) 

As in [Ha], we study the cohomology of congruence subgroups of GLn(0) 

with coefficients in these modules: Form the quotients 

S K = G (~) ~ G ((~IA) / K o'Kf 

where K ~ u(n)Z~ is a standard maximal compact subgroup, times 

the centre o~bG(~) = G , and where Kf is open compact in G(~ ,f) • 

The modules M(i(7)) provide coefficient systems M(I(T)) on S K , 

and we consider the ~ - G(~,f)- module 

H ' ( ~ , M ( A ( T ) ) )  : = l i r a  H ' ( S K ,  M(A(T) ) )  

Kf 



41 

The embedding of S K into its Borel-Serre compactification S K is a 

homotopy equivalence. The boundary ~S K of this compactification has 

a stratification, with strata corresponding to the conjugacy classes 

of parabolic subgroups of G/~ . The stratum of lowest dimension, 

SB SK , corresponds to the conjugacy class of Borel-subgroups. The 

coefficient system can be extended to the boundary, and the limit 

H" (~B~ , M(A(T))) : lim H" (~BSK , M(A(T))) 
- - >  

Kf 

is again a G(~,f) -module. The diagram 

SK ~ i > SK < ~B SK 

induces a G(~lh,f)-module homomorphism 

r B : H" (~, M(A(T))) > H" ($B~ , M(A(~))) 

Just as in [Ha] ,II, the right hand side turns out to be a direct sum 

of modules, induced from an algebraic Hecke character 

n : B(QIA,f) > ~* 

T(~IA, f) 

on B(~,f) , up to G(~,f } . The types of these characters are de- 

termined by Kostant's theorem, [Ko] ; cf. [Ha], II, for n = 2 . In 

particular, it is easily checked that the following induced module 

(for • as above, and T 6 T ) is contained in the cohomology of ~B ~ : 
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V 
G (QIA, f) 

= Ind 

B (QIA, f) 

=lh:G(~,f) --> 

\ 
h is C , and ) 

h(bf_gf) = (TOO) (bf). h(if) , 

for all bf 6 B(~ih,f) and 

_gf £ G(~IA, f) 

(Here, "C " means right invariance under a suitably small open com- 

pact subgroup in G(~,f) .) 

More precisely, we have 

VTo 0 
T > H(n-3}do (~B ~ , M(A(T))) 

1 
where d o : ~ [k : ~] , and the system of maps {iT]<6 T is Q-rational 

with respect to the two obvious Q-structures on the systems on both 

sides. 

Consider the non-trivial submodule 

J~o~ IndG(Q~'f) = T o ~  c V o o  

P(~,f) 

Obviously, {JToO}T£T is a Q-rational system of G(Q~,f) -submodules 

of H(n-1)d°($ B~ , M(A(7))) . The first essential step of the proof is 

to construct a Q-rational "section" of r B , 

Eis7 : JTo~ > H(n-1)d° (S, ~{A(T))} , 

for all TCT . Thus, rB o Eis = Id on J . This section is con- 
7 T ° O  

structed first over ~ by means of residual Eisenstein series or, in 

other words, non cuspidal Eisenstein series attached to P/Q . To prove 

that {EisT}TC T is defined over ~ one has to use a multiplicity one 

argument, like in [Ha], III. But here this is more complicated. One 
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has to use the spectral sequence which computes the cohomology of the 

boundary in terms of the cohomology of the strata. Then the cohomology 

has to be related to automorphic forms, and one has to appeal to re- 

sults of Jacquet-Shalika on multiplicity one, and of Jacquet on the 

discrete non cuspidal spectrum. 

Once we have the modules 

H(n-1)do Eis z (J o~) c (S, M(A(T) ) 

we can proceed more or less in the same way as in [Ha], V: We construct 

an embedding 

i H : F* > GLn(k) 

H being the torus with H(Q) = ill(F*) Using this torus we can con- 

struct homology classes (compact modular symbols) 

ZIi H, 7 o X, g) C H 

depending on a point _g6 G(~]A) 

* /F* > E* X : F]A 

(n-1)d o 
(~, M(A(~))) 

and on a finite order character 

* should be ~ . whose restriction to k~ 

As in [Ha], V, we get an intertwining operator 

Int(Z(iH,X)) : JTo ~ 
G(~m, f) 

> Ind 

H(~m, f ) 

by evaluating EisT(JTo Q) on 

ning operator 

int l°c : J 
To~ 

Z(iH,X,~) . There is another intertwi- 

G ((~]A, f) 
> Ind T o X , 

H (~IA, f) 
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constructed as a product of local intertwining operators. Both opera- 

tors are U-rational, and for some x C E* we find that, for all ~6T , 

Int(Z(iH,TOX)) = T(X) A (F/k,ToS) 
LF(TO (X" (~ONF/k) ) ,0) intlOc 

Lk(T ° (~.~n) ,0) 

This implies theorem 2. - The factor x 6 E* can actually be given more 

explicitly. 

§ 6. A formula of Lerch 

The fact that a Hecke character determines its motive up to isomorphism 

produces a period relation whenever two different geometric construc- 

tions of a motive for the same character can be given. We have seen a 

first example of this principle in formula (8) of § 4. The periods 

p(u,T) occuring in this formula comprise those for which Shimura [Sh2] 

has proved various monomial period relations (up to an algebraic number). 

These monomial relations were reproven, by means of motives over ~ , 

by Deligne, [D2]. They can be refined using the above principle. But 

we leave aside here this application,as well as some others, referring 

the reader to [Sch]. Instead, let us concentrate on a typical case in- 

volving G . Anderson's motives for Jacobi-sum Hecke characters. 

Let K = ~(/i-~-) be an imaginary quadratic field of discriminant -D 

Assume for simplicity that D > 4 . Recall the construction of the 

simplest Jacobi-sum Hecke character of K , in the sense of [WIII], 

[1974 d]: K is contained in ~(~D ) , the field of D-th roots of ] . 

Write n : [~(~D ) : K] - ~(D)2 " For a prime ideal P of ~(~D ) not 

dividing D , put 

G(P) : -- [ XD, P (x) "A~ (x) , 
x 6Z [~D]/P 

(I~P-I)/D D th- power residue symbol with "ZD, ~ (x) --- x (cod P )" the 

: • (x)) cod P , and l(x) exp(2~i tr( ~ [~D]/p)/]F p 
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Then extend the function of prime ideals p of K with p ~D : 

J(p) = ~ G(P) , 

multiplicatively to all ideals of K prime to D . Elementary proper- 

ties of Gauss sums show that J takes values in K . By a theorem of 

Stickelberger and an explicit version of the analytic class number for- 

mula for K one finds that, if J is an algebraic Hecke character, 

then its infinity-type 

: K* > K* 

is given by 

in+h)/2 -(n-h)/2 
X ~  > Z  X t 

where h is the class number of K . (Note that n and h have the 

same parity, by genus theory.) In other words, if J is a Hecke cha- 

racter, then 

(13) j. IN- (n+h)/2 .%,h 

character ~ of K~ of finite order and some Hecke character for some 

of K of weight -I 

That J is in fact a Hecke character, i.e., is well-behaved at the 

places dividing D , if viewed on id~les, was proved by Weil (loc. cit) . 

But it can also be deduced, e.g., from the following construction of a 

motive for J which was given by Greg Anderson, [AI],[A2]. 

Anderson finds a motive defined over K , with coefficients in K , 

whose l-adic representations are given by J , in H n-2 of the zero- 

set Z of the function 
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~(~D ) > K 

x ~----> tr~ (~D) / K(xm) 

viewed as a projective variety in ]PK (Q(~D)) , the projective space 

of the K-vector space ~(bD ) . Note that 

{ D .+xD 0}cipn-1 
Z XK~(D D) = x1+.. n = 

Anderson's construction is of course motivated by the well-known fact 

that Fermat-hypersurfaces contain motives (carved out by the action of 

their large automorphism groups) attached to Jacobi-sum Hecke characters 

of cyclotomic fields: see [DMOS], pp. 79 - 96. For details of Anderson's 

more general construction, we refer to his preprints, or to [Sch]. 

At any rate, thanks to Anderson's work, we have at our disposal a motive 

M(J) for the character J , which lies in the category of motives ob- 

tained from abelian varieties. (This last fact is proved by Shioda- 

induction: [DMOS], p. 217). Thus, by (13), the periods of the motive 

M(JIN- (n+h)/2) : M(J) @KK((n+h)/2) 

will be the same as those of any motive constructed for the character 
. ~h 

The period calculations on Fermat-hypersurfaces always reduce even- 

tually to Beta-integrals. For M(J) one essentially gets the product 

a I 7T F {<~>)- 
X (a)=-1 

-m) Here, X(P) : (~- is the Dirichlet character of the quadratic field 

K , and the product is taken over those a6 (Z/D Z )* for which 
a 

X(a) = -I . <~> is the representative of the class ~ mod Z which 

lies between 0 and I 
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A motive for 5.~h can be built up from elliptic curves with complex 

multiplication by K . - Assume for simplicity that ~ONH/K takes 

values in K* , for H the Hilbert class field of K . Choose any 

elliptic curve A/H such that HI(A) is a motive for ~ONH/K , and 

call B = RH/KA its restriction of scalars to K . Calling E the 

field of values of ~ , HI(B) ®Eh can be shown to be a motive for 

~h (viewed as taking values in E ) : cf. [GS], § 4. Using formulas 

derived in [GS], § 9, the periods of this motive can be computed in 

terms of the periods % of the conjugates AJ/H of our elliptic 

curve A , for 

d 6 GaI(H/K) : CI(K) 

Straightening out the twists by the norm and the finite order character 

(cf. § 4.6 and 4.7), one finally obtains the following relation, up to 

a factor of K* : 

a 
6 C£ (K) ~ X (a) =-I r (<~>) 

where y generates the abelian extension of K belonging to ~ . 

Multiplying (14) with its complex Conjugate, we get 

(15 
d 6 C£ (K) a6 (~/m~) * 

for some z with z 4 6 ~* . Except for the different interpretation 

of z and the ~ , this is the exponential of an identity proved 

analytically by Lerch in [Le], p.303. The first geometric proof of 

(15), up to a factor in ~* , was given by Gross in [Gr], a paper 

which in turn inspired Deligne's proof of the theorem about absolute 

Hodge cycles on abelian varieties - which again is essential in 

proving uniqueness of the motive for an algebraic Hecke character. 
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AN INTRODUCTION TO INFINITESIMAL VARIATIONS OF HODGE STRUCTURES 

Joe Harris 
Mathematics Department, Brown University 
Providence, RI 02912, U.S.A. 

The purpose of this note is to give a simple introduction to the 

notion of infinitesimal variation of Hodge structure. This is an 

object first defined and used in [i] (though the underlying ideas had 

been in the air for a while) and more recently the subject of an excel- 

lent monograph by Peters and Steenbrink [2]. Unfortunately, this 

theory, which in fact should make life easier for mathematicians trying 

to apply Hodge theory to geometry, gives at first the impression of 

being complicated and technical. It is my hope here to avoid this 

impression by presenting the basic ideas of the theory in as simple a 

fashion as possible. 

We begin by recalling the basic set-up of Hodge theory. The goal 

of this theory is to associate to an m-dimensional complex manifold X 

(for simplicity we will take X a submanifold of ~N) a linear-alge- 

braic invariant, as follows. To begin with, we can for each n assoei- 
th 

ate to X its n-- topological cohomology group modulo torsion 

H~ = Hn(X,~)/~ors , or its complexification the n th deRham cohomology 

group H{ = H~ ® C = HD Rn (X) . We can also associate the cup product in 

cohomo!ogy; or rather, since we are only dealing with one group at a 

time, the bilinear pairing 

Q : HZZ × HZ~ --> ZZ 

defined by 

wm_n 

X 

where w is the restriction to X of the generator of H2(~N,~) 

Of course, these are invariants of the underlying differentiable mani- 

fold of X , and do not reflect its complex structure. What does 

determine the complex structure of X is the decomposition of the com- 

plexified tangent spaces to X into holomorphic and anti-holomorphic 

parts; or, equivalently, the decomposition of the space An(x) of 

differential forms of degree n on X by type: 

An(x) = AP,q 
p+q=n 
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Naturally, this data is too cumbersome to carry around, but here 

we are in luck: by the Hodge theorem, this decomposition descends to 

the level of cohomology. Precisely, if we let H p'q = HP,q(x) c H~R(X ) 

be the subspace of classes representable by forms of type (p,q) , we 

get a decomposition 

H~R(X)w = HC = ~ HP'q 
p+q=n 

satisfying the obvious relations 

and 

HP,q = Hq,P 

Q(HP'q,H p''q') : 0 unless p+p' : q+q' = n . 

The package of data introduced so far -- a lattice H~ with integral 

bilinear form Q and decomposition H~ ® ~ = @H p'q satisfying these 

relations -- we call a Hodge structure of weight n associated to X . 

It is an object that is on one hand essentially finite, and that on the 

other hand we may hope will reflect the geometry of X . 

Now, whenever we associate to a geometric object a (presumably 

simpler) invariant, two questions arise: to what extent does the 

invariant actually determine the original object; and to what extent 

can we read off directly from the invariant answers to naive questions 

about the geometry of the object. In the present circumstances, the 

first question translates into the Torelli problem, which asks when the 

members of a given family of varieties (e.g., curves of genus g , 

hypersurfaces of degree d in ~n) are determined by their Hodge 

structures; or the "generic" or "birational" Torelli problem, which 

asks when this is true for a general member of the family. The Torelli 

problem has been answered in a number of cases (e.g., for curves of 

genus g it was proved classically by Torelli; and the generic Torelli 

for hypersurfaces was proved recently by Donagi) ; it remains very much 

an open question in general. 

The most famous example of a question in Hodge theory along the 

lines of the second sort above is of course the Hodge conjecture. It 

is not hard to see that if y c X is an analytic subvariety of codim- 

ension k , its fundamental class must lie in the subspace 

H k,k c H2k(x,~) The Hodge conjecture asks whether the converse is 

Hk, k true: that is, whether a class y ~ n H~ is necessarily a 

rational linear combination of classes of subvarieties. 

The simplest case of Hodge theory is its application to curves, 

and here by any standards it is successful. To the Hodge structure 
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(H~,Q,H I'0 • H 0'I) of a curve we associate the projection A of H~ 

to H 0'I (traditionally represented by the period matrix: we choose 

a basis for H~ normalized with respect to Q and write out the 

(0,1)-components of these vectors in a g×2g matrix ~) and then the 

complex torus H0'I/A = J(C) , called the Jacobian of C . This in 

turn gives rise to a host of subvarieties of J(C) and theta-functions 

that reflect and elucidate the geometry of C . 

For higher-dimensional varieties, the application of Hodge theory 

has been less successful, for which there are perhaps two reasons. The 

first of these is the apparent absence of any reasonably natural geo- 

metric and/or analytic object associated to a Hodge structure in gene- 

ral. Looking at the case of curves, one sees that it is exactly 

through the geometry of the Jacobian, and the analysis of the theta- 

function, that Hodge theory is useful. Unfortunately, no analogous 

objects have been found in general. 

The second factor is simply this: that only in a very few cases 

can one ever hope to determine explicitly the Hodge structure of a 

given variety. To be specific, consider the case of a smooth hypersur- 

face X c ~n+l given by a homogeneous polynomial F(Z) = 0 of degree 

d . By the Lefschetz theorem, all the cohomology of X below the 

middle dimension (and hence above it as well) is at most one-dimen- 

sional, so we focus on Hn(x) We can immediately identify one of 

the Hodge groups: Hn'0(X) , the space of holomorphic n-forms on X , 

may be realized as Poincare residues of (n+l)-forms on ~n+l with 

poles along X ; explicitly, 

Q , _/Zl~ ./Zn+~ zn+l~ 
G(z 0 ..... ^ok V0/ 0 • } 

= Res " "  F(Z 0,. .],Zn) . . . . . . . . . . .  / 
/ 

G(Z0, . . . . . .  ,Zn+l)d(~--@)A..^d(~)A. ^d( Zntl~\'-~G/.Z On 

~Z~i ( Z 0 , .... Zn+ 1 ) 

for G(Z) a homogeneous polynomial of degree d-n-i . Thus 

Hn, 0 = Sd_n_ 1 

where S is the graded ring C[Z0,...,Zn+I] . Similarly, the other 

Hodge groups of X may be realized as residues of forms on ~n+l 

with higher-order poles on X (actually, we get in this way just the 

primitive cohomology H n pr(X) , which here means the classes orthogonal 

to ~) . We obtain an identification 
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Hn-k ,k 
pr (X) = (S/J) (k+l)d-n-i 

where j c S is the Jacobian ideal of X , that is, the homogeneous 

ideal generated by the partial derivatives of X . 

We have thus found the vector space decomposition H n pr(X) = 

Hn-k'k(x) The problem is, it is impossible in general to identify 
pr 

in these terms the lattice H~ of integral classes. Indeed, this has 

been done only in the presence of a large automorphism group acting on 

X , e.g., for Fermat hypersurfaces. Thus, for example, if one is given 

a particular hypersurface of even dimension n = 2k , it is impossible 

to determine in general Hk'k(x) n Hn(X,~) , or when two such X have 

the same Hedge structure. Simply put, we cannot find the lattice; but 

without the lattice we have no invariants. 

One solution of this difficulty appears at first to be moving in 

the wrong direction, toward increased difficulty. One considers not 

just a variety X , but a family of varieties {Xb}bc B parametrized 

by a variety B , of which X = X 0 is a member; we assume 0 ~ B is 

a smooth point. Locally around X 0 , then, we can identify the lat- 

tices Hn(Xb,~)/tors with a single lattice H~ and the vector spa- 

ces Hn(Xb,~) with H~ correspondingly. We then consider the spaces 

Hn-k'k(Xb ) -- or the associated 

k 
F k = ~ Hn-~,~(~) __ 

~=0 

as variable subspaces of H C The basic facts then are: 

i) The map ~k from B (or a neighborhood of 0 e B) to the 

Grassmannian sending b to Fk(Xb ) c H~ is holomorphic; and 

ii) In terms of the identification of the tangent space to the 

Grassmannian at A c H with Hom(A,H/A) , the image under 6 k = d~ k 

of any tangent vector to B at 0 carries F k into Fk+i/Fk . We 

thus arrive at a collection of maps 

~k : T0B --> H°m(Hn-k'k(x)'Hn-k-l'k+l(x)) By equality of mixed par- 

tials, they satisfy the relations 

(*) 6k+l(V) O~k(W) = ~k+!(w)O6k(V) V v,w c T 

and since the spaces Fk(X b) satisfy the relation Q(Fk,Fn_k_ I) H 0 

for all b , we have 
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(**) 
Q(@k(V) (e) ,~) +Q(e,@n_k_l(V) (B)) = 0 

~ e • Hn-k'k(x) , 8 • Hk+l'n-k-l(x) , v • T 

We now define an infinitesimal variation of Hodge structure (IVHS) 

to be just this collection of data: that is, a quintuple 

(H~,Q,HP'q,T,6q) in which (H~,Q,H p'q) is a Hodge structure, T a 

vector space, and 

6 : T--> Hom(HP'q,H p-l'q+l) 
q 

maps satisfying (*) and (**) above. By what we have just said, to 

every member X = X 0 of a family of varieties {X b} we have associa- 

ted such an object. 

Two key observations here are the following: 

i) The infinitesimal variation of Hodge structure associated to 

a family is in general computable; or at least as computable as the 

Hodge structures associated to the members. For example, going back 

to our example of hypersurfaces, if we let X c pn+l be smooth with 

equation F(Z) = 0 , the tangent space at X to the family of hyper- 

surfaces of degree d up to projective isomorphism is just the space 

S d of homogeneous polynomials of degree d , modulo the Jacobian 

ideal. (A variation of X in ~n+l is given by F+sG for 

G E Sd/{F ; if G = EaijXi~ ~-~. this corresponds to first order to the 

] tA 
motion of X along the 1-parameter group e of automorphisms of 

~n+l). Thus T = (S/J) d ; and the maps 

@k : (S/J) d --> Hom((S/J) (k+l) d-n-l' (S/J) (k+2)d-n-1) 

turn out to be nothing but polynomial multiplication. 

It should be noted here that this in itself has some nice conse- 

quences: for example, while we are as indicated earlier unable to 
H 2k ~n+l 

determine Hk,k(X) n (X,~) for any given hypersurface in , 

n = 2k , the fact that for d a n+l the map 

(S/J) d x (S/J)kd_n_ 1 --> (S/J) (k+l)d-n-i 

is surjective immediately implies that for general X , 

Hk'k(x) nH2k(x,~) = 0 , and so Hk'k(x) n H2~(X,~)- = ~ Thus on a 
pr 

general hypersurface every algebraic subvariety is homologous to a 
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rational multiple of a complete intersection. In particular in case 

n = 2 this yields the famous 

Theorem (Noether; Lefschetz) : a surface S c ~3 of degree d ~ 4 , 

having general moduli, contains no curves other than complete inter- 

sections S n T with other surfaces. 

2) The second key point is this: that even without the lattice 

H~ , a__nn infinitesimal variation of Hodge structure will in general 

possess non-trivial invaziants, and will give rise to geometric ob- 

jects. These of course come from the maps $k which, being trilinear 

objects, have lots of accessible invariants (e.g. their associated 

determinantal varieties). 

To illustrate the use of this, consider the generic Torelli theo- 

rem for hypersurfaces. The application of IVHS to this problem is 

based on the following trick: for any map f : X --> Y of varieties, 

the condition that f is birational onto its image, i.e. that 

for general p ~ X , ~ q c X : q ~ p , f(q) = f(p) 

is in fact equivalent to the a priori weaker statement 

for general p c X , ~ q c X : 

q ~ p , f(q) = f(p) and Im(f,)q = Im(f,)p 

In our present circumstances, this equivalence means that 

A general hypersurface of degree d in ~n+l is 

determined by its Hodge structure 

<~> 

A general hypersurface of degree d in ~n+l is 

determined by its infinitesimal variation of Hodge 

structure. 

Thus, to prove the generic Torelli theorem for hypersurfaces, 

Donagi shows that from the data of the vector spaces 

(S/J) (k+l)d-n-i ' (S/J) d 

and the multiplication maps 

6k_ 1 : (S/J) d x (S/J)kd_n_l --> (S/J) (k+l)d-n-i 
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Q : (S/J) (k+l]d-n-i × (S/J) (n-k+!)d-n-i --> (S/J) (n+2)d-n-i 

one can reconstruct the entire ring S/J , and from this the hypersur- 

face X . This suffices to establish the theorem; again, it should be 

observed that at no point in the argument is the lattice H~ 

mentioned. 

Donagi's argument is a beautiful one, but this is not the place 

to reproduce it. Let me instead conclude by giving a similar and 

easier example of the use of IVHS: to prove the generic Torelli 

theorem for curves of genus g ~ 5 . 

Of course, the Torelli theorem has been proved many times over, 

in as strong a form as one could wish. One common characteristic of 

the proofs, however, is that they all make essential use of the geom- 

etry of the Jacobian and its subvarieties. A natural question if one 

is studying higher-dimensional Torelli theorems is: does there exist 

a proof of the Torelli for curves that avoids the use of the Jacobian? 

The answer to this is unknown to me; however, using IVHS we can give a 

very short proof of the generic Torelli in genus g ~ 5 as follows. 

The tangent space, at a curve C , to the family of all curves is 

dual to the space H0(C,K 2) of quadratic differentials on C . The 

IVHS associated to C in this family thus consists of the Hedge 

structure of C , together with a map 

: H0(C,K 2) --> Hom(HI'0,H 0'I) . 

Here the relation (*) above is trivial; while the relation (**) says 

that in terms of the identification of H 0'I with (HI'0) * given by 

Q , the image of ~ lies in the subspace 

Sym2(Hl '0 )  * c Hom(H 1 ' 0 ,  (HI '0 )  *) , i . e .  

H 0 * * : (C,K 2) --> Sym2(H0(C,K) 

The transpose of ~ is now easy to identify: it is the map 

t 6 : Sym2H0(C,K) --> H0 (C,K 2 ) 

that simply takes a quadratic polynomial P(~l,...,~g) in the ho!o- 

morphic differentials on C and evaluates it as a quadratic differen- 

tial on C . In particular, the kernel of t0 is just the vector 

space of quadratic polynomials vanishing on the image of the canonical 

curve C c ~H0(C,K) * = ~g-i ; since it is well known that a general 
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canonical curve of genus g a 5 is the intersection of the quadrics 

containing it, we can recover the curve C . Explicitly, in terms of 

the infinitesimal variation of Hodge structure (H~,Q,H I'0 @H0'I,T,S) 

associated to C , we have 

C ]P{Z ( H 0'I H 0'I H I'0 = : Q(Z,I(Z)) = 0 for all I : --> 

such that trace(~.o@(v)) = 0 for all v e T } 

and this suffices to establish generic Torelli. 
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NEW DIMENSIONS IN GEOMETRY 

Yu. I. Manin 

Steklov Mathematical Institutc 

Moscow USSR 

Introduction 

Twenty-five years ago Andr6 Weil published a short paper entitled "De 

la m@taphysique aux math@matiques" [37]. The mathematicians of the 

XVIII century, he says, used to speak of the "methaphysics of the cal- 

culus" or the "metaphysics of the theory of equations". By this they 

meant certain dim analogies which were difficult to grasp and to make 

precise but which nevertheless were essential for research and dis- 

covery. 

The inimitable Weil style requires a quotation. 

"Rien n'est plus f6cond, tousles math6maticiens le savent, que 

ces obscures analogies, ces troubles reflets d'une th6orie ~ une autre, 

ces furtives caresses, ces brouilleries inexplicables; rien aussi ne 

donne plus de plaisir au chercheur. Un jour vient od l'illusion se 

dissipe, le pressentiment se change en certitude; les th6ories jumelles 

r6v~lent leur source commune avant de dispara~tre; comme l'enseigne la 

Git~ on atteint ~ la connaissance et ~ l'indiff6rence en m~me temps. La 

m6taphysique est devenu math6matique, prate ~ former la mati6re d'un 

trait@ dont la beaut@ froide ne saurait plus nous 6mouvoir". 

I think it is timely to submit to the 25 th Arbeitstagung certain vari- 

ations on this theme. The analogies I want to speak of are of the 

following nature. 

The archetypal m-dimensional geometric object is the space R m which 

is, after Descartes, represented by the polynomial ring ~ [x1,...,Xm]. 

Consider instead the ring Z[x I ..... Xm;~1 ..... ~n ], where Z denotes 

the integers and ~i are "odd" variables anticommuting among them- 
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selves and commuting with the "even" variables x K . It is convenient 

to associate with this ring a certain geometric object of dimension 

I + m+ n, or better still (];mln) , where I refers to the "arithmetic 

dimension" Z , m to the ordinary geometric dimensions (Xl,...,x m) 

and n to the new "odd dimensions" represented by the coordinates 

%i" 

Before the advent of ringed spaces in the fifties it would have been 

difficult to say precisely what we mean when we speak about this geo- 

metric object. Nowadays we simply define it as an "affine superscheme" 

Spec Z [xi,~K], an object of the category of topological spaces local- 

ly ringed by a sheaf of Z2-graded supercommutative rings (cf. n°4 be- 

low) I have tried to draw the "three-space-2000", whose plain x-axis 

i~ is supplemented by the set of primes 

and by the "black arrow", correspon- 

ding to the odd dimension. 

. . . . .  Spec 
Three-space-2000 

The message of the picture is intended to be the following methaphysies 

underlying certain recent developments in geometry:"all three types of 

geometric dimensions are on an equal footing" 

Actually the similarity of Spec Z to Spec k[x], or in general of alge- 

braic number fields to algebraic function fields, is a well known 

heuristic principle which led to the most remarkable discoveries in the 

diophantine geometry of this century. This similarity was in fact the 

subject matter of the Weil paper I just quoted. Weil likens the three 

theories, those of Riemann surfaces, algebraic numbers and algebraic 

curves over finite fields, to a trilingual inscription with parallel 

texts. The texts have a common theme but not identical. Also they have 

been partly destroyed, each in different places, and we are to decipher 

the enigmatic parts and to reconstruct the missing fragments. 

In this talk I shall be concerned with only one aspect of this similarity, 

reflected in the idea that one may compactify a projective scheme over 

Z by adding to it a fancy infinite closed fibre. In the remarkable 

papers [I], [2] S. Arakelov has shown convincingly that in this way the 

arithmetic dimension acquires truly geometric global properties, not 
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just by itself, but in its close interaction with the "functional" 

coordinates. G. Faltings [10], [11] has pushed through Arakelov's idea 

much further and beyond doubt (for me) the existence of a general arith- 

metic geometry, or A-geometry. This A-geometry is expected to contain 

the analogues of all main results of conventional algebraic geometry. 

The leading idea for the construction of the arithmetic compactifications 

seems to be as follows: 

K~hler-Einstein geometry = ~-adic arithmetic 

I have tried in sections I-3 of this talk to bring together our 

scattered knowledge on this subject. 

Starting with section 4 the odd dimensions enter the game. The algebraic 

geometers are well accustomed to envisage the spectrum of the dual 

numbers Spec ~[s] ,s 2 = 0 ~ as the infinitesimal arrow and will hardly 

object to a similar visualization of Spec ~[~]. Still, there is an 

essential difference between these two cases. The even arrow Spec ~[c] 

is not a manifold but only an infinitesimal part of a manifold. This 

can be seen e.g. in the fact that ~I[c]/~ is not ~[s]-free, since 
2 

from s = 0 it follows that cds = 0. By contrast, the odd arrow 

Spec ~[~] is an honest manifold from this point of view, since the 

Z2-graded Leibniz formula for, say, the even differential d~ , is 

valid automatically, <.d~ + d~-~ = 0 and one easily sees that QI~[~/~ 

is R[~]-free. 

In spite of the elementary nature of this example it shows why the odd 

nilpotents in the structure sheaf may deserve the name of coordinates. 

But of course this is only a beginning. 

The most remarkable result of supergeometry up to now is probably the 

extension of the Killing-Cartan classification to the finite dimensional 

simple Lie supergroups made in [15], [16]. The Lie supergroups acting 

on supermanifolds mix the even and the odd coordinates, which is one 

reason more to consider them on an equal footing. 

In sections 5 and 6 we state some recent results of A. Vaintrob, 

J. Skornyakov, A. Voronov, I. Penkov and the author on the geometry 

of supermanifolds. They refer to the Kodaira deformation theory and 
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the construction of the Schubert supercells and show that in this 

respect also supergeometry is a natural extension of the pure even 

geometry. 

The following radical idea seems more fascinating: 

~he even geometr[ is a collective 

effect in the ~-dimensional odd geometry 

There is a very simple algebraic model showing how this might happen. 

The homomorphism of the formal series in ~ variables 

1) ~ [[Xl,X 2 .... ]] ÷ R [[...<_i,~0,~i .... ]] , 

oo 

X i ÷ [ <n~n+i 
n = _co 

zs injective. 

A considerably more refined version of this construction has recently 

emerged in the work on representations of Kac-Moody algebras [17],[7]. 

This result establishes that the two realizations of gl(~) in the 

: Diff~(~[Xl,X2 .. ]) and differential operator algebras Dev ,. 

Dodd = Diff(~ [[...~_I,~0,~ I .... ]]) are explicitly isomorphic: 

(2) 6~i9{j @ij +-~ Zij (x,~) 

Here Z.. 
z3 

are defined from the formal series 

EZijplq -q~1(1-qp-ll[exp (~ xi(Pl-gl))exp(~ 
I 

-i -i 
q -P ) -1]. 

Dx i 
1 

The isomorphism (2) is established by comparison of two natural repre- 

sentations, that of Dev on R [Xl,X2,...] and that of ~odd on 
< F = ~ [~.,~-~--~ ]/I, where I is the left ideal generated by ~, i 0, 

and Z~--,j~0~ The generator I mod I of the cyclic ~[~,~-~n-]-module F 
~j 3 

can be conveniently represented as the infinite wedge-product 
-I 
A ~i and the total module F as the span of half-infinite monomials n:-~ 
i~J ~i't Jc~' card ~\ J < ~. The isomorphism 

(3) F ~[Xl,X2,...] 
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may then be considered as the development of the simplistic idea (I). 

The investigation of geometry with odd coordinates was started by 

physicists and is continued mainly in the physically motivated work 

[12],[13],[34]. In particular, the mathematical foundations of super- 

geometry were laid by F.A. Berezin [5] who early understood the role 

and the necessity of this extension of our geometric intuition. Of 

course the general philosophy of algebraic geometry is of great help. 

Odd functions serve for modelling the internal degrees of freedom of the 

fundamental matter fields, leptons and quarks. Their quanta have spin 
I 

and obey the Fermi-Dirac statistics. On the other hand the quanta of 

gauge fields (photons, gluons, W±,Z,...) have spin I and are bosons. The 

map (I) is a toy model of the bosonic collective excitations in the con- 

densate of pairs of fermions. The formulas (2) and (3) also were 

essentially known to specialists in dual strings theory. 

The idea that fermionic coordinates are primary with respect to the 

bosonic ones has been repeatedly advertised in various disguises. It is 

still awaiting the precise mathematical theory. It may well prove true 

that our four space-time coordinates (x 0 = ct,xl,x2,x3) are only the 

phenomenologically effective entities convenient for the description of 

the low energy world in which our biological life can exist only, but 

not really fundamental ones. 

Meanwhile physicists are discussing grand unification schemes and super- 

gravity theories which account for all fundamental interactions (or some 

of them) united in a Lagrangian invariant with respect to a Lie super- 

group or covariant with respect to the general coordinate transform in 

a superspace. 

Section 6 of this talk describes the geometry of simple supergravity from 

a new viewpoint which presents superspace as a "curved flag space" 

keeping a part of its Schubert cells. 

The geometry of supergravity being essentially different from the simple- 

minded super-riemannian geometry, one is led to believe that the substi- 

tute of the Kihlerian structure in supergeometry must be rather sophisti- 
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cated. Therefore I do not venture here to make any guesses about the 

~-geometry with odd coordinates. 

Comparing our present understanding of the arithmetic dimension with 

that of the odd ones we discover that the destroyed texts are re- 

constructed in different parts of the parallel texts. Trying to guess 

more, we can ask two questions. 

a) Is it possible to compactif[_a supermanifold with respect to the 

odd dimensions ? 

We seemingly need a construction of such a compactification if we want 

to have a cohomology theory in which the Schubert supercells would have 

nontrivial (i.e. depending essentially on the odd part) cohomology 

classes. 

D. Leites has conjectured that in an appropriate category an "odd pro- 

jective space" might exist, that is the quotient of Spec k[~1 .... ,~n ]~ 

Speck modulo the multiplicative group action (t,(~i)) ~ (t~i). Of 

course, in the ordinary sense it is empty. 

b) Does there exist a group, mixing the arithmetic dimension with the 

(even) geometric ones ? 

There is no such group naively, but a "category of representations of 

this group" may well exist. There may exist also certain correspondence 

rings (or their representations) between Spec ~ and x . A recent 

work by Mazur and Wiles [27] shows that the p-adic Kubota-Leopoldt 

~-function divides a certain modular p-adic C-function defined in 

characteristic p. Such things usually happen if a correspondence 

exists. 

Finally, I would like to acknowledge my gratitude to many friends whose 

ideas helped to consolidate certain beliefs expressed here. I am 

particularly grateful to I.R. Shafarevitch who taught the arithmetic- 

geometry analogies to his students for three decades, to A.A. Beilinson 

who has generously shared his geometric insight with the author. 
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I. A-manifolds and A-divisors 

I. A-manifolds. Let K be a finite algebraic number field, R its 

r i n g  o f  i n t e g e r s ,  S = S f  U S t h e  s e t  o f  f i n i t e  a n d  i n f i n i t e  p l a c e s  o f  K. 

If v 6 S, K denotes the completion of K with respect to the valu- 
v 

ation I[v:K ÷ ~*. We put la] v : lal if K v = ~ , lal v :lal 2 , if Kv= {- 

Then I-~ la[ v= I for all a 6 K. Moreover, R= {aE KI lalv~1 for all v6Sf}. 
V 

We shall call the following data an A-manifold: 

(I) X= (Xf;~v,V 6Soo) 

Here Xf is a scheme of finite type, proper, surjective and flat over 

S p e c  R, w i t h  s m o o t h  i r r e d u c i b l e  g e n e r i c  f i b e r .  F u r t h e r m o r e ,  ~ i s  a 
V 

= ~  K~hlerian form on the complex variety Xv: (Xf ~Kv) (~), and ~v v 

if K v = ~ ;  i f  Kv= ~ , t h e n  t h e  f o r m s  c o r r e s p o n d i n g  t o  t h e  two  e m b e d d i n g s  

K ÷~ should be conjugate. 
V 

We shall denote by vol 
V 

dim X v 
V 

the corresponding volume forms. 

The simplest example of an A-manifold is the A-curve Xf = Spec R 

endowed with the volumes of ~ii points v 6 S ; ~v do not exist in this 

case. 

I want to stress the preliminary nature of the definition (I). First 

of all, one should not restrict oneself to the relatively proper schemes. 

If X v is not proper, the ~v presumably may have logarithmic growth 

at infinity, cf. [8]. Furthermore, a very special role is played by the 

K~hler-Einstein forms ~ , see n°5 below. 
v 

2. Invertible A-sheaves. An invertible A-sheaf on the A-manifold (I) 

is the data 

(2) L = (Lf; h v , v E S ) . 

Here if is an invertible sheaf on X[,_ h v - a Hermitian metric on 

i v = if ® K v with the evident reality conditions and the following 
R 

property: 
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(3) the curvature form F of the hermitian connection 
v 

correspondin9 to h v i~s ~v-harmonic. 

We recall that if s 

F v = ~ log hv(S,S) 

(3) is empty. 

is a local holomorphic section of i v , then 

in the domain of s. For an A-curve the condition 

It is evident how to define the tensor product [ ® i' of two invertible 

A-sheaves. The group of isomorphism classes of invertible A-sheaves is 

denoted by PiCAX. The identity is the class of the structure sheaf 

0 X: (0Xf; hv I hv(1,1) : I for all v6 S ) 

Later on we shall use the following fact: for a fixed ~ , h 
v v 

fined by the condition (3) up to a multiplicative constant. 

is de- 

Sections. Let i be the invertible sheaf (2). Set H (X,[) = Hi(Xf,lf) • 3. 

These cohomology groups are the R-moduli of finite type, and the ordinary 

Riemann-Roch-Grothendieck theorem for schemes [35] tells much about their 

structure. An essentially new object in A-geometry is the Euler A-charac- 

teristic XA([) . If a canonical map D:X-~"A-point" were to exist, one 

would define XA(i ) as RD,([). This meing otherwise, only certain ad 

noc definitiol,s of XA(1) in a few particular cases are known, which 

are reviewed in n°2. The general i~ea is that in case Hi(x,i) = 0,1 > 0, 

one must define XA(1) as the covolume of the image 

H°(X,[) + ® H°(Xv,i v) : H° (X,[) 
v6S 

relative to a certain volume form on H° . The general definition of 

this volume form is still lacking. Following Faltings [10] , one may 

conjecture that to construct it one can use a canonical metric on the 

bundle on Pic0X v with fiber ® det Hi(Xv,iv) (-])i and to supplement 
i 

this by inductive reasoning on the N6ron-Severi group. 

A correctly defined XA(I ) should be calculable via an A-Riemann-Roch 

theorem so that we shall need divisors of sections of [ and, more 

generally, A-characteristic classes. 
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4. A-divisors. We shall mean by an A-divisor on X the following data: 

D : (Df;rv I r v 6 ~ , v6 S ). 

where Df is a Cartier divisor on Xf. The following symbolic notation 

is more convenient 

D : Df * [ rvX(V) 
v6S 

The A-divisors X(v) (not to be confused with X v) are called the 

"closed fibers" of X at infinity. The A-divisors form a group DiVAX. 

By the A-divisor of a section s 6 H°(X,i) we shall mean the following 

element of DiVAX: 

(4) div s: divfs -[ (S 
v6S X 

v 

Isl[¢:Kv]v = hv(S'S) " 

log ISlv'VOlv) X(v), 

Here divfs is the Cartier divisor of s . If a rational function g 

on Xf is a quotient of two sections of i , it is natural to define 

its principal A-divisor by the formula 

{sl div g : divfg -[ (f 
v6S X 

v 

log Igl v VOlv)X(v) , 

which does not depend on i . Finally, the same formula (4) may be used 

to define that A-divisor of a meromorphic section of i. 

Now we can easily introduce the A-sheaves 0(D) where D is an arbi- 

trary A-divisor, together with the canonical section whose A-divisor 

is D . First, for D= Df we set: 

(6) 0(Df) = (0xf(Df) ; h v) 

where h v is the unique metric on 

(3) and normalized by 
0xf(D f) ® K v satisfying equation 

(71 f logliDflv - vol -0, vCS. 
Xv V ' 
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where 1Df is the meromorphic section of 0xf(D f) whose Cartier 

divisor is Df. Using (4) and (7) we get div ID= divfl D = Df which 

justifies (6). 

Furthermore, we set 

(8) 0( ~ rvX(V)) : (0xf;h v i 111V : exp (-r (f VOlv)-l)) . 
v6S v Xv 

Again using (4) we obtain 

div I = [ rvX (v) vCS 

as is to be expected. 

As in the geometric case we can construct the exact sequence 

0 ÷ Div~X÷ DiVAX + PiCAX ÷ 0, 

D ÷ class of 0(D) 

where Div~X is the group of principal A-divisors. 

5. Green's functions. It is clear from the previous definitions that 

the essential information about the Archimedean part of the A-divisors 

is encoded in the functions 

(9) Gv(Dv,X) lIDvlv(X) , x6 X v 

On the compact Kihlerian manifold (Xv,~ v) 

by the following conditions: 

they are uniquely defined 

a) Gv(Dv,X } is real analytic for x {supp. D v. The function 

Gv(Dv,X)/Ig(x) i v , where gv is a local equation of Dv, is ex- 

tendable to supp D 
V 

b) The (1,1)-form ~ log Gv(Dv,X ) is ~v-harmonic outside of D v. The 

corresponding current is a linear combination of a harmonic form and 

the @Dv , 
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c) ~ log Gv(Dv,X)'vol v : 0 
X v 

Furthermore, 

d) Gv(D v + Dv,X) : Gv(Dv,X) "Gv(D"v,X) . 

e) Gv(div gv,X) : Cg- Igv(X) I v for each meromorphic function gv where 

c is defined b y  c )  . 
V 

It is explained in the last chapter of Lang's book [22] how to calculate 

Green's functions on abelian varieties and algebraic curves using theta- 

functions and differentials of the third kind respectively. The K~hlerian 

metric involved is flat in the first case and induced by the flat metric 

of the Jacobian in the second one. The same metrics are used in the 

Arakelov-Faltings-Riemann-Roch theorem on A-surfaces which we shall state 

i~ ~°2. 

Since the function (9) is not constant except in trivial cases, the 

closed fibers X(v) , v 6 S , should be imagined as "infinitely degene- 

rate". To make it more credible note that if for v 6 Sf the closed fiber 

is degenerate then a meromorphic function or a section of an invertible 

sheaf can have different orders at different components of X(v) . In 

other words, instead of lIDflv one should consider in this case 

• correspond to the components X(v) lIDflv i where the valuations V 1 i 
of X(v). Finally, one can unify these numbers into a function 

lIDfl (x) , x 6 X(R v) = Xv(Kv) setting lIDfl (x) = lIDflV i if the section 

x intersects X(v) . 
1 

This analogy suggests refining the definition of the divisor supported 

by X(v) , v6 S . Conjecturally, instead of a constant r v one should 

consider a volume form @v and delete the integrals from (4) and (5). 

A comparison with the Mumford-Schottky curves may serve to clarify the 

situation. Meanwhile we shall use the coarse definitions. 

6. The intersection index. Let o:Spec R÷ Xf be a section of the 

structural morphism z: Xf + Spec R . We shall consider the image of @ 

as the closed A-curve Y lying in X. We define the intersection index 

of Y with an A-divisor D such that supp Y n supp D is disjoint from 

the generic fiber of ~ : 
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(10 )  <Y,D> : ~ (Y'Df)vlOg qv + [ <Y'D>v 
vESf vES 

Here (Y,Df) for v6 Sf denotes the sum of the local intersection 

indices of Y and D in the closed points of Xf over v, qv is the 

order of the residue field. Furthermore, for v6 S we set 

<Y,Df> v: -log Gv(Df,v,Yv) , 

-I 
<Y, ZrvX(V)> = X rv(I v°l v) 

vES vES X v 

An equivalent definition is obtained if one puts (I0) and (4) together. 

Denote by o*(I D) the section of the A-sheaf o*(0(D)) on Y, induced 

by 0(D) . Then 

(11) <Y,D> : -Zog 77 io*(I D) I v 
V 

From the product formula one sees that the right hand side of (11) re- 

mains unchanged if one takes a different non zero section of 0*(0(D)) 

instead of O*(ID) . This justifies the following general definition of 

degree of an invertible A-sheaf i on the A-curve Y = Spec R: 

(12) deg [ : -log ~ Isl v 
V 

One can take any non zero meromorphic section s of i in (12). 

2. The Riemann-Roch theorems. 

I. The geometric Riemann-Roch theorems. We shall recall first the 

simplest Riemann-Roch-Hirzebruch theorem for projective manifolds over 

a field. Let X be a d-dimensional manifold, i an invertible sheaf on 

it. Set X([) = E(-1) i dim Hi(i) and denote by c1(L), tdi (X) the Chern 
i 

and Todd classes respectively. Then 

(1 )  x ( L )  = 
d 

I 
< [ ~ c1(i)i tdd_i(X) > 
i=0 

where < > in the right hand side of (I) means the intersection index 

calculated in the Chow ring or in a cohomology ring with characteristic 

zero coefficients. In particular 
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d i 
(2) X(L) : [ n i 

<c1(1) tdd_i (X) > 
i=0 

In this section we shall describe three particular cases of a would be 

Riemann-Roch theorem for A-manifolds, for the projective space, A-curve 

and A-surface respectively, the last case being by far the deepest one. 

As we have said already, the first problem is to define XA(L) 

2. Projective A-space. Let us consider the A-manifold, for simplicity 

over ~ • pd = (Pi "~)' where ~ is a Kihlerian form on pd(~) . We 

shall realize P~ as Proj S(Tz), where T Z is a Z-free module of 

the rank d+1 , and we set T= ~ ~ T~ . There is a canonical hermitian 

metric on 0f(n) whose curvature from is a multiple of ~ . We shall 

denote by 0(n) the corresponding A-sheaf. Since 

Hi(Ip d ,0(n) ) = Sn(T Z) , Hi(p d, 0(n)) = 0, 

(n~d) (Sn(T)) 
for i > 0 , n >_ 0 , we must choose a volume form w n6 Aft 

and then define 

where v 
n 

group. 

w 

XA(O(n ) )  = l o g  I~1 
n 

E AZ (n~d) (Sn(TZ)) 

# 

is one of the generators of this cyclic 

The simplest imaginable choice of w is the following one. Consider 
n 

the isomorphism 

n n~d) 
(n~d) .d+1 

~n:Az (Sn(TZ)) ÷ [I\ z (TTz) ] 

n (nad, 
® ~ J n ,n+d, 

which maps v n onto v I (if ~-ft d ~ ~ ~ one can still 

correctly define ~n@(d+1) , which suffices for our needs). Now choose 

somehow w I and set 

® n ,n+d) 

w n (<0n~ idlR) \W 1 ) 

Then 

w I ® ~+1(nd d) 
×A(0(n)) = log iV~11 n (n+d, (0(I)) 

d~l d J XA 
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In view of (8), n°1, the tensor multiplication of an A-sheaf i by 
r r 

0(K P(~)) multiplies the metric on i~ byexp( -' n vol P ) " Assuming 

the corresponding change of w I , we get 

r 
XA(0(]) ® 0( n ]? (~))) : XA(0(1)) + 

r(d+IL 
n vo i P 

and finally 

n (n+d. .n+d r 
(3) XA(0(n) ~0(rm(~))) : d$~ d }XA(0(1)) + ~ d ) vol ~ 

Comparing (3) with (I) and (2) we see that pd looks like a (d + 1)- 

dimensional geometric manifold. We can also guess the Todd A-classes 

tdAd+1_i(~d) . 

3. A-curve. Let X : Spec R, n = [R:Z] : r I + 2r2, r I : card {v 6 S IKv:R}. 

Denote by i = ([f;hv) an invertible A-sheaf on X, L = H°(X,if) . 

According to n°.I.3, we have 

XA(L) : vol(( @ L ~ Kv)/L) . 
v6S 

We choose the volume form on ~ L~K v implicit in this definition 
vtS~ 

following A. Weil [36] and Szpiro [33] in the following way: 

2 n 
w : q~ w v , 

2riT r2 v6S 

where w is the volume form corresponding to the Euclidean metric on 
v 

L defined by h With this choice, the following statements, closely 
V V 

parallel to the case of curves over finite fields, are valid. 

The Riemann-Roch theorem: 

XA(L) = deg L + XA(0 x) 

where deg i is defined by (12), n°1. 

The Euler number of the structure sheaf: 

Xi(0 X) = r 2 log ~ - ~ log IAKi , 
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where £K is the discriminant of K. 

o = ~ 1 for all v} Then HA(0):{0]U Furthermore, set H~(L) {s£ L I Isl v 

{roots of unity in R}, which is the analog of the constant field. From 

the Minkowski theorem one easily deduces that XA(L) k 0 implies 
o 

HA(i) + 0 

4. A-surface. An A-surface X = (Xf,ev), according to Arakelov and 

Faltings, is a semistable family of curves Xf ~ Spec R with smooth 

irreducible generic fiber of genus g > 0 and the following metrics 

at infinity: 

g 

: = I ~ Vk,v A -- ~v V°iv 2zi k=1 Vk'v 

Here (ml,v,...,mg,v) is a base of the differentials of the first kind 

on X orthonormal with respect to the scalar product 
V 

I 
<m,v'> 2"~i S m A ~'. 

Xv(~) 

: ~I x . We denote by ~f the relative dualizing sheaf of ~. Then Rv v 

The canonical A-sheaf ~ = {~f,hv) is unambigously defined by the fol- 

lowing prescription which normalizes h v . For an arbitrary point 

xE X v the residue map res x : ~Ix v® 0Xv(X) + ~ is an isometry of the 

geometric fiber of the former sheaf and of { . 

5. The Euler characteristic. Faltings [10] defines XA(L) for an in- 

vertible A-sheaf i on X in the following way. 

The decisive step is the definition of canonical metrics on the spaces 

detKvH°(i v) ~ detKSH1 (iv) ~ Kv' v6 S , in the case H°(L v) = HI (Lv) = 0. 

This being done, Faltings uses this case as the induction base with 

respect to the ordinary degree of i on the generic fiber. To this end 

, H I 0 he represents i in the form L0(D) where H°(L0, v) = (i0,v) : 

and D is a horizontal A-divisor which can be taken as a sum of sections 

after a base extension. One can then simultaneously define XA(L0(D)) 

and prove the Riemann-Roch formula if only one establishes the in- 

dependence of this construction on the choice of the isomorphism 

i : L0(D) which is highly non-unique. 
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This independence is valid for the following particular choice of 

metrics on all L0's simultaneously. Set PiCg_IX v= M v and denote 

× M . Let IT2:X x M ÷ M by the by Iv the universal sheaf over X v v v v v 

projection map. We can construct the invertible sheaf det R~2,E v on 

M v. Its geometric fiber at a point y6 M v corresponding to the sheaf 

iv(Y) : Iv I (X v x {y}) can be canonically identified with 

det H°(iv(Y)) ® det-]H1{iv(y)) ® Kv 

Over the set U = {y6 Mv I H°(Lv(Y)) : H1(Lv(Y)) = 0} the sheaf 

det R~2,E has a canonical unit section. On the other hand, M v~U is 

the theta-divisor, and an easy consideration shows that under the suit- 

able identification det R~2,[ = 0My(-8) the unit section goes into I. 

Therefore, a choice of an A-structure on 0M(-8) normalizes all 

XA(L0). Faltings proves that the 8-polarization induces precisely the 

A-structure suitable for the inductive argument. 

We can now state the Riemann-Roch. 

I 
6. Theorem. a) XA(0{D)) : ~ <D,D-K> + XA(~) , where 9 = 0(K) , < > is 

the intersection index defined in n°1.6. 

b) XA(~) = -i~( < K,K > + 6 ) , 6 = [ 6v(Xv), 
yES 

where 6v(X v) : log card (singular points of X(v)) for v C Sf ; for 

v 6S , 6 is a real analytic function on the moduli space of Riemann 
V 

surfaces which measures the distance of X to the boundary. 
V 

Of course, in the geometric case, the Noether formula b) follows from 

the Riemann-Roch-Grothendieck theorem applied to the morphism ~. 

The structure of @ (X v) for v6 S 
v 

about X(v) as a degenerate fiber. 

vaguely agrees with our philosophy 

Faltings proves the Noether formula by an argument using the moduli 

space of X instead of Picg_1 of the first part. 

The governing idea always is to use some canonical A-structures on the 

moduli spaces and their tautological sheaves, to apply the ordinary 
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Riemann-Roeh-Grothendieck to the finite part and then to "compactify" 

this information by the K~hlerian geometry. 

Hence we need the A-geometry of arbitrary dimension anyway, even to 

deal with A-surfaces only. In the next section we shall discuss what 

is to be done to put this program on a firm foundation. 

3. Prospects and problems of A-geometry 

I. The problem of the definition of the fundamental categories. 

In the definition of A-manifolds given in 1 . 1 .  no conditions on the 

K~hlerian forms ~ were imposed. However, the Arakelov and Faltings 
v 

theorems are proved for distinguishedKihlerian structures. We shall give 

the tentative definitions in a more general context. 

Let Iv be a locally free sheaf on a compact Kihlerian manifold 

(Xv,~V) and hv a Hermitian metric on Iv. We choose holomorphic 

local coordinates (z ~) on X and a base of local holomorphic 
v 

sections (si) of E v and set hij : hv(Si,Sj) . The curvature tensor 

of the canonical connection associated with h is 
v 

F. = - 92hij + h ab 9hib ~hij 

13~8 ~za~[~ ~z ~ ~8 

where (h ab} = (hij)-1 . Set ~v = -~ g~8 dz~ A d~8 and (gy$) = (gas)-1 

Then ([v,hv) is called a Hermite-Einstein sheaf if 

ge~F i = ~h 
jab 13 ' 

where l is a constant. (It can be explicity calculated: setting 

n = dim X v we get ~= (2~n ~ c1([v)~n-1)v / (rk [ ~ nv ))" 
v v 

On the holomorphic tangent sheaf IX there is the hermitian metric 
v 

gv = 2gab d z a d ~  " The m a n i f o l d  (Xv,Wv) i s  c a l l e d  t h e  H e r m i t e - E i n s t e i n  

manifold if (TXv,g v) is a Hermite Einstein sheaf. 

The existence and uniqueness problems for Hermite-Einstein structures 
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on a sheaf E were considered by Kobayashi [19] and Donaldson [9]. 
v 

Kobayashi has shown that the existence of such structure implies the 

semistability of E and that any semistable Hermite-Einstein sheaf 
v 

(Ev( , hv(i) (i) (Ev,hv) is a direct sum @ i) ) with stable Ev 

(Stability here means that the function ~(F) = deg0~ r F/rk F, where 
n-1 

deg~v F = f c I (F)~v , is monotonous on subsheaves Fc E) . 
Xv 

On the other hand, Donaldson proved that on projective algebraic sur- 

faces (Xv,~v) any stable sheaf has a unique Hermite-Einstein metric 

(up to a multiplicative constant). The same is true for algebraic 

curves and, conjecturally, for all projective manifolds. 

Deep existence and uniqueness properties of Kihler-Einstein metrics 

on manifolds were obtained by Yau [38] and Aubin [3]. From Yau's 

results it follows in particular that for c](X v) = 0 each cohomology 

class of K~hlerian metrics contains a unique Kihler-Einstein metric. 

Aubin has established the existence on X of a unique K~hler-Einstein 
v 

metric with the constant I = -] under condition that ci (X v) contains 

a form with negative definite metric. 

Ourlimited understanding of A-geometry suggests the special role of those 

A-manifolds for which (Xv,~v) are K~hler-Einstein. This condition 

appears to be a reasonable analog of the minimality of Xf over Spec R. 

Furthermore, on a given A-manifold, the following definition of a local- 

ly free A-sheaf seems plausible enough: it is the data E = (Ef;hv,V6S ~) 

for which Ef is a locally free sheaf on Xf and (Ev,h v) are 

Hermite-Einstein sheaves on (Xv,~v). For rkEf = I this is our initial 

definition. 

The category-theoretic aspects of these definitions need clarification. 

Since the Hermite-Einstein property may possibly be relevant only for 

locally free and semistable sheaves, to define a substitute for coherent 

A-sheaves one probably is bound to consider something like "perfect 

complexes of locally free A-sheaves", as in [35]. Unfortunately, the 

differential geometry of complexes of sheaves in a derived category 

is not sufficiently developed. 

The complexes of A-sheaves must have a torsion invariant XA. For 
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v 6S the corresponding component of XA under certain conditions 

should be given by the Quillen construction [30]. 

I do not know how to define morphisms of A-manifolds. The problem seems 

to be related to the hyperbolicitytheory by Kobayashi [18]. In fact, it 

is based on the study of morphisms D÷ X and X + D, where 
v v 

D= {zC~, IzbS1} is the analog of Spec Z . Therefore it can be con~ 
P 

sidered as the counterpart of the theory of Zp-models of @p-manifolds. 

2. The problem of canonical A-structures on moduli spaces and of 

A-moduli spaces. The Arakelov and Faltings work shows the existence of 

distinguished A-structures on the moduli spaces of curves and of in- 

vertible sheaves on a curve, by which one arrives at good statements 

of the principal results. (For the moduli space of curves having a 

boundary this statement should be considered as heuristic, granting the 

existence of good definitions). 

One should study from this view point the moduli spaces of stable sheaves 

on a curve, with rank and degree relatively prime. The first unsolved 

problem is to generalize the Riemann-Roch-Arakelov-Faltings theorem to 

the A-sheaves of arbitrary rank, where the second Chern A-class c2A(E) 

should emerge,an intersecting new invariant. 

When a category of A-spaces is properly defined one would naturally 

hope for existence of moduli-objects in this category. Of course, the 

first problems here are again connected with the situation "at infinity", 

i.e. the K~hlerian geometry. In this respect a recent work of Koiso [20] 

deserves to be mentioned. Koiso shows in particular that the base space 

of normal and stable family of K~hler-Einstein structures carries a 

canonical K~hler structure. Unfortunately in most cases it is unknown 

whether it in addition satisfies the Einstein equation. 

3. The p_~obl@m of intersection theory of A-manifolds. In the important 

paper [4] A. Beilinson defined regulators for K-theory and introduced 

the general technique for construction of intersection theory on 

A-manifolds. We shall briefly describe here a part of his results, 

stressing the role of K-theory as a cohomology theory. 

Let Xf be a regular projective scheme flat over Z , dim Xf = d + I 
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We fix two cycles z i of pure codimension Zi in Xf . Assume that 

~0 + ZI = d+ I and supp (z 0 A Zl) n Xf,~ = ~. We shall describe Beilinson's 

construction of the A-intersection index <z0,zl > . For simplicity, we 

shall assume that both cycles have zero cohomology classes on the generic 

fiber. In this case we can forget ~ since the intersection index will 

not depend on this metric. We get 

<z0,zl > = <z0,z1> + ~ log p'<z0,z1> p 
p6Sf 

and define the fiberwise indices < > with the help of several cohomo- 
V 

logy theories. 

To calculate < >~ we shall use the Deligne-Beilinson cohomology H~ . 

F o r  a s m o o t h  c o m p a c t  c o m p l e x  m a n i f o l d  X a n d  a c o e f f i c i e n t  r i n g  

B c~ , B(j) : (2~ -/~)JB, this cohomology is defined as follows: 

H~(X ,B(j)) : RKF(x ,B(j)0) , 

= Cone (F j @ B(j) ~ ~') [-I], B(J) D 

where F j : ~J (the truncated complex of holomorphic forms), ~: ~I-e2, 

ei the natural injections. In the noncompact case, the forms with 

logarithmic singularities are used. The now standard homological methods 

permit us to define the D-cohomology of simplicial schemes, the relative 

D-cohomology, to define the classes of algebraic cycles and to prove the 
• / 

Polncare duality theorem. 

Now we return to the situation described earlier and set Ui:X -supp z . 
itoo 

If the classes of z.l,~ in H D21i(X ,IR(li)) vanish, the Mayer-Vietoris 

sequence shows that the classes c/Dzi6 H~ii(X,Ui,IR(ii)) are of the form 

~i where ~i C H~ 21i-I (Ui,19(~i)) . We can construct the class 

60 U 616 H~d(u0(] UI)IR (d+ 1)) 

and its image 

2d+I 
(z 0 n Zl) ~ = ~(%0L~%1)6 H D (X,IR(d + I) ) 

Let ~:X~÷ Spec R be the structure morphism. The final formula for 
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the A-intersection index at the arithmetical infinity is 

1(Spec m ~(I)) = {/m(1) = <z0,z1> ~ = ~,(z 0 N Zl) ~6 H? , 

To define <zl,z2> p in a similar way, Beilinson introduces the 

K-cohomology: 

where ~P are the Adams operations. In this case also the relative 

version and the formalism of the cyclic classes can be defined. Setting 

U i = Xf ~ supp z i as earlier we can now construct the intersection class 

2d+2(Xf U 0 U U1;~(d+ I)) (z 0 N zl)fC H K , 

Set S' = supp ~f(Xf ~ (U 0 U UI)) , where [f:Xf+ Spec Z is the structure 

morphism. This is a finite set of primes. We have <z0,zl > = 0 for 
P 

for p{ S' , and for p6 S' the index <~0,Z1>p is a sort of direct 

image zf(z 0 N zl) f localized at p. 

4. The problem of the Euler A-characteristic and of the Riemann-Roch 

A-theorem. I cannot add much to what has been said earlier. Two remarks 

may be in order. 

First, granting that the definition of XA in a general situation can 

be done in terms of the analytic torsion of the Dalbeault complexes, we 

shall need the relative analytic torsion to treat the general Riemann- 

Roch-Grothendieck case. 

Second,independently of the conjectural general theory, very interesting 

and directly accessible problems of A-geometry may be found, e.g., in 

the theory of flag manifolds G/P Z . A recent work by Bombieri-Vaaler 

[6] is an example. It suggests in particular that the classical Min- 

kowski "geometry of numbers" should be interpreted in A-geometry as a 

theory of characteristic classes at the arithmetic infinity. 

4. Superspace 

I. Examples of superspaces. A smooth or analytic manifold can be described 
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by a family of local coordinate systems and transition functions. Be- 

fore introducing a formal definition of superspace, we shall give 

several examples of supermanifolds with the help of local coordinates. 

a) The mln -dimensional affine superspac e. It has global coordinates 

(x I ..... Xm;¢ I , .... ~n ) , where x i commute among themselves and with 

Cj and Cj anticommute. In the category of superschemes over a 

commutative ring A the ring of functions on the relative affine 

mln-space is the Grassmann algebra with generators ~j over polynomial 

ring A[x I .... ,Xm]. In the category of C -supermanlfolds the ring of 

functions is C ~ ,... ,. (Xl 'Xm) [¢I ""¢n] 

b) The mln-dimensional projective superspace. It is defined by the 

atlas U i, i= 0,...,m , each U i being a mln-dimension~l affine space. 

It is convenient to introduce a homogeneous coordinate system 

(X0,X1,...,Xm;Z],...,Z n) and to relate the coordinates 

(x~, j #i i~ ..... ¢i) by setting x!=3 Xj/Xi' cji = Zj/X i" 

c) The supergrassmannian of the d0idl-dimensional linear superspaces 

in the (d O + c0id I + Cl)-dimensional linear superspace. We shall describe 

it Dy the following standard atlas. Consider matrices of the form 

(d O + d I) × (d0+c 0 + d I + c I) divided into four blocks such that the format 

of the upper left block is d O x (d O + Co). For each subset I of columns 

containina d O columns of the ]eft part and d O columns of the right 

part consider the matrix 

c O d O d I c. 

x I 

(I) z I = 

I 0 

0 I 

~ I  0 

0 ~I 

] 0 

x I 

0 I 

< ) 
I 

d O 

d I 

The columns I in Z I form the identity matrix. All the remaining 

places are filled by the independent even and odd variables x~b ,¢~d 
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even places being in the upper left and lower right blocks. These vari- 

ables (xi,<i) are the coordinates of the local chart U I. Denote by 

BIj the submatrix of Z I formed by the columns with indices in J. 
-I 

Then the transition rules are Zj: BIj Z I. 

Setting in this prescription d01d I : II0, d O + c01d I + c I = m + 1in, we get 

the projective superspace. On the other hand, setting d I = c I = 0 , we 

get an ordinary grassmannian. 

Proceeding in a more systematic way, we shall start with several basic 

notions of superalgebra and then define superspames by means of a 

structure sheaf. 

2. Superalgebra. The algebraic composition laws relevant in geometry 

are naturally divided into additive and multiplicative ones. All additive 

groups in superalgebra are endowed with a ~ 2-gradation and all multi- 

plications are compatible with it. We use notation A = A 0 @ A I and 

= s in case a 6 A s , then ~= ~ + ~. The elements of A 0 are called 

even ones and those of A I odd ones. The characteristic feature of the 

superalgebra is the appearance of certain signs ±1 in all definitions, 

axioms and polynomial identities of fundamental structures. 

We shall give a representative list of examples. 

Let A= A 0 @ A I' be an associative ring. The supercommutator of homo- 

geneous elements a,b 6 A is defined by the formula [a,b] = ab- (-1)~ba. 

The ring A is called supercommutative iff [a,b] = 0 for all a,b 

If 2 is invertible (which we shall always assume), a 2 1 = ~[a,a] = 0 for 

all a 6A I. The supercommutators in general satisfy two identities 

[ a , b ]  = - ( - 1 )  a'a~ [ b , a ]  , 

[ a , [ b , c ] ]  + ( - 1 )  ~ ( ~ + ~ )  [ b , [ c , a ] ]  + ( - 1 }  ~ ( ~ + ~ )  [ c , [ a , b ] ]  : 0 . 

These identities (together with superbilinearity) are taken as the de- 

finition of Lie superalgebras. The ring morphisms, by definition, res- 

pect the gradation. 

Let A be a supercommutative ring. The notions of (Z2-graded, of 
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course) left, right and bimodule S over A coincide, just as in the 

commutative case, left and right multiplications being connected by the 

formula as = (-I)~ s a . A new feature is the parity-change functor: 

(I I S) 0 = SI,(I I S) I = S O , right multiplication by A coincide on S 

and TTs . An A-module S is called free of rank Plq iff it is 

isomorphic to A plq= A P@ (HA)q ~ The tensor algebra of A-modules differs 

from the ordinary one by the introduction of Z sign into certain 

canonical isomorphisms, e.g. ~ : S ® T~ T® S is defined by 

~(s® t)= (-1)st t® s. There are internal Hom's in the category of 

A-modules consisting of ordinary morphisms and also of odd ones, with 

the linearity rule f(as) = (-I) ~ a f(s) . 

The morphisms between the free A-modules can be given by matrices. 

One must not forget that the passage from the left (row) coordinates 

to the right (column) coordinates of an even element implies sign 

change in odd coordinates etc. The matrices are often written in the 

standard format, like (I) where the even-even places are kept in the 

upper left block. The group GL represents the functor of the in- 

vertible matrices corresponding to even morphisms. 

F. Berezin has invented the superdeterminant, or Berezinian, 

Bet : GL(plq,A) ÷A T . It is a rational function of the elements of the 

matrix which in the standard format is given by the formula 

det (B - B2B4-1B3 ) det B 4 
I 

Ber B 3 B4] = I 

The kernel of Ber is denoted SL. Since Ber is rational, supergrass- 

mannians fail to have PlUcker coordinates, as we shall see later. 

The Berezinian of a free module Ber S is defined as a free module of 

rank Ii0 or 011 (depending on the parity of q in rkS : p(q) 

freely generated by any element of the form D(s I ..... Sp+q) where (s i) 

is a free base of S, with the relations 

m(f(s]) .... ,f(Sp+q)) = Ber f - D(s I .... Sp+q). This notion is a specific 

substitute for the maximal exterior power in commutative algebra. 

The bilinear forms on a free A-module T with the symmetry conditions 

are divided into four main types: OSp (even symmetric), SpO (even 
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alternate), I-~O (odd symmetric), ~Sp (odd alternate). The form b ~ on 

~-~T is defined by the formula b~(~tl,]Tt 2) = (-])tb(t],t2). This cons- 
truction preserves parity but changes the symmetry of the form so that 

usually it suffices to consider only types 0Sp and ]~Sp. 

The automorphism functor of a non-degenerate form defines the super- 

groups of the corresponding type (we shall consider below only the split 

ones). Besides SL, OSp and ~Sp, there is in superalgebra one more 

series Q of supergroups of classical type: the centralizer group of 

an odd involution p : T+ T, p= I, p2 = id. The Lie superalgebras of 

these groups, slightly diminishedif necessary (to kill a center etc.) 

constitute the classical part of the Kae classification [15] of simple 

finite dimensional Lie superalgebras. There are also two exceptional 

types (one having parameters)and Catzdan~ype superalgebras of formal 

vector fields whichhappen to be finite-dimensional when defined on 

Grassmann algebras. 

A superderivation X:A÷ A verifies the Leibniz formula 
~N 

X(ab) = (Xa)b + (-I) xa aXb. There are two natural modules of relative 

differentials of a commutative A--algebra B:~vB/A and ~ddB/A, 

classifying even and odd differentials respectively. Later on we use 

mainly ~ddB/A since the corresponding de Rham complex is super- 

commutative while for ~I B/A it is super anticommutative. 
ev 

3. Supergeometry. The most general known notion of a "space with even 

and odd coordinates" is that of superspace. Superspace is a pair (M,0M) , 

where M is a toplogical space, 0 M a sheaf of local supercommutative 

rings on it. Morphisms of superspaces aremorphisms of locally ringed 

spaces compatible with the gradations of structure sheaves. 

All objects of the main geometric categories,-differentiable and analytic 

manifolds, analytic spaces, schemes, - are trivially superspaces, with 

0 M= 0M, 0. Such superspaces we shall call purely even ones. 

In the general case we set JM= 0M" 0M,I, Gr i 0M: j~/j~+In s . Furthermore, 

Mrd: (M,Gr00M), GrM = (M,I~ 0': Gri0M) . 

The structure sheaf GrM has a natural ~-gradation. To consider GrM 

as a superspace we reduce it modulo 2. 
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With the help of these constructions we can define the most simple and 

important class of superspaces. We shall call a superspace (M,0 M) a 

supermanifold, analytic or algebraic, iff a) Mrd is a pure even mani- 

fold of the respective class; b) the sheaf 0 M is locally isomorphic 

to the sheaf Gr0M, which is in turn isomorphic to the Grassmann algebra 

of the locally free (over Gr0M) sheaf JM/J~ of finite rank. (Note 

that this Grassmann algebra should be called symmetric in the super- 

algebra since JM/J~ is of pure odd rank). 

One proves then that C ~ and analytic supermanifolds can be described 

by local charts (x~ ..... Xm; ~I ..... ~]n ) . The sheaf 0 M locally consists 

of the expressions E f (x)~ e where f are even functions of the 

corresponding type. An essential feature of supergeometric constructions 

is their invariance with respect to the coordinate changes mixing even 

the 
and odd functions. Set, goese'g'' y= x+ ~i~2,~I= (I + ~  TI1~2)x2)~ I, 82= f~2iy)~h~2 " 1 + x  2 
local function f(x) into f(y-~+xL = f(y)- 

I 
The appearance of derivatives in the coordinate change formulas plays 

an essential role in the Langrangian formalism of supersymmetric field 

theoretic models. It also shows that in continuous supergeometry a 

natural structure sheaf ought to contain certain distributions. The pe- 

culiarities of continuous supergeometry were not studied for this 

reason. 

The most important superspaces which are not necessarily supermanifolds 

can be easily defined in the analytic category. They are the super- 

spaces (M,0M) such that (M,0M,0) is an analytic space and 0M, I 

is 0M,0-coherent. In the same way one defines superschemes. 

The notion of a locally free sheaf of 0M-mOdules is a natural substi- 

tute for vector bundles. For supermanifolds over a field the tangent 

sheaf TM and the cotangent sheaf ~IM= 9~dd M are defined in the usual 

way, using superderivations over the ground field. The generalization to 

the relative case is selfevident. The rank of TM is called the di- 

mension of the supermanifold. 

Now the reader will easily transcribe the descriptions given in n°4.1 

into the definitions of the superspaces in the algebraic, analytic or 

C ~ categories. Notice that the grassmannian is endowed with the tauto- 

logical sheaf, which is generated by the rows of Z I over U I. Over 
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the projective superspace it is denoted 0(-I). 

4. Methods of construction of superspaces, a) Let (M,0 M) be a pure 

even locally ringed space, [ a locally free sheaf of modules of rank 

01q over 0 M . Then (M,0M, s - S([)) is a superspace, which is called 

split. In the C ~ category every supermanifold is split, i.e. can be 

obtained in this way from a manifold and a vector bundle on it. In the 

analytic and algebraic categories this is not true anymore, e.g. the 

Grassmannians are not analytically split unless the tautological bundle 

is of pure even or pure odd rank. (cf. below). 

b) As in pure even analytic and algebraic geometry, very important 

superspaces are defined by their functor of points. We have already 

mentioned the algebraic supergroups GL. SL , OSp, ~Sp and in the 

next section we shall work .with the flag superspaces F(dl,...,dK;T), 

where d I < d 2 < ...< d K are the dimensions of the components of a flag 

in the linear superspace T. We expect that the main theorems on the 

representability of various functors and moduli problems admit their 

counterparts in supergeometry although the systematic work has barely 

begun. We shall state two results proved by A. Vaintrob which show the 

existence of a local deformation theory of Kodaira-Spencer type. The 

basic definitions are readily stated in the context of analytic super- 

spaces. The infinitesimal deformations are represented by the ring 

{[x,~] i (X2,x~) . 

Let M be a compact supermanifold, TM its tangent sheaf. 

5. Theorem. a) Let dim HI(M,TM)= alb . If H2(M,TM) = 0, then in the 

category of analytic supermanifolds there exists a local deformation 

of M over B= {alb such that the Kodaira-Spencer map 

P:ToB ÷HI(M,TM) is an isomorphism. 

b) Any deformation of M over a supermanifold with surjective Kodaira- 

Spencer map is complete; in particular, it is versal, if p is 

isomorphic, i 

Let us give an example. Let M be a compact analytic supermanifold of 

dimension 111 It is completely defined by the Riemann surface 

M 0 = Mrd and the invertible sheaf ]~JM= L on it. Assume that 
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genus M= g >I, deg i = 0 and i is not isomorphic to 0M@ In this 

case rk HI(M,TM) = 4g- 314g- 4. The even part 4g- 3 of this dimension 

corresponds to the classical manifold Z of deformations of the pair 

(M0,L) which is fibered by Jacobians over the coarse moduli space of 

curves. Theorem 5 shows that outside of the zero section this manifold 

Z is naturally extended to the supermanifold of odd dimension 4g- 4. 

This structure deserves further study. 

6. Theorem. Let M be a closed compact subsupermanifold of the complex 

supermanifold M'. Let N be a normal sheaf to M . 

a) If dim HO(M,N) = alb and HI(M,N) = 0, there exists a versal local 

deformation of M in M' over B = {alb 

b) A deformation of M in M' over B is complete iff the Kodaira- 

Spencer map P:ToB ÷H0(M,N) is surjective. 

7. Example. Let us return to the definition of a supergrassmannian and 

illustrate certain of our constructions. The supergrassmannian 

G = G(II1; ~212) is covered by four 212 -dimensional affine super- 

spaces. The corresponding Zi-matrices are 

ix11 ~i o I I~2 i o ~21 
~I 0 Yl I , rl 2 0 I Y2 ' 

11 x3 ~3 0! 11 x4 o ~I 
0 D3 Y3 I , 0 T] 4 I Y4 

Using the prescription in the beginning of this section, one calculates 

the transition functions, e.g. 
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<x1 i I <x4 
r~1 Yl q4 Y4 

-I 

-I -2 -I _x[ly 4 I~4 
: I x4 -I+ x4-I Y4 ~4q4_i ' 1 

-x4 Y4 84 ' Y4 -x4-1y4-2~4q4 / 

p1 x p1 A calculation shows also It follows immediately, that Grd = 

that 

2 ~ £2(pI p1 
JG x ) 

so that the obstruction ~ to the splitting of G lies in the group 

H1(T(p1xp1) ® £2(p1×p1)) = H1(p1,~1p1)2 : { ~ ~ . 

One can check directly, using the ~ech cocycle in the standard atlas, 

that this obstruction is (I,1). Hence G is not split. (Notice that 

the projective superspace is split: pmln = (pm,s(770~m(_1))) " 

Moreover, G is not a projective supermanifold. In fact, the image 

of the Picard group HI(G,0~, 0) ÷ Pic (pIxpI) consists of the classes 

of sheaves 0(a,-a), a6 ~, since the obstruction to extending 0(a,b) 

from Grd to G is essentially (a+ b)~. Therefore, any supergrass- 

mannian G(alb;~ mln) with 0 < a < m, 0 < b < n is non-projective since 

G admits a closed embedding in such a Grassmannian. 

This example shows that the use of projective technique in the algebraic 

supergeometry is restricted, and one is obliged to generalize those 

methods of algebraic and analytic geometry which do not rely upon the 

existence of ample invertible sheaves. 

For example, P. Deligne conjectured that the dualizing sheaf on a smooth 

complex supermanifold X in Ber ~I X. This was proved by I. Penkov [29] 
ev 

who has demonstrated that in this case working with g-modules on a 
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supermanifold permits one to effectively reduce the situation to the 

pure even one. 

5. Schubert supercells. 

I. Basic notions. Let G be a semisimple algebraic group, Bc G its 

Borel subgroup. The G-orbits of G/B x G/B form a finite stratification 

on this manifold whose strata Yw are numbered by elements w of the 

Weyl group W= W(G) (Bruhat decomposition). We shall call locally 

closed submanifolds Xw(b) = ({b} × G/B) N Y c G/B the Schubert cells. 
w 

In the same way, using G-orbits of G/B x G/P, one defines the Schubert 

cells for a parabolic subgroup Pc G. The geometry of the Schubert 

cells plays an important role in many developments of characteristic 

classes theory and representation theory. 

In this section we shall define Schubert supercells for complete flag 

superspaces of classical type and explain how some classical results 

generalize in this context. 

Let T be a linear superspace of dimension mLn over a field. We shall 

consider the following algebraic supergroups G given together with 

their fundamental representation T: a) G= SL(T) ; b) G= 0Sp(T) , the 

automorphism group of a nondegenerate even symmetric form b:T÷ T* ; 

c) G = ~Sp(T), the automorphism group of a nondegenerate odd alternate 

form b:T÷ T*; d) G= Q(T), the automorphism group of an odd involution 
2 

p:T÷ T , p : id. In the cases ~Sp and Q we have m = n. 

The counterpart of the classical manifold G/B is the supermanifold 

F of complete flags in T, which are in addition invariant with respect 

to b or p in the cases G= OSp, ~Sp , Q (the exact definitions are 

given below), several differences between this situation and the clAssi- 

cal one are worth mentioning. 

First, the stabilizers of complete flags B in general are not maximal 

solvable subsupergroups. However, they play the same role as the classical 

Borel subgroups both in the theory of highest weight [16] and in the 

theory of the Schubert supercells. Second, not all subgroups B are 

pairwise conjugate, and the flag manifolds F consist of several 
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components. Third, the stratification we want to construct is not 

purely set-theoretic. In fact it will be a decomposition of F x F 

into a union of locally closed subsuperschemes. The flag realization 

is suitable for this construction. 

The first unsolved problem is to define a cohomology theory in which 

the classes of the Schubert cells would be free generators. As we con- 

jectured in the introduction, this may require a sort of compactifi- 

cation along the odd dimensions. 

We shall now give some details. 

2. The connected components of flag supermanifolds. These connected 

components are naturally numbered by the sets GI which are defined 

as follows. Set 

m+n 

, = I}0 or 011, ~ 6 = mln} SLI = {(61 .... 6re+n) I 6i i= I i ' " 

Furthermore, 

0SPI : {(6 1 ..... 6m+ n) 6 SLI 16 1 : 6m+n+1_ i , i = I ..... m+n} , 

, = 6 c i = I, ,2m} , ]IspI = {(6q .... 62m) 6 SLII6 i 2m+1-i . . . .  

m 
L ........... ] 

where (plq) c = qlp • Finally, QI = {~I11 ..... I11)} (the one element 

s e t ) .  We s a y  t h a t  t h e  f l a g  f :  0 = SoC S 1 c . . .  CSm+ n = T i s  o f  t y p e  

I 6 G I  , i f  6 i ( I )  = r k  S i / S i +  1 . F o r  g r o u p s  G = O S p ,  - ~ ' S p ,  Q t h e  

flag f is called G-stable if the following conditions are fulfilled: 

b(S i) = S I . for OSp, ~Sp ; p(S i) = S. 
re+n-± 1 

for Q . 

The functor GF I on the category of superschemes over ground field 

associates with a superscheme S the set of flags of type I 6 GI in 

the sheaf 0 S ® T ; for G # SL the flags should be G-stable. (A flag 

is a filtration of 0 s ® T by subsheaves S i such that all injections 

S. cS. locally split; G-stability is defined with respect to 

id0s ® b or id0s ® p ). 
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Theorem. Functor GF I is representable by a supermanifold which 3 6 

is irreducible except for G = 0Sp(2rl2s) , r _-> I, in which case GF I 

consists of two ismorphic components. Furthermore, 

dimSLFi = <m(m 2 I)+ n(n-2 I)1 mn ) ; 

( r2+ s2 I (2r+ 1)s) 

diO S~I = 2 

(r 2- r + s I 2 rs) 

for m = 2r + I, n = 2s > 0; 

for m = 2r, n= 2s > 0 

2 

dimJ~S~i= <rs + r(r- I) + s(s + I) rs + r(r+ I) + s(s 2 I)~ 
2 2 ~ ' 

m 

where (rls) = [ 6i(I) . • 
i=I 

Of course, the functors of noncomplete flags also are representable and 

the morphisms of projection onto a subflag are representable by morphisms 

of supermanifolds. It is convenient to prove theorem 3 by induction on 

the length of a flag, starting with relative Grassmannians as in section 

4. The reader shall find most of details in [24]. 

Now we shall set GF =I~IGFI and denote by Sic 0 F ® T the components 

of the tautological flag on FG . There are two natural flags on 

GF x GF , {p1*(Si) } and {p2*(Sj) } , where PI,2 are the projections. 

In the classical theory every G-orbit consists of those points of 

GF x GF , over which the type of relative position of flags {p1*(Si) ] 

and {p2*(Sj) } is fixed. We can imitate this definition in supergeometry 

taking functor of points instead of geometric points. 

The type of relative position of complete flags 

is, by definition, the matrix di: J = rk(S i + S:) • 
3 

(S i ) and (Sj) in T 

Let us introduce the Weyl groups G W , acting on GI : 

SLw = Sm+n ; QW = Sm ; GW:{g 6Sm+nlg(GI) c GI} for G =0Sp,~Sp. 
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The reader will notice that our GW is in general different from the 

x S for SL and not Weyl group of Grd , e.g. the latter is S m n 

S . As we shall see in a moment, in the theory of Schubert super- 
m+n 

cells it is this big group, which contains the odd reflections, which 

is the right one. 

4. Lemma. The types of relative positions of complete G-stable flags 

are in (1,1)-correspondence with the triples (I,J,w) where I,J~ GI r ~ r 

w 6 GW , J = w(I) • . 

The proof is purely combinatorial. 

5. Bruhat subsets. We set now for w6 GW , I,J = GI : 

!Yw,IJ != {x 6GF I × GFj Irk(P1*Si(x) + p2*Sj(x)) : dij,w} 

where (dij,w) is the type of relative position corresponding to the 

triple (I,J,w) in view of Lemma 4 (if J % w(I) we set iYw,iJ I = ~) . 

Furthermore, put 

iywi : _~__ {Yw,iJ I c GF x GF 
I,J 

6. Theorem. Each set iYwl carries a canonical structure of the 

locally closed subsuperscheme Y c GF x GF , such that the decomposition 
W 

I I Yw is the flattening stratification for the family of sheaves 
W 

Sij = P1* Si + P2 *S on GF GF j X m. 

We recall that by definition of a flattening stratification this con- 

dition means that each morphism q:X+ GF x GF for which all the sheaves 

q*(Sij) are flat uniquely decomposes as X + IjYw+GF × GF. The proof 

of the existence of the flattening stratification is the same as in the 

pure even case. 

7. Superlength. In the classical theory the dimension Qf a Schubert 

cell associated with w6 W equals the minimal length of a decomposition 

of w into a product of basic reflections. To state the counterpart of 

this fact in supergeometry we need several definitions. 

We shall call the following elements of GW the basic reflections: 
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d. : (i,i + I) for G : SL,Q ; 
l 

di = (i,i+ I) (m+ n+ I - i, m+ n- i) , i+ I < [ m+n--~--] 

m+n T~ : (£,m+ n+ I - k) , ~ = [--~--] for- G = OSp, ~Sp. 

The superlength Gz(w) , w C GW will be defined inductively . This is 

a vector of superdimensions (GzIj(W) I I,J 6GI) such that 

a) For a basic reflection o 6 GW we have Gzij(a) : 0 if J # d(I) ; 

the other possibilities are contained in the table: 

T~ 

SL 

110 (I=J); 

011 (I@J); 

OSp 

110 (I=J); 

011 (I%J); 

110 ( 6 ~ ( I )  = 1 t 0 ,  

m l n  = 2 r  + 1 1 2 s ) ;  

111 ( 6 £ ( I )  = 0 1 1 ,  

m l n  : 2 r  + 1 1 2 s )  ; 

010 (6Z(I) : 110, 

mln : 2r12s) ; 

110 (6Z(1) : 011, 

mln : 2r12s). 

l lSp 

I 0 (l:J) ; 

0 I (I%J) , 

0 ] (~i(z):110) 

0 0 (69 (r):011) 

Q 

111 

o K oi b) Let w = . .. be an irreducible decomposition of w as a 

product of basic reflections. Set I = oi... ~I (I) and 
l 

K-I 
Gilj(W) = [ G~{ (o i+I) , if 

i=0 ~ I i ' I i + l  
S = w z); 

GZIj(W) : 0 , if J % w(1) . 

8. Theorem. The projection map Y 
w,IJ 

over GF I the  Bruhat  man i fo ld  YW,IJ 

GF I is surjective, and locally 

is a relative affine superspace 
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of dimension Gilj(W) . 

In other words, the dimension of a Schubert cell Yw(b) 

the superlength of w. 

coincides with 

From the geometric proof of the theorem some purely combinatorial facts 

follow. For example, G£1j(w) does not depend on the choice of an 

irreducible decomposition of w; furthermore, G£Ij(W) = G£ij(w-1 

for G %~Sp, finally for G =~Sp 

G£ij(w) + dim GF I 

if J = w(I). 

Giji(w-1) + dim GFj, 

6. Geometry of supergravity 

I. Minkowski space and Schubert cells. The objective of this section 

is to describe a model of simple supergravity from the view point which 

was introduced in [26] where the kinematic constraints of supergravity 

were interpreted as the integrability conditions for a curved version 

of a flag superspace. 

To explain the essence of our approach let us recall the usual exposition 

of general relativity. The space-time without gravitational field is the 

Minkowski space of special relativity ~4 with a metric which in an 

3 2 . The gravitation field inertial frame takes the form dx 2 -iE I dx i 

reflects itself in the curvature of space-time which becomes a smooth 

four-manifold M 4 with the pseudoriemannian metric gabdxadxb . The 

dynamics is governed by the Lagrangian (action density) R vol g 
where R is the scalar curvature, vol the volume form of g. 

g 

The models of supergravity in superspace studied in many recent works 

[12],[13],[34] also start with certain geometric structures on a 

differentiable supermanifold M mln which are then used to define a 

(super) Lagrangian which is a section of the sheaf Ber M : Bet ~I M. 
ev 

There are physically meaningful cases with m% 4 ,e.g. the case mln=11132 

is now considered as the most fundamental one. 
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What is still very much unclear, is the question what exactly is the 

geometry to start with, i.e. the kinematics of supergravity. The naive 

suggestion to use a supermetric was quickly seen inadequate. The most 

universal known method is the Cartan approach. One starts with an affine 

connection and then painstakingly guesses the so called constraints and 

the action density. The constraints are the differential equations which 

must imply no equations of motion. The physical interpretation and 

quantization of constrained fields is a difficult task and one faces 

the problem of solving constraints and expressing everything in terms 

of free fields. This approach was successful more than once but the 

poor command of underlying geometry hinders the work considerably. 

Our approach essentially interprets the constraints as integrability 

conditions ensuring the existence of certain families of submanifolds 

in M mln , the geometry of these families being a curved geometry of 

Schubert supercells. 

Let us first describe from this viewpoint the simplest example, the 

Pl~cker-Klein-Penrose model of Minkowski space. 

Let T be a four dimensional complex space (Penrose's twistor space). 

Let G = G(2;T) be the Grassmannian of planes in T , S = S l the 

= OG/S ~ tautological sheaf on G , S r (T ® )* There is a canonical 

isomorphism ~IG : S l~ S r , and the subsheaf A2S~ ~ A2S r c S2(~]G) 

can be interpreted as the holomorphic conformal metric on G. Choose 

a big cell UcG. The complement G~ U is a singular divisor, the 

light-cone at infinity, and there are sections s£,c r of the sheaves 

A2SZ,A2S r on U having a pole of first order at this divisor. The 

6 F(U,S2~IG) is well defined up to multiplica- complex metric sZ ® Sr 

tive constant. Now introduce a real structure p on T @ T* inter- 

changing T and T*. The involution p acts on G-points of G(2,T) 

since G(2,T) canonically identifies with G(2;T*) . Let p be com- 

patible with (U,sl,Sr) in the sense that uP=u, sip = Sr" The 

following statements can be directly verified. 

a) The real (i.e. p-invariant) points of the big cell U form the 

space ~4 . The restriction of sZ® Sr to it is a Minkowski metric. 

b) The real three-dimensional Schubert manifolds in the Grassmannian 
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G intersected with U(~) 

metric. 

form the system of light cones of this 

c) There are no real two-dimensional Schubert cells in G. In U(~) 

they define two connected families of complex planes. These families 

play an essential role in the theory of Yang-Mills fields. In fact, 

the integrability of a connection along one family means that this 

connection is an (anti) self dual solution of the Yang-Mills equation. 

In a curved space-time of general relativity null geodesics and light 

cones still exist and, moreover, define the corresponding metric up to 

a conformal factor. To break the conformal invariance one may choose 

metrics si,Cr for two-component Weyl spinors, left and right. 

We describe supergravity along these lines. In nn ° 2,3 a flag model 

of Minkowski superspace is introduced, In n°4 we explain that in a 

curved superspace two families of 0L2N - dimensional Schubert super- 

cells should be preserved. Finally, in nn°5,6 we define the dynamics 

by means of an action density, expressed through the Ogievetsky-Sokachev 

prepotential [28]. 

2. Minkowski superspace. Fix an integer N ~ I and a linear complex 

superspace T of dimension 414N. Set M = F(2i0, 2iN;T), i.e. a 

S-point of M is a flag S 2i0 c S 2LN in 0 S® T . Moreover, define 

the left and right superspaces as Grassmannians 

MZ : G(210;T), M r = G(21N;T) = G(210;T*) . 

Denote by S 210cS 21N the tautological flag in 0 M® T, by ~210c~21N 

, : ~21N/~210 
the orthogonal flag in 0M® T*. Set F~ = s21N/s 2i~ F r 

Let ~i,r:M ÷ MZ, r be the canonical maps. Let TzM = TM/M r , 

TrM = TM/M l (recall that we work in the category of complex super- 

spaces). Since M over Mi, r is a relative Grassmannian, a standard 

argument gives canonical isomorphisms 

TIM= ($210) * ¢ F t , TrM = E l *  ® ( ~ 2 1 0 ) .  

Combining this with the map F l® F l ÷ 0 M we get a natural map 
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(i) a: T/M ® TrM÷ ($210), ® (~210),. 

On the other hand, the relative tangent sheaves T/,rM are integrable 

distributions, i.e. locally free subsheaves of Lie superalgebras in 

TM, of rank 012N. Every point of M is contained in two closed sub- 

supermanifolds of dimension 012N tangent to TiM and TrM 

respectively. They are the Schubert cells we are interested in. The 

supercommutator between T/M and TrM defines the Frobenius map 

(2) b:TiM ® TrM÷ TM/(TIM + TrM) : ToM 

The following statements contain the essential geometric features of 

the picture we want to keep in the curved case. 

3. Proposition. a) The sum TiM+ TrM 

in TM of rank 014N. 

in TM is a direct subsheaf 

= ® ( ~ 2 1 0 )  b) There is a well defined isomorphism TOM ($210) * * 

making the maps (I) and (2) to coincide. • 

Finally, as in n°1, we must introduce a real structure p on T@ T* 

(in superalgebra (ab) 0 (-1)abaPb P ; cf. [24] for further details) . 

We shall assume that T P = T* , in this case (T/M) p = Yr M, 

(S210)p= ~210 . One can check that over a p-stable big cell in M some 

natural sections of TiM, TrM, ToM generate the Poincare superalgebra 

introduced by physicists (see e.g. [34]). 

4. Curved superspace. A complex supermanifold M 414N with the following 

structures will be called superspace of N-extended supergravity. 

a) Two integrable distributions 

sum is direct. 

T/M,TrM c TM or rank 012N whose 

b) Two locally free sheaves S l, S r of rank 210 , two locally free 

sheaves F1;Fr=F1 * of rank 01N and structure isomorphisms 

TIM = Sl* ~ Fl" TrM = ~r ® St* 

c) A real structure p on M such that its real points in Mrd form 

a four-manifold, and extensions of this real structure to S l@ S r , 
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F 1 @ F r interchanging left subsheaves with right ones. 

d) Volume forms v£, r 6 F(Mz,r, Ber MZ, r such that vz p = v r 

A choice of these volume forms corresponds to the choice of spinor 

metrics ~i'Sr in nO1. 

This data is subjected to one axiom. Set ToM - TM/(TIM @ TrM) . Then 
the Frobenius map ~: T~M ~ TrM +ToM coincides with the natural map 

Sl*®Fl® ~® Sr*÷S~£ Sr* under the appropriate identification 

T0M = Sl* ® Sr* as in Proposition 3 b) . 

5. Lagrangian. Let M be a superspace of N-extended supergravity. 

Using the data above one can construct a canonical isomorphism: 

2-N 

* Ber M ]4-N (N% 4) (3) Bet M = [~i~* Ber M~ ~ ~r r 

(From this point on we define Ber M as Ber*(~1odd M) ) . 

Hence the volume forms vg~ , v r make it possible to define a section 

(for N • 4) 

N-2 
N-4 

(4) w = (~* v~ ® ~r*Vr) 6 F(M, Ber M) 

In this way we get for N = I the correct action of sample supergravity. 

In the case N = 2 the action is certainly wrong since it gives trivial 

equations of motion. It seems that considering N as a formal parameter 

and taking the left (or right) part of the coefficient of the Taylor 

expansion of (4) at N = 2 we get an action suggested by E. Sokaehev. 

Anyway, for N > I one must take into account new constraints which 

might take the form of integrability of more Schubert cells. 

It is also certain that the other types of flag supermanifolds and their 

curved ~ersions are necessary for a fuller understanding of supergravity 

and super Yang-Mills equations. For example, in a recent paper by 

A. Galperin, E. Ivanov, S. Kalytsyn, V. Ogievetsky and E. Sokachev 

the manifold F(210,2Jl,2L2;T) implicitly appears which in the curved 

version can be defined as the projectivized bundle P(Fz) = P(Fr)+ M. 

In the same vein, for the largest physically acceptable case N = 8, 
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the 11132-dimensional flag supermanifold FI2{0,211,2{8,T) or its 

curved version P(F£) ÷ M seems to be the space considered in the 

context of the so called dimensional reduction, or the generalized 

Kaluza-Klein model. 

6. P repotential. To conclude, we give some coordinate calculations 

which make it possible to identify our geometric picture with that 

of the article [28]. Set N = I and choose in M i a local coordinate 

system (xza,@~). Assume that the following properties are true: 

I a x~), functions, (X~)rd are p-stable and functions (x a. = ~(xz + 

~ ~ ~ P, x a = (x~)P) 04,8 ) are local coordinates on M, where Or =(~ ) r 

Such coordinates (xz,@ Z) on M£ , (Xr,0 r) on M r and (~,0£,@ r) on M 

will be called distinguished ones. 

Now we set 

a a) 
(5) Ha = ~i (x£ - x r . 

These four real nilpotent superfunctions on M are called the Ogievetsky- 

Sokachev prepotential. Working locally and identifying Fl, r with 

,~0 M we can say that the prepotential completely defines the geometry 

of the superspace, except for the forms v£, r which must be given 

separately : 

3 D*(dO~, r dO~ (6) V£,r : ¢Z,r ,r ) 

Some calculations (cf. [26] for details) show that the action (3) can 

be expressed through (5) and (6) by means of the Wess-Zumino formula 

I (E~) D*(d@~,d@~ ,dr a) (7) w = ~ Bet 

A is the transition matrix between the frames where E B 

~, ~ = (~a,~ ,;~) and (~[~ ,~],Aa,A~). 
~x a ' 80 Z ~0 r 

This last frame can be defined in three steps. 

Step I. A = ~ + xa~ and A-= -2.- xa~ are defined as local 
~ a a ~ e e a 

bases for TiM and TrM respectively. From this one finds the 
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coefficients 

xa : i ~  [ (I- i~)-I] ab ; ~ = -i (I + i )-I a 
b ~ & 

Step 2. The volume forms vz, r define the spinor metrics [£,r 6 BerSl, r: 

El : (zi*vi)]/3 ® (~r*Vr)-2/3' [r : (~l*vl)-2/3® (nr*Vr) 1/3 

Step 3. The multiplier F, defining ~ : F£ and £. = FP£. , is con- 

strutted in such a way, that D*(£  ) = [ l '  D * ( ~ )  = E r .  

The structure frame (~[A ,A~],~ , ~ ) _  can be used to describe the 

geometry of simple supergravity Cartan style. In this approach it 

appears as the final product rather than the starting point. 
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COMMENTARY ON THE ARTICLE OF MANIN 

Michael Atiyah 
Mathematical Institute 

Oxford OX1 3LB 

31. Mathematics and Physics 

Manin's stimulating contribution to the 25th Arbeitstagung which, 

in his absence, I attempted to present, provided me with an opportunity 

of adding some further reflections of my own. This commentary, which 

is therefore a very personal response to Manin's article, consists of 

very general and speculative remarks about large areas of contemporary 

mathematics. Such speculations are, for good reason, rarely put down 

on paper but the record of the 25th Arbeitstagung provides a rather 

singular occasion where ideas of this type may not be out of place. 

In recent years there has been a remarkable resurgence of the 

traditional links between mathematics and physics. A number of 

striking ideas and problems from theoretical physics have penetrated 

into various branches of mathematics, including areas such as algebraic 

geometry and number theory which are rarely disturbed by such outside 

influences. Perhaps a few specific examples will illustrate the 

point. The Kadomtsev-Petiashvilli equation, which arose in plasma 

physics, has been shown to be extremely relevant to the classical 

Schottky problem about the characterization of Jacobian varieties of 

algebraic curves (this was explained in the Arbeitstagung lecture of 

van der Geer) . Witten's analytical approach to the Morse inequalities, 

based on the physicist's use of stationary-phase approximation, has led 

Deligne and others to imitate his ideas in number theory with great 

success. The Yang-Mills equations and their 'instanton' solutions 

have been brilliantly exploited by Donaldson to solve outstanding 

problems on 4-manifolds. 
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All these examples connect physics with various branches of 

geometry, and it is therefore natural that Manin should have attempted 

an overview of geometry in the widest sense. The picture he describes 

is best indicated by the following schematic diagram: 

Arithmetic < Algebra Geometry Analysis ~ Physics 

Topology 

Homology K-theory 

As this suggests, ideas from topology, notably homology and 

K-theory, provide a common language and underpinning for the whole 

structure. The bridge between geolaetry and arithmetic was greatly 

expanded and developed during the Grothendieck era with the introduction 

of 'schemes'. The bridge between geometry and physics begins essent- 

ially with Einstein's theory of gravitation but has become much stronger 

with the recent development of gauge theories of elementary particles. 

The picture just envisaged is restricted, on the physics side, to 

classical physics. However, one should be more ambitious and try to 

fit quantum physics into the picture also. I will have more to say on 

this aspect later. 

§2. Arithmetic laanifolds 

An algebraic curve defined by equations with integer coefficients 

can be viewed as a scheme over Spec Z. It is the analogue of a 

surface mapped onto a curve, the 'fibre' over a prime p being the 

curve reduced mod p. Such an arithmetic surface can be 'compactified' 

by adding the Riemann surface of the curve over the 'prime' at ~. 

The Arakelov-Faltings theory is then concerned with extending as much 

as possible of the usual theory of surfaces to this arithmetic case. 
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For this purpose it turns out that one needs to introduce or find 

canonical metrics on various objects associated to the Riemann surface. 

For example, given a line-bundle ~ on the Riemann surface one has 

the one-dimensional complex vector space 

det H°(~)/det Hl(~) 

(where det denotes the highest exterior power), and one wants a natural 

metric on this space. 

This particular problem which was solved in one way by Faltings 

has been examined in a wider context (e.g. replacing ~ by a vector 

bundle) by Quillen. He has shown that a natural definition arises by 

using the regularized determinants of Laplace type operators which were 

introduced into differential geometry by Ray and Singer [3]. Such 

operator determinants are extensively used by physicists in quantum 

field theory, and this link between geometry and physics is currently 

the scene of many investigations. In any case it provides a clear 

link with quantum and not purely classical physics. 

On the Riemann surface itself there are two natural metrics (for 

g ~ 2), one being the Poincar6 metric and the other being the metric 

induced by the holomorphic differentials. In higher dimensions the 

analogues of the Poincar@ metric are the K[hler-Einstein metrics. 

Similarly for stable vector bundles there are distinguished metrics, 

and Manin proposes they should be used for a higher dimensional 

theory of arithmetic manifolds. It is interesting to note that all 

of these metrics arose in a physical context. 

Thus the geometry of K[hler manifolds, and in particular the 

study of operator determinants on such manifolds, appears as a natural 

meeting point for arithmetic and physics. In this context it is 

perhaps worth pointing out that a number of differential-geometric 

invariants constructed from operator determinants have already been 

identified with quantities arising in number theory. Thus Ray and 
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Singer [4] made a connection with the Selberg zeta-function of a 

Riemann surface while Millson [2] did something similar in higher odd 

dimensions. Also values of certain L-functions of totally real 

number fields have been related in [i] to the eta-invariant (essentially 

the logarithm of a certain operator determinant) : the eta-invariant 

is also what appears in [2]. 

§3. Fermions 

There is a basic distinction in physics between two types of 

particles, namely bosons and fermions. Bosons involve commuting 

variables and so are easily understood on a geometric level, but 

fermions involve anti-commuting variables and so are more mysterious 

geometrically. On a purely algebraic level of course there is no 

mystery: polynomial and exterior algebras are both well understood 

and extensively studied. However, the development of gauge theories 

in physics where geometric insight and interpretation greatly assist 

the purely formal algebraic aspect has naturally led to the attempt to 

develop a 'super-geometry' in which both sets of variables are 

incorporated. 

The development of super-manifolds as outlined by Manin appears 

to be an elegant extension of classical geometric ideas and it should 

throw light on the algebraic computation of physicists who build 

'super-symmetric' theories. Nevertheless the theory still appears to 

lack some essential ingredients and Manin asks whether the fermionic 

coordinates can somehow be 'eompactified' so as to make them 

topologically more interesting. In this context I would like to make 

a tentative suggestion concerning the right geometric way to interpret 

fermionic variables. 



107 

Consider first a smooth manifold M, its de Rham complex 2*(M) 

and in particular the ring ~°(X) of smooth functions. For a super- 

symmetric analogue, suppose now that M is a closed sub-manifold of 

*(N) denote the complex of another manifold N, and let A = ~M 

currents on N which are supported on M and smooth in the 

M-directions (recall that a current is just a differential form with 

distributional coefficients). Locally an element of A can be 

expressed in the form 

E f (x)~G dx~ A dy 5 
~BY 

where x = (x l...xm) are coordinates on M, Y : (YI'''''Yr) are 

normal coordinates to M in N, 6 is the Dirac G-function of M, 

~, B are skew-symmetric multi-indices and y is a symmetric multi- 

index (so that ~Y represents derivatives in y). If we take 
Y 

a,7 to be empty and B to be a single index we get a subspace RG 

of A where R is the super-ring of the super-manifold given by M 

and its normal bundle in ~. On the other hand A itself should be 

viewed as the super de Rham complex of this super-manifold. 

The advantage of this point of view is that approximating the 

G-function by suitable smooth functions (e.g. Gaussians) we can try to 

interpret fermions as bosons on N which are very sharply peaked 

along M. More precisely the fermions should appear as 'leading 

terms' of such sharply peaked bosons. Geometrically this might 

correspond to putting a metric on N which is very sharply curved 

along M, so that M is an 'edge of regression' in the language of 

classical differential geometry. 

I am trying to suggest that super-geometry should be some kind of 

limit of ordinary geometry and not an entirely different kind of 

entity constructed simply by formal analogy. 
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~4. The quantum level 

Quantum theory is characterized by infinite-dimensionality and by 

non-commutativity. When trying to understand the possible geometric 

counterpart of some aspect of quantum-theory this must be borne in 

mind. 

As I have already mentioned the study of linear elliptic operators 

provides one bridge between geometry and quantum field theory. For 

example ideas from supersymmetric field theories have cast new light 

on the index theorem. 

In a different direction it is I think not inappropriate to 

consider Connes' non-commutative differential geometry (see the survey 

talk by Connes in this volume) as a version of quantized geometry. 

Recall that Connes studies situations such as the ergodic action of a 

discrete group on a manifold where the geometric quotient does not 

exist in any way as a reasonable space. However, a non-commutative 

algebra exists with which various geometric constructions can still be 

made. 

In the lecture of Lang he explained a conjecture of Vojta based 

on an interesting analogy between arithmetic surfaces and Nevanlinna 

theory. It is perhaps interesting in this connection that John Roe 

in his Oxford D.Phil. thesis shows how the Nevanlinna theory fits into 

Connes' framework. Analysing this situation might shed light on the 

analogy between Connes' theory and questions in Arithmetic. 

If one asks for the analogue of quantum theory in Arithmetic one 

can hardly avoid considering the whole Langlands programme. Adelic 

groups are obvious analogues of gauge groups and Hilbert space 

representations are the basic objects of the theory. This analogy 

deserves closer scrutiny, particularly in view of the fact that non- 

abelian dualities, generalizing class-field theory on the one hand 

and electric-magnetic Maxwell duality on the other, seem to be a main 
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objective in both number theory and physics. Perhaps our classical 

diagram should be enlarged to a quantum diagram in the following way: 

Quantum 
Langlands ÷ Connes + Field Theory Quantum 

Arithmetic + Geometry ÷ Physics Classical 
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The Mandelbrot Set in a Model for Phase Transitions *) 

Heinz-Otto Peitgen and Peter H. Richter **) 

INTRODUCTION 

According to D. Ruelle [18] "... the main problem of equilibrium 

statistical mechanics is to understand the nature of phases and phase 

transitions ...". A remarkable observation of B. Derrida, L. De Seze 

and C. Itzykson [4] has put these problems of theoretical physics in- 

to a new perspective: For a very particular model (the hierarchical 

q-state Potts model on a hierarchical lattice) they indicated that 

the Julia set of the corresponding renormalization group transforma- 

tion is the zero set of the partition function in the classical theo- 

ry of C° N. Yang and T. D. Lee [22]. The Yang-Lee theory describes a 

physical phase as a domain of analyticity for the free energy, viewed 

as a function of complex temperature. The boundaries of these domains 

are given by the zeroes of the partition function. Carrying on these 

ideas we show a connection with a discovery of B. Mandelbrot [13]. 

More precisely, in a discussion of the morphology of the above zero 

sets we discover a structure which is related to the Mandelbrot set 

(see [15])attached to the one-parameter family ~ 9 z ~ z 2 + c , c 6 

a fixed constant. For this we exploit recent results of D. Sullivan 

[21] which classify the stable regions of rational maps on 5 = { U {~}. 

Though the physical meaning of the hierarchical Potts model is cer- 

tainly very questionable it seems that the classical (see G. Julia [12] 

and P. Fatou [8]) and recent (see A. Douady and J. Hubbard [5,6,7], 

D. Sullivan [21], M. Herman [11]) theory of complex dynamical systems 

may produce a major step towards a deeper understanding of the nature 

of phase transitions. Besides the hierarchical Potts model we have 

analyzed I- and 2-dimensional Ising models with and without an exter- 

nal magnetic field and have found that the theory of Julia sets and 

*) This paper surveys the recent interaction between the theory of 
phase transitions in statistical mechanics and the theory of com- 
plex dynamical systems. 

**) Forschungsschwerpunkt Dynamische Systeme, Universit~t Bremen 
D-2800 Bremen 33 
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their typical fractal properties play a very significant role in the in- 

teraction between the Yang-Lee theory and the renormalization group 

approach. None of these and the findings in [15] would have been possi- 

ble without the aid of extensive computer graphical studies and experi- 

ments. 

PRELIMINARIES AND NOTATION 

The hierarchical Potts model is associated with a very particular 

and physically unrealistic lattice construction which we introduce 

schematically in fig. I. 

k = I 

<> 
k = 2 k = 3 

Figure I. The diamond hierarchical lattice with 

n = n(k) = 4 + 2(4 k-1 -4)/3 atoms (dotts) 

bonds (line segments) for k > I 

and 4 k-1 

For this particular lattice and nearest neighbor coupling an explicit 

form of the renormalization group transformation is known and that is 

why it is valuable here. On each lattice site i we assume a spin with 

q 6 ~ possible states 

The partition function 

over all configurations 

(]. = I 
1 

Zk(T) 

I*o-i q • 

is the sum of Boltzmann factors extended 
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{o : {I ..... n} ~ {I ..... q}} , n = # of lattice points, 

(I) Zk(T) = Z exp (- I o k--~ E(°)) ' 

where E(o) is the potential energy of the configuration o . 

Assuming that the interaction of different lattice sites is restricted 

to nearest neighbors only, i.e. only across a bond indicated by a line 

segment in figure 1, the energy across such a bond for a fixed confi- 

guration a is: 

(2) I - U , if O. = 0 
E(i,j) = l j 

0 , else. 

Hence, 

(3) E(o) : ~ E(i,j) 
bonds 

For convenience we introduce new variables 

(4) x = exp(U/kB.T ) 

so that Zn(X) becomes a polynomial in x with integer coefficients. 

The coupling constant U is characteristic for the material, U > O 

for ferromagnetic, and U < O for antiferromagnetic coupling. From 

Z k one derives the free energy per atom 

kBT 
- in Z k , n = n(k) (5) fn n 

Thus, zeroes of Z k correspond to logarithmic singularities of fn 

and are reasonable candidates for phase transitions. Note, however, 

that Zk(X) # O for any finite lattice with n = n(k) points and for 

all x > O , which is the physically meaningful temperature range. 

THE YANG-LEE MODEL OF PHASE TRANSITIONS 

In essence the idea of C. N. Yang and T. D. Lee ~, which had a 

substantial impact on the forthcoming attempts to solve phase transi- 

tion problems, is as follows: 
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Let 

(6) N k = {x 6 • , Z k (x) = 0] , 

i.e. one embeds the partition function in a complex temperature plane. 

To make boundary effects negligable one has to pass to the thermodyna- 

mic limit, i.e. one lets n ~ ~ It is not obvious, of course, that 

such a limit makes sense and exists. If, however, the potential energy 

E admits an appropriate growth condition and the range of the inter- 

action is sufficiently small, which is trivially satisfied in our case, 

then (see [18]) the limit exists and we denote by N the zero-set 

of the partition function Z in the thermodynamic limit. Now Yang 

and Lee postulated that N would distinguish a unique point Xc> O, 

(7) 

so that T 
c I 

(see fig. 2). 

N 0~ = {x c oa + } , 

x c : exp(U/kB.Tc) , is the phase transition point 

<<!iii!iii!iiTiiiiiiTi?Cii 
:i:!iiii!!i{iiii!!iiii[i!iiiiii!.!.i:!:!:i:{:"Lgneti c 

. :i!iiii!!iiiiii!!iiiiii!iiiii!i!iiiii!iiiiii e . . . .  

Xo iiii!ii!iiiiiii!ii!iiiiiii!ii!i!ii!iiiiiii  iiiiiii 
~ ~ : t i ! ! i  ii!iii![iiiiitiii!ii!iiii!ii!iii!i!li :ti:!iiii[! :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

Figure 2. Note that T = ~ corresponds to x = I 

Thus to find and characterize T it remains to find x and inter- 
c c 

p r e t e  N i n  t h e  n e i g h b o r h o o d  o f  x c F o r  e x a m p l e  t h e  c r i t i c a l  i n -  

d e x  a , which characterizes the singularity of the specific heat, 

(8) C ~ I T- T c I -~ 

can be obtained from the density of the zeroes in the thermodynamic 

limit near x (see [9]). 
c 
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THE RENORMALIZATION GROUP APPROACH 

In general the partition function Z k is not only a function of 

temperature x but also of other variables like for example an ex- 

ternal magnetic field H . In essence the idea of the renormalization 

group approach is to relate 

Zk_ I with Z k , i.e. 

(9) I Zk(X,H,...) = Zk_I(X,H .... ) • ~(x,H .... ) 

(x,H .... ) = R(x,H .... ) 

Thus, up to a trivial factor ~ the partition function of step k is 

obtained by that of step k-1 modulo an appropriate adaption of the 

variables (x,H, ...). This determines a map R , the renormalization 

transformation. 

In our specific hierarchial q-states Potts model Z k is only a 

function of x , the temperature variable. However, Z k depends on 

the material constant q . An elementary calculation shows that 

(see [4], [I~) 

(10) 

Zk(X ) = Zk_ I (x) • <D(x) , 

R(x) = x = ( x2+q-lh 2 \2x+q-2/ 
Z I (X) = q(x+q-1) 

2.4 k-2 
~0(x) = (2x+q-2) 

k~ 2 

Thus, the renormalization transformation is a rational map of degree 4. 

Actually, as we let q vary in C we obtain a l-parameter family 

R = R For any q we have that q 

(11) 

Rq(1) = 1 and R' (1)q = O 

Rq(~) = ~ and R' (~)q = O , 

i.e. I and ~ are superstable attractors. Their basins of attraction 

are defined by (~ = ~ U {~}) 
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(12) 

Aq(1) = {x 6 ~ : Rn(x) ~ 1 as n ~ ~} 
q 

Aq(~) = {x 6 ~ : Rn(x) ~ ~ as n ~ ~} i 

q 

As a consequence of the classical theory of G. Julia [12] and P. Fatou 

[8] on the interation of rational functions in { we have that 

(13) ~Aq(1) = Jq = 3Aq(~) 

is the Julia set of R q 

JULIA SETS AND PHASE TRANSITIONS 

We are now in a position to discuss the Yang-Lee model in terms of 

the renormalization approach from the point of view of the theory of 

Julia sets. We begin by listing a few interesting conjectures and 

problems: 

CONJECTURE 1.1. 

N = Jq , i .e. 

Aq(1) (resp. Aq(~)) corresponds to the non- 

magnetic (resp. magnetic) phase. 

To discuss this crucial conjecture the following immediate observation 

from (10) is of importance: 

Note that Zk_1(Rq(X)) q(x) 
= /~(x) 

therefore 

for some q(x) and 

k-1 
(14) Nk = {x 6 ~ : Rq (x) = I - q} 

Moreover, the free energy in the thermodynamic limit f 

satisfies the functional equation (15) as a consequence 

of (5) and (10): 

l f (x) =-~-f (Rq(X)) + g (x )  , w i t h  

(I 5) Ii n 
g(x) : (2x+q-2) 
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PROBLEM 1.2. 

(a) In what sense is N k ~ N as k ~ ~ ? 

(b) For which q 6 ~ is N = J ? 
q 

(c) For which q E • does R admit further 
q 

attractors, other than I and ~ ? 

If R admits a further attractor other than I and ~ then its cor- 
q 

responding basin of attraction may characterize a third magnetic phase 

such as for example the antiferromagnetic phase. 

In view of (14) and (15) conjecture (1.1) means that the 

singularities of f~ , the phase transitions points, are 

given by points from Jq , and this is intimately related 

to an understanding of the forward and backward orbit 

(16) Rq(1-q)}i E Z 

for q 6 ~ . Thus, the question which remains is: Is 

(1-q) EJq or in which component of ~ ~ Jq is it? 

THE CLASSIFICATION OF STABLE REGIONS 

This leads us directly into one of the most celebrated recent re- 

sults in the theory of complex dynamical systems: The classification 

of stable regions of D. Sullivan [14,21]. Let f be an analytic endo- 

morphism of ~ . A point x 6 ~ is stable for f if on some neigh- 

borhood of x the family of iterates f,f2,f3, ... is an equicon- 

tinuous family of mappings of that neighborhood into ~ . Note that 

when x is not stable, i.e unstable, for any neighborhood the union 

of images of iterates must cover ~ except for two points at most. 

The set of unstable points for f is the Julia set J of f . It is 

the closure of the expanding periodic points. The open set of stable 

points ~J consists of countably many connected components, the 

stable regions of f , which are transformed among themselves by f . 

The following three theorems of D. Sullivan [21] and P. Fatou [8] are 

crucial for conjecture 1.1 and problem 1.2 . Let f be a rational 

mapping with d = deg(f) > 2 
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THEOREM 1.3. (Sullivan) 

Each stable region is eventually cyclic. 

(For any component C c ~ ~ J there is n 6 ~ such 

that D = fn(c) is cyclic, i.e. fk(D) = D for some 

k 6~ .) 

THEOREM 1 . 4. (Sullivan) 

The cycles of stable regions D are classified into five types: 

(a) An attractive basin D arises from an attractive periodic cycle 

¥ with non zero derivative of modulus less than one, 

¥ = {z,f(z) ..... fn-1(z) } , fn(z)=z , O < I (fn)' (z) I < I , 

and D consists of components of 

U {y : lira distance (fn(y) fn(x))=O } 
x6¥ n-~o 

containing points of ¥ . 

(b) A parabolic basin D arises from a non-hyperbolic periodic cycle 

¥ with derivative a root of unity, 

¥ = {z,f(z) ..... fn-1(z)} , fn(z)=z , ((fn)' (z))m=1 , 

¥ is contained in the boundary of D , and each compact in D 

converges to ¥ under forward iteration of f . 

(c) A superattractive basin D is defined just like an attractive ba- 

sin but now (fn), (z) = O . 

(d) A Siegel disk D is a stable region which is cyclic and on which 

the appropriate power of f is analytically conjugate to an irra- 

tional ratotion of the standard unit disk. 

(C.L. Siegel [I~ proved these occur near a non-hyperbolic fixed 

point if the argument ~ of its derivative satisfies the follo- 

wing diophantine condition: there exists c > 0 and ~ > 2 such 

that 

i a- P/q I ~ c / q~ 

for all relatively prime integers p and q .) 

(e) A Herma~ ring D is a stable region similar to a Siegel disk. 

Now we have a periodic cycle of annuli and a power of f which 

restricted to any of these annuli is analytically equivalent to an 
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irrational rotation of the standard annulus. 

(For appropriate 8 and a M. Herman [10] found such regions for 

the map : 

eie ( x-a ) 2 
x i ~ ) 

x I -~x 

The fate of critical points {c : f' (c) = O} is crucial in connec- 

tion with theorem (1.4). 

THEOREM 1.5. (Fatou) 

(a) If D is an attractive or parabolic basin then D contains 

at least one critical point of f . 

(b) If D is a Siegel disk or Herman ring then ~D is contained 

in the e-limit sets of critical points. 

Thus f can have only finitely many cyclic stable regions. But it 

is still an open problem whether 2d-2 (d > 2 the degree of f) is 

a sharp upper bound. Another open problem is whether a Siegel disk al- 

ways has a critical point on its boundary. M. Herman [11] in a re- 

markable paper proved this conjecture recently for f(z) = z 2 + I . 

Note that theorem 1.5 and theorem 1.4 provide an excellent basis for 

computer experiments. For the detection and characterization of all 

cyclic stable regions of a map f one simply has to follow the forward 

orbits of all critical points. The following example illustrates the 

strength of these results: 

x-2 >2 
EXAMPLE 1.6. f(x) = ~ , J = 

The critical points are: 2,O . Observe that 2 ~ O ~ co ~ 1 ~ I 

and f' (I) = - 4 Thus C ~ J = ~ , because none of the cases 

(a), (b) in theorem 1.5 is possible. 
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THE CRITICAL POINTS OF THE RENORMALIZATION MAP R AND A 
q 

MORPHOLOGY OF N 

Our map 

Rq(X) = < x2+q-1 ) 22x+q-2 

has the six critical points: 

I , ~ , 1-q , ± ~ , (2-q)/2 . 

Since I and ~ are attractive fixed points and since (2-q)/2 ~ ~ , 

± V 1-q ~ O it suffices to examine the orbits of 1-q and O only. 

We do this in the spirit of B. Mandelbrot'shistorymakingexperiment: 

Let 

R n ~} A I :: {q6{ : q(1-q) ~ I , n 

(17) A := {q6{ : Rn(1-q) ~ ~ , n ~ ~} 
q 

M R := • ~ (A I u A ) 

Figures 3,4 and 5 show A I , A and M R . Figure 6 shows a blow up of 

a detail of figure 5. Surprisingly it displays a structure which looks 

like a copy of the original Mandelbrot set [13]. I.e. it is exactly si- 

milar to the bifurcation set of the quadratic family x~x2+c , c6~ 

It is obvious that any q such that lql >> I is in A , thus A I 

and M R are bounded. Experimentally it turned out that the fate of 

the two crucial orbits of (l-q) and 0 were related, i.e. whenever 

(18) 

R n(1-q) ~ I then R n(O) ~ ~ , as n ~ 
q q 

Rn(1-q) ~ ~ then Rn(O) ~ I , as n ~ 
q q 

Indeed, this is an immediate consequence of the commutative diagram 

(19) 

R 

q I ~q 

S o S 
q q 
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I yl
 

I 

q b~
 

> 

I J 

I J rl 
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2.5 

-2.5 

L 

8 

-I 

Figure 5. M R in black 

] .70 

I .54 

0.2 

Figure 6. Detail in M R 

0.36 



D e t a i l  of M R (see  f i g u r e  6) in  b lack  surrounded  by A I in  y e l l o w  and 

A~ in  g reen .  

The Mandelbrot  s e t  M in  b lack  t o g e t h e r  w i t h  i t s  e l e c t r o s t a t i c  po ten-  

t i a l  g i v e n  by t h e  Douady-Hubbard conformal  homeomorphism ~'.D -~ ~'-M. 
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I .70 

I .54 

I .70 

0.2 0.36 

Ato in black 

1.54 

0.2 

Figure 6. (continued) Detail of M R 

0.36 

A I and M R in black 
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where 

(20) 

This means that 

x+q-1 
~q(X) ........ x_ I 

and 

Sq(X) = x2+q-1 

x2-1 

(21) 
with (x+ i)2 

Dq(X) = x-1 

o 2 (x) D 2 (x) Rq(X) = (~q Sq o ~q) = , 

Thus, Mq exchanges the hot phase (x=1) with the cold phase 

(x=~) and the two crucial critical orbits of (l-q) and O . 

Figures 3-6 are explained and described in greater detail in [15]. 

In particular problem 1.2 (c) is answered. Roughly speaking the main 

body of M R and each of its buds as well as the main body of the 

detail in figure 6 and each of its buds identify parameters q for 

which there is a periodic attractor. Their basins of attraction estab- 

lish a third magnetic phase and the boundary of these basins, which 

is the Julia set of R , being also the boundary of A (I) and 
q q 

A (~) , is a candidate for a formal locus of phase transitions. Note, 
q 

however, that even though N may be given by Jq , the Julia set 

of Rq , its points may not be singularities of the free energy f in 

the thermodynamic limit. This seems to contradict (5), but note that 

in the thermodynamic limit the free energy may simply allow an analytic 

continuation. 

In summary our experiments leed to the following interesting conjec- 

tures: 

CONJECTURE 1.7. 

(I) M R is connected. 

(2) The subset of M R shown in figure 6 is homeomorphic 

(quasi conformally) to the Mandelbrot set M , where 
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(3) N = J 
q 

fn (0) / , ~ , M = {c6~ : c 

fc(X) = x 2 + c . 

for any q6(~ ~ Mq) U Mq 

as n ~ ~} 

Note that according to [5] the Mandelbrot set M is connected. 

Actually, Douady and Hubbard showed that • ~ M and ~ ~ D , 

D = {x6~ : Ixl < I} , are homeomorphic subject to a conformal mapping. 

Sullivan [21] gave an alternative proof which may apply also to our 

case. To indicate the idea we briefly survey another remarkable result 

of J. Curry, L. Garnett and D. Sullivan [3]: 

NEWTON'S METHOD AND THE MANDELBROT SET 

Consider the one-parameter family of rational maps 

(22) 

gl(x) = x - pl(x)/p~(x) , 

x 3 pX(x) = + (l-1)x - I . 

where 

Note that Newton's method for any cubic is equivalent by a linear 

change of variables to at least one of the gl 's. The 4 critical 

points of gl are the 3 roots of pl and the distinguished point 0 , 

which in view of theorem 1.5 is the only non-trivial critical point. 

The black regions in the complex X-plane in figures 7, 8 and 9 were 

determined by the condition of the forward orbit of 0 converging to 

the root I of pl(x) . Let 

(23) Mg {16~ : g~(O) /, root of Pl ' as n ~ ~} 

Then Sullivan [21] argues that the components in ~ ~ M correspond to 
g 

quasi-conformal conjugacy classes which are analytically just punctu- 

red disks. Hence, M is connected. The subset of M shown in fi- 
g g 

gure 9 is actually homeomorphic to the Mandelbrot set M , as A. Dou- 

ady and J. H. Hubbard show in [6] . Arguments similar to those in 
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2.0 

-2.0 

-2.25 
1 . 7 5  

Figure 7. {l 6 ~ : g~(O) ~ I , n ~ ~} = black 
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2.0 

1.4 

-0.20 0.4 

Figure 8. (a) Detail of figure 7. 

/ 

? i i 

, D  

t 9  

(b) {I 6 C : g (O) i-, - ~ - n ~ ~} 

U{l 6 C : g~(O) ~ root of Pl ' n ~ co} 



1 . 70 

128 
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Figure 9. (a) Detail of figure 8a. 

(b) The Mandelbrot-like set in 

{~ E C : g~(O) 7 ~ root of Pl n f 
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[6] and [21] should suffice to establish conjecture 1.7 (I), (2). 

We add in passing that figure 9 gives some insight into a completely 

different set of questions: Given a polynomial, describe the set of 

initial values in ~ for which Newton's method converges towards a 

root. It is known, that for a polynomial with real coefficients and 

real roots this set is ~ except for a set of Lebesgue measure zero 

(see [1,20]). Now figure 9 teaches us that this remarkable result does 

not extend to { , because for any l in the Mandelbrot-like set (see 

figure 9) Newton's method allows a periodic attractor with an open ba- 

sin of attraction. 

Conjecture 1.7(3) is meant to contribute to problem 1.2 (a) and (b). 

Note that if one knew that 

(24) ~R 2 hyp (M R ) , ( : hyperbolic part of M R ) 

o 

i.e. for any q E M R the orbit of (l-q) converges towards a periodic 

attractor of Rq , then conjecture 1.7 (3) could be established from 

classical theory. Note, however, that an identity corresponding to 

(24) is not even known for the much more fundamental Mandelbrot set M. 

On the other hand it is known that if M were locally connected then 
o 

M = hyp (M) (see [7]). For a good visual impression of the difficul- 

ties with regard to the last questions we refer to the pictures and 

experiments in [16] . 

SOME JULIA SETS FOR R 
q 

Finally we discuss some Julia sets of R for the physically mea- 
q 

ningful choices q = 2,3,4; see figure 10. Firstly, one shows that 

2 C A I , 3 6 A 1 , 4 E A 

Furthermore, for q = 4 one has that A*(1) = Aq(1) and 
q 

A~(~) = Aq(~) , where A* denotes the immediate basin of attraction, 

i.e. the component which contains the attractor. Hence, it follows from 

[2] that the Julia set J q , q = 4 , is a Jordan curve, which, due 

to the symmetry with respect to conjugation, must intersect ~+ in a 

unique point x c , the ferromagnetic transition point. 
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Remarkably, also the Julia sets for q < 4 in figure 10 distinguish 

a unique phase transition on ~+ 

Acknowledgement: The color plates were obtained by D. Saupe and the 

authors on an AED 767 while figures 3-10 were obtained by H.W. Ramke 

and the authors on a laser printer. All pictures were produced in our 

"Graphiklabor Dynamische Systeme - Universit~t Bremen". 
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RECENT DEVELOPMENTS IN REPRESENTATION THEORY 

Wilfried 5chmid* 
Department of Mathematics 

Harvard University 
Cambridge, MA 02138 

F o r  the purposes of this lecture, "representation theory" means 

representation theory of Lie groups, and more specifically, of semisimple 

Lie groups. I am interpreting my assignment to give a survey rather 

loosely: while I shall touch upon various major advances in the subject, 

I am concentrating on a single development. Both order and emphasis of 

my presentation are motivated by expository considerations, and do not 

reflect my view of the relative importance of various topics. 

Initially G shall denote a locally compact topological group which 

is unimodular -- i.e., left and right Haar measure coincide -- and H C G 

a closed unimodular subgroup. The quotient space G/H then carries a G- 

invariant measure, so G acts unitarily on the Hilbert space L2(G/H). 

In essence, the fundamental problem of harmonic analysis is to decompose 

L2(G/H) into a direct "sum" of irreducibles. The quotation marks allude 

to the fact that the decomposition typically involves the continuous ana- 

logue of a sum, namely a direct integral, as happens already for non- 

compact Abelian groups. If G is of type I -- loosely speaking, if the 

unitary representations of G behave reasonably -- the abstract Plan- 

cherel theorem [12] asserts the existence of such a decomposition. This 

existence theorem raises as many questions as it answers: to make the 

decomposition useful, one wants to know it explicitly and, most impor- 

tantly, one wants to understand the structure of the irreducible sum- 

mands. In principle, any irreducible unitary representation of G can 

occur as a constituent of L2(G/H), for some H C G. The Plancherel 

problem thus leads naturally to the study of the irreducible unitary 

representations. 

To what extent these problems can be solved depends on one's know- 

ledge of the structure of the group G and on the nature of the subgroup 

H. Lie groups, p-adic groups, and algebraic groups over finite fields 

constitute the most interesting and best understood large classes of 

*Supported in part by NSF grant DMS 831743%. 
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groups. Although the formal similarities are both striking and instruc- 

tive, the technical aspects of the representation theory for these three 

classes diverge -- hence the limitation to the case of Lie groups. 

5emisimple groups play a distinguished role among all Lie groups, 

since they come up frequently in physical, geometric, and number-theore- 

tic problems. The special emphasis on semisimple groups can also be 

justified on other grounds: one of the aims of Mackey's theory of induced 

representations is to reduce the harmonic analysis on general Lie groups 

to that on semisimple groups; recently Duflo [13] has worked out the re- 

duction step quite concretely, at least for algebraic groups of type I. 

From the point of view of harmonic analysis, irreducible unitary 

representations are the main objects of interest. Nevertheless, there 

are important reasons for being less restrictive: non-unitary represen- 

tations not only occur naturally in their own right, for example as 

solution spaces of linear differential equations invariant under the 

action of a semisimple group, but they arise even in the context of uni- 

tary representations -- a hint of this phenomenon will become visible 

below. Once one leaves the class of unitary representations, one should 

not insist on irreducibility; various known constructions produce irre- 

ducible representations not directly, but as quotients or subspaces of 

certain larger representations. 

After these preliminaries, I let G denote a semisimple Lie group, 

connected, with finite center, and K a maximal compact subgroup of G. 

The choice of K does not matter, since any two maximal compact sub- 

groups are conjugate. By a representation of G, I shall mean a conti- 

nuous representation on a complete, locally convex Hausdorff space, of 

finite length - every chain of closed, G-invariant subspaces breaks 

off after finitely many steps - and "admissible" in the sense of Harish- 

Chandra: any irreducible K-module occurs only finitely often when the 

representation is restricted to K. This latter assumption is automati- 

cally satisfied by unitary representations, and consequently G is of 

type I [19]. No examples are known of Banach representations, of finite 

length, which fail to be admissible. 

To study finite dimesional representations of G, one routinely 

passes to the associated infinitesimal representations of the Lie alge- 

bra. Infinite dimensional representations are generally not differen- 

tiable in the naive sense, so the notion of infinitesimal representation 

requires some care. A vector v in the representation space Vw of a 

representation ~ is said to be K-finite if its K-translates span a 

finite dimensional subspace. By definition, v e V~ is a differentiable 
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vector if the assignment g --+ ~(g)v maps G into V~ in a C" fashion. 

Differentiable and K-finite vectors can be constructed readily, by aver- 

aging the translates of arbitrary vectors against compactly supported C ® 

or K-finite functions [17]. One may conclude that the K-finite vectors 

make up a dense subspace V C Vw , which consist entirely of differenti- 

able vectors - at this point the standing assumption of admissibility 

plays a crucial role. In particular, the complexified Lie algebra g of 

G acts on V by differentiation. The subgroup K also acts, by trans- 

lation, but G does not. Partly for trivial reasons, and partly as con- 

sequence of the original hypotheses on the representation ~, the g- and 

K-module V satisfies the following conditions: 

a) as K-module, V is a direct sum of finite dimensional 
irreducibles, each occuring only finitely often; 

(I) b) the actions of g and K are compatible; 

c) V is finitely generated over the universal enveloping 
algebra U(g). 

Here b) simply means that the g-action, restricted to the complexified 

Lie algebra k of K, coincides with the derivative of the K-action. 

This definition of the infinitesimal representation, which was introduced 

by Harish-Chandra [19], has the very desirable feature of associating 

algebraically irreducible g-modules to topologically irreducible repre- 

sentations of G; by contrast, g acts in a highly reducible fashion on 

the spaces of all differentiable or analytic vectors of an infinite di- 

mensional representation ~. 

A simultaneous g- and K-module V with the properties (la-c) is 

called a Harish-Chandra module. All Harish-Chandra modules can be lifted 

to representations of G [10,41], not uniquely, but the range of pos- 

sible topologies is now well-understood [45,54]. If V arises from an 

irreducible unitary representation ~, it inherits an inner product which 

makes the action of g skew-hermitian. An irreducible Harish-Chandra 

module admits at most one such inner product, up to a positive factor; if 

it does, the completion becomes the representation space of a unitary 

representation of G [19,39]. In other words, there is a one-to-one 

correspondence between irreducible unitary representations of G and 

Harish-Chandra modules which carry an inner product of the appropriate 

type. The problem of describing the irreducible unitary representations 

thus separates naturally into two sub-problems: the description of all 

irreducible Harish-Chandra modules, and secondly, the determination of 

those which are "unitarizable'. Of the two, the latter seems conside- 

rably more difficult, and has not yet been solved, except in special 

cases -- more on this below. 
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The irreducible Harish-Chandra modules of a general semisimple Lie 

group were classified by Langlands [33] and Vogan [48]; one of the ingre- 

dients of Langlands' classification is due to Knapp-Zuckerman [31]. To 

describe the classification in geometric terms, I introduce the flag 

variety of g, 

(2) X = set of Borel subalgebras of q 

It is a complex projective variety and a homogeneous space for the com- 

plex Lie group 

(3) G C = identity component of Aut(g) . 

In the case of the prototypical example G = 51(n,R), X can be identi- 

fied with the variety of all "flags" in C n, i.e. chains of subspaces 

0 C V 1 C V 2 C . .. C V n = C n, with dim V k = k : every Hotel subalgebra of 

the complexified Lie algebra g = sl(n,C) stabilizes a unique flag 

(Vn}. The group G acts on the flag variety via the adjoin% homomor- 

phism. There are finitely many G-orbits -- for G = 51(n,R), for 

example, these are characterized by the position of flags relative to the 

real structure R n C C n. Now let D C X be a G-orbit, and L --+ D a 

homogeneous line bundle - a line bundle with a G-action compatible 

with that on the base D. A cohomological construction, which I shall 

describe next, if only in rough outline, associates a family of Harish- 

Chandra modules to the pair (D,L). 

At one extreme, if G contains a compact Car%an subgroup I, and if 

D is an open orbit, the homogeneous line bundles over D are paramet- 

rized by a lattice. As an open subset of X , D has the structure of 

complex manifold. Every homogeneous line bundle L --~ D can be turned 

into a holomorphic line bundle, so that G acts as a group of holomor- 

phic bundle maps. Thus G acts also on the sheaf cohomology groups of 

L. The differentiated action of the Lie algebra g turns 

(4) H*(D,O(L))(K ) = { ~ e H~(D,O(L)) J ~ is K-finite } , 

into Harish-Chandra modules. Whenever the line bundle L is negative in 

the appropriate sense -- for example, if L extends to a line bundle over 

the projective variety X whose inverse is ample -- the cohomology ap- 

pears in only one degree and is irreducible: 

HP(D,O(L)) = 0 if p ~ s , 
(5) 

HS(D,O(L))(K) is a non-zero, irreducible Barish-Chandca module 

[43]; here s denotes the largest dimension of compact subvarieties of 

lequivalently, a torus which is a maximal Abelian subgroup. 
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D. These modules can be mapped (g,K)-equivariantly into L2(G) HC'(G), 

and are consequently unitarizable. The unitary structure is visible also 

in terms of the geometric realization: the L2-cohomology of L injects 

into the Dolbeault cohomology, its image is dense, has a natural Hilbert 

space structure, and contains all K-finite cohomology classes [3,44]. 

The resulting unitary representations make up the discrete series, which 

was originally constructed by Harish-Chandra via character theory [21]. 

The opposite extreme, of a totally real G-orbit D C X, occurs only 

when g contains Borel subalgebras defined over R, as is the case for 

G = Sl(n,R). In this situation D is necessarily compact, and the coho- 

mological construction collapses to that of the single Harish-Chandra 

module 

(6) C'(D,L)(K ) = space of K-finite, C" sections of L • 

The module (5) need not be irreducible, but it has a unique irreducible 

quotient, provided L satisfies a suitable negativity condition. Harish- 

Chandra modules of this type are induced from a Borel subgroup of G ; 

they belong to the principal series. 

The construction for a general G-orbit D combines elements of 

"complex induction , as in (4), and ordinary induction, as in (6). It 

can be viewed as a cohomological form of geometric quantization. There 

is completely parallel, algebraic version of the construction, due to 

Zuckerman, which offers certain technical advantages. It is this version 

that has been studied and used extensively [49]. Subject to certain 

hypotheses on the pair (L,D) , Zuckerman's "derived functor construc- 

tion" -- equivalently, the geometric construction -- produces cohomology 

in only one degree, a Harish-Chandra module that arises also by induction 

from a discrete series module of a subgroup of G. Under more stringent 

assumptions, the Harish-Chandra module corresponding to (L,D) has a 

unique irreducible quotient [38]. Every irreducible Harish-Chandra mo- 

dule can be realized as such a quotient in a distinguished manner -- 

this, in effect, is Langlands' classification [33]. The problem of 

understanding the irreducible Harish-Chandra modules does not end here, 

however. The irreducible quotient may be all of the original module, or 

may be much smaller. In principle, the Kazhdan-Lusztig conjectures for 

Harish-Chandra modules, proved by Vogan [51] in the generic case, provide 

this type of information, but not as explicitly or concretely as one 

might wish. 

I now turn to a different, more recent construction of Harish- 

Chandra modules, that of Beilinson-Bernstein [6]; similar ideas, in the 

context of Verma modules, can be found also in the work of Brylinski and 
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Kashiwara [9]. 5ome preliminary remarks are necessary. The flag variety 

X may be thought of as a quotient GC/B; here B is a particular Borel 

subgroup of G C, i.e~ the normalizer of a Borel subalgebra b C g. The 

differentials of the algebraic characters of B constitute a lattice A. 

Each x ¢ A -- or more precisely, the corresponding character e x of B 

-- associates a Gc-homogeneous, holomorphic line bundle Lx --~ X to the 

principal bundle B --~ G C --+ X. Its cohomology groups are finite dimen- 

sional Gc-modules, which are described by the 8orel-Weil-Bott theorem 

[8]. In particular, 

H*(X,O(Lx)) vanishes except in one degree p = p(x) , 
(7) 

HP(x,O(Lx)) is irreducible • 

The center Z(g) of the universal enveloping algebra U(q) acts on the 

cohomology by scalars (Schur's lemma! ), so 

(8) I x = annihilator of B*(X,O(LI)) in Z(g) 

is a maximal ideal in Z(g). As a result of its construction, the line 

bundle L x carries an algebraic structure, and it makes sense to define 

D x = sheaf of linear differential operators, with 
(9) 

algebraic coefficients, acting on the sections of L x ; 

the notion of sheaf is taken with respect to the Zariski topology, as 

befits the algebraic setting. To picture D x, one should note that it 

is locally isomorphic to the sheaf of scalar differential operators on 

X. The Lie algebra g operates on sections of L x by infinitesimal 

translation. This operation extends to a homomorphism from U(g) into 

FD, ( = algebra of global sections of D x ), which in turn drops to an 

isomorphism 

(10) 

[6]. 

tion. 

FDx s Ox =def O(g)/IxU(g) 

This is the point of departure of the Beilinson-Bernstein construc- 

The passage from U(g) to the sheaf D x has a counterpart on the 

level of U(g)-modules: a pair of functors between 

(Ii) M(U x) = category of Dx-modules 

-- equivalently, the category of U(g)-modules on which the center Z(g) 

acts as it does on the cohomology groups (7) - and 

(12) M(D x) = category of quasi-coherent sheaves of Dx-modules • 

Quasi-coherence means simply that the sheaves admit local presentations 

in terms of generators and relations, though not necessarily finite pre- 

sentations. In one direction, the global section functor 



141 

(13) F : M(D x) --+ M U x) 

maps sheaves of Dx-modules to modules over FD x s U x, Extension of 

scalars from the algebra of global sections U x to the stalks of D x 

determines a functor in the opposite directlon, 

A : M(U x ) ) M(D x ) , 
(14) 

AV = D,@ U V ; 
% 

the sheaves AV are quasi-coherent because every V e M(U x) can be 

described by generators and relations. 

Those parameters x e A which correspond to ample line bundles L x 

span an open cone C C R@zA . One calls x dominant if it lies in the 

closure of C, dominant nonsingular if x lies in C itself. The 

inverse of the canonical bundle is ample, and is therefore indexed by a 

particular dominant nonsingular quantity, customarily denoted by 2p. 

With these conventions it possible to state the following remarkable ana- 

logue of Cartan's theorems A and B: 

(15) Theorem (Beilinson-Bernstein [6]) A) The global sections of any 

quasi-coherent sheaf of D~-modules generate its stalks, provided x + p 

is dominant and nonsingular. B) If ~ + p is dominant, the sheaf coho- 

mology groups HP(X,V) vanish, for every V e M(D z) and p > 0. 

As a direct consequence, Beilinson-Bernstein deduce: 

(16) Corollary In the situation of a dominant nonsingular x + p , the 

functor F defines an equivalence of categories M(Ux) ~ M(D x) , with 

inverse A. 

Perhaps surprisingly, the equivalence of categories implies properties of 

general Ux-modules that were previously unknown. The most fruitful ap- 

plications, however, occur in the context of certain smaller categories, 

in particular the category O of Bernstein-Gelfand-Gelfand [7] and the 

category of Harish-Chandra modules. 

Irreducible modules in either of these categories are annihilated by 

maximal ideals in Z(g), but not every maximal ideal is of the form (8), 

with x e A . According to Harish-Chandra [20], the correspondence 

z --+ I x extends naturally to a sur]ective map from the vector space 

C@zA onto the set of all maximal ideals; any two of the ideals Ix, I~, 

for x, ~ e C@zA , coincide precisely when x + p and ~ + p belong to 

the same orbit of the Weyl group W -- a finite group which acts line- 
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arly on C@2A . I want to emphasize one consequence of Harish-Chandra's 

description of the maximal ideal space: 

every maximal ideal in Z(g) can be realized as I x , with 
(17) 

x ~ C@zA having the property that Re(x + p) is dominant. 

Although the bundle L, ceases to exist as soon as the parameter x 

leaves the lattice A , there are "phantom line bundles" attached to all 

x e C@ZA , locally defined line bundles to which the action of g on X 

lifts. The construction (9) of the sheaf of algebras D x continues to 

make sense in this wider setting, as do the isomorpism (I0), the catego- 

ries M(Dx), M(Ux), and the functors F, A Most importantly, theorem 

(15) and its corollary remain valid [6], with one minor adjustment: the 

phrase "x + p is dominant" should be replaced by "Re(x + p) is 

dominant'. Different values of x may correspond to identical maximal 

ideals I x and quotients U x = U(g)/I x , but an appropriate choice of x 

will bring any such quotient within the scope of part B of the theorem -- 

this follows from (17). The same x makes part A and the corollary 

apply at least generically, for parameters outside a finite number of 

hyperplanes. The equivalence of categories breaks down in the remaining, 

singular cases only because certain sheaves fail to have global sections. 

The maximal compact subgroup K C G possesses a complexification, a 

complex algebraic group K C , defined over R , which contains K as the 

group of real points. If V ~ M(U x) is a Harish-Chandra module, the K- 

action induces an algebraic Kc-action on the sheaf AV . The differen- 

tial of this action agrees with the multiplication action of k, viewed 

as Lie subalgebra of FD x s U x -- in short, K C and k act compatibly. 

For the purpose of the preceeding discussion, the finiteness condition 

(la) in the definition of Harish-Chandra module becomes irrelevant. It 

is necessary only that K act locally finitely, i.e. the K-translates 

of any v e V must span a finite dimensional subspace. The passage from 

locally finite K-actions on Ux-modules to algebraic Kc-actions on 

sheaves of Dx-modules can be reversed; in other words, both F and 

restrict to functors between 

M(Ux,K) = category of Ux-modules with a compatible, 

locally finite K-action , and 
(18) 

M(D,,K C) = category of sheaves of quasi-coherent D,-modules 

with a compatible, algebraic Kc-action 

Whenever x + p is nonsingular and Re(x + p) is dominant, the equi- 

valence of categories (16) identifies these two subcategories, 
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(19) F : M(D~,K c) ~ M(Ux,K) • 

A theorem of Harish-Chandra asserts, in effect, that finitely generated 

modules in the category M(Ux,K) satisfy the finiteness condition (la) 

[19], hence 

the irreducible objects in the categories M(Ux,K) , x e CSzA , 
(20) 

exhaust the class of irreducible Harish-Cbandra modules 

In particular, the identification (19) relates irreducible Harish-Chandra 

modules to irreducible sheaves V e M(Dx,Kc). 

Geometric considerations suggest how to find such sheaves. The 

support of any V e M(Dx,K C) is invariant under the translation action 

of K C on X , via the adjoint homomorphism. If V is irreducible, the 

support must be an irreducible variety -- necessarily the closure of an 

orbit, since 

(21) K C acts on X with finitely many orbits 

[36]. Now let Y C X be a Kc-orbit, Y its closure. The operation of 

pushforward yields irreducible sheaves with support in Y , as I shall 

explain next. 

Ordinarily the D-module pushforward of a sheaf exists only as an 

object of the derived category. In the situation at hand it can be des- 

cribed quite explicitely. The analogy with the C" case is instructive. 

Linear differential operators on a C" manifold M cannot be applied 

naturally to the C ~ functions on a closed submanifold N C M . How- 

ever, after the choice of a smooth measure, functions in C'(N) may be 

viewed as distributions on M , and the sheaf of differential operators 

D M -- here in the C ® sense - does act on these. The D-module push- 

forward of the sheaf of smooth measures on N is the sheaf generated by 

that action; in other words, the sheaf of distributions on M , with 

support in N , which are smooth along N . Formally, measures and dis- 

tributions must be treated as sections not of the trivial bundle, but the 

top exterior power of the cotangent bundle. For this reason the pushfor- 

ward from N to M involves a twist by the quotient of the two deter- 

minant bundles, i.e., a twist by the top exterior power of the conormal 

bundle. The preceeding discussion can be expressed in terms of local co- 

ordinates, and then makes sense equally in the algebraic setting. 

Back to the Kc-orbit Y C X ! Under an appropriate integrality 

condition on the parameter x , the "phantom line bundle" corresponding 

to , extends to the orbit as a true Kc-equivariant line bundle, pos- 

sibly in several different ways. I let Ly, x denote a particular such 

extension, tensored by the top exterior power of the normal bundle. Its 
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sheaf of sections Oy(Ly, x) is a module for a twisted sheaf of differen- 

tial operators Dy, x on Y . The complement of the boundary ~Y in X 

contains Y as a smooth, closed subvariety. Because of the shift built 

into the definition, the D-module pushforward of Oy(Ly, x) from Y to 

X - aY is a sheaf of modules over the sheaf D x , restricted to X - ~Y. 

It becomes a sheaf of Dx-modules over all of X when pushed forward 

once more -- naively, simply as a sheaf -- from the open subset X - ~Y 

to X . The resulting sheaf, which I denote by Vy, x , belongs to the 

category M(Dx,Kc) , since K C operates at each step of its construction. 

A basic result of Kashiwara, on sheaves of D-modules supported by smooth 

subvarieties, implies 

a) the sheaf of Dx-modules Vy, ~ has a finite composition 

series and contains a unique irreducible subsheaf ; 
(22) 

b) every irreducible sheaf in the category M(Dx, K C) arises in 

this manner, for some Kc-orbit Y and line bundle Ly, x 

Under the hypotheses of the equivalence of categories, this statement 

translates immediately into a classification of the irreducible Harish- 

Chandra modules which are annihilated by the maximal ideal I x C Z(g) : 

FVy, x has a unique irreducible submodule; the assignment 

of that module to the datum of the orbit Y and line bundle 
(23) 

Ly, x establishes a bi3ection between such pairs ( Y, Ly, x) 

and irreducible Harish-Chandra modules in M(Ux, K) 

When x + p is singular, the situation becomes more complicated, as it 

does also from the point of view of the Langlands classification. Irre- 

ducible Harish-Chandra modules in M(Ux, K) can still be realized as sub- 

modules of some VVy, x , but not always as an only irreducible submodule, 

nor in a unique manner. 

The reducibility or irreduciblity of Vy, x , in the category of 

sheaves of Dx-modules , is a local phenomenon. All stalks at points of 

the complement of ? vanish, and a small calculation shows those over 

points of Y to be automatically irreducible. If a non-trivial quotient 

of Vy, x exists, it also belongs to the category M(Dx,K C) and has sup- 

port in the boundary. In particular, the sheaf Vy, x cannot possibly 

reduce unless there is a non-empty boundary: subject to the usual posi- 

tivity condition on x , 

the Harish-Chandra modules FVy, x associated 
(24) 

to closed Kc-orbits are irreducible 

Non-trivial quotients of Vy, x do exist whenever the line bundle Ly, x 

extends, g-equivariantly, across some Kc-orbit in ~Y . Matsuki [37] 
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and Springer [47] have worked out the closure relations between K c- 

orbits; their results make it possible to interpret this geometric irre- 

ducibility criterion quite explicitely. 

The proof of the original Kazhdan-Lusztig conjectures was the first 

triumph of D-modules in representation theory. Irreducible modules in 

the category 0 arise from orbits of a Borel subgroup B C G C , via the 

same process of pushforward, taking sections, and passing to the unique 

irreducible submodule. Kazhdan and Lusztig [29] had already related 

their conjectured composition multiplicities for Verma modules to the 

intersection cohomology of closures of 8-orbits, i.e., of Schubert varie- 

ties. Both Brylinski-Kashiwara [9] and Beilinson-Bernstein [6] saw the 

connection with the theory of D-modules; they independently established 

the conjectures, by relating the intersection cohomology to the composi- 

tion multiplicities of the appropriate sheaves. This second step carries 

over, essentially unchanged, to the setting of Harish-Chandra modules. 

The paper [35] of Lusztig and Vogan contains the analogue of the first 

ingredient, namely the combinatorics of the intersection cohomology of 

closures of Kc-orbits. Vogan [51], finally, deduces multiplicity for- 

mulas for the Langlands classification, which he had conjectured earlier 

[50]. I should point out that the original Kazhdan-Lusztig conjectures 

cover only Ux-modules with x e A, as does the known version for Harish- 

Chandra modules; Vogan's conjectures, by contrast, apply to the general 

case. 

At first glance, the Beilinson-Bernstein construction appears far 

removed from the construction of Harish-Chandra modules in terms of line 

bundles on G-orbits. The former leads quickly to geometric reducibility 

criteria, as we just saw, and opens a path towards the Kazhdan-Lusztig 

conjectures for Harish-Chandra modules. It also has points of contact 

with Vogan's classification via K-types [48]; indeed, it probably im- 

plies the results of [48]. The G-orbit construction, on the other hand, 

is closely tied to Langlands" classification, which in turn relates it to 

certain analytic invariants of Harish-Chandra modules: the asymptotic 

behavior of matrix coefficients, for example, and the global character 

[I0, II,24]. Since the two constructions complement each other, the pos- 

sible connections between them merit attention. 

Results of Matsuki [36], on orbits in flag varieties, provide an 

important clue. For each G-orbit D C X , there exists a unique K C- 

orbit Y , such that K acts transitively on the intersection DDY ; 

conversely every Kc-orbit intersects a unique G-orbit in this manner, 

The correspondence D ÷--~ Y reverses the relative sizes of orbits, as 

measured by their dimensions -- I shall therefore call D "dual" to the 
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orbit Y. Once the parameter x has been fixed, the duality D ~--+ Y 

extends to the line bundles which enter the two constructions: a homo- 

geneous line bundle L --+ D is dual to Ly, x --+ Y if the tensor product 

L@Ly, Z restricts to a trivial K-homogeneous vector bundle over DDY . 

It is instructive to examine the special case of SI(2, R) , or equi- 

valently, its conjugate SU(I, I). The diagonal matrices in G = 5U(I,I) 

constitute a maximal compact subgroup K ~ U(1). Both G and K C ~ C* 

act on the flag variety X ~ CP 1 s C U {-} , as groups of M6bius trans- 

formations. The duality relates the three Kc-orbits {0}, {®}, C ~, 

in the given order, to the G-orbits A ( = unit disc), 6" ( = complement 

of the closure of A ), 5 I. A homogeneous line bundle over A is deter- 

mined by a character of the isotropy subgroup at 0 , i.e. a character 

e X of K. Dually, a Kc-homogeneous line bundle over the one-point 

space (0) has a single fibre, on which K c acts by an algebraic cha- 

racter e x. The differentials X, x may be viewed as linear functions 

on k s C , whose values on Z C C are integral multiples of 2~i ; here 

the duality reduces to I ÷--+ x = -X . The situation for the orbits A', 

(-}, is entirely analogous. At points z e 51 , the isotropy subgroup 

G z C G has two connected components. Its characters are parametrized by 

pairs ( I , ~ ) , consisting of a complex number 1 and a character 

of the center {±i} C G , which meets both connected components of G z. 

The corresponding G-equivariant line bundle over S 1 extends holomor- 

phically at least to the Kc-orbit C ~ , as does the dual, or inverse 

line bundle. If the line bundle is to extend even across {0} or {-} , 

the pair ( X , ~ ) must lift to a character of the complexification of 

G z -- this happens precisely when X/2~i is integral and ~ trivial or 

non-trivial, depending on the parity of X/2~i. 

To a Kc-homogeneous line bundle Lx--~ (0} , the Beilinson-Bernstein 

construction assigns the Harish-Chandra module of "holomorpbic distribu- 

tions" supported at 0 , with values in the bundle L z -- in other words, 

the U(g)-submodule generated by "evaluation at 0" in the algebraic dual 

of the stalk O{0}(L~®T ~) ; the formal duality between functions and dif- 

ferentials accounts for the appearance of the cotangent bundle T~. By 

its very definition, this module is dual, in the sense of Barish-Chandra 

modules, to H0(A,O(L~@T~))(K) , the module associated to the G-orbit 

and the line bundle L~@T~. For non-negative values of the integral 

parameter x/2Ti , the resulting Ha~ish-Chandra modules are irreducible 

and belong to the discrete series. They become reducible if z/2Ti < -i ; 

in this situation the equivalence of categories (19) no longer applies. 

The preceeding discussion carries over, word-for-word, to the pair of 

orbits {-}, A'. As for the orbits 51 and C ~, the two constructions 
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start with the choice of a G-homogeneous line bundle LA, ~ --+ 5 I. Its 

extension to C ~, which I denote by the same symbol, comes equipped with 

an action of g and an algebraic structure. 5ince C ~ is open in X , 

the pushforward construction attaches the space of algebraic sections 

HO(c~,O(Lx, ~)) to the datum of the Kc-orbit C ~ and line bundle LX, ~ 

Integration over 51 pairs this Harish-Chandra module nondegenerately 

with C®(SI,L*x, ~@T~) (K) • the module corresponding to the G-orbit S 1 and 

line bundle L'X, ~@T~. The hypothesis of the equivalence of categories 

translates into the inequality Re k > -I . On the Beilinson-Bernstein 

side, this implies the existence of a unique irreducible submodule: the 

entire module generically, when Lk, ~ cannot be continued across 0 

and - , otherwise the finite dimensional submodule consisting of sec- 

tions regular at the two punctures. The realization of the dual module 

C'(51, LI, ~@T~)(K) exhibits both Harish-Chandra modules as members of the 

principal series. 

One phenomenon that does not show up in the case of G = SU(I,I) 

is the occurence of higher cohomology. For general groups, without any 

positivity assumption on the parameter x , the sheaves Vy, x can have 

non-zero cohomology groups above degree zero, but these are still Harish- 

Chandra modules. Zuckerman's derived functor construction also produces 

a family of Harish-Chandra modules IP(D,L) , for each G-orbit D and 

G-equivariant line bundle L --+ D , indexed by an integer p 2 0 . The 

example of 5U(1,1) suggest a duality between the two constructions, and 

indeed this is the case. I fix pairs of data (Y, Vy, x), (D,L), which 

are dual in the sense described above, and define s = dimR(YnD) - dimcY , 

d = dim C X. Then 

there exists a natural, nondegenerate pairing between 

(25) the Harish-Chandra modules HP(Y, Vy,,) and Is-P(D,L®AdT~) , 

for all p ~ Z , with no restriction on x (Hecht-Milidit-Schmid-Wolf 

[23]). In both constructions homogeneous vector bundles can be substi- 

tuted for line bundles. The duality carries over to this wider setting, 

and then becomes compatible with the coboundary operators. Earlier, 

partial results in the direction of (25) appear in Vogan's proof of the 

Kazhdan-Lusztig conjectures for Harish-Chandra modules [51]; there Vogan 

identifies certain Beilinson-Bernstein modules with induced modules, by 

explicit calculation. 

The duality does not directly relate the 8eilinson-Bernstein classi- 

fication to that of Langlands: in the language of geometric guantization, 

the latter uses partially real polarizations, whereas the former works 

with arbitrary, mixed polarizations. This problem can be dealt with on 
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the level of Euler characteristics, and the known vanishing theorems for 

the two constructions are sufficiently complementary to permit a compari- 

son after all. In particular, it is possible to carry techniques and 

results back and forth between the two constEuctions [233. 

By definition, the discrete series is the family of irreducible uni- 

tary representations which occur discretely in L2(G). It was remarked 

earlier that G has a non-empty discrete series if it contains a compact 

Caftan subgroup; these representations then correspond to open G-orbits, 

and their unitary structures are related to the geometric realization. 

Open G-orbits are dual to closed Kc-orbits, so the observation (24) 

"explains" the irreducibility statement (5). The discrete series lies at 

one extreme of the various non-degenerate series of irreducible unitary 

representations -- the other series consist of representations unitarily 

induced from discrete series representations of proper subgroups. These 

are precisely the representations which occur in the decomposition of 

L2(G) [22]. Roughly speaking, they are parametrized by hermitian line 

bundles over G-orbits. Here, too, the inner products have geometric 

meaning [56]. As for the rest of the unitary dual, the picture remains 

murky, though substantial progress has been made during the past few 

years. I shall limit myself to some brief remarks, since more detailed 

summaries can be found in the articles [30,52] of Knapp-Speh and Vogan. 

A unitarizable Harish-Chandra module V is necessarily conjugate 

isomorphic to its own dual, a property which translates readily into a 

condition on the Harish-Chandra character, or on the position of V in 

the Langlands classification. If the condition holds, V admits a non- 

trivial g-invariant hermitian form -- only one, up to scalar multiple, 

provided V is irreducible. The real difficulty lies in deciding whether 

the hermitian form has a definite sign. For a one parameter family V t 

of irreducible Harish-Chandra modules of this type, the form stays defi- 

nite if it is definite anywhere: not until the family reduces at some 

t = t o can the hermitian form become indefinite; even the composition 

factors at the first reduction point are unitarizable. In the case of 

SI(2, R), such deformation techniques generate the complementary series 

and the trivial representation -- in other words, all of the unitary 

dual outside the discrete series and the unitary principal series [5]. 

Examples of Knapp and 5pet [30] suggest that the analogous phenemenon for 

general groups can become quite complicated. 

Neither induction nor deformation techniques account for isolated 

points in the unitary dual. Typically isolated unitary representations 

do exist, beyond those of the discrete series, but with certain formal 

similarities to the discrete series. Zuckerman's derived functor con- 
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struction, and the Beilinson-Bernstein construction as well, extends to 

orbits in generalized flag vartieties, i.e., quotients Gc/P by parabo- 

lic subgroups P C G C. The G-invariant hermitian line bundles over an 

open G-orbit D C Gc/P are parametrized by the character group of the 

center of the isotropy subgroup G z C G at some reference point z e D. 

Whenever that center is compact, the derived functor construction pro- 

duces a discrete family of irreducible Harish-Chandra modules. According 

to a conjecture of Zuckerman, which was recently proved by Vogan [53], 

these modules are unitarizable. Vogan actually proves more; in geometric 

language, the cohomology of G-invariant vector bundles, modeled on irre- 

ducible unitary representations of the isotropy group G z , vanishes in 

all but one degree and can be made unitary, again under an appropriate 

negativity assumption on the bundles. The proof consists of an algebraic 

reduction to the case of the non-degenerate series: Vogan introduces a 

notion of signature for g-invariant hermitian forms on Harish-Chandra 

modules, formal sums of irreducible characters of K with integral coef- 

ficients; he then calculates these signatures for the derived functor 

modules, in terms of the K-multiplicities of induced modules. Because 

of the origin of Zuckerman's conjecture, one might hope for a geometric 

proof. Earlier attempts in this direction were only marginally success- 

ful, but give a hint of a possible strategy [42]. 

A complete description of the unitary dual exists for groups of low 

dimension, for groups of real rank one [4,27,32], and the family 50(n,2) 

[i]. Vogan has just announced a classification also for the special 

linear groups over R , C , H -- a big step, since there is no bound on 

real rank. In effect, the methods of unitary induction, degeneration, 

and Vogan's proof of the Zuckerman conjecture generate all irreducible 

unitary representations of the special linear groups. One feature that 

makes these groups more tractable is a hereditary property of their para- 

bolic subgroups: all simple factors of the Levi component are again of 

type S1 n. In the general case, conjectures of Arthur [2] and Vogan [52] 

predict the unitarity of certain highly singular representations. There 

are also results about particular types of unitary representations [14, 

15,28], but a definite common pattern has yet to emerge~ 

I close my lecture by returning to its starting point, the decompo- 

sition of L2(G/H). The solution of this problem for H = {e) -- the 

explicit Plancherel formula [22] - was aim and crowning achievement of 

Harish-Chandra's work on real groups. A discussion of his proof would 

lead too far afield. However, I should mention a recent elementary', 

though not simple, argument of Herb and Wolf [26]. It is based on Herb's 

formulas for the discrete series characters [25], and emulates Harish- 
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Chandra's original proof in the case of SI(2, R), by integration by parts 

[18]. 

The decomposition problem has been studied systematically for two 

classes of subgroups H , besides the identity group: arithmetically de- 

fined subgroups, and symmetric subgroups, i.e. groups of fixed points of 

involutive automorphisms. The symmetric case contains the case of the 

trivial group, since G can be identified with GxG/diagonal Oshima 

and Matsuki [403, building on a remarkable idea of Flensted-Jensen [16], 

have determined the discrete summands of L2(G/H) , for any symmetric 

H C G ; these representations are parametrized by homogeneous line bun- 

dles ove~ certain orbits in generalized flag varieties. Oshima has also 

described a notion of induction in the context of symmetric quotients. 

Presumably L2(G/H) is made up of representations which are induced in 

this sense, from discrete summands belonging to smaller quotients, but 

the explicit decomposition remains to be worked out. The case of arith- 

metically defined subgroups is the most interesting from many points of 

view, and the most difficult. Again the discrete summands constitute the 

"atoms" of the theory, as was shown by Langlands [34] -- the Eisenstein 

integral takes the place of induction. There is an extensive literature 

on the discrete spectrum, too extensive to be summarized here, yet a full 

understanding does not seem within reach. 
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LOOP GROUPS 

G.B. Segal, 
St. Catherine's College, 

Oxford. 

§I General remarks 

In this talk a loop group LG will mean the group of smooth maps 

from the circle S I to a compact Lie group G. One reason for study- 

ing such groups is that they are the simplest examples of infinite 

dimensional Lie groups. Thus LG has a Lie algebra L~ - the loops 

in the Lie algebra ~ of G - and the exponential map L~ ÷ LG is a 

local diffeomorphism. Furthermore LG has a complexification LG~, 

the loops in the complexification of G. Neither of these properties 

is to be expected of infinite dimensional groups: neither holds, for 

example, for the group of diffeomorphisms of the circle [17]. 

From this point of view the group Map(X;G) of smooth maps 

X ÷ G, where X is an arbitrary compact manifold, seems almost as 

simple as LG. Such groups are of great importance in quantum theory, 

where they occur as "gauge groups" and "current groups"; the manifold 

X is physical space. Thus loop groups arise in quantum field theory 

in two-dimensional space-time. In fact it is not much of an 

exaggeration to say that the mathematics of two-dimensional quantum 

field theory is almost the same thing as the representation theory 

of loop groups. 

If dim(X) > 1, however, surprisingly little is known about the 

group Map(X;G). Essentially only one irreducible representation of 

it is known - the representation of Vershik, Gelfand and Graev [9] - 

and that representation does not seem relevant to quantum field 

theory. For loop groups, in contrast, there is a rich and 

extensively developed theory. They first became popular because of 

their connection with the intriguing combinatorial identities of 

Macdonald [16]. They are the groups whose Lie 
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algebras are the "affine algebras" of Kac-Moody - roughly speaking, 

the algebras associated to positive-semidefinite Cartan matrices. 

From that point of view the groups have been discussed in Tits's talk 

In this talk I shall keep away from the Lie algebra theory, of which 

there is an excellent exposition in the recent book of Kac [11], and 

instead shall attempt to survey what is known about the global 

geometry and analysis connected with the groups. 

From any point of view the crucial property of loop groups is 

the existence of the one-parameter group of automorphisms which 

simply rotates the loops. It permits one to speak of representations 

of LG of positive energy. A representation of LG on a topological 

vector space H has positive energy if there is given a positive 

action of the circle group T on H which intertwines with the action 

of LG so at to provide a representation of the semidirect product 

T ~ LG, where T acts on LG by rotation. An action of T on H is 

positiv e if e i8 E T acts as e iAe, where A is an operator with 

positive spectrum. It turns out that representations of LG of 

positive energy are necessarily projective (cf. (4.3) below). 

The theory of the positive energy representations of LG (or, 

more accurately, of T ~ LG) is strikingly simple, and in strik- 

ingly close analogy with the representation theory of compact 

groups.(*) Thus the irreducible representations 

(i) are all unitary, 

(ii) all extend to holomorphic representations of LG{, and 

(iii) form a countable discrete set, parametrized by the points 

of a positive cone in the lattice of characters of a torus. 

None of these properties holds, for example, for the representations 

of SL2(~) • 

The positive energy condition is strongly motivated by quantum 

field theory: the circle action on H corresponds to the time 

evolution on the Hilbert space H of states. It would be very 

interesting if one could formulate an analogous condition for more 

general groups Map(X;G) . Certainly in quantum field theory one 

might expect such a gauge group to act on a state space on which 

time evolution was defined by a positive Hamiltonian operator, and 

(*) We are thinking of continuous representations on arbitrary 

complete locally convex topological vector spaces. But we do not 

distinguish between representations on H and ~ if there is an 

injective intertwining operator H ÷H with dense image. 
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the gauge transformations should intertwine in some perhaps com- 

licated way with the time evolution. But there has been no progress 

on this front, and the attempt may well be misconceived. (Cf. §3 

below.) 

To conclude these introductory remarks I should say that the 

material I am going to present is all essentially well-known, and 

has been worked out independently by many people in slightly different 

contexts. As representative treatments of various aspects of the 

subject from standpoints somewhat different from mine let me refer 

to Garland [8], Lepowsky [15], Kac and Peterson [12], Goodman and 

Wallach [10], Frenkel [5]. More details of my own approach can be 

found in [18], [19] and [20]. 

§2 The fundamental homogeneous space X 

In the study of LG the homogeneous space X = LG/G (where G is 

identified with the constant loops in LG) plays a central role. 

One can think of X as the space QG of based loops in G; but we 

prefer to regard it as a homogeneous space of LG. I shall list its 

most important properties. 

(i) X is a complex manifold, and in fact a homogeneous space of 

the complex group LG~: 

+ 
X = LG/G ~ LG~/L G~ . (2.1) 

+ S I Here L G~ is the group of smooth maps y : ÷ G~ which are the 

boundary values of holomorphic maps 

y : {z 6 • : Izl < I} ÷ G~ . 

The isomorphism (2.1) is equivalent to the assertion that any loop y 

in LG~ can be factorized 

y = y u . y +  

+ 
w i t h  ¥ u  6 LG a n d  Y+ 6 L G~.  T h i s  i s  a n a l o g o u s  t o  t h e  f a c t o r i z a t i o n  

o f  a n  e l e m e n t  o f  GL (~)  a s  ( u n i t a r y )  x ( u p p e r  t r i a n g u l a r ) .  
n 
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(ii) For each invariant inner product < , > on the Lie algebra 

of G there is an invariant closed 2-form ~ on X which makes it a 

symplectic manifold, and even fits together with the complex structure 

to make a Kahler manifold. The tangent space to X at its base-point 

is L~ /~ , and ~ is given there by 

2n 

(2.2) 

0 

(iii) The energy function ~ : X + ~+ defined by 

2~ 

0 

is the Hamiltonian function corresponding in terms of the symplectic 

structure to the circle-action on X which rotates loops. The critical 

points of ~ are the loops which are homomorphisms qr ÷ G. Downwards 

gradient trajectories of ~ emanate from every point of X, and travel 

to critical points of ~ . The gradient flow of ~ and the Hamiltonian 

circle action fit together to define a holomorphic action on X of the 

multiplicative semigroup ~I = {z 6 • : 0 < Iz[ ~ I}. 

The connected components C[l] of the critical set of ~ are the 

conjugacy classes of homomorphisms I : T ÷ G. They correspond to 

the orbits of the Weyl group W on the lattice z1(T), where T is a 

maximal torus of G. The gradient flow of ~ stratifies the manifold 

X into locally closed complex submanifolds X[I], where X[k] consists 

of the points which flow to C[I]. Each stratum X[I ] is of finite 

codimension. 

Proposition (2.3). The stratification coincides with the decomposi- 

tion of X into orbits of L-G~; i.e. X[l] = L-G~.k. 

Here L-G~ is the group of loops in G~ which are boundary values 

of holomorphic maps D ÷ G~, where D = {z 6 S 2 : Izl > I}. 

Proposition (2.3) is the classical Birkhoff factorization theorem: 

a loop y in G~ can be factorized 

y = y _ . l . T +  , 

+ S I with ¥± 6 L-G~, and I : ÷ G a homomorphism. This is the analogue 
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of factorizing an element of GLn(~) as 

(lower triangular)x(permutation matrix)×(upper triangular). 

There is one dense open stratum X 0 in X. 

and can be identified with the nilpotent group 

LoG~ = {y 6 L-G~ : y(~) = 1}. 

It is contractible, 

(iv) The complex structure of X can be characterized in another 

way, pointed out by Atiyah [I]. To give a holomorphic map Z ÷ X, 

where Z is an arbitrary complex manifold, is the same as to give a 

holomorphic principal G~-bundle on Z × S 2 together with a trivial- 

ization over Z × D . If Z is compact it follows that the space of 

based maps Z ÷ X in a given homotopy class is finite dimensional; for 

the moduli space of G~-bundles of a given topological type is finite 

dimensional. This is a rather striking fact, showing that X, although 

a rational variety, is quite unlike, say, an infinite dimensional 

complex projective space: for in X the set of points which can be 

joined to the base-point by holomorphic curves of a given degree is 

only finite dimensional. 

§3 The Grassmannian embedding of X 

Let us choose a finite dimensional unitary representation V of 

compact group G, and let H denote the Hilbert space L2(S I;V) . 

Evidently LG~ acts on H, and we have a homomorphism i : LG~ ÷ GL(H) 

an embedding if V is faithful. 

To make a more refined statement we write H = H+ (9 H_, where 
in@ 

H (resp. H ) consists of the functions of the form E v e 

(resp. Z v e In@) with v 6 V. The restricted 9eneral linear group 
n<0 n n . . . . . .  

GLres(H) is defined as the subgroup of GL(H) consisting of elements 

I a b ] (3.1) 
c d 

whose off-diagonal blocks b,c (with respect to the decomposition 

H+ @ H_) are Hilbert-Schmidt. The blocks a and d are then auto- 

matically Fredholm. 

Proposition (3.2!. i(LG~) c GLres(H ) . 
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The set of closed subspaces of H obtained from H+ by the action 

of GL = GL (H) will be called the Grassmannian Gr(H). It is 
res res 

naturally a Hilbert manifold, and has the homotopy type of the space 

known to topologists as ~ × BU. The homomorphism 

i : LG~ ÷ GLres(H) (3.3) 

induces a smooth map (again an embedding if V is faithful) 

i : X ÷ Gr(H) 

This map is closely connected with the Bott periodicity theorem. In 

fact Bott's theorem asserts that when G = U and V = {n the map is a 
n 

homotopy equivalence up to dimension 2n-2. 

It should be remarked that i(X) is far from being a closed sub- 

manfold of Gr(H) . Indeed it is so highly curved that its closure is 

not a submanifold of Gr(H). 

There is a holomorphic line bundle Det on Gr(H) whose fibre at 

W c H can be thought of as the renormalized "top exterior power" of 

W. Because of the renormalization needed to define it it is not a 

homogeneous bundle under GLre s, but its group of holomorphic auto- 

morphisms is a central extension ~L of GL by ~x. The 
res res 

homomorphism (3.3) then gives us a central extension of LG~ by {×; 

up to finite-sheeted coverings, all extensions of LG{ by ~x are 

obtained in this way. (The Lie algebra cocycle of the extension is 

given by (2.2), where < , > is the trace form of V.) 

The line bundle Det has no holomorphic sections, but its dual 

Det* has an infinite dimensional space of sections F on which ~L 
res 

acts irreducibly. Just as the space of sections of the dual of the 

determinant bundle on the Grassmannian Gr(E) of a finite dimensional 

vector space E can be identified with the exterior algebra A(E*) we 

find 

Proposition 3.4. F ~ A(H+ @ H_) 

This space is very familiar in quantum field theory as the 

"fermionic Fock space" got by quantizing a classical state space H 
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(e.g. the space of solutions of the Dirac equation) in which H÷ and 

H_ are the states of positive and negative energy. 

From the point of view of loop groups the importance of F is that 

when G = U n and V = {n the projective action of LU n on F via (3.3) is 

the "basic" irreducible representation of LU n (cf. §4 below). It 

even extends from LU n to LO2n, for F is most correctly regarded as 

the spin representation of the restricted orthogonal group of the 

real Hilbert space underlying H. 

Let us briefly consider generalizing the foregoing discussion 

to the group Map(X;G), where X is a compact odd-dimensional Riemannian 

manifold. If H is the space of spinor fields on X then Map(X;U n) 

acts naturally on H ® {n. We can decompose 

H 8 ~n = (H+ (~ ~n) @ (H_ O {n) , 

where H± are the positive and negative eigenspaces of the Dirac 

operator. We get an embedding 

Map(X;Un ) + GL(m) ( H 8 ~n) , (3.5) 

where GL(m ) denotes the group of operators of the form (3.1) in 

which the off-diagonal blocks belong to the Schatten ideal ~ m with 

m-1 = dim(X). (Cf. [21],[4].) 

The homomorphism (3.5) is very interesting: topologically it 

represents the index map in K-theory [4]. On the other hand no 

representations of GL(m ) are known, and one even feels that rep- 

resentations are not the natural thing to look for, as the two- 

dimensional cohomology class which forces GLre s = GL(2 ) to have a 

projective rather than a genuine representation is replaced by an 

m-dimensional class for GL(m ) . Alternatively expressed, on the 

Grassmannian Gr(m) (H) associated with GL(m ) there is a tautological 

infinite dimensional bundle with a connection. The "determinant" 

line bundle of this - i.e. its first Chern class - cannot be defined, 

but nevertheless the higher components of its Chern character do make 

geometric sense. 
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§4 The Borel-Weil theory 

(i) The basic representation 

To simplify the discussion we shall assume from now on that the 

compact group G is simply connected and simple. Then H2(X;~) ~ ~ , 

and so the complex line bundles L on X are classified by an integer 

invariant c1(L). In fact each bundle has a unique holomorphic 

structure, and has non-zero holomorphic sections if and only if 

c1(L) ~ 0. The space of holomorphic sections of the bundle L 1 with 

c1(L I) = I is called the basic representation of LG~: we have 

remarked that when G = SU n the bundle L I is the restriction of 

Det* on Gr(H). As we saw in that case, L 1 is not quite homogeneous 

under LG{. The holomorphic automorphisms of L I which cover the 

action of LG~ on X form a group ~G~ which is a central extension of 

LG~ by ~× - in fact its universal central extension. It corresponds 

to the Lie algebra cocycle (2.2) for an inner product < , > on 

which I shall also call "basic". 

One reason for the name "basic" is provided by 

Proposition (4.1). If G is a simply-laced group and F is the basic 

representation of LG{ then any irreducible representation of positive 

energy is a discrete summand in p'F, where p : LG~ ÷ LG~ is an endo- 

morphism. 

(ii) The Borel-Weil theorem 

To describe all the positive energy irreducible representations 

of LG we must consider the larger complex homogeneous space 

Y = LG/T, where T is a maximal torus of G. This manifold Y is fibred 

over X with the finite dimensional complex homogeneous space G/T as 

fibre. Complex line bundles on Y are classified topologically by 

H2(y;zz) ~ZZ • H2(G/T;ZZ) ~ @ T , 

where T is the character group of T. Once again each bundle has a 

unique holomorphic structure, and is homogeneous under ~G~. If we 

denote the bundle corresponding to (n,l) 6 ~ @ T by Ln, l then we 

have the following "Borel-Weil" theorem. 
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Proposition (4.2). 

(a) The space F(Ln,I) of holomorphic sections of Ln, 1 is either 

zero or an irreducible representation of LG~ of positive energy. 

(b) Every projective irreducible representation of LG of 

positive energy arises in this way. 

(c) F(Ln, I) # 0 if and only if (n,l) is positive in the sense 

that 

0 < l(h ) < n<h ,h > 

for each positive coroot h of G, where < , > is the basic inner 

product on ~ . 

It should be emphasized that except for the "if" part of (c) 

this proposition is quite elementary, amounting to little more than 

the observations that (i) any representation of positive energy 

contains a ray invariant under L-G{, and (ii) L-G~ acts on Y with a 

dense orbit. Thus the elementary part already yields 

Corollary (4.3). For positive energy representations of LG: 

(a) each representation is necessarily projective, 

(b) each representation extends to a holomorphic representation 

of LG{, and 

(c) each irreducible representation is of finite type, i.e. if 

it is decomposed into energy levels H = ~ H , where H is the part 
• q q 

where the rotation e i@ 6 ~- acts as e lq8, then each H has finite 
q 

dimension. 

Assertion (c) holds because a holomorphic section of Ln, 1 is 

determined by its Taylor series at the base-point. That gives one 

an injection 

F(Ln, I) ÷ S(Ty) , (4.4) 

where Ty is the tangent space to Y at the base-point, and S denotes 

the completed symmetric algebra. The injection is compatible with 

the action of T , and the right hand side of (4.4) is of finite type. 
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(iii) Unitarity 

We have mentioned that all positive energy representations of 

LG are unitary. In fact a simple formal argument shows that each 

irreducible representation has a non-degenerate invariant sesquilinear 

form, but it is not so simple to show that it is positive definite. 

By (4.1) it is enough to consider the basic representation. When 

G = SU n or S02n the unitarity is then clear from the description 

(3.4) of the basic representation; and one can deal similarly with 

all simply laced groups by the method of §5 below. The only proof 

known in the general ease is an inductive argument in terms of 

generators and relations, due to Garland [7]. 

It would obviously be very attractive to prove the unitarity 

directly by putting an invariant measure on the infinite dimensional 

manifold Y and using the standard L 2 inner product. That has not 

yet been done, though it seems to be possible. The measure will be 

supported not on Y but on a thickening Y*, to which the holomorphic 

line bundles L extend. One expects to have an LG-invariant measure 

on sections of L @ L for each positive bundle L. There is no dif- 

ficulty in finding a candidate for Y*: the manifold Y is modelled on 

the Lie algebra N ~ ~ of holomorphic maps ~ : D ÷ ~{ (with ~(~) 

lower triangular) which extend smoothly to the boundary of D ; the 

thickening is modelled on the dual space, i.e. the holomorphic maps 

with distributional boundary values on S I. (*) 

(iv) The Kac character formula and the Bernstein-Gelfand- 

Ge!fand resolution 

Because each irreducible representation of T ~ LG is of finite 

type it makes sense to speak of its formal character, i.e. of its 

decomposition under the torus T × T. This is given by the Kac 

character formula, an exact analogue of the classical Weyl character 

formula. 

Thinking of Y = LG/T as T ~ LG/ T × T, we observe that the 

torus ~ × T acts on Y with a discrete set of fixed points. This 

set is the affine Weyl group War f = N(T × T)/(T x T). If one 

ignores the infinite dimensionality of Y and writes down formally 

(*) An interesting family of measures on Y is constructed in [5], 
but it does not include the measure needed to prove unitarity. 
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codimension, 

indeed Z is 
w 

triangular}. 

the Lefschetz fixed-point formula of Atiyah-Bott [2] for the character 

of the torus action on the holomorphic sections of a positive line 

bundle L on Y then one obtains the Kac formula, at least if one 

assumes that the cohomology groups Hq(Y; ~(L)) vanish for q > 0. 

(Here ~(L) is the sheaf of holomorphic sections of L.) Unfortunately 

it does not seem possible at present to prove the formula this way. 

One can do better by using more information about the geometry 

of the space Y. It possesses a stratification just like that of X 

described in §2. The strata {Ew } are complex affine spaces of finite 

and are indexed by the elements w of the group Waff: 

the orbit of w under N-G~ = {7 6 L-G~ : 7(~) is lower 

Let Y denote the union of the strata of complex codimension p. 
P 

The cohomology groups H*(Y; ~(L)) are those of the cochain complex 

K" formed by the sections of a flabby resolution of ~(L). Filtering 

K" by defining K" as the subcomplex of sections with support in 
P 

Yp gives us a spectral sequence converging to H*(Y; ~(L)) with 

E~ q_ = HP+q(Kp/K~+I ) . ~  Because Yp is affine and has an open neighbour- 

hood U isomorphic to Y x {P the spectral sequence collapses, and 
P P 

its El-term reduces to 

E? ° = IUp; 
P 

E pq = 0 if q ~ 0 
! 

In other words H*(Y; ~(L)) can be calculated from the cochain complex 

{H~ (Up; ~(L))}. Here H~ (Up; ~(L)) means the eohomology of the sheaf 

~(L) IU p with' supports Pln Yp. It is simply the space of holomorphic 

sections of the bundle on Y whose fibre at y is 
P 

Ly 0 H~O } (Ny;~) , 

where Ny ~ {P is the normal space to Yp at y; furthermore, H~0}(Ny; ~) 

is the dual of the space of holomorphic p-forms on Ny. Thus as a 

representation of ~ × T 

E pO m (~ S(T* @ N w) ~9 det(N w) @ L w , 
w 

where w runs through the elements of Waf f of codimension p, and T w 

and N are the tangent and normal spaces to Z at w. If we know 
W W 

that Hq(Y; ~ (L)) = 0 for q > 0 then we can read off the Kac formula. 
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The cochain complex E~ 0 is the dual of the Bernstein-Gelfand- 

Gelfand resolution, described in the finite dimensional case in [3] 

(cf. also [13]). Its exactness can be proved by standard algebraic 

arguments, and one can deduce the vanishing of the higher cohomology 

groups Hq(Y; ~(L)). But it would be attractive to reverse the 

argument by proving the vanishing theorem analytically. 

§5 "Blips" or "vertex operators" 

The Borel-Weil construction of representations is quite 

inexplicit. I shall conclude with a very brief description of an 

interesting explicit construction of the basic representation of LG, 

for simply laced G, which was independently extracted from the 

physics literature in [14], [6] and [19]. 

The idea is to start with a standard irreducible projective 

representation H of LT, and to extend the action from LT to LG. 

The abelian group LT is essentially a vector space, and for H we 

take its "Heisenberg" representation. To make the Lie algebra 

L~ act on H amounts to defining, for each basis element ~i of ~6, 

an "operator-valued distribution" B i on $I: for then an element Efi~ i 

of L ~ will act on H by 

Z I fi(8)Bi (8)d8 
i S 1 

We must construct B i for each basis element of ~{/t 6" These are 

indexed by the roots of G, and the remarkable fact about simply- 

laced groups (i.e. those for which all the roots have the same 

length) is that the roots correspond precisely to the set of all 
I homomorphisms ~ : ~ + T of minimal length. Now for each @ E S 

and each small positive a let us consider the blip-like element 

B ,8,£ of LT such that 

B ,9,s(8') = 1 if 18' - 8 I > S , 

while on the interval (8 - s, 8 + e) of the circle B describes ~,@,S 
the loop ~ in T. When Bd,@, s is regarded as an operator on H it 

turns out that the renormalized limit 

lim e-IB 
s÷0 ~,@,s 



167 

exists in an appropriate sense, and is the desired Be(@). Such 

operators have been called "vertex operators" in the physics 

literature. 

Extending the representation from theLie algebra to LG presents 

no problems. 
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To put this survey in the proper perspective, let me first make 

some rather general remarks. To study complex manifolds or in general 

complex spaces, one works with holomorphic objects like holomorphic 

maps, holomorphic functions, holomorphic vector bundles and their 

holomorphic sections. One has to construct such objects. For 

example, to prove that a complex manifold is biholomorphic to £n one 

tries to produce n suitable holomorphic functions. To prove that a 

complex manifold is biholomorphic to Pn' one tries to produce n+l good 

holomorphic sections of a suitable holomorphic line bundle. To prove 

that two complex manifolds are biholomorphic, one tries to produce a 

biholomorphic map. How does one produce such holomorphic objects? So 

far we have mainly the following methods: 

(i) The method of constructing harmonic objects first and then getting 

holomorphic objects from them. An example is the use of the Dirichlet 

principle to construct harmonic functions on open Riemann surfaces and 

then obtaining holomorphic functions from them. Examples of the 

construction of harmonic objects are the results of Eel ls-Sampson [i0] 

and Sacns-Uhlenbeck [40] on the existence of harmonic maps. However, 

unlike the one-dimensional case, in the higher-dimensional case the 

gap between a harmonic object and a holomorphic object is very wide 

and, except for some special cases, is impossible to bridge. 

(2) The method of using the vanishing theorem of Kodaira to construct 

holomorphic sections of high powers of positive line bundles [24]. 

(3) Grauert's bumping technique to construct holomorphic functions on 

strongly pseudoconvex domains [13]. 
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(4) The method of using L 2 estimates of ~ to construct holomorphic 

functions on strongly pseudoconvex domains (Morrey [30], Andreotti- 

Vesentini [i], Kohn [25], H~rmander [20]). 

These methods produce holomorphic objects from scratch so to 

speak. There are also other methods like the use of Theorems A and B 

of Cartan-Serre to construct holomorphic objects, but one has to have 

a Stein manifold (i.e. a complex submanifold of £n) or a Stein space to 

apply Theorems A and B and on such manifolds previously existing 

global holomorphic functions are essential for the construction. 

Let me briefly explain the notions of positive line bundles and 

strongly pseudoconvex domains and how they are related. A holomorphic 

line bundle with a Hermitian metric along its fibers is said to be 

positive if the curvature form associated to the Hermitian metric is a 

positive-definite quadratic form. A relatively compact domain with 

smooth boundary in a complex manifold is said to be strongly 

pseudoconvex if it is defined near its boundary by r < 0 for some 

smooth function r with nonzero gradient such that the complex Hessian 

of r as a Hermitian form is positive-definite. If L is a Hermitian 

ho]omorphic line bundle over a compact complex manifold, then the 

set ~ of all vectors of the dual bundle L* of L whose lengths are less 

than 1 is a strongly pseudoconvex domain in L* if and only if L is 

positive. Grauert [14] observed that a holomorphic function on 

gives rise to holomorphic sections of powers of L because its k th 

coefficient in the power series expansion along the fiber~ of L* is a 

section of the k th power of L. So producing holomorphic sections of 

powers of a positive line bundle is a special case of producing 

holomorphic functions of a strongly pseudoconvex domain. 

In the above methods of producing holomorphic objects some 

positive-definite quadratic form is used, be it the curvature form in 

the case of a positive line bundle or the complex Hessian of the 

defining function in the case of a strongly pseudoconvex domain. In 

the method of using harmonic objects to construct holomorphic objects 

no positive-definite quadratic form is used. However, in the higher- 

dimensional case there is a wide gap between harmonic and holomorphic 

objects and methods known up to now [45, 46, 47, 51, 52] to bridge the 

gap require positive-definiteness of a certain quadratic form coming 
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from the curvature tensor. This survey talk discusses the situation 

when the quadratic forms used in producing holomorphic objects are 

only positive semidefinite instead of strictly positive-definite. In 

certain cases we may even allow certain benign negativity. One may 

wonder why one should bother to study the semidefinite case. There 

are a number of reasons. Let me give two here. One is that some 

situations are naturally semidefinite, like the seminegativity of the 

sectional curvature for a bounded symmetric domain. Another is that 

when limits of holomorphic objects are used in proofs (like in the 

continuity method), the limit of strictly positive definite objects 

can only be assumed first to be semidefinite though in the final 

result it may turn out to be strictly positive definite. The 

semidefinite case is by far much more complicated than the definite 

case. 

In this talk we will survey some recent results concerning 

vanishing theorems for the semidefinite case and their applications. 

More specifically we will discuss the following three topics: 

(i) The construction of holomorphic sections for line bundles with 

curvature form not strictly positive or even with bengin negativity 

somewhere. An application is a proof of the Grauert-Riemenschneider 

conjecture characterizing Moishezon manifolds by semipositive line 

bundles [49, 50]. 

(ii) The strong rigidity of compact K~hler manifolds with seminegative 

curvature, in particular the results of Jost-Yau [22] and Mok [29] on 

the strong rigidity of irreducible compact quotients of polydiscs. 

(iii) Sube] liptic estimates of Kohn's school [26, 6] and their 

applications to vanishing theorems for semipositive bundles. 

I. Producing_ Sections for Semipositive Bundles 

We want to discuss how one can produce holomorphic sections for 

a Hermitian line bundle whose curvature form is only semipositive or 

may even be negative somewhere. The original motivation for this kind 

of study is to prove the so-cal led Grauert-Riemenschneider 
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conjecture[15, p.277]. Kodaira[24] characterized projective algebraic 

manifolds by the existence of a Hermitian holomorphic line bundle 

whose curvature form is positive definite. The conjecture of Grauert- 

Riemenschneider attempts to generalize Kodaira's result to the case of 

Moishezon manifolds. A Moishzon manifold is a compact complex manifold 

with the property that the transcendence degree of its meromorphic 

function field equals its complex dimension. Moishezon showed [28] 

that such manifolds are precisely those which can be transformed into 

a projective algebraic manifold by proper modification. The concept of 

a Moishezon space is similarly defined. 

The conjecture of Grauert-Riemenschneider asserts that a compact 

complex space is Moishezon if there exists on it a torsion-free 

coherent analytic sheaf of rank one with a Hermitian metric whose 

curvature form is positive definite on an open dense subset. Here a 

Hermitian metric for a sheaf is defined by going to the linear space 

associated to the sheaf and the curvature form is defined only on the 

set of points where the sheaf is locally free and the space is 

regular. The difficulty with the proof of the conjecture is how to 

prove the following special case. 

Conjecture of Grauert-Riemenschneider. Let M be a compact complex 

laanifold which admits a Hermitian holomorphic line bundle L whose 

curvature form is positive definite on an open dense subset G of M. 

Then M is Moishezon. 

Since the conjecture of Grauert-Riemenschneider was introduced, 

a number of other characterizations of Moishezon spaces have been 

obtained [38,57,53,12,35] which circumvent the difficulty of proving 

the Grauert-Riemenschneider conjecture by stating the 

characterizations in such a way that a proof can be obtained by using 

blow-ups, Kodaira's vanishing and embedding theorems, or L 2 estimates 

of ~ for complete K~hler manifolds. If the manifold M is assumed to 

be K~hler, then Riemenschneider [39] observed that Kodaira's original 

proof of his vanishing and embedding theorems together with the 

identity theorem for solutions of second-order elliptic partial 

differential equations [2] already yields right away the conjecture of 

Grauert-Riemenschneider. If the set of points where the curvature form 

of L is not positive definite is of complex dimension zero [38] or one 
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[44] or if some additional assumptions are imposed on the eigenvalues 

of the curvature form of L [47] , the conjecture of Grauert- 

Riemenschneider can rather easily be proved. Recently Peternell [33] 

used degenerate K~hler metrics to obtain some partial results about 

the Grauert-Riemenschneider conjecture. However, all the above results 

fail to deal with the fundamental question of how to produce in 

general holomorphic sections for a line bundle not strictly positive 

definite. 

Recently a new method of obtaining holomorphic sections for 

nonstrictly positive line bundles was introduced [49]. There it was 

used to give a proof of the conjecture of Grauert-Riemenschneider in 

the special case where M-G is of measure zero in M. It was later 

refined to give a proof of the general case and a stronger version of 

the conjecture of Grauert-Riemenschneider [50]. The method imitates 

the familiar technique in analytic number theory of using the Schwarz 

lemma to prove the identical vanishing of a function by estimating its 

order and making it vanish to high order at a sufficient number of 

points. Such a technique applied to the holomorphic sections of a 

holomorphic line bundle was used by Serre [41] and also iater by 

Siegel [43] to obtain an alternative proof of Thimm's theorem [54] 

that the transcendence degree of the meromorphic function field of a 

compact complex manifold cannot exceed its complex dimension. In 

[49, 50] the technique was applied to harmonic forms with coefficients 

in a holomorphic line bundle and its use was coupled with the theorem 

of Hirzebruch-Riemann-Roch [19, 3]. 

We give a more precise brief description of the method of 

[49,50]. To make the description easier to understand, we first impose 

the condition that M-G is of measure zero in M. By the theorem of 

Hirzebruch-Riemann-Roch (which for the case of a general compact 

complex manifold is a consequence of the index theorem of Atiyah- 

Singer [3]), ~=o(-l)q dim Hq(M,L k) h ckn for some positive cortstant 

c when k is sufficiently large, where n is the complex dimension of M. 

To prove that L k admits enough holomorphic sections to give 

sufficiently many meromorphic functions to make M Moishezon, it 

suffices to show that dim H0(M,L k) > ckn/2 for k sufficiently 

large. Thus the problem is reduced to proving that for any given 

positive number ~ and for q ~ 1 one has dim Hq(M, L k) ~ ~k n for 
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k sufficiently large. Give M a Hermitian metric and represent elements 

of Hq(M,L k) by Lk-valued harmonic forms. By using the L 2 estimates of 

T one obtains a linear map from the space of harmonic forms to the 

space of cocycles. Take a lattice of points with distances k -I/2 apart 

in a small neighborhood W of M-G. Then one uses the usual technique of 

Bochner-Kodaira for the case of a compact Hermitian (not necessarily 

K~hler) manifold [16, p.429, (7.14)] and uses the Schwarz lemma to 

show that any cocycle coming from a harmonic form via the linear map 

and vanishing at all the lattice points to an appropriate fixed order 

must vanish identically, otherwise its norm is so small that the ~- 

closed form constructed frora it by using a partition of unity would 

have a norm smaller than that of the harmonic form in its cohomology 

class, contradicting the minimality of the norm of a harmonic form in 

its cohomology class. It follows that dim Hq(M,L k) is dominated by 

a fixed constant times the number of lattice points (which is 

comparable to the volume of W times kn), otherwise there is a nonzero 

combination of cocycles coming from a basis of harmonic forms via the 

linear map and having the required vanishing orders. Since M-G is of 

measure zero in M, we can make the volume of W as small as we please 

and therefore can choose E smaller than any prescribed positive 

number after making k sufficiently large. The reason why such a 

lattice of points is chosen is that the pointwise square norm of a 

local holomorphic section of L k is of the form IfI2e -k% , where f is 

holormorphic function and ~ is a plurisubharmonic function 

corresponding to the Hermitian metric of L. The factor e -k# is an 

obstacle to applying the Schwarz lemma. To overcome this obstacle, one 

chooses a local trivialization of L so that ¢ as well as de vanishes 

at a point. The on the ball of radius k -I/2 centered at that point, 

e -k# is bounded below from zero and from above by constants 

independent of k. The reason why one uses cocycles instead of dealing 

directly with harmonic forms is that the Schwarz lemma is a 

consequence of the log plurisubharmonic property of the absolute value 

of holomorphic functions and there is no corresponding Schwarz lemma 

for harmonic forms. 

The method outlined above can be refined in the following way so 

that it works in the general case where G is only assumed to be 

nonempty. Let R be the set of points of M where the smallest 

eigenvalue of the curvature form ~ of L does not exceed some 
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positive number k . For every point 0 in R one can choose a 

coordinate polydisc D with coordinates Zl,...,z n centered at O and can 

choose a global trivialization of L over D such that for some constant 

C > 0 

n 

I $(Pi ) - $(P2) I <_ C ( x Izi(Pi) - zi(P 2) I 2 + ~ Izi(Pi) - zi(P212) 
i:2 

for PI' P2 in D. Moreover, both C and the polyradius of D can be 

chosen to be the same for all points O of R. Cover R by a finite 

number of such coordinate polydiscs so that for some constant m 

depending only on n no more than m of them intersect. Then one 

chooses the lattice points so that they are (kk) -I/2 apart along the 

z I direction but are k -I/2 apart alon 9 the directions of z2,...,z n. 

Now the total number of lattice points is no more than a constant 

times k k n times the volume of R. By choosing ~ sufficiently small, 

we conclude that for any given positive number ~ and for q > i one 

has dim Hq(M,L k) < ~k n and therefore dim H0(M,L k) is no less than 

ck n for some positive number c when k is sufficiently large. Thus we 

have the following theorem [49, 50]. 

Theorem 1. Let M be a compact complex manifold and L be a 

Hermitian holomorphic line bundle over M whose curvature form is 

everzwher 9 semipositive and is strictl Z positive at some point. Then M 

is a Moishezon manifold. 

By the result of Grauert-Riemenschneider, one has as a corol lary 

the vanishing of Hq(M,LK M) for q >I, where K M is the canonical line 

bundle of M. 

In conjunction with the characterization of Moishezon manifolds, 

I would like to mention the recent result of Peternell [34] that a 3- 

dimensional Moishezon manifold is projective algebraic if in it no 

positive integral linear combination of irreducible curves is 

homologous to zero. Together with Hironaka's example [18 andl7, 

p.443] of a 3-dimensional non-projective-algebraic Moishezon manifold 

Peternell's result gives us the complete picture of the difference 

between projective-algebraic threefolds and Moishezon threefolds. 

The noncompact analog of Theorem 1 is the following conjecture 
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which is still open. 

Conjecture. Let fl be a relatively compact open subset of a complex 

manifold such that its boundary is weakly pseudoconvex at every point 

and is strictly pseudoconvex at some point P. Then there exists a 

holomorphic function on ~ going to infinity along some sequence in fl 

approaching P. 

Theorem 1 corresponds to the case where 

vectors in the dual bundle of L with length < i. 

is the set of 

The method used in the proof of Theorem 1 can be further refined 

to yield results about the existence of holomorphic sections for line 

bundles whose curvature form is allowed to be negative somewhere [50]. 

An example of such results is the following. 

Theorem 2__ t F__o~ ~yery positive integer n there exists a constant C n 

de__2mgnding onl Z on n with the following ~r_~o~r_~ty.- Let M be a compact 

K~hler manifold of complex dimension n and L be a Hermitian line 

bundle over M. Let G be an o~_n subset of M and a, b ~[ positive 

numbers such that the curvature form of L admits a as a lower bound 

at ever Z point of G and admits -b as a lower bound at ever Z point of 

M-G. Assume that 

C n (i + log+(b/a)) n (b2/a)n(volume of M-G) < Cl(L)n 

where Cl(L) is the first Chern class of L. Then dim H0(M, L k) is > 

Cl(L)n kn/2(n !) for k sufficientl~ large. 

When the metric of the manifold is Hermitian instead of K~hler, 

there is a corresponding theorem with the constant C n depending on the 

torsion of the Hermitian metric. The inequality in the assumption of 

Theorem 2 is not natural. There should be better and more natural 

formulations of this kind of results. 

We describe below the refinement needed to get a proof of 

Theorem 2. The method described above can readily yield Theorem 2 if 

we allow the constant C n to depend on M, but then Theorem 2 would be 

far less interesting. The reason why the above method can only yield a 
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C n depending on M is that in constructing a correspondence from the 

space of harmonic forms to the space of cocycles, besides solving the 

equations, one has to use a partition of unity and the constants 

obtained in the process depend very heavily on the manifold M. To 

solve this problem, we make use of the estimate of the (0,1)-covariant 

derivative of the harmonic form from the Bochner-Kodaira formula. We 

locally solve with estimates the inhomogeneous Y equations with 

of the coefficients of harmonic form on one side so that the 

differences between the coefficients of the harmonic form and the 

solutions are holomorphic and then apply the Schwarz lemma to the 

differences. This way we avoid passing from the Dolbeault cohomology 

to the Cech cohomology and can make the constant C n independent of M. 

If. Strong Rigidity of Seminegatively Curved Compact K~dller Manifolds 

A compact K~hler manifold is said to be stronq~ Z rigid if any 

other K~hler manifold homotopic to it is biholomorphic or 

antibiholomorphic to it. Strong rigidity can be regarded as the 

complex analog of Mostow's strong rigidity [31]. Compact K~hler 

manifolds M with curvature tensor negative in a suitable sense are 

known to be strongly rigid [45, 46, 47]. The way to obtain the strong 

rigidity of M is to consider a harmonic map f to M from the compact 

K~ller manifold N homotopic to M "which is a homotopy equivalence. The 

existence of such a harmonic map is guaranteed by the result of Eells- 

Sampson[10] because of the nonpositivity of the sectional curvature of 

M. As a section of the tensor product of the bundle of (0,1)-forms of 

N and the pullback under f of the (l,0)-tangent bundle of M, ~f is 

harmonic. By using the technique of Bochner-Kodaira we conclude that 

either ~f or Yf vanishes because of the curvature condition of M. 

The reason why we can only conclude the vanishing of either ~f or 

~f is that the curvature term from the Bochner-Kodaira formula is 

homogeneous of degree two in ~f and of degree two in ~f because 

it comes from pulling back of the curvature tensor of M under f. 

Actually the Bochner-Kodaira technique is applied to the image of Yf 

under the complexified version of the Hodge star operator. In other 

words we are applying the Bochner-Kodaira technique to the dual of the 

bundle. That is the reason why the curvature tensor of M has to be 

assumed negative instead of positive and also that is the reason why 

the Ricci tensor of N does not enter the picture. The most general 
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formulation of this kind of results on strong rigidity is the 

following theorem [47]. 

Theorem 3. A compact K~hler manifold M of complex dimension n ~[ 

stronq! ~ rigid if there exists a positive number p less than n with 

the following ~roBerties: (i) The bundle of (l,0)-forms on M is 

positive semidefinite in the sense of Nakano [32] and the bundle of 

(p,0)-forms on M !~ positive definite i__nn th___~e sense 2~ ~a__~k~2 [32]. 

(ii) At an[ point of M the complex tangent space of M does not contain 

two nontrivial orthogonal subspaces with combined dimension exceeding 

p such that the bisectional curvature of M in the direction of two 

vectors one from each subspace vanishes. 

As a corollary any compact quotient of an irreducible bounded 

symmetric domain of complex dimension at least twc is stronglg rigid, 

because we have the following table giving the complex dimension and 

the smallest p satisfying the assumptions of Theorem 3 for each 

bounded symmetric domain. 

Type Complex Dimension Smallest p 

Ira, n mn (m-L) (n-1)+l 

II n n(n-l)/2 (n-2) (n-3)/2 +i 

III n n(n+l)/2 n(n-l)/2 +i 

IV n n 2 

V 16 6 

VI 27 ii 

The values of the smallest p for the two exceptional domains 

were computed by Zhong [58]. 

This method also yields the ho ] omorphicity or 

antiholomrorphicity of any harmonic map from a compact K~hler manifold 

into M whose rank over ]]9 is>2p +I at some point [47]. 

This method can be regarded as an application of the quasilinear 

version of Kodaira's vanishing theorem. Though strict negativity of 

the curvature tensor is not needed for this method, this method should 

be considered as corresponding to the strictly definite case rather 
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than the semidefinite case of the vanishing theorem, because through 

the use of the complexified Hodge star operator the vanishing required 

is in codimension one rather than in dimension one. 

The only case of compact quotients of bounded symmetric domains 

which are expected to enjoy the property of strong rigidity as 

suggested by Mostow's result [31] and which are not covered by the 

results of [47] is the case of an irreducible compact quotient of a 

polydisc of complex dimension at least two. This remaining case 

corresponds to the semidefinite case of the vanishing theorem. Jost- 

Yau [21] first considered this remaining case and obtained some 

partial results. Recently Jost-Yau [22] and Mok [29] completely solved 

this case. We would like to sketch a slightly more streamlined version 

of the proof in [29]. First we make some general observations about 

the application of the Bochner-Kodaira technique to the case of a 

compact quotient of a polydisc and discuss a simple but rather 

surprising theorem about the existence of holomorphic maps from 

compact K~hler manifolds into compact hyperbolic Riemann surfaces. 

Let f be a harmonic map from a compact K~hler manifold M to a 

compact quotient Q of a polydisc D n of complex dimension n. The 

following conclusions are immediate from the Bochner-Kodaira 

technique. 

(i) f is pluriharmonic in the sense that the restriction of f to any 

local complex curve in M is harmonic. 

(ii) ~fi ^ ~ f--~ is zero for 1 <__i <__n, where fi is the i th component 

of f when it is expressed in terms of local coordinates along the n 

component discs. 

From conclusion (ii) above it follows that the pullback f*T~ '0 ~ 

under f of the (l,0)-tangent bundle T I'0 of Q can be endowed with the 

structure of a holomorphic vector bundle in the following way. A local 

section is defined to be holomorphic if its covariant derivative in 

the (0,i) direction is identically zero. This can be done because (ii) 

implies that the (0,i) covariant exterior differentiation composed 

with itself is identically zero, which is the integrability condition 

for such a holomorphic vector bundle structure. The same argument can 



180 

be applied to the Dullback f*T 0'I under f of the (0,1)-tangent bundle Q 
T~'lof Q to give it a holomorphic vector bundle structure. Moreover, 

if every element of the fundamental group of Q maps each individual 

component disc of D n to itelf, then each of these two holomorphic 

vector bundles are the direct sum of the n holomorphic line bundles 

which are the pullbacks of the line subbundles of the tangent bundle of 

Q defined by the directions of the individual component discs. In such 

a case let L i be the line subbundles of f*T I'0Q and L i' be the line 

subbundles of f*T~ ' t  

Because of conclusion (i) ~f is a holomorphic section of 

f,T~,0 × ~i and 3f is a holomorphic section of f*T$'l × ~I, where ~i 

is the bundle of holomorphic 1-forms on M. Assume that every element 

of the fundamental group of Q maps each individual component disc of 

D n to itself. Then for each fixed 1 <i< n, 

(iii) ~fi is a holomorphic section of L i O ~ and afi is a 

holomorphic section of ~ O ~. 

For any local holomorphic section s i of the dual bundle of L i, 

si ~fz is a (local) holomorphic 1-form on M whose exterior 

derivative equals its product with some 1-form. By the theorem of 

Frobenius, near points where ~fi does not vanish we have a 

holomorphic family of local complex submanifolds of complex 

codimension one whose tangent spaces annihilate afi. Such a 

holomorphic foliation of codimension one defined by the kernel of 

af z exists also at points where afz can be divided by a local 

holomorphic function to give a nowhere zero holomorphic local section 

of L i O ~- If in addition the rank of df i is two over ~ at the 

points under consideration, because of (ii) the local leaves of the 

holomorphic foliation agree with the fibers of the locally defined map 
--w- 

fi. The same consideration can be applied to ~fz. Also because of 

(ii) the holomorphic foliation defined by the kernel of ~fl agrees 

with the holomorphic foliation of ~fl at points where both ~fi and 

~fl can be divided by local holomorphic functions to give nowhere zero 

holomorphic local sections of L i ~ ~ and L[~ ~ respectively. These 

rather straightforward discussions lead us immediately to the 

following theorem [48]. 
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Theorem 4. Let M be a compact K~hler manifold and R be a compact 

hyperbolic Riemann surface such that there exists a continuous map f 

from M t_~o R which is nonzero on the second homology. Then there exists 

a holomor~hi~ ma_~ g from M into a compac~ h~perbolic Riemann 

surface S and a harrnonic ma[ h from S ~o R such that hog is homotopi[ 

to f. 

The Riemann surface S is constructed from the holomorphic 

foliation described above in the following way. By the result of 

Eells-Sampson we can assume without loss of generality that f is 

harmonic and therefore real-analytic. Let Z be the complex subvariety 

of complex codimension h 2 in M consisting of all points where either 

or ~f cannot be divided by any local holomorphic function to give a 

nowhere zero holomorphic local section of the tensor product of ~ 

with the pullback under f of the (I,0) or (0,i) tangent bundle of R. 

Let V be the set of points of M where the rank of df over ~ is < 

2. On M-Z we have a holomorphic foliation described above with the 

property that whenever a leaf of the foliation has a point in common 

with M-V, the leaf agrees with the real-codimension-two branch of the 

fiber of f passing through that point and therefore can be extended to 

a complex-analytic subvariety of codimension one in M. Because of the 

K~hler metric of M, by using Bishop's theorem [4] on the limit of 

subvarieties of bounded volume and by passing to limit, we conclude 

that every leaf of the holomorphic foliation can be extended to a 

complex-analytic subvariety of codimension one in M. Since Z is of 

complex codimension > 2 in M, by using the theorem of Remmert-Stein on 

extending subvarieties [37] we conclude that M is covered by the 

holomorphic family of subvarieties consisting of the extensions of the 

leaves of the holomorphic foliation. The Rieraann surface S is now 

obtained as the nonsingular model of the quotient of M whose points 

are the branches of the extensions of the leaves of the holomorphic 

foliation. 

The rather surprising aspect of Theorem 4 is that from the 

existence of a continuous map from a compact K~hler manifold to a 

compact hyperbolic Riemann surface nonzero on the second homology we 

can conclude the existence of a nontrivial holomorphic map from the 

K~hler manifold to a compact hyperbolic Riemann surface. In particular 

by going'to the respective universal covers we obtain a nontrivial 
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bounded holomorphic function on the univeral cover of the K~hler 

manifold. So far there is no known general method of constructing 

bounded holomorphic functions on complex manifolds which are expected 

to admit a large number of bounded holomorphic functions, such as the 

universal cover of compact K~hler manifolds of negative curvature. 

Here to conclude the existence of a nontrivial bounded holomorphic 

function we do not use any curvature property of the compact K~hler 

manifold. Instead the existence of a continuous map to a compact 

hyperbolic Riemann surface is used. Since until now there is no 

general way of constructing nontrivial bounded holomorphic functions, 

this could only mean that the existence of the kind of continuous map 

we want is rather rare and if such a continuous map exists, its 

existence would be rather difficult to establish. Even for negatively 

curved compact K~hler manifolds in general we do not expect such 

continuous maps to exist. As a matter of fact, for compact quotients 

of a ball of complex dimension at least two the only known examples so 

far that admit nontrivial holomorphic maps into any compact hyperbolic 

Riemann surface are the ones constructed by Livn~ [27] by taking 

branched covers of certain elliptic surfaces. It is not known whether 

in other dimensions there are similar examples of maps between compact 

quotients of balls of different dimensions besides the obvious ones. 

Problem. Suppose 1 < m < n are integers. Let M and N be respectively 

compact quotients of the balls of complex dimensions m and n. 

(a) Is it true that there exists no surjective holomorphic map from N 

to M? 

(b) Is it true that every holomorphic embedding of M in N must have a 

totally geodesic image? 

Yau conjectured that Problem (b) should be a consequence of 

uniquenss results for proper holomorphic maps between balls of 

different dimensions. For n ~ 3 Webster [56] showed that the only 

proper holomorphic maps from the n-ball to the (n+l)-ball C 3 up to the 

boundary are the obvious ones. Faran [ii] showed that, up to 

automorphisms of the two balls, there are only four proper holomorphic 

maps from the 2-bal 1 to the 3-bal 1 C 3 up to the boundary 

Unfortunately until now there are no general results about proper 

holomorphic maps between balls of different dimensions without any 

known boundary regularity. In our case the proper map, though without 
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any known boundary regularity, has the additional property that it 

comes from maps between compact quotients. Hopefully this additional 

property may be used instead of boundary regularity. 

We now introduce the theorem on the strong rigidity of 

irreducible compact quotients of polydiscs and sketch its proof. 

Theorem 5 (Jost-Yau [22] and Mok [29]). Suppose Q is an irreducible 

colnp_act ~u~tient of an n-disc D n with n h 2, M is a compact K~hler 

manifold, and f is a harmonic ma~ from M t__oo Q which is a homotopy 

equivalence. Let M be the universal cover of M and F: M + D n with 

components (F 1 ..... F n) be induced b~ F. Then for each 1 ~ i ! n, F i i__{s 

either holomorphic o_[r antiholomorphic. 

Here an irreducible quotient means one that cannot be decomposed 

as a product of two lower-dimensional quotients of polydiscs. For the 

proof of this theorem, by replacing both M and Q by finite covers, we 

can assume without loss of generality that the fundamental group of Q 

is a product of n groups GI,...,Gn, each of which is a (nondiscrete) 

subgroup of the automorphism group of the 1-dimensional disc D. We 

regard aF i and aF i as holomorphic sections of the holomorphic 

vector bundles on M described above (rather as (l,0)-forms on M). A 

consequence of the irreducibility of Q is that for each 1 ! i ! n 

every orbit of G i is dense in D. We have to show that for every 1 < i<n 

either aF i or ~ F 1 vanishes identical ly on M. Without loss of 

generality we assume that the assertion fails for i = 1 and try to get 

a contradiction. Since f is a homotopy equivalence, the length of 

8F 1 and the length of a F-l-cannot agree at every point. Without loss 

of generality we can assume that the length of aF 1 is greater than 

the length of a F 1 at some point. By (ii) and (iii) we can write 

~F 1 = g aF --f so that local ly g is the product of a nowhere zero smooth 

function and a meromorphic function. Thus the pole-set V of g is a 

complex-analytic hypersurface in M if it is nonempty. The pole-set V 

cannot be empty, otherwise by considering the Laplacian of the log of 

the absolute value h of g we get a contradiction at a maximum point of 

h. Since f is a homotopy equivalence, the real rank of f on the 

regular points of V must be precisely 2n - 2, otherwise the homology 

class represented by V would be mapped to zero by f. Let p:M + M be 

the projection of the universal cover and q:D n + D be the projection 
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onto the first component. Because of the holomorphic foliation 

discussed above the function hop on M must be constant along the 

components of the fibers of FI: M ÷ D. The proper closed subset 

F(p-I(v)) of D n contains an entire fiber of q whenever it contains 

one of its points. It follows that q(F(p-I(v))) is a proper closed 

subset of D which is invariant under the group G I. This contradicts 

the density of every orbit of G 1 in D. 

Mok [29] also showed that for any harmonic map from a compact 

K~hler manifold to an irreducible compact quotient of the n-disc 

(n h 2) with real rank 2n somewhere, each of the n components of the 

map between the universal covers induced by it is either holomorphic 

or antiholomorphic. 

Ill. Vanishing Theorems Obtained b~ Subelliptic Estimates 

So far all the vanishing theorems for bundles with curvature 

conditons make use of the pointwise property of the curvature form. 

The recent theory of subel liptic multipliers developed by Kohn, 

Catlin, and others [26, 5, 6] makes it possible to get vanishing thoerems 

based on the local property of the curvature form when the curvature 

form is semidefinite. Kohn developed his theory to deal with the 

question of boundary regularity for solutions of the ~ equation in 

the case of a weakly pseudoconvex boundary. 

Let ~ be an open subset of £n whose boundary is smooth and 

weakly pseudoconvex at a boundary point x 0. Let 1 ~q ~n be an integer. 

We say that a subelliptic estimate holds for (0,q)-forms at x 0 if 

there exists a neighborhood U of x 0 and constants ~ > 0 and C > 0 

such that 

Ir~fl 2 < c l l l ~ t l  2 + IIY%ll 2 ,  11~tl21 
C 

for all smooth (0,q)-form ~ on U{~[ with compact support belonging to 

the domain of ~*, where II II means the L 2 norm and II II~ means the 

Sobolev E-norm. In order to obtain subelliptic estimates Kohn intro- 

duced the concept of a subelliptic multiplier. A smooth function f on 

U is said to be a subelliptic multiplier if there exist positive ¢ 
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and C so that 

I I f ~ l 12  < ct l t~-~t l2  + 11-#'9112 + 11~112) 
E 

for all 9 . The subelliptic multipliers form an ideal lq. Let cij 

(l! i,j ~n-l) be the Levi form of the boundary of ~ near x in terms of 

an orthonormal frame field of (i,0) vectors tangential to the boundary 

of ~ . The starting point of Kohn's theory is the following results 

concerning the ideal lq of subelliptic multipliers. For notational 

simplicity we describe the case q = 1 and the general case is similar. 

(i) A smooth function r with nonzero gradient whose zero-set is the 

boundary of ~ belongs to I I. 

(ii) The determinant of the matrix (cij)l <i,j <__n_l belongs to I I. 

(iii) Whenever fl,...,fk belong to If, the determinant formed in the 

following way belongs to I I. The i th column consists of the components 

of ~fi in terms of the frame field of (I,0) vectors tangential to 

the boundary of ~ The other n-l-k columns are any n-l-k columns of 

the matrix (cij)l <i,j <n-l" 

(iv) I 1 equals to its real radical in the sense that if f belongs to 

I 1 and g is a smooth function with Igl m £ Ifl for some positive 

integer m, then g also belongs to I I. 

Kohn [26] showed that if the boundary of ~ is real-analytic 

near x 0 and contains no local complex-analytic subvariety of complex 

dimension q, then the constant function 1 belongs to the ideal Iq of 

subelliptic multipliers and as a consequence a subelliptic estimate 

for (0,q)-forms holds at x 0. (Diederich-Fornaess [9] contributed to 

the formulation of the assumptions in Kohn's result.) Recently Catlin 

[5,6] carried out the investigation for the case of smooth boundary 

and showed that a subelliptic estimate for (0,1)-forms holds at x 0 if 

and only if the boundary of ~ is of finite type at x 0 in the sense 

of D'Angelo [7,8]. (Similar statements hold for subelliptic estimates 

for (0,q)-forms.l D'Angelo's definition of finite type is as follows. 

The boundary of ~ is of type < t at x 0 if for every holomorphic map 

h = (hl,...,h n) from the open 1-dimensional disc D to ~n with h(0) = 
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x 0 the vanishing order of roh at 0 does not exceed t times the 

minimum of the vanishing orders of hl,...,h n at 0. At every point x of 

the boundary of ~ let t(x) be the smallest number such that the 

boundary of £ at x is of type ~ t(x). D'Angelo showed that t(x) in 

general is not upper semicontinuous, but satisfies t(x) ~t(x0)n-i/2n-2 

fo~ x near x 0 . The order E in the subelliptic estimate at x 0 

is expected to be the reciprocal of the maximum of t(x) for x near x 0. 

Catlin's result showed that ¢ cannot be bigger than the expected 

number but he can so far only show that subelliptic estimates hold for 
2 

an ¢ of the order of t(x 0) raised to the power -t(x0)n 

We now study how the subelliptic estimates can be used to get 

vanishing theorems. We follow Grauert's approach to vanishing theorems 

[14]. A number of vanishing theorems can be formulated from the method 

of subelliptic estiraates. Some of them can readily be derived by 

other means. We illustrate here by an example of such vanishing 

theorems. Let M be a compact complex manifold and L be a Hermitian 

holomorphic line bundle over M whose curvature form is semipositive. 

Let V be a holomorphic vector bundle over M. Let p:L* + M be the 

dual bundle of L. Let ~ be the open subset of L* consisting of all 

vectors of L* of length < i. If subelliptic estimates for (0,q)-forms 

hold for the boundary of ~ at every one of its points, then one 

concludes that Hq(£,p*V) is finite-dimensional by representing the 

cohomology by harmonic forms. It follows that Hq(M,V ®L k) vanishes 

for k sufficiently large, because the k th coefficient in the power 

series expansion in the fiber coordinate of L* of a local holomorphic 

function defined near a point in the zero-section of L* is a local 

section of L k. 

When the Hermitian metric of L is real-analytic, by Kohn's 

result subelliptic estimates for (0,q)-forms hold if the boundary of 

contains no local q-dimensional complex-analytic subvariety. If there 

is such a subvariety, its projection under p is a local q-dimensional 

subvariety W with the property that with respect to some local 

trivialization of L the Hermitian metric of L is represented by a 

function which is constant on W. If we give M a Hermitian metric, then 

all covariant derivatives of the curvature form of L along the 

directions of W must vanish. Hence we have the following theorem. 
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Theorem 6. Let M be a compact com[lex manifold with a Hermitian 

metric, L a holomorphic line bundle over M with a real-analytic 

Hermitian metric, and V a holomorphic yector bundle over M. Let 0 be 

the curvature form of L. Let q be a positive integer. Sup~gse 0 

i~s positive semidefinite and suppose at ever Z point x 2~ M the 

following is true. If E is a q-dimensional comple ~ linear subspace 

of the s~ace all (l,0)-vectors at x such that the restriction o__ff 0 

t_oo E ×E is zero (where E is the complex conjugate of E), then for some 

positive integer m the m th covariant derivative of 0 evaluated at 

some m+2 vectors from E and E is not zero. Then Hq(M,V OL k) = 0 for k 

sufficientl~ large. 

By using Catlin's result [6] for weakly pseudoconvex smooth 

boundary, one can drop the real-analytic assumption on the Hermitian 

metric of L. This kind of result tells us that in the case of a 

semipositive line bundle we can still get vanishing of the cohomology 

if the derivatives of the curvature form satisfy certain nondegeneracy 

conditions. Similar theorems can be formulated for holomorphic vector 

bundles and noncompact pseudoconvex manifolds. When q = i, Theorem 5 

can be proved by using the method of producing holomorphic sections 

for semipositive line bundles described above and Grauert's criterion 

of ampleness [14, p.347, Lemma] to show that the line bundle L must be 

ample. Though for lack of known examples there is no application yet 

for the kind of vanishing theorems derived from subelliptic estimates, 

hopefully in the future this approach may turn out to be fruitful. 

We would like to remark that on compact projective algebraic 

manifolds there is another kind of vanishing theorems motivated by 

Seshadri's criterion of ampleness [42, p.549] and obtained by 

Ramanujam [36] , Kawamata [23] , and Viehweg [55] for line bundles 

satisfying conditions weaker than ampleness. An example of such a kind 

of vanishing theorems is the following. If L is a holomorphic line 

bundle over a compact projective algebraic manifold M of complex 

dimension n such that Cl(L)n > 0 and Cl(LIC) > 0 for every complex- 

C in M, then Hq(M,LkK M) = 0 for q > i, where analytic Cl(-) curve 

denotes the first Chern class and K M denotes the canonical line bundle 

of M. The assumptions involved are weaker than local curvature 

conditions. However, such results apply only to the projective 

algebraic case. 
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1. The finite-dimenSional complex semi-simple Lie algebras. 

To start with, let us recall the classification, due to W. Killing 

and E. Cartan, of all complex semi-simple Lie algebras. (The presen- 

tation we adopt, for later purpose, is of course not that of those 

authors.) The isomorphism classes of such algebras are in one-to-one 

correspondence with the systems 

(1.1) H , (ei)1~iSZ , (hi) 1~i$ Z , 

where H is a finite-dimensional complex vector space (a Cartan 

subalgebra of a representative G of the isomorphism class in question), 

(~i) i~i$~ is a basis of the dual H* of H (a basis of the root system 

of @ relative to H ) and (hi) i$i~ ~ is a basis of H indexed by the 

same set {I ..... i} (h i is the coroot associated with di )' such 

that the matrix ~ = (Aij) = (~j(hi)) is a Cartan matrix, which means 

that the following conditions are satisfied: 

(C1) 

(C2) 

(C3) 

(C4) 

the A.. are integers ; 1] 

A.. = 2 or ~ 0 according as i = or ~ j ; 
13 

A. ~ = 0 if and only if A.. = 0 ; 
13 31 

is the product of a positive definite symmetric matrix 

and a diagonal matrix (by abuse of language, we shall 

simply say that ~ is positive definite). 

More correctly: two such data correspond to the same isomorphism class 

of algebras if and only if they differ only by a permutation of the 

indices I,...,~ . Following C. Chevalley, Harish-Chandra and J.-P. 

Serre, one can give a simple presentation of the algebra corresponding 
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to the system (1.1): it is generated by H and a set of 2Z elements 

e I .... ,ez, f1' .... fz subject to the following relations (besides the 

vector space structure of H ) : 

[H,H] 

[h,e i ] 

[h,f i ] 

[ei,f i ] 

[ei,f.] 
3 

(ad e i) 

(ad fj) 

: {0} ; 

= ei(h) .e i (hE H) ; 

= -~i(h) .fi (h6 H) ; 

= -h ; 
1 

= 0 if i ~ j ; 

-A. +I 
13 (ej) = 0 if i ~ j ; 

-A. +I 
13 (fj) = 0 if i ~ j 

If one does no longer assume that the e and the h generate H* 
l 1 

and H respectively, one obtains in that same way all complex reductive 

Lie algebras.At this point, the generalization is rather harmless 

(reductive = semi-simple × commutative), but it becomes more signifi- 

cant at the group level and will turn out to be quite essential in 

the Kac-Moody situation. 

2. Reductive algebraic groups and Chevalley schemes. 

It is well known that a complex Lie algebra determines a Lie group 

only up to local isomorphism. Thus, in order to characterize a reductive 

algebraic group, over ~ , say, an extra-information, besides the data 

(1.1), is needed. It is provided by a lattice i in H (i.e. a 

-submodule of R generated by a basis of H ) such that h. 6 A 
1 

and e. 6 A* (the Z -dual of A ) namely the lattice of rational co- 

characters of a maximal torus of the group one considers. To summarize: 

the isomorphism classes of complex reductive groups are in one-to-one 

correspondence (again up to permutation of the indices) with the systems 
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(2.1) S = (A, (~i) i$i~ £ , (hi)1$i~Z) , 

where i is a finitely generated free Z -module, ~ C A* i , h.E i 

and ~ = (ej(hi)) is a Cartan matrix. 

A remarkable result of C. Chevalley [Ch2] is that the same classi- 

fication holds when one replaces ~ by any algebraically closed field. 

Furthermore, to any system (2.1), Chevalley [Ch3] and Demazure [De2] 

associate a group-scheme over ~ , hence, in particular, a group 

functor G S on the category of rings. Thus, the main result of [Ch2] 

asserts that the reductive algebraic groups over an algebraically 

closed field K are precisely the groups Gs(K ) , where S runs over 

the systems (2.1) described above. 

Question: what happens if, in the above considerations, one drops 

Condition (C4) (in which case, the matrix ~ is called a generalize_dd 

Cartan matrix, or GCM )? This is what the Kac-Moody theory is about. 

3. Kac-Mood~ Lie algebras. 

From now on, when talking about a system (1.1), we only assume 

that ~. 6 H* , h. 6 H (the ~. and h. need not generate H* and 
i i l 1 

H ) and that ~ = (~j(hi)) is a GCM. To such a system, the presentation 

(1.2) associates a Lie algebra which is infinite-dimensional whenever 

is not a Cartan matrix. The Lie algebras one obtains that way are 

called Kac-Moody algebras. A large part of the classical theory - root 

systems, linear representations etc. - extends to them, with a bonus: 

the study of root multiplicities (roots do have multiplicities in the 

general case) and of character formulas for linear representations 

with highest weights have a number-theoretic flavour which is not 

apparent in the finite-dimensional situation. For those questions, which 

are outside the subject of the present survey, see [Ka3] and its 

bibliography. 

In general, Kac-Moody algebras are entirely new objects, but there 

is a case, besides the positive definite one, where they are still 

closely related to finite-dimensional simple Lie algebras, namely the 

"semi-definite" case: by the same abuse of language as above, we say 

that the matrix ~ is semi-definite if it is the product of a 
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semi-definite symmetric matrix and a diagonal matrix. 

The simplest example of Kac-Moody algebras of semi-definite type 

is provided by the so-called loop al@ebr@ 9. Let @ be a complex semi- 

simple Lie algebra, H a Cartan subalgebra of @ , (~i) 1~iS £ a basis 

of the root system of @ relative to H , e0 the opposite of the 

dominant root and h. , for 0$j~ , the coroot corresponding to ~. . 
3 3 

Then, the system 

H , (~j)0$jSZ ' {hj)0$j~£ 

satisfies our conditions and the corresponding Kac-Moody algebra turns 

out to be the "loop algebra" @ ~[z,z -I] . In this case, the GCM 

= (ek(hj))1$j,k$1 is described by the well-known extended Dynkin 

diagram ("graphe de Dynkin compl&t&" in [Bo]) of @ ; we shall call it 

the extended Cartan matrix of @ 

Let us modify the previous example slightly: instead of H , we 

take a direct sum H = 0_-<~_<I[ C.~j , where the ~.3 's are "copies" of the 

h.'s , and we choose the elements ~ of H* in such a way that the 
3 3 

matrix (~k(~j)) be the same ~ as before. Then, ~ is the extension 

of H by a one-dimensional subspace c = _C" (Zdj~j) (where the d.'s] 

are nonzero coefficients such that Zd.h. = 0 ), and it is readily 
3 3 

seen that the Kac-Moody algebra defined by the system (H, (~j), (~j)) 

is a perfect central extension of @ ®C[z,z -I] by the one-dimensior{al 

algebra c . In fact, it is the universal central extension Of 

6®C[z,z -I] : this is a special case of the following, rather easy 

proposition, proved independently by Kac ([Ka3], exercise 3.14) , Moody 

(unpublished) and the author ([Ti4]) : 

PROPOSITION 1. - If the h. 's form a basis of H , the Kac-Moody 
1 

algebra defined by (1.2) (for (~j(hi)) a__nn arbitrary GCM) has no 

nontrivial central extension. 

The existence of a nontrivial central extension of G ®~[z,z -I] 

by ~ plays an important role in the applications of the Kac-Moody 

theory for instance to physics and to the theory of differential 
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equations (cf. e. g. [Vel], [SW] and the literature cited in those 

papers). It is worth noting that the Kac-Moody presentation provides 

a natural approach to that extension and a very simple proof of its 

universal property, which is much less evident when one uses direct 

(e. g. cohomological) methods (cf. [Ga], [Wi]) . (NB. In the literature, 

the expression "Kac-Moody algebras" is frequently used to designate 

merely the loop algebras and/or their universal central extension; 

this unduly restrictive usage explains itself by the importance of 

those special cases for the applications.) 

Here, a GCM will be called "of affine t_~" if it is semi-definite, 

nondefinite and indecomposable; we say that it is of standard (resp. 

twisted) affine type if it is (resp. is not) the extended Cartan matrix 

of a finite-dimensional simple Lie algebra. (In the literature, one 

often finds the words "affine" and "euclidean" to mean "standard affine" 

and "twisted affine" in our terminology.) In rank 2, there are two GCM 

of affine type, one standard (22 -22)and one twisted (_24 -~)(up 

to permutation of the indices). When the rank is > 3 , the coefficients 

<3 of a GCM (Aij) of affine type always satisfy the relation AijAji = 

(for i ~ j ), so that the matrix can be represented by a Dynkin diagram 

~n the usual way (cf. e. g. [BT3], 1.4.4 or [Bo], p. 195); then, it turns 

out that the diagrams representing the twisted types are obtained by 

reversing arrows in the diagrams representing standard types (i.e. in 

extended Dynkin diagrams of finite-dimensional simple Lie algebras). 

For instance, 

(Z41 I ~ i ..... I 

is standard, whereas 

is twisted. 

The most general Kac-Moody algebra of standard affine type is a 

semi-direct product of an abelian algebra by a central extension of a 

loop algebra. There is a similar description for the algebras of 

twisted affine type, in which the loop algebras must be replaced by 

suitable twisted forms. For instance, if @ is a complex Lie algebra 
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of type E 6 and if J denotes an involutory automorphism of the 

loop algebra @ ® ~[z,z -I] operating on the first factor by an outer 

automorphism and on the second by z I > -z , then the fixed point 

z -I )d 2E 6 algebra (@®~[z, ] is a Kac-Moody algebra of type above 

(hence the notation !) . The connection between Kac-Moody algebras 

of affine type and the loop algebras and their twisted analogues was 

first made explicit in [Ka2], but the corresponding relation at the 

group level had been known for some time: cf. [IM] and [BT2] (where, 

however, a local field - such as ~((z)) - replaces ~[z,z-1]). 

4. Associated groups: introductory remarks. 

In the classical, finite-dimensional theory, the Lie algebras 

often appear as intermediate step in the study of Lie groups. It is 

therefore natural to try similarly to "integrate" Kac-Moody Lie algebras 

and to define "Kac-Moody groups". More precisely, let S be as in (2.1) 

except that, now, the matrix (~j (hi)) is only assumed to be a GCM. 

" . . . . .  1 To such a system S , one wishes to associate an inflnmte-dlmenslona 

group over C " , let us call it Gs(C) , or, more ambitiously, a 

group functor G S on the category of rings. 

Before passing in quick review the methods that have been used to 

define such groups, let us make a preliminary comment. As may be expec- 

ted, since the groups in question are "infinite-dimensional", one is 

led, for a given S , to define not one but several groups which are 

various completions of a smallest one (those completions corresponding 

usually to various completions of the Kac-Moody Lie algebra). Thus, 

the group theory can be developed at different levels (or, if one 

prefers, in different categories); roughly speaking, one may distinguish 

a minimal (or purely algebraic) level, a formal level and an analytic 

level, with many subdivisons. 

Instead of trying to define those terms formally, I shall just 

illustrate them with one example. Let @ be a complex, quasi-simple 

s.±mply connected algebraic group (Lie algebras will now play a minor 

role, and we are free to use gothic letters for other purposes !), 

A* the lattice of rational characters of a maximal torus of G , 

i its ~ -dual, (~i)]~i~ i a basis of the root system of @ with 

respect to the torus in question, ~0 the opposite of the dominant 
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root, hj (for 0~j5£) the coroot corresponding to ~j and 

S : (i, ((zj)0~j~ £ , (hj)0~j~ £) . In § 3, we have seen that the Lie algebra 

associated with S (in which i is replaced by ~® i) is Lie @ ®~[z,z-1]. 

Clearly, the group most naturally associated with S over 
-I 

must - and will - be the group @(~[z,z ]) of all "polynomial maps" 
× 

--> @ . In that special case, this is the answer to our question at 

the minimal level. At the formal level, we find @(~((z))) . Now, the 

points of @(C[z,z-1]) can also be viewed as certain special loops 

S I --> @ (by restricting x --> @ to the complex numbers of absolute 

value one) and this opens the way to a great variety of completions of 

~(~(z,z-1)) , leading to groups of loops S I --> @ in various cate- 

(L 2 gories , continuous, C , etc.): this is the analytic level. 

In the case of the above system S , there is no difficulty in 

guessing what should be the group functor G S : at the minimal level, 

we shall have Gs(R) = @(R[z,z-1]) , where @ now denotes the 

Chevalley scheme corresponding to the system (£, (~i) 1~is£ , (hi)1~i~ £) , 

and the corresponding formal group will be @(R((z))) . (In this 

generality, I do not know what "analytic" should mean.) As one sees, 

all those groups can be described with elementary means, without re- 

ference to Kac-Moody algebras. But things change as soon as one slightly 

modifies the system S as in § 3 by taking for instance 

A = A~]0 ~j (and keeping the GCM unchanged, as before). The corres- 

J 

ponding group is then a central extension of the loop group (whichever 

category one is in) by ~× or, in the ring situation, by R × . As in 

the Lie algebra case, the existence of that extension comes out of 

the general theory quite formally, but in the loop group case, it 

reflects rather deep properties of those groups (cf. e. g. [SW]) , and 

direct existence proofs are not easy. Note that if R is a finite 

field k , one gets a central extension of @(k((z))) by k × which 

appears in the work of C. Moore [Mo2] and H. Matsumoto [Ma3]. 

Here, we shall most of the time adopt either the minimal or the 

formal viewpoint (the analytic ones are usually deeper and more impor- 

tant for the applications, but unfortunately less familiar to the 

speaker). Let us briefly mention some contrasting features of those. 

The formal groups are usually simpler to handle (as are local fields 

compared to global ones !). This is due in particular to the fact that 
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they contain "large" proalgebraic subgroups (cf. e. g. [BT2], § 5, and 

[SZ], Kap. 5). Also, they seem to be the right category for simplicity 

theorems (cf. [Mol]; observe that if @ denotes a complex simple Lie 

group, then @(~((z))) is a simple group, which is far from true for 

@(~[z,z-1]). On the other hand, the minimal theory presents a certain 

symmetry (the symmetry between the e.'s and f.'s or, in the example 

of @(~[z,z-1]), the symmetry between z and z ), which gets lost 

in the formal completion. 

Let us mention an important aspect of that symmetry. All the groups 

G = GS(~) we are talking about (and, in fact, the groups Gs(K) , 

for K a field), whether minimal or formal, are equipped with a BN- 

pair (B,N) (or Tits system: cf. [Bo]) whose Weyl group W = N/B DN 

is the Coxeter group W(~) defined as follows: 

C.. 

W(A) = <ri [ 1<i<Z ; r 2 = I ; (rir j) 13 : I if i ~ j , 

A..A.. ~ 3 , and c . = 2,3,4 or 6 according 
53 31 13 

as A. A = 0, 1, 2 or 3 > 
13 ]l 

(cf. [MT], [Mal], [Ti3] and also, for the affine case, [IM], [BT2] and 

[Ga]) . In particular, G has a Bruhat decomposition G = U BwB , 
w 6 W 

leading to a"cell decomposition" of G/B : the quotients BwB/B have 

natural structures of finite-dimensional affine spaces. Now, in the 

minimal situation, the same N is the group N of another BN-pair 

(B-,N) , not conjugate to the previous one except in the finite-dimen- 

sional case (i.e. when ~ is positive-definite). Furthermore, one 

also has a partition G = U B wB , called the Birkhoff decomposition 
w 6 W 

of G (because of the special case considered in [Bi]; for the general 

result, cf. [Ti4]) . While the cells BwB/B are finite-dimensional, 

the "cells" B-wB are finite-codimensional in G , in a suitable 

sense, and, unlike the Bruhat decomposition, the Birkhoff decomposition 

always has a big cell, namely B-B if one chooses B- in its conjugacy 

class by N so that the intersection B N B is minimum with respect 

to the inclusion (we then say that B and B are opposite). In the 

formal situation, a Birkhoff decomposition (and hence a big cell) still 
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exists, but here, the groups B and B play completely asymmetric 

roles: B is much smaller than B in that, for instance, B-\G/B- 

is now highly uncountable (always excepting the case where ~ is 

positive-definite). We can be more explicit: if G = UB wB is the 
A 

Birkhoff decomposition of the minimal group G , and if G denotes 
A 

the formal completion of G , then the Birkhoff decomposition of G 

is U B wB , where B is the closure of B in ~ ; the group B 
A 

is closed (and even discrete) in G . 

Different methods have been used to attach groups to Kac-Moody 

data. Roughly, one can classify them into four types, according to 

which techniques they are based upon, namely: 

linear representations (cf. § 5 below); 

generators and relations (cf. § 6); 

Hilbert manifolds and line bundles; 

axiomatic (cf. [Ti4]) . 

About the third approach, which is handled in Graeme Segal's lecture 

at this Arbeitstagung, let us just say that it gives a deeper geometric 

insight in the situation than the other methods, but that, at present, 

it concerns only the affine case. Also the axiomatic approach has been 

used only in the affine case so far: we shall briefly indicate below 

(§ 6 and Appendix 2) to which purpose. 

5. Construction of the groups viarepresentation theory. 

One of the simplest way to prove the existence of a Lie group with 

a given (finite-dimensional) Lie algebra L consists in embedding L 

in the endomorphism algebra End V of a vector space V (by Ado's 

theorem) and then considering the group generated by exp L . 

If L is a Kac-Moody algebra, linear representations are infinite- 

dimensional and exp L is no longer defined in general. However, 

suppose that the linear representation L c_--> End V is such that the 

elements ei,f i , considered as endomorphisms of V , are locally 

nilpotent (an endomorphism ~ of V is said to be locally nilpotent 

if, for any vE V , ~n(v) = 0 for almost all n6~ ). Then, if the 
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ground field K has characteristic zero, say, exp Ke and exp Kf 
i l 

are well-defined "one-parameter" automorphism groups of V which 

generate the group Gs(K) one is looking for, at least if the h.'sl 

generate A . Otherwise, one must also require that, as a A-module 

(remember that AcL ), V is a direct sum ~V s of one-dimensional 

modules on which A operates through "integral characters" X s 6 A* ; 

then, one adds to the above generators the "one-parameter groups" 

I(K ×) , with ~6A , where, by definition, ~(k) operates on V 
s 

via the multiplication by k <l'Xs> . An L-module V is said to be 

integrable if it satisfies the above conditions (local nilpotency of 

ei,f i , plus the extra-requirement on A , which however follows from 

the first condition when the h's generate i ) . ± 

That method for integrating L , inspired by C. Chevalley's 

TohSku paper [Chl], was first devised by R. Moody and K. Teo [MT], 

who used the adjoint representation of L . In that way, of course, 

they only get the minimal a__djoint gro~. (More precisely, the group 

they construct is the analogue of Chevalley's simple group, namely the 

subgroup of the adjoint group generated by the exp Ke i and exp Kf i ; 

here, we say that the system S defines an adjoint group if the 

~i's generate A* and if =Q@ A is generated as a _n-vect°r space by 

the h's .) On the other hand, a suitable variation of the method 
i 

described above enables them to include the case of a ground field with 

sufficiently large characteristics. Later on, Moody [Mol] has applied 

the same ideas at the formal level, starting from a suitable completion 

of the Kac-Moody algebra. 

In [Mal ], R. Marcuson works with highest weight modules, at the 

formal level. His method requires the characteristic to be zero. 

In [Ga], H. Garland also uses highest weight representations. He 

restricts himself to the standard affine case - and makes heavy use 

of the relation between L and the loop algebra -, but in that special 

case, his results go much beyond those of Marcuson in that he essentially 

works over ~ (with ~--forms of the universal enveloping algebra of L 

and of the representation space), which enables him to define groups 

over arbitrary fields. 

One drawback of the approach by means of linear representations 

is that it is not clear, a priori, how the group one associates to a 
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given Kac-Moody algebra (over ~ , say) varies with the chosen repre- 

sentation. In [Mal], this question is ].eft open. Garland answers it 

by using the fact that the groups he constructs are central extensions 

of loop groups, and computing a cocycle which describes the extension. 

V. Kac and D. Peterson [KP] obviate that inconvenient of the 

method by considering all integrable modules simultaneously. They start 

from the free product G* of the additive groups Kei,Kf i for all i . 

• --> exp te i , For any integrable module V , the maps te l 

tf i --> exp tfl extend to a representation eXPv : G* --> GL(V) , and 

the group they consider is G*/ ~ (Ker eXPv) , where V runs through 

all integrable representations. This is the minimal group, in the sense 

of § 4, and corresponds to the case where the h's form a basis of 
1 

i . (An other, earlier approach of that same group, but without this 

last restriction on the h.'s , can be found in [Ti3] : cf. § 6). 
1 

R. Goodman and N. Wallach [GW] are concerned with the standard 

affine case over ~ . Working within the theory of Banach Lie algebras 

and groups, they consider a large variety of Banach completions of the 

Kac-Moody algebras, and integrate them by using suitable topologizations 

of certain highest weight (so-called standard) modules. One of their 
× 

purposes is to define the central extension of loop groups by ~ at 

various analytic levels. An alternative, more elementary approach to 

that problem (not touching, however, the main body of results of [GW]) 

may possibly be suggested by the remark of Appendix I below. 

6. Generators and relations. 

In a course of lectures summarized in [Ti3] (cf. also [S£] and 

[Ma2]) , I gave another construction for groups associated with Kac- 

Moody data. In order to sketch the main idea, let us return to the 

case of a finite-dimensional complex semi-simple Lie group G . Such 

a group is known to be the amalgamated product of the normalizer N 

of a maximal torus T and the parabolic subgroups PI,...,P£ contai- 

ning properly a given Borel subgroup B containing T and minimal 

with that property, with amalgamation of the intersections P n P. = B 
l 3 

and P ~N. (cf.[Ti2],]3.3) . Furthermore, P. is the semi-direct product 
1 1 

of its Levi subgroup L i containing T by a unipotent group U i 

Thus, we have a presentation of G whose ingredients are the subgroups 
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N,Li,U i . The groups N and L1 can be reconstructed from the system 

S of ( 2 . 1 )  i n  a u n i f o r m  w a y ,  w i t h o u t  r e f e r e n c e  t o  t h e  p o s i t i v i t y  o f  

the matrix ~ : the group N is generated by T = Hom(A*,C ×) and 

£ elements m. (Igi$£) submitted to the relations 
1 

and 

(6.1) m. normalizes T , and the automorphism of T it 
l 

induces is the adjoint of the reflection 

l ~--> i- <l,h.>-@. of A* , 
i 1 

(6 2 ) m 2 • i = ~i 6 T = H°m(i*'C×) ' with 0i( 

for I E A* 

(6 .3) 

= (-1  < l , h i >  

if A, .A.. : 0 (resp. I;2;3), then m.m. = m m. 
13 3x 13 3 1 

(resp. mimjm i : mjmimj ; (mimj)2=(mjmi)2 " (mimj)3= (mjmi)3) , 

whereas L. is nothing else but the reductive group of semi-simple 
I 

I rank one corresponding to the system (A,hi,~i) . As for the U i s , 

being unipotent, they are easily described in terms of their Lie alge- 

bras Lie U. , either by means of the Campbell-Hausdorff formula or, 
1 

more conceptually, by exponentiating Lie U in the completion (for 
1 

the natural filtration) of its universal enveloping algebra U(Lie Ui) - 

All this can be carried over to an arbitrary system S , with the 

only difference that, now, Lie U is infinite-dimensional and no 
i 

longer nilpotent but only pro-nilpotent (more precisely, the Lie U.'s 
l 

are certain subalgebras of codimension I of the Lie algebra generated 

by the e.'s , and the latter has a pro-nilpotent completion). Moreover, 
3 

by using a suitable Z=-form of the universal enveloping algebra of the 

Kac-Moody algebra (generalizing the k-form used by H. Garland in the 

affine case: cf. § 5), one is able to do everything over ~ and, by 

reduction, over an arbitrary ring R . Thus, one is led to attach to 

S a group functor on the category of rings, call it E S . But this 

group functor E S is not the "good" functor G S one is looking for: 

indeed, if ~ is a Cartan matrix, that is, in the positive definite 

case, G S should of course be the Chevalley group-scheme corresponding 

to the Chevalley-Demazure data S , and one finds that the functor E S 
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coincides with that scheme only over the principal ideal domain. This 

suggests that, in general, E S may be the good functor when restricted 

to those rings. This is undoubtedly so in the affine case. Indeed, in 

that case, one can characterize the functor E S restricted to principal 

ideal domains - call it E (pid) - by a system of very natural axioms 

which, it seems, should be satisfied by the "good" functor G S (cf. 

[Ti4], 7.6 b)). Another application of those axioms is that they enable 

one to determine explicitly the functor E~ pid)- (whereas the more 

abstract definition by generators and relations is much less manageable), 

and that the result one obtains suggests (always in the affine case) 

what must be the functor G S for arbitrary rings. We shall come back 

to that question in the next section (and in Appendix 2), but let us 

first conclude the present one by two remarks. 

The above considerations can be developed both at the minimal and 

the formal level. In fact, the construction of [Ti3] depends on the 

choice of a certain subgroup X (subject to some simple conditions) 

of the multiplicative group of the completed universal enveloping 

algebra of the Lie algebra generated by the e's . Among the possible 
3 

X , there is a minimal one, leading to the minimal group GS(~) (and 

functor G S ), and a maximal one (which has been determined by 

O. Mathieu [Ma2]), leading to the formal group (and functor) associated 

with S . 

The groups we have been considering are the generalizations, in 

the Kac-Moody framework, of the s_]21it reductive groups but, as in the 

finite-dimensional case, one can define ~on-split forms of those groups. 

In particular, over ~ , there is a "compact" form (which is by no 

means compact in the topological sense !) : in the minimal set-up, it 

can be defined as the fixed-point group of the "anti-analytic" involu- 

tion of GS(~) induced by the semi-linear involution of the Kac-Moody 

algebra which permutes e. and f~ and inverts the elements of i 
l 1 

(Another definition, involving hermitian forms in representation 

spaces, also works at the formal level: cf. [Ga], [KP]) . Generalizing 

a result which was known in the finite-dimensional case [Kal], V. Kac 

[KDP] has observed that that compact form can be defined as the 

amalgamated product of its rank 2 subgroups corresponding to the pairs 

of indices i,j, 6 {I ..... ~} , with amalgamation of the rank I sub- 

groups (of type SU2) corresponding to the indices (here, one must 
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assume that the h.'s form a basis of A , or add a compact torus to 
1 

the amalgam). As for the rank 2 groups, which are the ingredients of 

that definition, they are known in case they are finite-dimensional 

(i.e. when ei(hj).~j(hi) $ 3) ; otherwise, they are shown to be amal- 

gamated products of two groups of type U 2 with suitable amalgamation 

of a two-dimensional torus. (N.B. A result similar to the above is 

known to hold for finite-dimensional split groups or, more generally, 

for groups having a BN-pair with finite Weyl group: cf. [Ti2], 13.32, 

and, for earlier versions and special cases, [Cu] and [Til], 2.12.) 

The fact that the definition by generators and relations does not 

provide the "good" functor G S for rings that are not principal ideal 

domains probably lies in the nature of things (as K-theory suggests). 

A more likely way to get at the "right" G S would consist in exhibi- 

ting a suitable Z--form of the affine algebra of GS(~) (cf. § 8 

below). 

7. An example: groupsof type 2E 6 

In this section, we adopt the formal viewpoint; to emphasize the 
^ 

fact, we shall use the notation GS , instead of G S as above. 

Let S be the system (i,(~j,hj)0~j$ 4) , where the matrix 
2~ 6 

(aj(hi)) is of type (ef. § 3), and where the ~i generate A* 

whereas the h. generate i : these properties characterize S . Our 
l 

A 
purpose is to describe the groups GS(K) when K is a field. We 

discuss only this special example for the sake of concreteness, but 

similar results hold for any other twisted type (the type 

~<I I... ~ i<J 

is briefly examined in [Ti4], 7.4 , and general statements, concerning 

all affine types and arbitrary rings, will be given in Appendix 2). 

From the explicit description of the Kac-Moody algebras of type 

2~ 6 A given in § 3, one readily guesses what must be the group Gs(K) 

when K is a field of characteristic not 2, namely 
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A 
GS(~) = ~(K((z))) , 

a quasi-split algebraic group of type 2E 6 , where G is defined 

over K((z)) and whose splitting field is K((/z)) If K : ~ , one 

proves this by straightforward "integration" (for arbitrary affine 

types, this part of the work is done in [Mo3]), and the general case 

ensues via the axiomatic method mentioned above (cf. § 6 and [Ti4], 

7.6 b)). 

Now, suppose that car K = 2 . The above description cannot hold 

in that case since the extension K((/z)/K((z)) is not separable, 

hence is improper for the definition of a quasi-split group. But there 

is a circumstance which enables one again to guess the result, at least 

when K is perfect. Indeed, one knows that, in the finite-dimensional 

theory, the arrows carried by the double bonds of Dynkin diagrams 

"disappear" over perfect fields of characteristic 2: more precisely, 

reversing such an arrow corresponds to an inseparable isogeny which is 

bijective on rational points. Here, the diagram becomes "the same as" 

F 4 = } ] I > I l , hence the (correct) guess 

Gs(K) = F4(K((z)) ) 

But how can it be that a 78-dimensional (quasi-split) group of 

type E 6 suddenly degenerates into a 52-dimensional (split) group of 

type F 4 ?! The answer is simple: F4(K((z))) must be viewed as the 

group of ratienal points of a suitable 78-dimensional group defined 

over K((z)) . The existince of such a group is not so surprising when 

one considers the isomorphism (a,b) I > a2+zb 2 of K((z))×K((z)) 

onto K((z)) , hence of a 2-dimensional group onto a l-dimensional 

group ( K perfect). 

To be more specific, set L : ~2((z)) , L' : ~((/~)) and denote 

by F a split group of type F 4 over L' , by o : F --> F a 

special isogeny of F into itself whose square is the Frobenius endo- 

morphism (cf. [BTI], 3.3), by RL,/L the restriction of scalars and 

by @ the image of RL,/L~ : RL,/L ~--> RL,/LF . Then 

thee algebraic group @ i ss 78-dimensional. For any (non necessarily 

perfec t ) field K o_ff characteristic 2, one has GS(K) = G (K((z))) ; 
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if K i_ss perfect, the ma~ RL,/L ~ : RL,/LF -->@ i_~s bijective on rati- 

onal points, therefore Gs(K ) ~ (RL,/LF) (K((z))) : F(K((/~) ) ~ F(K((z))). 

Let us explain briefly where the 78 dimensions of @ come from. 

The group F 4 has an open set ~ which is the product, in a suitable 

order, of 48 additive groups U a corresponding to the 48 roots a 

and a 4-dimensional torus T . The isogeny ~ induces a bijection 

a~--> c(a) of the root system into itself which maps short roots onto 

long roots and vice versa. The groups RL,/LU a are 2-dimensional and 

dim RL,/LT = 8 . Now, it is readily checked that: 

if a is short, RL,/LO maps 

onto RL,/LHo(a) 

RL,/LH a isomorphically 

if a is long, RL,/LO maps RL,/LU a onto a 

one-dimensional subgroup of RL,/LH (a) ; 

RL,/LO maps RL,/LT onto a six-dimensional subtorus of 

itself. 

Thus, dim (RL,/LO) (~) = 2.24 + 24 + 6 = 78. 

We propose the following exercise to the interested reader: for 

K perfect of characteristic 2, write SL2(K((z))) as the group of 

rational points on K((z)) of an 8-dimensional algebraic group. This 

arises when one studies the case of the GCM (_~-~) ; the 8-dimensional 

group in question appears as a characteristic 2 "degeneracy" of 

SU3(K((/z))) . Cf. [Ti4], 7.4, for more details. 

8. The algebro-geometric nature of the groups GS(~) 

What kind of algebro-geometric objects are the functors G S and, 

in particular, the groups GS(~) ? Little is known for G S is general, 

but something can be said about GS(~) (here, ~ could be replaced 

by any field of characteristic zero). 
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Set G = GS(~) . We have already mentioned the Bruhat decomposi- 

tion G = U BwB , where B is a certain subgroup of G , which we may 

call "Borel subgroup", and w runs over a Coxeter group W . Coxeter 

groups, endowed as usual with a distinguished generating set 

S = {r] ..... r~} (cf. § 4), have a natural ordering: for w,w' 6 W , 

one sets w ~ w' if there exists a reduced expression w : Sl...s n 

(s i 6 S) and a subsequence (ii, .... i m) of (1 ..... n) such that 

w' : s .... s. . Then: 
11 z m 

for any w6 W , the subset Schub w = w' ~ w (Bw'B)/B of G/B , 
= 

called the Schubert variety c__orresponding to w , has a natural struc- 

ture of projective manifold (ef. [Ti4]); thus, G/B is a direct 

limit of projective manifolds. 

(In [Ti4], the projective structure of Schub w is defined by means 

of a highest weight representation of G , and is then shown not to 

depend on the choice of that representation. It would be desirable to 

have a more intrinsic definition, using for instance the big cell of 

the Birkhoff decomposition, as was suggested to the speaker by 

G. Lusztig.) The set G/B , and its description as a limit of projective 

varieties, does not depend on whether one adopts the minimal or the 

formal viewpoint (more precisely, the formal group is the completion 

of the minimal one for a topology for which B is an open subgroup). 

Also, since B contains H = B A N , the quotient G/B and the varieties 

Schub w depend only on the GCM ~ , and not on A ; when the choice 

of ~ needs to be specified, we shall write SchUbA__W instead of 

Schub w . 

If we now take the formal viewpoint, the Borel subgroup, or rather, 

to remain consistent with the notation of the end of § 4, the closure 

B in ~ = GS(~) , is a proalgebraic group, semi-direct exten- g 
of 

sion of a torus by a prounipotent group (cf. [BT2], [Si]). 

A -- 

Having thus described both G/B = G/B and B , we have gained 
^ 

some understanding of the algebro-geometric nature of G itself. But 

a more direct and promising picture is given by V. Kac and D. Peterson 

[KPI] who attach to G (the minimal group) a "coordinate ring", or 

rather two rings, the ring ~[G] of "strongly regular" functions, and 

the ring ~[G] r of "regular" functions. The first one is generated by 

the coefficients of all highest weight representations (in [KP1],this 
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is not chosen as definition of ~[G] but is proved to be a property of 

the ring, defined in a different way) and provides a Peter-Weyl type 

theorem. That ring is not invariant by the map i : g ~__> g-1 (under 

that map, highest weight representations become lowest weight represen- 

tations !); for a suitable topology, ~[G] r is topologically generated 

by C[G] and i*(C[G]) It is shown in [KP] that G is an affine 

(infinite-dimensional) algebraic group with coordinate ring C[G] , 
-- r 

in the sense of Shafarevitch [Sh] : this implies, in particular, that 

G can be identified with a subset of C= ~= in such a way that ~[G] r 

is the restriction to G of the ring ~[~---~]r-- of regular functions on 

C~ ~T (i.e. the ring of functions whose restriction to ~[0,n] is poly- 

nomial for all n ), and that G is the vanishing set of an ideal 

of ~[c_ m=] 
r 

9. Applications. 

"Kac-Moody groups" have been used in a variety of domains such as 

topology, differential and partial differential equations, singularity 

theory, etc. Those applications, a fast growing subject, are beyond both 

the scope of this survey and the competence of the speaker. Let me just 

unsystematically list a few basic references, which will give access to 

at least part of the literature on that topic: [SW] (cf. also the 

reference[5] of [SW]), [Vel], [Ve2] (these concern applications of Kac- 

Moody Lie algebras, rather than groups), [RS], [Si]. 

Most applications so far use only groups of affine type, and 

there may still be doubts about the usefulness of the general theory. 

To finish with, I would like to give an argument in favour of it. We 

have seen that to every GCM ~ = (~ij) and every element of the corres- 

ponding Coxeter group W(~) , the theory associates a certain complex 

projective variety SchUbAW . If w is one of the canonical generators 

r i of W , SchUbA__W is just a projective line. The next simple case 

= .r. ; then, SchUbA__W is a rational ruled surface, i.e. a sur- is W rl 3 

face fibered over ~i (~) wTth projective lines as fibers. It is well 

known that such a surface X is characterized up to isomorphism by a 

single invariant ~(X) which is a negative integer (if v(X) ~ 0 , X 

is obtained by blowing up the vertex of a cone of degree m(X) in a 

(~(X)+1)-dimensional projective space). Now, one shows that 

~(Schub~(rirj)) = Aij . This gives a geometric interpretation of the 
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matrix A . Moreover, observe that, if one accepts only to consider 

GCM of affine type, only the surfaces X with v(X) 6 [-4,0] , among 

the rational ruled surfaces, have the right to be called "Schubert 

varieties", which seems rather unnatural ! I should think that the class 

of all Schub~w , for all ~ and w , will turn out to be a very 

natural and interesting class of projective varieties to consider. 
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A_p_pendix I. Central extension. 

For arbitrary S , the "minimal group" GS(~) can be constructed 

by the methods described in §§ 5 and 6. In particular, those methods 

provide very simple, purely formal existence proofs for a nontrivial 

central extension of the "polynomial" loop groups by C x . The situation 

is quite different when one starts from loop groups defined by analytic 

conditions. However, the following rather trivial considerations may 

conceivably enable one to exploit the result known for polynomial loops 

in the analytic case. Here, all topological spaces are assumed to be 

Hausdorff. 

Let ~ : G' --> G be a central group extension and let U',H'_ ,U+' 

be three subgroups of G' such that Ker nc H' , that H' normalizes 

' and that the product mapping U' × H' x U' G' U± _ + --> is injective. 

Thus, ~+ = ~IU+' and ~_ = ~[U'_ are isomorphisms of U'+ and U'_ 

onto two subgroups U+ and U_ of G . We set H = z(H') 

A 

G and Now, let us embed G in a complete topological group 

suppose that, if U and U denote the closures of U and U+ 
A -- + A -- 

in G , the product mapping in G defines a homeomorphism of 
^ 

_ x H x ~+ onto a dense open subset ~ of G . Let us also endow 

H' with a topology making it into a complete topological group, such 

that Ker z is closed in H' and that the canonical algebraic iso- 

morphism H'/Ker ~--> H is an isomorphism of topological groups as 

well (observe that, by hypthesis, H is locally closed, hence closed 
^ 

in G , and is therefore a complete topological group). 

Set X = {(u,u')6 U+ x U_ I uu' 6 ~} . This is a dense open subset 

of U+ x U_ (endowed with the topology induced by that of U+ x U_ ). 

For (u,u') 6 X , there is a unique element ~(u,u') C H' such that 

-I -I ~+ lu) • ~_ (u') cu_' .~(u,u') .u~ 

A 

The topology of G induces a topology on U± which we lift to U~ 
-I 

by means of ~± , and we endow ~' = U'_ H' Ui with the product topology. 

The following proposition is easy. 
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PROPOSITION 2. If the function ~ :X --> H' is continuous, there is a 

unique topolo_s ~ on G' making G' into a topological group and 9' , 

topologized as above, into a dense open subset of G' . Suppose further 

that there is a neigborhood Xl of (1.1) i_nn U+ × U such that the 

restriction of ~ t_~o X n Xl extends to a continuous map X1 --> H' 
A 

Then, the to_gpolo~ical group G' admits a completion G' , Ker z is 
A 

a closed subgroup o_~f ~' and the homomorphism &' --> G extending 
A 

factors through a__nn isomorphism of topological ~roups ~'/Ker 7--> G . 

Note that the left (or right) translates of all open subsets of 

obviously form a basis of the topology of G' (hence the uniqueness 

assertion). 

In the application I have in mind, G would be a "polynomial" 
A 

loop group, G some other loop group, z : G' --> G the "natural" 
x 

central extension of G by Ker ~ ~ C (whose existence is easily 
; 

proved by any of the methods described in §§ 5 and 6), Ui and U+ 

the (non complete) "prounipotent radicals" of two opposite Borel sub- 

groups of G' (ef. § 4) and H' the intersection of those Borel sub- 
x 

groups, a direct product of copies of C which one endows with its 

natural topology. The main problem, which I have not investigated, is 

of course to prove (in the interesting cases) that ~ is continuous 

and extends to a neighborhood of (I,I) in U+ × U_ 

A 
Appendix 2. The group functor G S in the affine case. 

In this appendix, we shall use the techniques and terminology of 
A 

[BT4] t o  d e s c r i b e  t h e  f o r m a l  f u n c t o r s  G S f o r  a l l  s y s t e m s  

S = (A, (~i)0 < i < Z , (hi)0 < i< Z) 

satisfying the following conditions: 

(AI) 

(A2) 

(A3) 

the matrix ~ = (~j(hi)) is of irreducible, affine type; 

the set {hil0 ~ i S Z} generates i ; 

the set {~iI0 ~ i £ £} contains a ~- basis of ~® A* 
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More precisely, for any such S , we shall describe a topological 
A 

g r o u p  f u n c t o r  G S h a v i n g  t h e  f o l l o w i n g  p r o p e r t i e s .  

A 
(P0) There is a Lie algebra functor Lie G S defined as follows 

(compare [DG], pp. 209-210). For any ring R , set 

R(e,g') = R[t,t']/(t2,t '2) , where s,s' are the canonical images 

of t,t' in the quotient; in other words, R(e,e') is the tensor 

product of two algebras R(e), R(e') of dual numbers. For r 6 R , 

let ~ : R(S) --> R , 1 : R(e) --> R(E') , o : R(~) --> R(c,E') and 

~r : R(e) --> R(s) be the R-homomorphisms sending £ onto 0,s',ee' 
A 

and re respectively. Then, the additive group (Lie GS) (R) is the 

kernel of the homomorphism 

A A A 
GS(~n) : Gs(R(e)) ----> Gs(R) , 

the scalar multiplication by r is induced by the automorphism 
A A 
GS(~ r) of Gs(R(s)) and the commutator of two elements 

A A 
x,y £ (Lie GS} (R) EGs(R(~)) is the only element Ix,y] such that 

A A 
GS(O) ([x,y]) = (X,Gs(1) (y)) 

A 
where ( , ) stands for the usual commutator in the group Gs(R(£,e')). 

A 
(PI) (Lie GS) (~) is the Kac-Moody algebra associated to the system 

(~® A, (~i)0 ~ i ~ i' (hi)0 ~ i ~ i ) completed with respect to the natural 

gradation (deg e i = I, deg fi = -I, deg h i = 0) 

A 
(P2) The group Gs(C) coincides with the formal group over C 

attached to S by any one of the construction processes described in 

§§ 5 and 6; in particular, it contains (a canonical image of) 
w x 

Hom(A ,~ ) and its center consists of all ~6 Hom(A*,~ ×) such that 

~(~i ) = 0 for all i 

A 
(P3) Modulo its center, Gs(C) is the subgroup of Aut((Lie GS) (C)) 

generated by all converging exp ad g , with g E (Lie GS) (~) (this 

turns out to be identical with the adjoint group considered by 

R.V. Moody [Mol] and J.I. Morita [Mo3]; about this group, cf. also the 



215 

last sentence of this appendix). 

A 
(P4) The functor G S restricted to principal ideal domains, together 

w i t h  s u i t a b l y  d e f i n e d  f u n c t o r i a l  h o m o m o r p h i s m s  
A A 

~ i  : SL 2 - - >  G S ,  B : H o m ( A * , ?  x )  - - >  G S ( w h i c h  we l e a v e  a s  a n  e x e r c i s e  

to determine explicitly), satisfies the axioms (i') to (iv') of 
^ 

[Ti4], 7.5, and is characterized by them, once Gs(C),= ~i(~) , ~ (C)= 

are g i v e n .  

A 
Those properties clearly indicate that the functor G S which we 

are going to define is the "right one", at least when restricted to 

principal ideal domains but maybe also for general rings, considering 

its fairly simple and natural definition (though it is conceivable 

that some algebro-geometric invariants of the ring, such as Pic R , 

should be brought into play). 

Let e be an integer and let G be a quasi-split, simply 

connected absolutely almost simple group defined over the 

field K : Q(Z), whose splitting field over K is generated by 

the e-th roots of Z ; thus, e = I, 2 or 3 and, in the latter 

case, G is of type D 4 . Let S be a maximal split torus of G , 

the system of roots of G with respect to S , ~ the system of 

root rays ("rayons radiciels": cf. [BT4], 1.1.2), i.e. of half-lines 

R .a with a 6 • , T the centralizer of S in G and U (for 
~+ a 

a 6 ~ ) the root subgroup corresponding to a . We also denote by 

G,S,T,..., the groups of K-rational points of G,S,T, .... 

Let now S = (A'(~i)0 ! i Z z'(hi)0 ~ i ~ Z ) be defined as follows: 

A = X,(S) = Hom(Mult,S) is the group of cocharacters of S ; 

(~1,...,el) is a basis of © and -an v is the maximal root 

if e = I or if e = 2 and G is of type A2n , and it is the 

maximal "short" root in the remaining cases; h. is the coroot 
i 

associated ~. 
1 
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Varying e and the type of G , one gets all systems S satisfying 

the conditions (At) to (A3) above in this way. If G has type 

X , we say that S has type e~ . The Dynkin diagram representing 

the GCM (aj(hi)) is given by the following table: 

type of S diagra m 

I~ extended Dynkin diagram of 

2A2n ,~7--1 I - ' "  1 ~ ° , ~  

3D 4 I 

X 

(n+1 vertices) 

(n+1 vertices) 

(n vertices) 

We shall now choose a system of "&pinglages" of the Ua'S (cf. 

[BT4], 4.1). This is a system (Xa)a6 ~ where, for all a , x a is one 

of three things: 

(i) an isomorphism K --> U a ; 

(ii) an isomorphism K(Z I/e) --> U a (here Z I/e denotes any 

e-th root of Z and, when e = 3 , all cubic roots involved 

may be chosen equal); 

(iii) an isomorphism H --> U , where H is the product a 
K(Z I/2)" × ZI/2.K endowed with the group structure 

(*) ( u , v )  • ( u ' , v ' )  = ( u + u ' ,  v + v ' + ( u ° u  ' - u ' O u ) )  

in which o represents the nontrivial K-automorphism of K(Z I/2) 

(observe that H is nothing else but the group H i of [BT4], 4.1.15, 

for ~ = I/2 ,) transformed by the automorphism (x,y) ~> (x,2y) of 

the underlying variety). 

In all cases except 2A2n (i.e. when G is of type A2n and 



217 

e = 2), we take for (x a) a cohere[:t system of "&pinglages" deduced 

from a Chevalley-Steinberg system (cf. [BT4], 4.1.16). In order to 

2A2n describe the system (x a) in the case , let us choose an ortho- 

gonal basis (ai)1 ~ i ~ n of the (relative) root lattice: thus, 

© = {± a i, ± 2a i, ±a i ±aj with i ~ j] . For a E ~ , let @a denote the 

automorphism of the source of x defined as follows: if a contains a 

a l.+a3 (resp. a.-al 3 ; resp. -a.-a.l 3 )' Ca(k) = 2k (resp. k/2 ) and 

if a contains a i (resp. -ai), @a(U,V) = (2u,4v) (resp. (u,v)) 

= x' o @a ' where (Xa)a 6 9 is a coherent system Finally, we set x a a 

of "~pinglagles", as in loc. cit. 

Let us now describe a certain schematic root datum (T, (Ua)a 6 ~) 

in G over the ring K = ~[Z,Z -I] (cf. BT4 , 3.1.1). The scheme 

is the "canonical group-scheme associated with the torus T" , defined 

as in [BT4], 4.4.5 (as in [BT4], it can be shown that T does not 

depend on the way T is expressed as a product of tori of the form 

Mult ) and the scheme U is the "imaoe by x "of: 
L/K L a ~ a 

the additive group-scheme canonically associated with the module K 

(resp. K[Z1/e])" in case (i) (resp. (ii)) (cf. [BT4], 1.4.1); 

the group-scheme whose underlying scheme is canonically associated with 

the module H = K[Z I/2] x zl/2.K and whose product operation is oiven 

by (*) in case (iii) . 

It is readily verified, using the appendix of [BT4], that the system 

(T, (Ua)) is indeed a schematic root datum. By Section 3.8.4 of [BT4], 

there exists a unique smooth connected group-scheme G with generic 

fibre G containing the direct product 

77 
aE~_ Ua x T x a6=~ + Ha 

as an open subscheme ("big cell") (here, ~+ c~ denotes a system of 

positive root rays and ~_ = - ~+ ) . Finally, S being as above, the 

announced functor ~S is defined by 

A 
Gs(R) = @(R((Z))) , 

this group being given the natural topology, induced by that of R((Z)) 
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Suppose now that R is a perfect field of characteristic e 

(which implies that e = 2 or 3). There is a "natural" isomorphism of 

each Ua(R((Z))) onto R((Z)) , namely 

-I 
x in case (i) , 
a 

x (r) ~-> r e in case (ii) , 
a 

x (r,r') ~--> r'2+r 4 in case (iii) , 
a 

and T(R((Z))) , which is a product of groups of the form R((Z)) × and 

R((zl/e)) × , is clearly isomorphic to the group T' (R((Z))) of rational 

points of a split torus T' . It is then readily verified (using [BT3], 

§ 10, and the appendix of [BT4]), that, via those isomorphisms, the 

system (T(R((Z))), (Ua(R((Z))))a 6 ~) "is" the standard root datum of 

the group of rational points of an R((Z))-split simple group of type 

Cn if A= = (ej(hi)) has type 

B n if ~ has type 2~2n_1 , 

2~ 
Cn_ I if A has type Dn , 

F 4 if A has type 2E 6 , 

G 2 if A has type 334 

2A2n 

This is the phenomenon already mentioned in § 7 for the special case 

type 2E 6 . of 

Let us return to the group-scheme @ . In the classical cases 

2~ and 23 it can be given a more direct and more elementary des- 
m n' 

cription. Here, we shall only briefly treat the types 2~ (the case 
m 

of 23 is slightly more complicated because one must work with the 
n 

spin group). According as m = 2n-] or 2n , set I ={±],±2,...,±n} 

or I = {0,±I, .... ±n} . Let V be the K[Z1/2]-module (K[ZI/2]) I 

endowed with a coordinate system ~ = (zi)i 6 I ' let T denote the 

K-automorphism of K[Z I/2] defined by T(Z I/2) = -Z 1/2 and consider 

the hermitian form 

iT 
h(z;z') = Z(Z'i T Z i + Z i Z_i) , 
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where i runs from I to n or from 0 to n according as m = 2n-I 

or 2n . We represent by V K the module V considered as a K-module; 

in it, we use the coordinate system (~,Z) = (xi,Yi)i61 , where 

= + Yi ZI/2 Separating the "real and imaginary xi' Yi 6 K and z i x i . . 

parts" of h , we get h = s + Z I/2 • a , where s and a are a 

symmetric and an alternating bilinear form in V K respectively. Similar- 

ly , the determinant in End V can be written det 0 + Z I/2 • det I , 

where det 0 and det I are K-polynomials in End V considered as a 

I (~,y;x y) in V K K-module. Let q be the quadratic form q(~,y) = ~s _ _ , 

The multiplication by Z I/2 is an automorphism J of the K-module V K . 

Finally, the group-scheme @ (corresponding to the type 2~ ) can 
- m 

be described as the subgroup-scheme of GL(V K) defined by the equations 

g • a = a , g. q = q (hence g • s = s ), gJ=J, det0g = I, detlg = 0 

In other words, if R is a K-algebra, G(R) is the subgroup of all 

elements of SL(V®R[ZI/2]) preserving the (R-valued) "forms" a and 

q . (For the case m = 2n , see [Ti4], 7.4.) 

Now, consider again the case R : R((Z)) , where R is a perfect 

field of characteristic 2 (in fact, any ring R such that the map 

2 onto R would do) Let V' (resp. x F--> x is a bijection of R[Z I/2] 

V") denote the R[Z1/2]-module, product of 2n+I (resp. 2n ) factors 

R[Z I/2] indexed by {0,±I, .... +_n} (resp. {_+I, .... +-n ). In those modules, 

we use again coordinates z where i runs through the same index 
i n I/2 2 

sets . In V' , consider the quadratic form q' (_z)_ = i__Z1 Z_l.Z +ZI "z0 ' 

n 
and in V" , the alternating bilinear form a' (_z;_z') : i=E1 (z'izi-zlz_i) 

If m = 2n-I ,V®R[Z I/2] can be identified with V" , hence with a 

quotient of V' , the "bilinearization" and the "real part" (K-part) of 

q' are the inverse images in V' of the "forms" a R and qR (with 

obvious notational conventions), and it is easy to verify that the 

projection V' --> V" induces an isomorphism SO(q') ~> G(R) . If 

m = 2n , V@R[Z1/2]can be identified with V',the bilinear form h 
R[Z I/2 ] 

is the inverse image of a' by the projection V' --> V" and, this 

time, the latter induces an isomorphism @(R) -~> Sp(a') . Thus we have 

found again the two isomorphisms obtained earlier in a different way. 

A 
The description of the functor G S associated to an arbitrary 

system S of affine type, i.e. a system satisfying (At) but not 

necessarily (A2) and (A3) now amounts to a combination of extension 
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problems. In particular, when i :~Z.h i , one must define a central 
A 

extension of the above functor G by the multiplicative group-scheme 

mult (I)., this is related to work of C. Moore [Mo2], 

H. Matsumoto [Ma3] and P. Deligne [Dell. Note that if, with the notation 

used throughout this appendix, we assume e = I , we denote by Sad 

the system obtained in the same way as S but replacing A by the 

dual of the lattice of roots and by @ad the split adjoint group-scheme 
A 

of the same type as G , then the functor GSa d is not equal to 

R ~--> Gad(R((Z))) in general; for instance, ~Sad(~) is the image of 

the canonical map 

G(C((Z))) --> @ad(C((Z))) , 

whose cokernel is isomorphic to the center of G . 

(1)As P. Deligne pointed out to me, the word "extension" must be under- 
stood here in a "schematic sense"; one should not expect the extension 
map to be surjective for rational points over an arbitrary ring R . 
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MODULAR POINTS, MODULAR CURVES, MODULAR SURFACES AND MODULAR FORMS 
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College Park, MD 20742 
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D-5300 Bonn, FRG 

This talk, instead of being a survey, will concentrate on a single 

example, using it to illustrate two themes, each of which has been a 

leitmotif of much recent work in number theory and of much of the work 

reported on at this Arbeitstagung (lectures of Faltings, Manin, Lang, 

Mazur-Soul6, Harder). These themes are: 

i) special values of L-series as reflecting geometrical relation- 

ships, and 

ii) the analogy and interplay between classical algebraic geometry 

over ~ and algebraic geometry (in one dimension lower) over 

Z, and more especially between the theory of complex surfaces 

and the theory of arithmetic surfaces ~ la Arakelov-Faltings. 

In particular, we will see that there is an intimate relation- 

ship between the positions of modular curves in the homology 

groups of modular surfaces and the positions of modular points 

in the Mordell-Weil groups of the Jacobians of modular curves. 

The particular example we will treat is the elliptic curve E 

defined by the diophantine equation 

y(y - i) = (x + l)x(x - i) ; (I) 

most of what we have to say applies in much greater generality, but 

by concentrating on one example we will be able to simplify or sharpen 

many statements and make the essential points emerge more clearly. 

The exposition has been divided into two parts. In the first 

(§§1-5), which is entirely expository, we describe various theorems 

and conjectures on elliptic and modular curves, always centering our 

discussion on the example (i). In particular, we explain how one can 

construct infinitely many rational solutions of (i) by a construction 

due to Heegner and Birch, and how a result of Gross and the author 

and one of Waldspurger lead one to surmise a relationship between 

these solutions and the coefficients of a modular form of half-integral 

weight. The second part (§§6-9) is devoted to a proof of this relation- 

ship. 

I would like to thank G. van der Geer and B. Gross for useful 

discussions on some of the material in this talk. 
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I. The elliptic curve E and its L-series. 

Multiplying bo~h sides of (i) by 4 and adding 1 we obtain the 

Weierstrass form 

2 
Yl = 4x3 4x + i (Yl = 2y - i); (2) 

from this one calculates that the curve E has discriminant A = 37 

and j-invariant j = 21233/37. Of course, (i) and (2) are affine 

equations and we should really work with the projective equations 

2 2 3 2 2 4x 3 4xz 2 + z 3 whose points are the y z - yz = x - xz and yl z = - 

points of (i) or (2) together with a "point at infinity" (0:i:0). The 

points of E over any field k form a group with the point at infinity 

being the origin and the group law defined by P + Q + R = 0 if P,Q,R 

are collinear; the negative of a point (x,y) of (i) or (x,y I) of 

(2) is (x,l-y) or (x,-Yl) , respectively. In accordance with the 

philosophy of modern geometry, we try to understand E by looking at 

the groups E(k) of k-rational points for various fields ~. 

k = ~ : The set of real solutions of (i) is easily sketched; it 

consists of two components, ~ ~ x ~ ~ and y f x, where ~ = -1.107..., 

= 0.2695 .... y = 0.8395... are the roots of 4x 3 - 4x + 1 = 0 (the 

group E(~ ) is isomorphic to S 1 x ~/2Z). We have the real period 

! S d x  d x  
~i = - 2 - 2.993458644...; (3) 

E ~ Yl /4x3_ 4x+ 1 Y 

the numerical value is obtained by using the formula ~i = ~/M(/7"i, 
Y/~-8), where M(a,b) denotes the arithmetic-geometric mean of Gauss 

= limb for a,b > 0, where {a0,b 0} = {a,b}, (M(a,b) = lira a n n 

a +b 

{an+ I, bn+ I} = {--~-~, n/~n}). 

As well as the real period we have the imaginary period k = ~: 

I Y dx 
~2 = 2 - 2.451389381...i (4) 

6 /4x3-4x+l 

(which can be calculated as i~/M( 8/~/~-~, /y-s)). The set of complex 

points of the (projective) curve E is isomorphic to the complex torus 

C/Z~ 1 + Z~ 2 via the Weierstrass p-function: 
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¢/Ze I + Z~ 2 * E({) 

! 

(Z 
m,n 

p(z) 

p ' (z) +i) , 
z , • (p (z) , 2 

1 ' 1 
= -~+ Z ( 2- 

z m,n (z-m~l-nw 2) 

i 

(m~l+n~02) 2) 

means [ ), which satisfies 
(m,n)~(0,0) 

p.2 = 4p3 - g2 p - P3' 

, ( g2 60 [ ........ 1 4~ 4 oo 
= 4 - ~ i + 240 

m,n (m~l+n~ 2) 3~ 2 n=l 

3 n ) 
.2zin~i/~ 2 : 4, 
e -i 

, ~ 5 
g3 = 140 [ 1 _ 8w6 ( n ) 

m,n (m~l+nw2)[ 27~J2~ 1 - 504 n=l~ e2Zin~i/e2-1 =-I. 

k = ~: The Mordell-Weil group E(~) is infinite cyclic with generator 

P0 = (0,0), the first few multiples being 

15 
2P 0 = (l,0), 3P 0 = (-i,i), 4P 0 = (2,3), 5P0=(~,~), 6P 0 = (6,-14) 

and their negatives -(x,y) = (x,l-y). If we write nP 0 as (Xn,Y n) 

and x n as Nn/D n with (Nn,D n) = i, then 

log max(INnl , IDnl ) r~ cn 2 (Inl _~ ~) 

with a certain positive constant c (in other words, the number of 

solutions of (i) for which x has numerator and denominator less than 

B is asymptotic to 2c-i/2(iog B) I/2 as B + co). This constant is 

called the height of P0 and denoted h(P0) ; it can be calculated via 

an algorithm of Tate (cf. [14], [ 2]) as 
co 

h(P 0) = [ 4-i-ilog(l+ 2t. 2- 2t.3+ t.4), 
i=l l 1 1 

where the t i (=l/x2i) are defined inductively by 

t I . . . .  i, ti+ 1 (I + 2ti 2 2ti 3 + ti4)/(4ti 4t'31 + t'4)'i 

and we find the numerical value 

h(P 0) = 0.0511114082... 

Similarly one can define h(P) for any P 6 E(~); clearly 

(5) 

h(nPo) = 
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n2h (P0) . 

k : Z/pZ: Finally, we can look at E over the finite field k = ~/pZ, 

p~37 prime. Here E(k) is a finite group of order N(p) + I, where 

N(p) = #{x,y(mod p) [y2 _ Y ~ x 3 _ x (mod p)}. 

We combine the information contained in all these numbers into the 

L-series 

LE(S) = II 1 1 (6) 
pfi37 l+ N P)-P+~s i+ 

P P 

1 

37 s 

the special behavior of 37 is due to the fact that A ~ 0 (mod 37), 

so that the reduction of E over Z/37Z is singular. Multiplying 

out, we obtain LE(S) as a Dirichlet series 

LE(S ) = [ a(~), (7) 
n=l n 

the first few a(n) being given by 

n Ii~ 2 3 4 5 6 7 8 9 i0 ii 12 13 14 15 
a(n) Ii ~2 ................ -3 2 -2 6 -i 0 6 4 -5 -6 -2 2 

-Z (8) 

Since clearly N(p) S 2p, the product (6) and the sum (7) converge 

absolutely for Re(s) > 2; in fact, IN(p)-pl is less than 2/p 

(Hasse's theorem), so we have absolute convergence for Re(s) > 3/2. 

We will see in §3 that LE(S) extends to an entire function of s 

and satisfies the functional equation 

LE(S) := (2~)-s37s/2F(S)LE(S) = -LE(2-S); (9) 

in particular, LE(S) vanishes at s = i. The Birch-Swinnerton-Dyer 

conjecture relates the invariants of E over ~ , ~ and Z/p~ 

by predicting that 

ords= 1 LE(S) = rk E(~) = 1 

and that 

d 
d--s LE(S) [s=l = 2h(P0)'~I'S 

(i0) 

with a certain positive integer S which is supposed to be the order 

of the mysterious Shafarevich-Tate group ]]I. Since the finiteness of 
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iLL is not known (for E or any other elliptic curve), this last 

statement cannot be checked. However, L~(1) can be computed numer- 

ically (cf. §3), and its value 0.3059997738... strongly suggests 

(cf. (3), (5)) the equation 

L~(1) = 2h(P0)w I, (Ii) 

i.e. (i0) with S = I; the truth of this equation follows from equation 

(18) below. 

2. Twists of LE; the numbers A(d) . 

Let p be a prime congruent to 3 (mod 4) which is a quadratic 

residue of 37 and consider the "twisted" L-series 

L E p(S) = ~ (~) a(~) (12) 
' n=l n 

((~) = Legendre symbol). The proof of the analytic continuation of 

will also show that each LE, p continues analytically and has a L E 
functional equation under s ~ 2-s. Now, however, the sign of the 

functional equation is +, so we can consider the value (rather than 

the derivative) of L E at s = i, and here one can show that 
,P 

2w 2 
= ~ A(p) LE'p(1) i/p 

with ~2 as in (4) and some integer A(p). The value LE,p(1) can 

be calculated numerically by the rapidly convergent series LE,p(1) = 

2 [ (~) a(n) e -2~n/p 3/~ (cf. §4) so we can compute A(p) for small 
n=l P n 

p. The first few values turn out to be 

p } 3 7 ii 47 67 71 83 107 127 139 151 211 223 (13) 
A(p) 1 1 1 1 36 1 1 '0 1 0 4 9 9 " 

More generally, LE,d(S) can be defined for all d satisfying (~7)=I, 

-d = discriminant of an imaginary quadratic field K (just replace 

(~) in (12) by (~), the mirichlet character associated to K/~), 

and we still have 

2e2 A(d) (14) 
LE,d(1) - 

i/J 

for some A(d) 6 Z; the first few values not in (13) are 
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d 4 40 84 95 104 IiI 115 120 123 136 148 
A(d) 1 4 ................... 1 ..... 0 0 1 36 4 9 16 9 (15) 

The most striking thing about the values in (13) and (15) is that they 

are all squares. This is easily understood from the Birch-Swinnerton- 

Dyer conjecture: the Dirichlet series LE, d is just the L-series of 

the "twisted" elliptic curve 

E<d>: -dy 2 = 4x 3 - 4x + i, (16) 

E<d> has a rational point of so A(d) should be either 0 (if 

infinite order) or (if E<d>(~) is finite) the order of the Shafare- 

vich-Tate group of E<d> and hence a perfect square (since this group, 

if finite, has a non-degenerate (~/~)-valued alternating form). 

Surprisingly, even though we are far from knowing the Birch-Swinnerton- 

Dyer conjecture or the finiteness of lll(E<d>), we can prove that A(d) 

is a square for all d, and in fact prove it in two different ways: 

On the one hand, a theorem of Waldspurger leads to the formula 

2 
A(d) = c(d) , (17) 

is the d th Fourier coefficient of a certain modular 

On the other hand, a theorem of Gross and myself 

where c(d) (c Z) 
3 

form of weight ~. 

gives the formula 

4Wl~ 2 
, - h(Pd) (18) LE(1)LE'd(1) i/d 

for a certain explicitly constructed point ("Heegner point") Pd in 

E(Q); writing Pd as b(d) times the generator P0 of E(~) and 

comparing equation (18) with (14) and (ii), we obtain 

A(d) = b(d) 2 (19) 

We thus have two canonically given square roots b(d) and c(d) of 

the integer A(d), and the question arises whether they are equal. 

The object of this paper is to give a geometrical proof of the fact 

that this is so. First, however, we must define b(d) and c(d) more 

precisely, and for this we need the modular description of the elliptic 

curve E, to which we now turn. 

3. The modular curve E. 

The essential fact about the elliptic curve E is that it is a 

modular curve. More precisely, let F be the subgroup of SL2(~) 
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generated by the group 

F0(37 ) = {(2 ~)6 SL2(Z) Ic H 0 (mod 37)} 

0 -1/3/]7, 
and the matrix w37 = ( 3/~7 0 J" This group acts on the upper half- 

plane ~ in the usual way and the quotient ~/F can be compactified 

by the addition of a single cusp ~ to give a smooth complex 

curve of genus i. We claim that this curve is isomorphic to E({) ; 

more precisely, there is a (unique) isomorphism 

~/F O {~}  >~ E(C) (20) 

sending ~ to 0 (E(~) and such that the pull-back of the canonical 
dx dx 

differential ~ - Yl is -2~if(T)dT, where 

2~iT) f(T) = q-2q2-3q3+2q4-2q5+6g6-q7+6q9+... (q = e (21) 

is the unique normalized cusp form of weight 2 on F, i.e. the 

unique holomorphic function f on ~ satisfying 

.at+b. b 
ftc--~) = (cT+d) 2f(T) (T ~ ~,(~ d ) 6 F) (22) 

and f(T) = q + O(q 2) as Im(T) + ~. This claim is simply the asser- 

tion of the Weil-Taniyama conjecture for the elliptic curve under con- 

sideration, and it is well-known to specialists that the Weil-Taniyama 

conjecture can be checked by a finite computation for any given elliptic 

curve; moreover, the particular curve E was treated in detail by 

Mazur and Swinnerton-Dyer in [ii]. Nevertheless, for the benefit of 

the reader who has never seen an example of a modular parametrization 

worked out, we will give the details of the proof of (20); our treat- 

ment is somewhat different from that in [Ii] and may make it clearer 

that the algorithm used would apply equally well to any elliptic curve. 

The reader who is acquainted with the construction or who is willing 

to take (20) on faith can skip the rest of this section. 

We have two quite different descriptions of the isomorphism (20), 

depending whether we use the algebraic model (i) or the analytic 

model {/~i + Z~2 for E(f). We start with the algebraic model. The 

problem is then to show the existence of two 

phic functions ~(T) and n(T) satisfying 

2 3 
q(T) - ~(T) = ~(T) - ~(T), -2~if(T) 

F-invariant and holomor- 

~' (~) 
2q(T)-I 

(23) 

dx 
(this gives a map as in (20) with the right pull-back of 2--~L~; that 
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it is an isomorphism is then easily checked). Equations (23) imply 

that ~ and n have poles of order 2 and 3, respectively, at ~, 

and recursively determine all coefficients of their Laurent expansions. 

Calculating out to 9 terms, we see that these expansions must begin 

{(T) = q-2+2q-l+5+9q+18q2+29q3+51q4+82q5+131q 6+ .... 
(24) 

~(T) = q-3+3q-2+9g-t+21+46q+92q2+t80q3+329q4+593q 5+-.- 

So far we have not used the fact that f is a modular form on F; 

we could have taken any power series f(T) = q+... and uniquely solved 

(23) to get Laurent series ~(T) = q-2+..., ~(T) = q-3+... However, 

since ~ and ~ are supposed to be F-invariant functions with no 

poles in ~, and since f is a modular form of weight 2, the two 

functions f4 = f2~ and f6 = f3~ must be holomorphic modular forms 

on ? of weight 4 and 6, respectively. But the space Mk(F) of 

modular forms of weight k on F is finite-dimensional for any k 

and one can obtain a basis for it by an algorithmic procedure (e.g., 

using the Eichler-Selberg trace formulas, but we will find a shortcut 

here), so we can identify f4 and f6 from the beginnings of their 

Fourier expansions. Once one has candidates f4 and f6' one defines 

= f4/f 2 and ~ = f6/f3; these are then automatically modular func- 

tions on F, and the verification of (23) reduces to the verification 

of the two formulae 

_ , _ i ' ff~) (25) f62 f6f3 = f43 f4f4 f(2f 6 _ f3) 2~i(2f4f _ , 

which are identities between modular forms on F (of weights 12 and 

8, respectively) and hence can be proved by checking finitely many 

terms of the Fourier expansions. In our case the dimension of Mk(F) 

equals [5k] 6 + 3[ ] for k > 0, k even, so M2(F) is generated by 

f while M4(F) and M6(F) have dimension 6 and 8, respectively. 

However, we will be able to identify f4 and f6 without calculating 

bases for these spaces. The space M2(F0(37)) is the direct sum of 

M2(?) = ~f and the 2-dimensional space of modular forms F of weight 
1 2 on F0(37) satisfying F(-~-~) = -37T2F(T). AS a basis of this 

latter space we can choose the theta-series 

@(T) = [ qQ(a,b,c,d) = l+2q+2q2+4q3+2q4+4q5+Sq6+4q7+10qS+... , 

a,b,c,d6~ 

Q(a,b,c,d) = ~(4b+c-2d) + (2a+c+d) 2 2 

2 = a + 2b 2 + 5c 2 + 10d 2 + ac + ad+ bc- 2bd 
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and the cusp form 

1 - 
h(T) : ~@(~) - ~E2(T) 7 = q + q3 _ 2q4 _ q +... , 

3 dqnd where E2(T) = ~ + [ is an Eisenstein series. 
d,n>0 
3V}d 

tions f2, @2, @h and h 2 lie in the space 

The four func- 

U = {F 6 M4(F) lordT=A(F) c 2, ordT=B(F ~ 4}, 

where A and B are the fixed points in ~/F0(37) of order 2 and 3, 

respectively, because any function in M2(F0(37)) must vanish at A 

and vanish doubly at B. For the same reason, f4 = f2 lies in U 

(recall that ~ has no poles in ~) ; and since U has codimension 

2 in M4(F) (a general function in M4(F) satisfies OrdAF = 2r, 

OrdBF = 3s+l for some r,s a 0), these five functions must be linearly 

dependent. Looking at the first few Fourier coefficients, we find 

that f4 must be given by 

As to f6' we observe that the function 

@ (T) = ~(T)2/~(37T) 2 + 37~(37T)2/n(T) 

is F-invariant and holomorphic in ~' and has a triple pole at ~, 

so must be a linear combination of ~,~ and i; looking at the first 

few Fourier coefficients we find that ~ = ~ - 55 + 6, so f6 must 

be ~f3 + 5f4f _ 6f 3. As explained above, once we have our candidates 

f4 and f6 it is a finite computation to check (25) and thus establish 
2 

that T ~ (f4(T)f(T) : f6(T) : f(T) 3) maps ~/F U {~} to E(~) c ~ (~) 

as claimed. 

For the second description of the map (20), we define a function 

@:~ ÷ ~ by 

~(T) = 2~i f(~')dT' = _ q+ q2 + q3 -~ql 4 +5q2 5 - ... . (26) 

Y 

.aT+b. 
From @' = -2~if and (22) it follows that the difference ¢~c--~-~J-%(T) 

ab 
is a constant for all Y = (c d ) 6 F. Call this constant C(y); clearly 

C:F ÷ ¢ is a homomorphism. The theory of Eichler-Shimura implies 

that the image i = C(F) is a lattice in { with g2(i) and g3(A) 

rational integers. Since we can calculate @(T) and hence C(y) 
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numerically (the series in (26) converges rapidly), we can calculate a 

basis of i numerically and get g2 and g3 exactly. The result 

g2 = 4, g3 = -i shows that i is the lattice ~w I + Zw 2 of §i, and 

the identity ¢(yT) - ~(T) = C(Y) shows that ~ ~ {/i factors 

through F. We thus obtain a map ~/F-~E({) = f/i such that the 

pull-back ¢*(dz) equals -2zif(T)dT, as asserted. In practice, it 

is easier to calculate the image in E of a particular point T 6 

by using (26) and reducing modulo i than by using the first descrip- 

tion of the map (20). 

4. Modular forms attached to E 

The most important consequence of the modular description of the 

elliptic curve E is that the L-series of E equals the L-series of 

the modular form f, i.e. that the numbers a(n) in (7) are precisely 

the Fourier coefficients in (21). This follows from the Eichler- 

Shimura theory (cf. [13]). As a consequence, the function LE defined 

in (9) has the integral representation 

LE(S ) f tS-ldt f(it) (ts-i tl-S)dt, 
3~7 3~7 

0 1 

from which the analytic continuation and functional equation are obvi- 

ous. Differentiating and setting s = 1 we find 

foo oo 
/~7 L{(1) ~ (i) = 2 it) ~-~ = L~ f( log t dt = 2 [ a(n)G(2zn), 

3/77 n=l 3/~7 
1 

with 

I I i eiU d u G(x) = e-Xtlog t dt = ¢ 
U 

1 x 

and since there are well-known expansions for G(x), this can be used 
! 

to calculate LE(1) = 0.30599... to any desired degree of accuracy, 

as mentioned in §i. Similarly, if -d is the discriminant of an 

imaginary quadratic field in which 37 splits, then the "twisted" form 

f*(~) = [(--~d)a(n)qn-- is a cusp form of weight 2 and level 37d 2 satisfy- 
n 2 22, 

ing f*(-i/37d T) = -37d T f (T), so 

(.co . 

LE,d(S) := (2~)-s37s/2dSF(s)LE d(S) = ] f*(~) (ts-l+ tl-s) dt, 
' / 

1 

from which we deduce the functional equation LE,d(S) = LE,d(2-s and 
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the formula LE,d(1) = 2 ~ (~)a(n) e-2Zn/d 3/37 mentioned in §2. 
n=l 

In particular, we can calculate the numbers Aid) defined by (14) 

approximately and hence, since they are integers, exactly. 

The other modular form which will be important to us is the form 

of weight 3/2 associated to f under Shimura's correspondence. 

Around ten years ago, Shimura [12] discovered a relationship between 

modular forms of arbitrary even weight 2k and modular forms of half- 

integral weight k + 1/2. This was studied subsequently by many other 

authors. In particular, Kohnen (in [ 8] for forms of level 1 and in 

[ 9] for forms of odd squarefree level) showed how Shimura's theory 

could be refined by imposing congruence conditions modulo 4 on the 

Fourier expansion so as to get a perfect correspondence between appro- 

priate spaces of forms of weights 2k and k+ 1/2. The result in the 

case k = 1 and prime level is the following ([ 9], Theorem 2) : 

T h e o r e m  1 ( S h i m u r a ;  K o h n e n ) .  F o r  N p r i m e  a n d  s e { i l }  l e t  $ 3 / 2  

denote the space of all functions g(T) satisfying 
i) g(T)/8(T) 3 n2 , where @(T) is the standard theta-series [ q , 

n6Z 
is invariant under F0(4N) ; 

ii) g(T) has a Fourier development ~ c(d)q d with c(d) = 0 
d>0 

if -d - 2 o__rr 3 (rood 4) or (~) = -~. 

Let S2(F0(N) ) denote the space o_ff cusp forms o_~f weigh_______tt 2 o__nn F0(N) 

satisfying f(-I/NT) = sNT2f(T) . Then dim $3/2(N) = dim $2(0(N)) 

and for each Hecke eigenform f = [a(n)q n e S~(F0(N)) there is a l- 

dimensional space of g • S~/2(N) whose Fourier coefficients are re- 

lated to those of f b_yy 

~ _ _ 2  
a(n) c(d) = [ (~)c(~d 2 ) (ne~ , -d a fundamental disorim- ( 2 7 )  

rln r inant). 
r>0 

In our case N = 37, e = +i and the space $2(F0(37)) is one- 

dimensional, spanned by the function f of (21). Theorem 1 therefore 

asserts that there is a unique function 

2~idT 
g(~) = ~ c(d)e 

d>0 
-d ~ 0 or l(mod 4) 
(-d/37) = 0 or 1 

such that g(T)/e(T) 3 is F0(148)-invariant and the Fourier coeffi- 

cients c(d) (normalized, say, by c(3) = i) satisfy (27). It is not 

an entirely trivial matter to calculate these coefficients; a method 
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for doing so, and a table up to d = 250, were given in [ 3, pp. i18- 

120, 145] in connection with the theory of "Jacobi forms-" We give 

a short table: 

d 3 4 7 ii 12 16 27 28 36 40 44 47 48 63 64 67 71 75 83 ... 148 

c(d) 1 1 ~ 1 -i -2 -3 3 -2 2 -i -i 0 2 2 6 1 -i -i ... -3 
(28) 

We now come to the theorem of Waldspurger [15], mentioned in §2, 

which relates these coefficients to the values at s = 1 of the twisted 

L-series LE,d(S). Again we need a refinement due to Kohnen [i0, Theo- 

rem 3, Cor. i] which gives a precise and simple identity in the situa- 

tion of Theorem I: 

S(Fo(N)), g = Theorem 2 (Waldspurger; Kohnen). Let f = ~a(n)q n e S 2 

~c (d) qd t e $3/2(N) correspond as in Theorem i. Let -d be a funda- 

mental discriminant with (~) = 0 __°r s and let Lf,d(S) be the 

associated convolution L-series [(~)a(n)n -s. Then 

Lf,d(1) 3z I]flI2 Ic(d) 12 = (29) 
IIgJl 2 /~ 

where 

rlfJi = I If( )12dudv' NgH2 =I Lg( )12v-1/2dudv (3O) 

~/F0(N 1 ~/F0(4N) (T = u + iv) 

are the norms of f and g in the Petersson metric. (Note that the 

identity is independent of the choice of g, since replacing g by 

Ig (I e ~*) multiplies both l;glI* and Ic(d) I 2 by 11[ 2.) 

Actually, the exact coefficient in (29) is not too relevant to us, 

for knowing that Lf,d(1) is a fixed multiple of c(d) 2//d implies 

that the numbers A(d) defined by (14) are proportional to c(d) 2, 
2 

and calculating A(3) = c(3) = 1 we deduce (17). Then going back 

and substituting (17) and (14) into (29) we deduce 3~]IfIl2/;]g]! 2 = 2~2/i. 

we now show (since the result will be needed later) that 

Ilfll 2 = ~i~2/2~2i, (31) 

it then follows that IIgl] 2 = 3~i/4~. To prove (31), we recall from 

§3 that there is an isomorphism @ from ~/F U {~} to E(~) = ~/A 

with @*(dz) = 2~if(T)dT. Since IF:F0(37)] = 2 we have 
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2~211f!I 2 = 4~ 2 / If(T) 12dudv = I l-2nif(T) 12dudv 
] 

dx dy = ~iw2/i 
J 

{/A 

as claimed. 

5. Heeqner points on E 

In this section we describe a construction which associates to 

each integer d > 0 a point Pd e E(~). These are the "modular 

points" of the title, since their construction depends on the modular 

description of E given in §3. 

We assume first that -d is a fundamental discriminant, i.e. the 

discriminant of an imaginary quadratic field K. We consider points 

b+i/d 
T e .]( of the form '< - with 

2a 

a,b { Z, a > 0, 371a, b °" - -d (mod 4a). (32) 

-d 
If (~7) = -i, there are no such T and we set Pd = 0; otherwise 

the set of ~ is invariant under F and there are h distinct points 

71,...,Th modulo the action of F, where h = h(-d) is the class 

number of K. The theory of complex multiplication shows that these 

points are individually defined over a finite extension H of 

(the Hilbert class field of K) and collectively over @ (i.e. their 

images in ~6/F are permuted by the action of the Galois group of H 

over ~). Hence the sum ~(T I) +...+ ~(Th) , where ~:~{/F ÷ E(~) is 

the map constructed in §3, is in E(~). Moreover this sum is divis- 
1 

ible by u, where u is ~ the number of units of K (= 1,2 or 3) 

if 37~d and u = 2 if 371d ; this is because each point 7j ~ 

is the fixed point of an element of F of order u. We define 

Pd e E(~) by 

h 
up d = [ ~(~j) ; (33) 

j=l 

this is well-defined because E(~) is torsion-free. If d is not 

0 the same way but with the extra condition fundamental, we define Pd 
, b2+d, 

(a,D,--~) = 1 in (32) (now h(-d) is the class number of a certain 

non-maximal order of K, and the points ~l,...,Th ~ ~/F are defined 

over the corresponding ring class field), and then set Pd = ~ dPd/e 2" 
el 

The definition of Pd just given is a special case of a construc- 
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tion due to Heegner and Birch (cf. [i]) and in general would yield 

rational points in the Jacobian of X0(N)/w N (X0(N) : XU(cusps)/F0(}~)). 

From a modular point of view, a point T e ~/F0(N)/w N classifies 

isomorphism classes of unordered pairs of N-isogenous elliptic curves 

{EI,E 2} over { (namely E 1 = {/~+ZT, E 2 = {/~+N2Z<, with the isogenies 

E 1 + E2, E 2 + E 1 induced by N.id~ and id{, respectively), and the 

points ~l,...,Th correspond to those with complex multiplication by 

an order @ of ~(_/L-~) (namely E 1 = ~/~, E 2 = ~/~, where ~ = ~+~< 

is a fractional @-ideal and n an intergral O-ideal of norm N). A 

general formula for the heights of these "Heegner points" was proved 

recently by B. Gross and myself [ 4]; the result in our special case 

becomes 

Theorem 3(Gross-Zagier) : Suppose -d is a fundamental discriminant 

with (~7) = 1 and let Pd c E(~) be the point defined by (32). Then 

the height of Pd is given by 

/£ 
- Li(1) (i) h(P d) LE, d • 

8~2prfH 2 

(To get this statement from [ 4], take X = 1 in Theorem 2 there, 

noting that vf, 1 = uP d and L(f,l,s) = LE(S)LE,d(S) ; the height 

in [ 4] is one-half that on E because it is calculated on X0(37) 

which is a double cover of E.) 

In view of equation (31), Theorem 3 is equivalent to the formula 

(18) given in §2. As explained there, this formula gives both equation 
! (i0) for LE(1) and the relationship (19) between A(d) and the 

integers b(d) defined by Pd = b(d)P0" The equality b(d) 2 = c(d) 2 

suggested comparing the values of b(d) and c(d). Note that the 

numbers b(d) are numerically calculable: one finds the h F-ineguiv- 

alent solutions of (32) by reduction theory, computes the corresponding 

.b+i/d. 
values %[--~---] by (26), adds the resulting complex numbers; modulo 

i = Z~I+Z~2 , the result must be a multiple of the point 
1 

P0 = -.92959... + 2~2" Thus for d : 67 we have h = 1 and 

P67 = % ( ~ )  = .40936... s 6P0(mod i), 

so b(67) = 6; for d = 83 we have h = 3, 

55+i8<~, 19+i~, ~) = (.5~i . + 1.225...i) 
P83 = 9[ 22-2----; + %( 7q~ ---) + %(55+ 

+ (.194... - .570...i) + (.194... + .570...i) ~ -Po(mod i), 
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so b(83) = -1; for d = 148 we have h = 2, 

2P148  = ~(  ) + <b( 7 + = . 1 9 1 8 9 . . .  - . 6 0 1 2 5 . . .  5 - 6 P 0 ( m o d  A ) ,  
/ 3 7  

s o  b ( 1 4 8 )  = - 3 .  I n  t h i s  w a y  o n e  c a n  m a k e  a t a b l e  o f  t h e  m u l t i p l e s  

b ( d ) .  S u c h  a t a b l e  ( u p  t o  d = 1 5 0 )  w a s  c o m p u t e d  b y  B.  G r o s s  a n d  

J .  B u h l e r ,  w h i l e  I w a s  i n d e p e n d e n t l y  c o m p u t i n g  t h e  F o u r i e r  c o e f f i c i e n t s  

c(d) by the method mentioned in §4; the letter with their data 

arrived in Germany on the very morning that I had completed my com- 

putations and drafted a letter to them, and the perfect agreement of 

the two tables gave ample reason to conjecture the followin~: 

Theorem 4. b(d) = c(d) for all d. 

The remainder of this paper is devoted to the proof of this result. 

6. Curves on Hilbert modular surfaces 

In view of the uniqueness{ clause in Theorem i, what we need to do 

to prove Theorem 4 is simply to show that ~ b(d)q d belongs to 
+ 

S3/2(37), i.e. that the positions of the Heegner points in the Mordell- 

Weil group of E are the Fourier coefficients of a modular form of 

weight 3/2. This statement is reminiscent of a theorem of Hirzebruch 

and the author [ 7] according to which the positions of certain modular 

curves in the homology group of a modular surface are the Fourier co- 

efficients of a modular form of weight 2. Since this result is not only 

very analogous to the one we want, but will actually be used to prove 

it, we recall the exact statement. 

Let p be a prime congruent to 

be the ring of integers in ~(/p). 

group) acts on ~C × 7C bv 

(a~l+b a'T2+b' 
Mo(TI,<2) = c~1+d' c'<2+d ') 

1 (mod 4) 

The group 

and let 0 = ~ +~l+/P 
2 

PSL2(O) (Hilbert modular 

(M !(ca b) PSL2 = ~ ( ( 0 ) ,  ' ~ , ~ 2  ~ ~ ) ,  

where ' denotes conjugation in Q(/p)/~. The quotient ~ × ~/SL2(@) 

can be naturally compactified by the addition of finitely many points 

("cusps"), and when the singularities thus introduced are resolved by 

cyclic configurations of rational curves according to Hirzebruch's 

recipe [ 6] the resulting surface Y = Y is a nearly smooth compact 
P 

algebraic surface (it still has quotient singularities coming from the 

points in ~£ × ~' with a non-trivial isotropy group in PSL2(O), so 

it is a rational homology manifold or "V-manifold"). The middle homo- 

logy of Y splits as 
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c 
H2(Y ) = H2(Y ) ~ <Sl> ~...~ <Sr> , (34) 

where SI,...,S r are (the homology classes of) the curves used in the 

resolutions of the cusp singularities and H~(Y) consists of homology 

classes orthogonal to the Sj; the homology groups in (34) are taken 

with coefficients in Q. 

For each integer N > 0 there is an algebraic curve T N c y 

defined as follows. Consider all equations 

ATIT2 + % %' 

with A,B c Z, % e @, and %%' + ABp = N. Each one defines a curve in 

× ~ isomorphic to ~ and the union of these curves is invariant 

under SL2(O); T N is defined as closure in Y of the image of this 
N) = 

union in ~ x ~/SL2(O ) . If (~ -I, there are no solutions of 

%%' + ABp = N and T N is empty. If (~) = +i then T N is irreduc- 

ible (all equations (35) are equivalent under PSL2(e)) and isomorphic 

to the modular curve X0(N). The main result of [ 7] is 

Theorem 5 (Hirzebruch-Zagier). Let [T~] denote the projection t__oo 
c 

H2(Y) of the homology class of T N in the splitting (34). Then the 

power series ~ - c~ 2~iNT [TN]e is a modular form of weight 2, level p 
N=l 

and Nebentypus (~). 

Here "modular form of weight 2, level p and Nebentypus" means a 

F taT+b" = (~) (cT+d) 2F(T) for modular form F(T) satisfying ,c~) 

a b) (c d £ F0(p); when we say that a power series with coefficicents in 

H~(Y) is such a form we mean that each component (with respect to a 

basis of H~(Y) over ~) is. Alternatively, if [X] is any homology 

class in H2(Y) , then the power series [(XoT~)~ ~iNr , where (XoT~) 

denotes the intersection pairing of IX] and [T~], is a modular 

form of the specified type, now with ordinary numerical Fourier coeffic- 

ients. In particular, this is true for X = T M, one of our special 

curves on Y. In fact the proof of Theorem 5 in [ 7] consisted in 

calculating the intersection numbers (TMoT ~) explicitly and showing 

that they were the Fourier coefficients of a modular form. The formula 

obtained for (TMOT~), in the case when N and M are coprime, was 
2 

o c (4NM-x) (MN) (36) 
(T M T N) = [ H ---7--- + Ip 

X2<4NM 
2 

x ~4NM(mod p) 
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where 

H(d) = [ h' (-d/e 2) 

e 2 [d 

(h'(-d) = h(-d) for d > 4, h' (-3) = 1/3, h' (-4) = 1/2) and I (n) 
P 

is a certain arithmetical function whose definition we do not repeat. 

The proof of (36) was geometrical: the physical intersection points 

of T M and T N in X × ~/PSL2(~ ) are in i:I correspondence with 

certain equivalence classes of binary quadratic forms and are counted 

by the first term in (36), while the term Ip(MN) counts the inter- 

section points of T M and T N at infinity and the intersection of 

T M with the combination of cusp-resolution curves S. which was 
c 3 

removed from T N to get T N. 

7. Heegner points as intersection points of modular curves on modular 

surfaces 

Now suppose that p is a prime satisfying p H 1 (mod 4), (3~7) = i, 

and (for later purposes) p > 2"37, say p = i01. As already mentioned, 

the curve T37 on Yp is in this case isomorphic to X0(37) = 

~U{cusps}/r0(37). For instance, if p = i01 we can get an equation 

(35) for T37 by taking A = B = 0 and I = 21+2 I/~-i, an element of 

0 of norm 37; then the solution of (35) is given parametrically by 

{(IT,I'T), T e ~} and the matrices M e SL2(@) which preserve this 

a bl) with a b set are those of the form (c/l d (c d ) E r0(37), so we get 

a degree 1 map ~/r0(37) ÷ ~ × ~/SL2(@) and hence a map X0(37) ÷ YI01" 

On y we have an extra involution t which is induced by the invol- 
P 

ution (TI,T2) ~ (Tz,T~) of ~ × ~, and this induces the involution 

w37 on T37 = X0(37), so our curve E ~ ~U{cusps}/r can be found on 

the quotient surface Y/t. However, since all T N are invariant under 

t and there is no difference (except a factor of 2) between the inter- 

section theory of l-invariant curves on Y or of their images in 

Y/l, we will continue to work on the surface Y rather than the quo- 

tient surface Y/l, which has a one-dimensional singular locus. 

In §5 we constructed for each d > 0 a set of (i+ -d (~-7)) H (d) points 

in X0(37), namely the set of roots of quadratic equations aT2+bT+c=0 

with b2-4ac=-d and 371a. (If d is of the form 3n 2 or 4n 2 

then H(d) is not an integer and we are using the convention that a 

fixed point of an element of order u in r0(37) is to be counted 
1 

with multiplicity q in ~/r0(37); from now on we will ignore this 

technicality.) Call this set Pd" The point Pd { E(@) was (one- 

half of) the sum of the images of the points of Pd in E. If we 
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worked on X0(37), or on some other X0(M) of higher genus, we would 

have to take the sum in the Jacobian of the curve rather than on the 

curve itself, i.e. Pd would be the point of Jac(X0(M)) represented 

by the divisor Pd - deg(Pd)" (~) of degree 0. 

The geometric content of (36) is that the intersection 

points of T N and T M in X × ~/PSL(0) are the points of Pd for 

148N-x 2 
certain d, namely those of the form - - ,  i.e. 

P 

T37 n T N = O P U D (37) 
txl< 14/Y~Z~ (14SN-x2)/P 

x2~148N (mod p) 

where D is contained in the part of Yp at infinity (resolutions 

of the cusp singularities); here when we write union we of course 

mean for the points to be counted with appropriate multiplicities, i.e. 

we are working with divisors rather than just sets of points. If we 

simply count the points in (37), i.e. replace each Pd by its 

degree, we obtain the numbers (36), and Theorem 5 tells us that these 

are the Fourier coefficients of a modular form of weight 2, level p, 

and Nebentypus (~). If instead we add the points in (37) in the 

Jacobian of T37, i.e. replace each Pd by Pd' then we will 

deduce from this that the corresponding statement holds: 

Proposition: For N > 0 define B(N) 

148N-x 2 
B(N) = ~ b ( - - )  

x2<148N P 

x2Z148N (mod p) 

N 
with b(d) as in §5. Then ZB(N)q 

level p and Nebentypus ( ~ . 

b z 

is a modular form of weight 2, 

Proof. Let M denote the set of all modular forms of the specified 

type, so that Theorem 5 asserts 

~(T~oX)q N ~ M for all [X] ~ H2(Y) . (38) 

The space M is finite-dimensional and has a basis consiting of mod- 

ular forms with rational Fourier coefficients. Hence there is an in- 

finite set R of finite relations over Z defining M, i.e. a set 

R whose elements are sequences 

R = (r0,rl,r 2 .... ), r N ~ Z, r N = 0 for all but finitely many N 
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and such that 

C(N)q N c M ~ ~ rNC(N) = 0 (VR c R). (39) 
N=0 N=0 

(For instance, one could find integers NI,...,N d with d = dim M 
th 

and such that the Nj Fourier coefficients of forms in ~4 are 
J 

linearly independent; then for each N we have a relation C(N) = 
d 

IjC(Nj) with rational numbers ll,...,ld, and we could take for 
j=l 

R the set of these relations, each multiplied by a common denominator.) 

Equation (38) now implies that 

rN(T~oX) = 0 
N=I 

for all R e R, and since this holds for all homology classes X, we 

N c is a linear combination must have [r N[T ] = 0 in H 2(Y,@) . Since T N 

of T and curves S. coming from the cusp resolutions, this means 
n 3 

r co 

[ rN[T N] + [ sj [S~] = 0 (40) 
N=I j =i 3 

in H2(Y,~) for some rational numbers Sl,...,s r. Multiplying by a 

further common denominator we can assume that the s. are also integers ] 
and that the relation (40) holds in integral homology. But the Hilbert 

modular surface Y is known to be simply connected, so the exact 

sequence 

0 = HI(y,0) ÷ HI(y,0 *) ÷ H2(y,z) (0 = structure sheaf of Y) 

induced from 0 ÷ ~ ÷ 0 + 0* + 0 shows that any divisor on Y which 

is homologous to 0 is linearly equivalent to 0. Hence the relation 

(39) implies that the divisor [rNT N + ~sjSj is the divisor of a 

meromorphic function on Y, i.e. there is a meromorphic function 

on Y which has a zero or pole of order r N on each T N (resp. sj 

on each Sj) and no other zeros or poles. If we restrict ¢ to T37, 

then it follows that the zeros and poles of # occur at the intersec- 

tion points of T37 with other T N and at the cusps, and in fact 

(by (3S~) that 

divisor of ¢ T37 = [ r N [ P + d 
N{I x2<148N (148N-x2/p) 

x2{148N (mod p) 
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where d is a divisor with support concentrated at the cusps. Take 

the image in E, observing that the cusps map to 0, and add the points 

obtained; since the points of a principal divisor sum to zero and the 

points of Pd sum to b(d)P0, we deduce [rNB(N) = 0 with B(N) as 

in the Proposition. The desired result now follows from equation (39). 

8. Completion of the proof 

We are now nearly done. For each N > 0 define 

C(N) = ~ c(148N-x2), 
P 

x2<148N 

x2~148N (mod p) 

where c(d) are the Fourier coefficients defined in §4. Then 

G(z) := ~ C(N)q N = [ c(d)q 
N>0 d>0 

xeZ 

pd+x2~0 (mod148) 

(pd+x2)/148 

= g(pz) @ (z)IU148, 

2 th 
where @ = [qX and U is the map which picks out every m coef- 

m 
ficient of a Fourier expansion, i.e. 

1 
%(z) IUm - m j(mod m) 

Since g is a modular form of weight 3/2 and 8 one of weight 1/2, 

and since U maps modular forms to modular forms of the same weight, 
m 

it is clear that G(z) is a modular form of weight 2; a routine cal- 

culation shows that it has level p and Nebentypus (~). Hence both 

G(z) and F(z) = [B(N)q N belong to the finite-dimensional space M. 

Moreover, since b(d) = c(d) for small d by the calculations men- 

tioned in §5, the first Fourier coefficients of F and G agree, and 

this suffices to show F = G. Specifically, with p = i01 the agree- 

ment of c(d) and b(d) for d < 150 implies the agreement of B(N) 

and C(N) for 1 Z N S i00, and this is more than enough to ensure 

that F = G (it would suffice to have agreement up to N = 9). Hence 

B(N) = C(N) for all N. We claim that this implies b(d) = c(d) for 

all d. Indeed, suppose inductively that b(d') = c(d') for all 
-d d' < d. If (7) = -i or -d ~ 2 or 3 (mod 4) then c(d) and b(d) 

are both zero and there is nothing to prove. Otherwise we can find an 
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integer n with 

2 
n E -pd (mod 148), InT ~ 37. 

pd+n 2 
Take N - 148 " Then in the equations 

B(N) = Z b(-148N-x2) , C(N) 
P 

x2<148N 

x2EI48N (mod p) 

148N-x 2 
Z c ( - - )  

P 
X2<I48N 

X2=-I48N (mod p) 

the numbers ±n occur as values of x and all other values of x 

are larger in absolute value because Inl S 37 < ½p by assumption. 

Thus B(N) equals 1 or 2 times b(d) plus a certain linear 

combination of b(d') with d' < d, and C(N) equals the same multiple 

of c(d) plus the same linear combination of lower c(d'), so the 

equality B(N) = C(N) and the inductive assumption b(d') = c(d') 

imply that b(d) = c(d) as desired. 

9. Generalization to other modular curves 

Our exposition so far was simplified by several special properties 

of the elliptic curve E: that it was actually isomorphic to a modular 

curve rather than just covered by one, that its Mordell-Weil group 

had rank one and no torsion, etc. We end the paper by discussing to 

what extent the results proved for E generalize to other curves. 

First, we could replace E by an arbitrary elliptic curve whose 

L-series coincides with the L-series of a modular form f of weight 

some (say, prime) level N, with f(-~)-- = NT2f(T). Then we 2 and 

would again have a covering map %:X0(N)/w N + E, Heegner points 

Pd E E(~) for all d > 0 (with Pd = 0 if -d ~ 0 (rood 4N) ) , and 

a relationship c(d) 2 ~ h(P d) for the Fourier coefficients c(d) of 
+ 

a modular form in S3/2(N ) corresponding to f as in Theorem i. We 

could then ask whether all the Pd belong to a one-dimensional sub- 

space <P0 > of E(~)/E(~)tor s and, if so, whether the coefficients 

b(d) defined by Pd = b(d)P0 '{ E(~) ® @ are proportional to the 

Fourier coefficients c(d). More generally, we could forget elliptic 

curves entirely and simply start with a modular curve X0(N) or 

X0(N)/w N (still, say, with N prime). The construction of §5 yields 

Heegner points Pd in the Jacobian of this curve over @. To avoid 

torsion we tensor with ~ and write V = Jac(X0(N)/WN) (~) ~2Z ~" The 

Hecke algebra acts on V the same way as it acts on cusp forms of 

weight 2, so V ~ ~ splits as @f Vf, where the f are Hecke eigen- 
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forms f = [ a(n) g n in M~(F0(N)) (normalized by a(1) = I) and Vf 

is the subs~ace of V ® ~ on which the n th Hecke operator acts as 

multiplication by a(n). For each f we define Pd,f as the compon- 

ent of Pd in Vf. The Fourier coefficients a(n) will be in Z if 

f corresponds to an elliptic curve E defined over @; in that case 

Vf is isomorphic to E(~) ®~ and we are back in the situation de- 

scribed before. In general the a(n) will be integers in an algebraic 

number field Kf c ~, the Fourier coefficients c(d) of the form in 
+ 

S3/2(N) corresponding to f can also be chosen to lie in Kf, and 

the main theorem of [4] combined with Theorem 2 tells us that h(P d f) 
2 

is proportional to c(d) This suggests that the right generalization 

of Theorem 4 is: 

Theorem 6. Let f, c(d) be as above. Then Pd,f = c(d)P0 for all 

d and some P0 ~ Vf. In particular, the projections Pd,f of the 

Heegner points all lie in a one-dimensional subspace o_~f Vf. 

Theorem 6 is equivalent (because of the uniqueness clause in Theorem 

1 and the way the Hecke operators act on Heegner points) to the follow- 

ing apparently weaker theorem: 

Theorem 6' The powe~ series d~0 pdqd __is _a modular form of weight 

3/2 and level N. 

(As with Theorem 5, this means that [ Pd qd ~ V[[q]] belongs to the 
+ 

subspace V ® $3/2(N) or, in more down-to-earth terms, that each 

component of this power series, with respect to a fixed basis of V 

is a modular form in S~/2(N).) over 

How can we prove these theorems? The argument of §§6-7 permits 

us to embed our modular curve in the Hilbert modular surface Y for 
P 

prime p H 1 (mod 4) with (~) = 1 and to prove that the power any 

series 

~ ( ~ P(4NM_x2)/p )q M 
M x2<4NM 

x2~4NM (mod p) 

is a modular form (with coefficients in V) of weight 2, level p and 

Nebentypus. To deduce Theorem 6' we would need the following asser- 

tion: 

Let h(T) b_~e a power series o_~f the form 
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b(d)q d 

d>0 
-d~square (mod 4N) 

with N ~rime, and suppose that the power series 

= ( (4NM-x2)) q M - ~  - 
h(pT) 8 (T){U N [ I b 

M>0 x2<4NM 

X2~4NM(mod p) 

is a modular for_~m of weight 2, level p and Nebentypus (~) for every 

p r i m e  p ~ 1 ( m o d  4) w i t h  ( ) = 1 .  T h e n  h b e l o n g s  t o  S 3 / 2 ( N ) .  

This assertion is extremely likely to be true. The argument of §8 

it -- even if the hypothesis on h(pT)8(T)IU N is made for only proves 

one prime p > 2N -- under the additional assumption that one possesses 

a candidate g = [ c(d)q d e S;/2(N) for h with c(d) = b(d) for 

sufficiently many Values of d. Thus the method of proof we used for 

N = 37 can be used for any other fixed value of N if we do a finite 

amount of computation. To get a general proof of Theorems 6 and 6' 

along these lines one would need either to prove the assertion above 

or else to generalize the geometric proof in some way (perhaps by 

using Hilbert modular surfaces of arbitrary discriminant, for which 

the intersection theory has been worked out by Hausmann [5]). 

In any case, however, we would like to have a proof of Theorem 6 

using only intrinsic properties of the modular curve, rather than its 

geometry as an embedded submanifold of an auxiliary modular surface. 

Such a proof .has been given by B. Gross, W. Kohnen and myself. It is 

a direct generalization of the main result of [4]: instead of a for- 

mula for the height h(P d) of a Heegner point, we give a formula for 

the height pairing (Pd,Pd,) of two Heegner points, where 

( , ) : V × V ÷ ~ is the bilinear form associated to the quadratic 
+ 

form h. The formula implies that ~ (Pd,Pd,)q- belongs to $3/2 (N) 
d>0 

for each discriminant d', and Theorem 6' follows. 

Finally, we mention that the correct generalization of Theorem 4 

to composite levels N should be formulated using the theory of 

"Jacobi forms" developed in [3] rather than the theory of modular 

forms of half-integral weight. This, too, will be carried out in the 

joint work with Kohnen and Gross mentioned above. 
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EIGENVALUES OF THE DIRAC OPERATOR 

Michael Atiyah 
Mathematical Institute 

Oxford OXI 3LB 

§i. The Theorems 

In recent years mathematicians have learnt a great deal from 

physicists and in particular from the work of Edward Witten. In a 

recent preprint [3], Vafa and Witten have proved some striking results 

about the eigenvalues of the Dirac operator, and this talk will present 

their results. I shall concentrate entirely on the mathematical parts 

of their preprint leaving aside the physical interpretation which is 

their main motivation. 

The mathematical context is the following. 

Riemannian spin manifold M of dimension d, 

Dirac operator of M acting on the spin bundle 

We fix a compact 

and denote by D the 

S. In addition if 

we are given a hermitian vector bundle V with a connection A we 

can define the extended Dirac operator: 

D A : S 8 V + S ~ V. 

In terms of an orthonormal basis e of tangent vectors D A is given 
d 3 

locally by E e~V~, where V~ is the covariant derivative in the 
j=l 

3 3 3 

e.-direction and e. acts on spinors by Clifford multiplication. In 
3 3 

particular D A depends on A only in the O-order term, i.e. if 

B is a second connection on V, then D A - D B is a multiplication 

operator not involving derivatives. 

The operator D A is self-adjoint and has discrete eigenvalues 

lj, both positive and negative, which we will suppose indexed by 

increasing absolute value so that 

l~ll ~ i~21 ~ .... 

The questions which Vafa and Witten address themselves to concern 
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the way in which the ~ depend on A (and V) : the metric on M 
3 

is assumed fixed throughout. More precisely they are interested in 

getting uniform upper bounds. The simplest and most basic of their 

results is 

THEOREM I. There is constant C (__depending on M but not on V o__rr 

A), such that I lll _< c. 

More generally there is a uniform estimate for the n-th eigen- 

value: 

THEOREM 2. There is a constant C' 

A o__rr n) such that Ilnl s C'n I/d. 

(depend_ ing qn M but not on V, 

Remarks. i) The asymptotic formula i 
n 

n 1/d is a very general 

result for eigenvalues of elliptic operators, but Theorem 2 is much 

more precise. 

2) Theorem 1 does not hold for the Laplace operator A A of V. To 

see this just consider d = 2 and V to be a line-bundle of constant 

curvature F : then I 1 = IF] ~ ~ with the Chern class of V. This 

emphasizes that the uniformity in Theorems 1 and 2 is with respect to 

the continuous parameter A and also with respect to the discrete 

parameters describing the topological type of V. 

3) The inequalities in Theorems 1 and 2 go in the opposite direction 

to the Kato inequalities for eigenvalues of Laplace type operators. 

This had, in principle, been conjectured by physicists on the grounds 

of Fermion-Boson duality. 

For odd-dimensional manifolds there are even stronger results, 

namely: 

THEOREM i*. If d is odd, there exists a constant C, so that every 

interval of length C, contains an eigenvalue of D A. 
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THEOREM 2*. If d is odd, there exists a constant C~ so that everj 

interval of lengt~ C~n I/d contains n eigenvalues. 

Note that Theorems i* and 2* are definitely false in even 

dimensions. To see this recall that, when d is even, S decomposes 

as S + ~ S- and D A is of the form 

I 
0 A 

(i.i) D A : 

2 = DA + + DA, and the non-zero eigenvalues of the two so that D A D A @ D A 

+ and + factors DAD A D A DA coincide. If V has large positive 

curvature then typically DAD~ will have a zero-eigenvalue of large 

while D~D~ will be a 'large' positive operator. Hence multiplicity 

2 will have a large gap between its O-eigenvalue and its first non- D A 

zero eigenvalue. Moreover this gap tends to infinity with the size 

of the curvature of V. When d = 2 and V is a line-bundle of 

constant curvature it is just the first Chern class of V which 

determines the size of the first gap. 

§2. The even proof 

Although the theorems we have just stated appear purely analytical 

results, involving upper bounds on eigenvalues, it is a r~arkable 

feature of the work of Vafa and Witten that the proofs are essentially 

topological. To understand how this comes about I will consider 

first the case when the dimension d is even. Then, as observed at 

the end of §i, the spinors decompose and D A takes the form given in 

(i.i). In particular a O-eigenvalue of D A arises whenever either 

+ DA has a non-trivial nullspace N A or D A or + NA respectively. 

+ is defined as Next recall that the index of D A 
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+ = dim + - dim NA index D A N A 

+ forces D to have a so that a non-zero value for index D A A 

+ is a purely topological O-eigenvalue. On the other hand index D A 

invariant, given by an explicit formula [i] involving characteristic 

cohomology classes of V and M. Hence, whenever the index, 

computed topologically, is non-zero we have a O-eigenvalue for D A 

(for all connections A on the given bundle V) and so trivially 

Theorem 1 holds. 

For d even Theorem 1 therefore has significant content only for 

those bundles V for which the index formula gives zero. To treat 

these the key idea is now the following. Suppose we can find a 

connection A on V so that 
o 

(i) D A has a O-eigenvalue. 
o 

(ii) IIDA- DA II ~ C 
o 

then it will follow that the smallest eigenvalue of D A does not 

exceed C. Now we cannot actually find such a connection on V 

itself but we can find one on some multiple NV = V ~ C N of V, and 

this will do equally well since the only effect of taking multiple 

copies of D A is to increase the multiplicity of each eigenvalue. 

We now proceed as follows. First choose a bundle W' so that 

the index of D + on S + ~ V ~ W' is non-zero. From the index 

+ 
formula (and the assumption that the index of D on S ® V is 

zero) it is enough to take W' to be the pull-back to }4 of a 

generating bundle on S 2d (i.e. with C2d : (d - I)!) by a map 

M ÷ S 2d of degree i: this makes the index equal to dim V. Thus 

for any connection B' on W' (which combines with A to give a 

+ has a non-zero connection say A' on V ® W') the operator DA~ 

index. Hence DA, has a zero-eigenvalue. 
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Next choose an orthogonal complement W" 

so that 

(2.1) W' @ W" --- M × C N 

and fix a connection B" on W" 

connection A" on V ~ W"). 

to W', i.e. a bundle 

(defining, together with A, a 

The operator 

DA,~A,, = DA, ~ DA,, 

still of course has a zero-eigenvalue (since DA, 

other hand A = A' @ A" is a connection on 
o 

V ~ (W' ~ W") = V ~ C N = NV 

and so can be compared with the connection NA 

the isomorphism (2.1)). 

we find 

has). On the 

(once we have fixed 

Comparing the corresponding Dirac operators 

(2.2) D A - DNA = B 
o 

where B is the matrix valued 1-form which describes the connection 

B' ~ B" in the trivialization given by (2.1). Since B is quite 

independent of V and A we get a uniform constant C = [IBII and 

this completes the proof of Theorem 1 in the even case. 

Note that the simple formula (2.2), which is essential for the 

proof, depends on the fact that the highest order part of D A is 

independent of A. 

To prove Theorem 2 (for even d) we proceed in a similar manner 

but this time we pull back the bundle W' (and its complement W") 

from S d by using maps of degree n. The index formula then shows 

+ has index n dim V. Theorem 2 then follows easily if one that DA, 

can show that the constants C : lIB11 grow like n I/d. When M is 

a torus T and n = r d (with r an integer) this follows by using 



256 

the covering map T d ÷ T d given by x + rx : 

(with matrix values) it picks up a factor r. 

applies this construction to a small box in M 

n follows by interpolation. 

since B is a 1-form 

For general M one 

and the case of general 

§3. The odd proof 

If we replace M by M x S I, where S 1 is the circle, the 

eigenvalues lj of m A get replaced by ±/15 + m 2 where m runs 
] 

over the integers. The smallest eigenvalues are therefore the same 

on M and on M × S I. This means that theorem 1 for d even, when 

applied to M × S I, immediately yields Theorem 1 for d odd. A 

similar but more careful count of eigenvalues shows that Theorem 2 for 

d even also implies Theorem 2 for d odd. 

Notice also that conversely, if we first establish Theorems 1 and 

2 for d odd, they then follow for d even. In fact for d odd we 

want to establish directly the much stronger results given by Theorems 

i* and 2*. The reason why the odd case yields stronger results is 

roughly the following. In §2, for d even, we used the index theorem, 

together with a deformation argument relating a connection A to 

another connection A o. In the odd case the analogue of the index 

theorem is itself concerned with 1-parameter families, as we shall now 

recall. 

Suppose that D t is a periodic one-parameter family of self- 

adjoint elliptic operators, with the parameter t ~ S I. The eigen- 

values 1 are now functions of t and when t goes once round the 
3 

circle the 1 have, as a set, to return to their original position. 

However I. need not return to I : we may get a shift, e.g. i. 
3 3 J 

might return to lj+ n for some integer n. This integer n is called 

the spectral flow of the family and it is a topological invariant of 
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the family. It represents the number of negative eigenvalues which 

have become positive (less the number of positive eigenvalues which 

have become negative). 

The spectral flow, like the index, is given by an explicit 

topological formula [23. Moreover, for the first order differential 

operators (e.g. Dirac operators) this formula is actually related to 

an index formula as follows. If D t is the family, defined on a 

manifold M, consider the single operator 

= - -  + D t St 

defined on M × S 1. Note that 

* : _ ~__ + D t ~t 

so that ~ is not self-adjoint. Then one has [2] 

(3.1) spectral flow of {D % = index of ~. t J 

As an illustrative example consider the case when M is also a circle 

with angular variable x and take 

D t = -i ~ + t. 

The eigenvalues are n + t with n integral and so, as t increases 

from 0 to i, we get a spectral flow of precisely one. The 

periodicity of D t is expressed by the conjugation property: 

-ix ix 
Dt+ 1 = e D t e 

The operator ~ acts naturally on the functions f(x,t) such that 

(3.2) f(x + l,t) = f(x,t) 

f(x,t + l) = e -ix f(x,t). 

In fact these equations describe sections of a certain line-bundle 
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on the torus S 1 × S 1. 

Functions satisfying (3.2) have a Fourier series expansion 

(3.3) f(x,t) = Zf (t)e ±nx 
n 

where fn(t + i) = fn+l(t). 

Solving the equation ~f = 0 leads to the relations 

and so 

fn(t) + (n + t)fn(t ) = 0 

2 
fn(t) = C n ex~ (n+t) } 

2 

In view of the conditions (3.3) C is independent of n. Thus 
n 

has a one-dimensional null-space spanned by the theta function 

f ( x , t )  = e x p  ~ e x p ( i n z  - n / 2 )  

where z = x - it. A similar calculation shows that ~f = 0 has 

no L2-solution, so that index ~: 1 which checks with the spectral 

flow. 

After this digression about spectral flow we return to consider 

the Dirac operators D A on a manifold M of odd dimension d. Let 

S d ÷ U(N) be a generator of ~d(U(N)), where we take N in the 

d+l S d stable range, i.e. N > -~--, and now compose with a map M + of 

degree one to give a map F : M ÷ U(N). Consider F as a multi- 

plication operator on the bundle S @ NV = S ® V ~ C N, on which the 

Dirac operator DNA is defined. Since the matrix parts of F and 

DNA act on different factors in the tensor product they commute, and 

so 

[DNA,F ]= X 

is independent of A. This multiplication operator X acts 
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locally given by 

X = Ze F -1 $F. 
1 1 
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(trivially extended to S ~ V @ C N) , and is 

In particular Ilxll : c is a uniform constant independent of V and A. 

Consider now the linear family of connections 

A t = (l - t)h + t F(A) 

joining A to its gauge transform F(A). The corresponding family 

of Dirac operators is 

(3.4) D t = D A + tX. 

By construction D o = D A and D 1 : F-IDA F is unitarily equivalent 

to D o . Thus we have a periodic family of self-adjoint operators with 

a spectral flow. Moreover the general formula for the spectral flow 

(e.g. via the index formula on M x S I) shows that in our case, 

because of the construction of F, we have spectral flow equal to one. 

It follows that, for some value of t, the operator D t has a zero- 

eigenvalue. Hence as before (3.4) shows that the smallest eigenvalue 

of D A does not exceed C. 

The use of spectral flow to prove Theorem 1 for odd d is so far 

quite similar to the use of the index to prove Theorem 1 for even d. 

However, spectral flow has the advantage that 0 is not a disting- 

uished point of the spectrum, i.e. the spectral flow of a family is 

unchanged by adding a constant. Replacing 0 by some other value 

and repeating our argument then shows that there is an eigenvalue 

of D A within C of B, and this is the content of Theorem I*. 

Theorem 2* follows by extending the argument using maps 

F : M ÷ U(N) of higher degree, on the same lines as Theorem 2 was 

proved in the even case. 
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Finally it is worth pointing out that the upper bounds on the 

eigenvalues of Dirac operators given by those methods are fairly 

sharp. In fact Vafa and Witten actually determine the best bound 

when M is a flat torus. For this they use the index theorem for 

multi-parameter families of elliptic operators - not just the spectral 

flow of a one-parameter family. 
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MA~IFOLDS OF NON POSITIVE CURVATURE 

W. Ballmann 

Mathematisches Institut 

WegelerstraBe 10 

5300 Bonn I 

This is mainly a report on recent and rather recent work of the author 

and others on Riemannian manifolds of nonpositive sectional curvature. 

The names of the other people involved are M. Brin, K. Burns, P. Eber- 

lein and R. Spatzier. 

Denote by M n a complete connected smooth Riemannian manifold, by 

K M the sectional curvature of M and by d the distance on M induced 

by the Riemannian metric. We always assume K M ~ 0 , that is, KM(O) ~ 0 

for every tangent plane 0 of M. 

One of the significant consequences of the assumption K M ~ 0 is as 

follows. Let ¥I and T 2 be unit speed geodesics in the universal co- 

vering space M of M such that TI(0) = Y2(0) . Then for t,s ~ 0 

d2(T1(t), T2(s)) ~ t 2 + s 2 - 2ts • cos(~1(0), ~2(0)) 

with equality if and only if TII [0,t] and T21 [0,s] belong to the 

boundary of a totally geodesic and flat triangle. It follows that the ex- 

ponential map exp: T M > M is a diffeomorphism for each p 6M. In 
P 

particular, M is a K(z,1) ; the homotopy type of M is determined by 

F = ~I(M) . As we will see below, there are also strong relations bet- 

ween the structure of F and the geometry of M. 

One of the principal aims in the study of nonpositively curved mani- 

folds is to specify the circumstances under which assertions about nega- 

tively curved manifolds become false - if they become false - under the 

weaker assumption of nonpositive sectional curvature. For example, a 

theorem of Milnor [Mi] asserts that F has exponential growth if M is 

compact and negatively curved. As for the weaker assumption K M ~ 0, 

Avez [Av] showed that F has exponential growth if and only if M is 
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not flat. 

In general, one expects some kind of flatness in M if some proper- 

ty of negatively curved manifolds is not shared by M . Hence it is only 

natural to try to measure the flatness of M . In the case of locally 

symmetric spaces, the rank is such a measure. The question arises, whether 

such a notion can be introduced in a meaningful way for general manifolds 

of nonpositive sectional curvature. This is indeed the content of Problem 

65 in Yau's list [Y]. We state this problem in a slightly modified form 

and in two parts. 

a) DEFINE THE RANK OF M AND SHOW THAT F CONTAINS A FREE 

ABELIAN SUBGROUP OF RANK k IF M IS COMPACT OF RANK k . 

Note that in the case M is compact and locally symmetric, the (usual) 

rank of M is given by the maximal number k such that r contains a 

free abelian subgroup of rank k . See also Theorem 1 below. 

b) SHOW THAT F CONTAINS A FREE ABELIAN SUBGROUP OF RANK 2 

IF M HAS A 2-FLAT. 

Here a k-flat is defined to be a totally geodesic and isometrically im- 

mersed Euclidean space of dimension k . 

As in the case of locally symmetric spaces, the rank of M should 

be an integer between I and n = dim (M) . Further properties of this 

notion, which one expects, are as follows. 

PI) IF M IS LOCALLY SYMMETRIC, THEN THE RANK OF M SHOULD CO- 

INCIDE WITH ITS USUAL RANK. 

P2) FLAT MANIFOLDS OF DIMENSION n SHOULD HAVE RANK n. NEGATI- 

VELY CURVED MANIFOLDS SHOULD HAVE RANK ONE. 

Vice versa, manifolds of rank one should resemble negatively curved mani- 

folds. 

P3) THE RANK OF M SHOULD BE EQUAL TO THE RANK OF M . THE RANK 

OF A RIEMANNIAN PRODUCT M I × M 2 SHOULD BE THE SUM OF THE 

RANKS OF M I AND M 2 . 

Note that M 1 × M 2 still has nonpositive sectional curvature. If M I and 

M 2 are compact, then M 1 × M 2 does not carry a metric of negative sec- 

tional curvature, see Theorem I below. 

Of course, there may be different satisfactory solutions to problem 

a). One candidate for the rank of M , and maybe the most obvious one, 



is the following: 

263 

Rank (M) = max { k I M contains a k-flat } . 

At this point it is only conjectural that this notion of rank solves 

problem a) ° Also note that with this definition of rank, problem b) is 

part of problem a) . With respect to Rank (M) , the following results are 

known. 

Theorem I (Gromoll-Wolf [GW], Lawson-Yau [LY]) . If M n is compact, then 

every abelian subgroup of F is free abelian of rank at most n . If F 

contains a free abelian subgroup of rank k , then M contains a totally 

geodesic and isometrically immersed flat k-torus. 

This result is the extension of the theorem of Preissmann [Pr] which sta- 

tes that every abelian subgroup of F is infinite cyclic if M is com- 

pact and negatively curved. Theorem I implies that 

Rank (M) ~ max { k I F contains a free abelian subgroup of rank k } 

if M is compact. Problem a) now consists in showing that equality holds. 

We say that M satisfies the visibility axiom if any two distinct 

points in the ideal boundary of M can be joined by a geodesic [E0]. For 

example, compact negatively curved manifolds satisfy the visibility axiom. 

Theorem 2 (Eberlein [El]). If M is compact, then M satisfies the 

visibility axiom if and only if M does not contain a 2-flat, that is, 

Rank (M) = I. 

Thus problem b) can be reformulated as saying that M satisfies the vi- 

sibility axiom if and only if every abelian subgroup of F is infinite 

cyclic. 
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We now discuss a different notion of rank which was introduced in 

[BBE]. We need some definitions. Denote by SM the unit tangent bundle 

of M . For v6SM , let Yv be the geodesic which has v as initial 

velocity vector. Along ¥v consider the space JP(v) of all parallel 

Jacobi fields. Note that by the assumption K M & 0 , a parallel field X 

along Yv ' which is linearily independent of ~v ' is such a parallel 

Jacobi field if and only if KM(~v(t) AX(t)) = 0 for all t . Now set 

rank (v) = dim (JP(v)) and 

rank (M) = min { rank (v) I v 6 SM } . 

Note that rank (M) = I if M has a point p such that the sectional 

curvatures of all tangent planes at p are negative. In particular, 

rank (M) = 1 if M is a compact surface of negative Euler characteristic. 

The above definition of rank was motivated by the results in the 

papers [BI], [B2], and [BB] which deal primarily with geodesic flows on 

manifolds of rank one. (Formally, the general assumption in [BI] and 

[B2] is that M has a geodesic which does not bound a flat half plane, 

but in view of Theorem 4 below this is equivalent to rank (M) = 1.) The 

geodesic flow gt operates on SM, and by definition gt(v) = ~v(t) 

The geodesic flow leaves invariant the Liouville measure of SM. 

We now state some of the properties of manifolds of rank one. 

Theorem 3. Suppose rank (M) I. 

i) [BB] If M is compact, then gt is ergodic. 

ii) [BI] If M has finite volume, then gt has a dense orbit. 

iii) (Eberlein [B2]) If M has finite volume, then tangent vectors 

to closed geodesics are dense in SM. 

Part i) of this theorem generalizes, at the same time, the celebrated 

theorem of Anosov that the geodesic flow on a compact negatively curved 

manifold is ergodic [An] and the result of Pesin that the geodesic flow 

on a compact surface of negative Euler characteristic is ergodic [Pe]. 

The proof of part i) makes essential use of the results of Pesin [Pe] and 

of the results in [BI]. 
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As for manifolds of higher rank, the following result is one of the 

basic ingredients in all the further developments. 

Theorem 4 [BBE]. 

then 

If the volume of M is finite or if M is analytic, 

rank (M) = max { k I each geodesic of M is contained in a 

k-flat }. 

In particular, rank (M) £ Rank (M) . There are examples where this in- 

equality is strict, see the introduction of [BBE]. In an earlier version 

of Theorem 4, Burns proved that each geodesic in M bounds a flat half 

plane if rank (M) ~ 2 , see [Bu] 

The counterpart to Theorem 3 in the higher rank case is as follows. 

Theorem 5. 
2 

bound -a . 

i) 

ii) 

iil) 

Suppose that rank (M) = k a 2 and that K M has a lower 

t 
[BBE] If M has finite volume, then g is not ergodic. 

[BBS] If M has finite volume, then gt has k-1 inde- 

pendent differentiable first integrals on an open, dense, 

and gt-invariant subset of SM. 

[BBS] If M is compact, then tangent vectors to totally ge- 

odesic and isometrically immersed flat k-tori are dense 

in SM. 

It follows from iii) that F contains free abelian subgroups of rank 

k if rank (M) = k . In particular, problem a) is solved with this no- 

tion of rank. 

There are some immediate questions related to the assumptions in 

Theorems 3 and 5. Namely, is it possible to delete the assumption that 

K has a lower bound in Theorem 5 and the assumption that M is compact 

in part i) of Theorem 3? I believe that the answer is yes in both cases. 

That the compactness assumption can be deleted in part iii) of Theorem 5 

is a consequence of the following result. 
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Theorem 6 [B3, BS]. Suppose that rank (M) ~ 2 , K has a lower bound 
2 M 

-a and M has finite volume. If M is irreducible, then M is a lo- 

cally symmetric space of noncompact type. 

Actually, Burns-Spatzier [BS] need the stronger assumption that M is 

compact. Under the further assumptions M compact and dim (M) ~ 4, The- 

orem 6 was proved earlier by the author in joint work with Heintze [BH]. 

All these proofs are along completely different lines, up to the fact 

that they are based on the results in [BBE] and [BBS]. 

The use of Theorem 6 lies in the fact that, for many purposes, it 

will be sufficient to prove a given assertion in the rank one case and 

the symmetric space case separately in order to get a conclusion in the 

general case. Using this device and results of Prasad-Raghunathan [PR], 

the author in collaboration with Eberlein defined algebraically a number 

rank (r) , the rank of the fundamental group r of M , and showed that 

rank (r) = rank (M) . Using various other previous results of Eberlein 

and a recent result of Schroeder one obtaines the following conclusion. 

Theorem 7 [BE]. Suppose that K M ~ -a 2 and M has finite volume. Then 

M is an irreducible locally symmetric space of noncompact type of rank 

k ~ 2 if and only if the following three conditions are satisfied: 

i) F does not contain a normal abelian subgroup (except {e} ) 

ii) no finite index subgroup of r is a product 

iii) rank (r) = k . 

Here a Riemannian manifold N is called irreducible if no finite covering 

of N is a RJemannian product. Theorem 7 can be used to extend the rigi- 

dity results of Mostow [Mo] and Margulis [Ma]. Namely, using their results 

and Theorem 7 we obtain: 

2 
Theorem 8. Suppose that K M ~ -a and M has finite volume. Suppose 

M* is an irreducible locally symmetric space of noncompact type and high- 

er rank with finite volume. If the fundamental groups of M and M* are 

isomorphic, then M and M* are isometric up to normalizing constants. 

Under the stronger assumption that M is compact, Theorem 8 was proved 

earlier by Gromov [GS] and, in a special case, by Eberlein [E2]. 
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Metrics with Holonomy G 2 or Spin (7) 

by 

Robert L. Bryant 

%1. The Holonomy of Riemannian Manifolds 

In this section, all objects are assumed smooth unless stated 

otherwise, M will denote a connected, simply connected n-manifold and 

g will denote a Riemannian metric on M. If ~: [0,i] ~ M is a path 

in M, then the Levi-Civita connection of g induces a well-defined 

parallel translation along ~, p : T (o)M ~ T (1)M which is an iso- 

merry of vector spaces. For every x ~ M, we let H x denote the set 

of all P where ~ ranges over all paths with ~(0) = ~(i) = x. It 

is well-known, see [i], that the simple connectivity of M implies 

that H x is a connected, closed Lie subgroup of SO(TxM), the group 

of oriented isometries of TxM with itself. Moreover P (H (0)) = 

H (i) for any path ~. It follows that by choosing an isometry 

i: T M = ~n, we can identify H with a subgroup H c SO(n). The 
x x 

conjugacy class of H in O(n) is independent of the choice of x 

or i. By abuse of language we speak of H as the holonomy of g. 

The holonomy group is a measure of the curvature of g. For 

n 2 
example, if H preserves an orthogonal decomposition ~n = ~nl • ~ , 

n. 

then g = gl + g2 locally where gi is a local metric on ~ ~. It 

follows that, in order to determine which subgroups of SO(n) can be 

holonomy groups of Riemannian metrics, it suffices to determine the 

subgroups H c SO(n) which act irreducibly on ~n and are holonomy 

groups of Riemannian metrics. By examining the Bianchi identities and 

making extensive use of representation theory, Berger [2] proved the 

following classification theorem. 
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Theorem (Berqer): Let (Mn,g) be a connected, simply connected 

Riemannian n-manifold and suppose that its holonomy group H c SO(n) 

acts irreducibly on ~n. Then either (M,g) is locally symmetric or 

else H is one of the following subgroups of SO(n) 

(i) SO(n) 

(ii) U(m) if n = 2m > 2 

(iii) SU(m) if n = 2m > 2 

(iv) Sp(1)Sp(m) if n = 4m > 4 

(v) Sp(m) if n = 4m > 4 

(vi) G 2 if n = ? 

(vii) Spin(?) if n = 8 

(viii) Spin (9) if n = 16 

After noting that the above list is exactly the list of subgroups 

of SO(n) which act transitively on S n-I c ~n, Simons [3] gave a 

direct proof that the holonomy of an irreducible non-symmetric metric 

on M n acts transitively on S n-l. 

It is natural to ask which of the possibilities on Berger's list 

actually do occur. It is easy to show that the "generic" metric on 

M n has holonomy SO(n). If n = 2m, a matric with holonomy a sub- 

group of U(m) is, of course, a Kahler metric. Such a metric is 

given in local coordinates on £m in the form 

gf = ( ~2f/~zi a~J)dz i o di~ 

where f is a smooth function on c m satisfying the condition that 

its complex hessian Hf = (~2f/~zi ~zJ) be positive definite. For a 

"generic" f with Hf > O, the metric gf will have holonomy U(m). 

Every metric on M 2m with holonomy H c SU(m) can be put in the 

above form locally where f satisfies the complex Monge-Ampere equa- 

tion det(Hf) = I. Again, the "generic" solution of this equation 
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yields a metric whose holonomy is exactly SU(m). Since Sp(m) c_ 

SU(2m), we ca even construct metrics whose holonomy is Sp(m) on 

M 4m (m > I) locally by selecting a linear map j: c2m ~ £2m satis- 

fying j2 = -I and j = tj and considering the gf where f 

satisfies the system of equations Hf J Hf = J. Even though this is 

an overdetermined system of equations for f, enough solutions can be 

found to exhibit local metrics with holonomy exactly Sp(m). A simi- 

lar construction with complex contact structures on £2m+i allows one 

to exhibit metrics locally on ~4m with holonomy Sp(1) Sp(m). It 

must be emphasized that it is the encoding of holonomy properties into 

the Cauchy-Riemann equations (which are completely understood locally) 

that allows the construction of metrics in cases (ii)-(v) to be re- 

duced to a managable partial differential equations problem. 

There remain the "exceptional" cases (vi)-(viii). In a surpris- 

ing paper, Alekseevski [4] showed that any metric on M 16 with holo- 

nomy Spin(9) was necessarily locally symmetric. Thus, case (viii) 

can be removed from Berger's list. It is worth remarking that cases 

(vi) and (vii) do not occur as symmetric spaces [6]. This raises the 

possibility that these two cases do not occur at all. As of this 

writing, no examples of cases (vi) or (vii) are known. Nevertheless, 

there is extensive literature on the properties of these elusive 

metrics. See [7], [8], and [9] and the bibliographies contained 

therein. 

In this lecture, we shall outline a proof of the existence of 

local metrics in cases (vi) and (vii). The details, which involve an 

analysis of a differential system to be constructed below will be pub- 

lished elsewhere. For the appropriate concepts from differential sys- 

II 

tems and Cartan-Kahler theory, the reader may consult [i0]. 

%2. Linear Algebra, H-structure, and Differential System ~ 

Our strategy will be to describe a set of differential equations 

whose solutions will represent metrics on M n with the desired holo- 



272 

nomy. We begin by giving a somewhat non-standard description of G 2.  

Let 1 2 ,  . .., 7 be an oriented orthonormal coframing of ~7 

We define the 3-form 

= 1 2 3  + 1 4 5  + 1 6 7  + 2 4 6  _ 2 5 7  _ 3 5 6  _ 3 4 7  

where iJk is an abbreviation for wiA~JA~k. 

Proposition I: G 2 = (A • GL(7) IA*(P) = ~} where G 2 is the 14- 

dimensional simple Lie group of compact type. 

We will not prove Proposition 1 here. It is interesting to note 

that a dimension count shows that the orbit of ~ in A3(~ 7) under 

GL(7) is open. (In fact, there are exactly two open GL(7) orbits 

in A3(~?). The stabilizer of a form ~ in the other open orbit is 

the simple Lie group of non-compact type of dimension 14.) The form 

was discovered by Chevalley [5]. Bonan [7] showed that 

G 
2 

A = span{l,P,*F,*l = (i/7)~ /x *~} 

G 2 
where A c A(~ 7) is the subring of G2-invariant exterior forms. 

If V is a seven dimensional vector space, we will say that 

a • A3(V *) is positive if there exists a linear isomorphism 

3 * L: V ~ ~7 so that a = L*(~). The set A+(V ) c A3(V *) of positive 

forms is clearly an open subset of A3(V*). If a • n3(M 7) we say 

that a is positive iff alx is positive for all x • M 7. We let 

E c A3(T~M) denote the open submanifold of positive 3-forms. 

~: E ~ M is a smooth fiber bundle with fibers isomorphic to 

GL(7)/G 2. The sections of E are the positive forms on M and are 

also obviously in I-i correspondence with the set of G 2 reductions 

of the tangent bundle of M, i.e., G2-structures on Mo Since 
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G 2 ~ SO(7), it follows that each G2-structure on M induces a 

canonical underlying orientation and Riemannlan metric. 

On the other hand, if (M7,g) is an oriented Riemannian manifold 

with holonomy G2, it is easy to see that there is a unique parallel 

positive 3-form ~ on M whose underlying orientation and metric 
g 

are the given ones. 

Proposition 2: Let ~ be a positive 3-form on M, and let ~a be 

the dual 4-form with respect to the underlying metric and orientation. 

Then a is parallel with respect to the underlying metric's Levi- 

Civita connection iff d~ = d*~ = O. 

Proposition 2 is due to Gray [8] in the context of vector cross pro- 

ducts. It follows from this that every positive 3-form ~ which 

satisfies the system of partial differential equations da = d*~ = 0 

has an underlying metric whose holonomy is a subgroup of G 2 and 

conversely every metric whose holonomy is a subgroup of G 2 arises 

from such an ~. 

The conditions d~ = d~ = 0 form a quasi-linear first order 

system for the 35 (= dim A3(V~)) unknown coefficients of ~. The + 

system is quasi-linear because coefficients of *a are algebraic 

functions of the coefficients of a. A priori, this appears to be 56 

(= dim(A4(~ 7) • A5(~7)) equations for the 35 unknowns. However, 

there is a (miraculous) identity 

(~d/3) A /3 + (*d*/3) /k */3 = 0 

valid for any positive /3 where the ~ is the Hodge star of the 

underlying S0(7) structure. It can be shown that the remaining 49 = 

56 - 7 equations are independent. 

This overdetermined system is invariant under the diffeomorphism 

group of M and hence cannot be elliptic. However, it can be shown 



274 

that it is transversely elliptic, i.e., elliptic when restricted to a 

action of Dill(M) on n~(M). local slice of the 

Our first main result is 

Theorem I: The system da = d*a = 0 for a • R3 +(M) is involutive 

with Caftan characters (Sl,S 2 ..... s?) = (0,0,1,4,10,13,7). In 

particular, the "generic" solution has the property that its under- 

lying metric has holonomy exactly G 2. 

We remark that Theorem I is essentially a calculation. One 

describes the appropriate differential system with independence con- 

dition on E c n3(T*M) and calculates both the integral elements and 

the Cartan characters to arrive at the result. Note that this system 

is real analytic in local coordinates. The transversality property 

actually implies that any solution is real analytic in some coordinate 

system anyway, so the application of Cartan-Kahler theory is vindi- 

cated. Details will appear elsewhere. 

We now turn to the analogous case 

~7 and augment the given coframing of 

the 4-form on ~8 

H = Spin(7). Write ~8 = ~I $ 

~7 by an O. We then define 

0 
~ = ~ A Io + ~ = * ~  

w h e r e  ~ = * ~  e A 4 ( ~ 7 ) .  

Proposition 3: Spin(?) = {A • GL(8)IA (~) = qb} where Spin(Y) c_ 

SO(8) is isomorphic to the universal cover of SO(7). 

Proposition 3 is not difficult to prove assuming Proposition i. 

The form ~ was discovered by Bonan [7] who showed that 

A spin(7) = {i,~ = *~,'i = (I/14)@ 2} 
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where A Spin(g) c A(~ 8) is the subring of Spin(g)-invariant exterior 

forms on R 8. The GL(8)-orbit of ~ e A4(~ 8) is not open but is, of 

course, a smooth submanifold of A4(~ 8). We shall say that an a e 

A4(V ~) is admissible if there exists a linear isomorphism L: V 
~8 

so that a = L*(4~). If a e 24(M8), we shall say that a is admis- 

sible if alx is admissible for all x e M 8. We let F c_ M4(T~M) 

denote the submanifold of admissible 4-forms. ~: F ~ M 8 is a smooth 

fiber bundle with fibers isomorphic to GL(8)/Spin(Y). Clearly the 

space of sections of F, i.e. the space of admissible 4-forms on M, 

is in i-I correspondence with the space of Spln(g)-structures on M. 

Since Spin(?) c SO(8), we see that each admissible a on M canoni- 

cally induces an orientation and metric on M. 

On the other hand, if (M8,g) is an oriented Riemannian manifold 

with holonomy Spin(7), it is easy to see that there is a unique 

parallel admissible 4-form a on M whose underlying orientation 
g 

and metric are the given ones. 

Proposition 4: Let a be an admissible 4-form on M. Then a is 

parallel with respect to the Levi-Civita connection of the underly- 

ing metric iff da = 0. 

Proposition 4 is actually more elementary than the corresponding 

Proposition 2, but seems to have been overlooked. It follows from 

this that every admissible 4-form a which satisfies da = 0 has an 

underlying metric whose holonomy is a subgroup of Spin(g) and con- 

versely every metric whose holonomy is a subgroup of Spin(?) arises 

from such an ~. 

Since F is not an open subset of a vector bundle over M, the 

condition da = 0 is only a quasi-linear first order system of 56 

(= dim A5(~7)) equations for the 43 (= dim(GL(8)/Spin(7)) unknown 

coefficents of the section a: M ~ F. It can be shown that these 56 
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equations are algebraically independent. Again, this over-determined 

system is invariant under the diffeomorphism group of M and can be 

shown to be transversely elliptic. 

The analogue of Theorem I for Spin(7) is 

Theorem 2: The system da = 0 for sections a: M ~ F is involutive 

with Cartan characters (sl,s 2 ..... Ss) = (0,0,0,I,4,10,20,8). In 

particular, the "generic" solution has the property that its underly- 

ing metric has holonomy exactly Spin(7). 

Theorem 2 is also a calculation with the appropriate differential 

system with independence condition on F c A4(T~M). Details will 

appear elsewhere. 

~3. Closing Remarks 

The methods of %2 only yield the weakest positive result. Name- 

ly, that there exist local metrics on ~7 and ~8 which are not 

locally symmetric and have holonomy equal to G 2 and Spin(7) re- 

spectively. This at least shows that Berger's list cannot be shorten- 

ed any further. Of course, in many respects this is quite unsatis- 

factory. 

In the first place, we do not know a single example of such a 

metric in either case. The search for such metrics is led by Gray [8] 

but has so far proved fruitless. 

In the second place, we do not know if there exists a complete 

metric even on ~7 or ~8 with holonomy G 2 or Spin(7). This 

problem reminds us, in some respects, of the conjecture that a com- 

plete Kahler metric on £m which has holonomy a subgroup of SU(m) 

is actually flat [II]. 

Finally, we do not know if there exists a compact example of 

either kind. Nevertheless, the descriptions of such metrics afforded 

by Theorems I and 2 allow one to prove a good number of theorems about 
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possible examples. In a forthcoming joint work by the author and 

Reese Harvey it is shown that a compact (MT,g) with holonomy G 2 

must be orientable, spin, and have finite fundamental group. The 

first Pontriagin class of M 7 must be non-zero and the deformation 

theory of the solutions of da = d~a = 0 is unobstructed, the dimen- 

sion of the local moduli space being b 3 > 0 where b 3 is the third 

Betti number of M. Similar results are obtained for 8-manifolds with 

holonomy Spin(7). The difficulty of explicitly writing down such a 

metric can be appreciated by contemplating the fact that no explicit 

example of a Calabi-Yau metric on a K-3 surface is known as of this 

writing. 
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0. Introduction It was proved by R. Lutz and J. Martinet 

[8} that every compact orientable three-dimensional manifold M has a 

contact structure. The latter can be given by a one-form co, the 

contact form. such that coAdco never vanishes; ~0 is defined up to a 

non-zero factor. A Riemannian metric on M is said to be adapted to 

the contact form ~ if: 1) co has the length I; and 2) dco=2.,.~,. 

being the Hodge operator. The Webster curvature W, defined below in 

|9], is a linear combination of the sectional curvature of the plane co 

and the Ricci curvature in the direction perpendicular to co. 

Adapted Riemannian metrics have interesting properties. The 

main result of the paper is the theorem: 

E v e r y  c o n t a c t  s t r u c t u r e  o n  a c o m p a c t  o r i e n t a b l e  

t h r e e - d i m e n s i o n a l  m a n i ] o l d  h a s  a c o n t a c t  ] o r m  a n d  a n  

a d a p t e d  R i e ~ a n n i a n  m e t r i c  w h o s e  W e b s t e r  c u r v a t u r e  i a  

e i t h e r  a c o n s t a n t  ~ 0 o r  i s  e v e r y w h e r e  s t r i c t t V  

p o s i t i v e .  

The problem is analogous to Yamabe's problem on the conformed 

transformation of Riemannian manifolds Most recently, R. Schoen has 

proved Yamabe's conjecture in all cases, including that of positive 

scalar curvature 19|. It is thus an interesting question whether in the 

second case of our theorem the Webster curvature can be made a 

positive constant. 

1),2) Research supported in part by NSF grants DMS84-03201 and 

DMS84-01959. 
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AfLer our theorem was proved, we learned that a similar 

theorem on CR-manifolds of any odd dimension has been proved by 

Jerison and Lee. [7] As a result, our curvature was identified with 

the Webster curvature. We feel that our viewpoint is sufficiently 

different from Jerison-Lee and that the three-dimensional case has so 

many special features to merit a separate treatment. 

In an appendix, Alan Weinstein gives a topological implication 

of the vanishing of the second fundamental form in {54}. For an 

interesting account  of  three-dimensional contact  manifolds, cf. [2]. 

1. Contac t  Structure~. Let M be a manifold and B a 

subbundle of  the t~ngent  bundle TM. There is a naturally defined 

anti-symmetric bilinear form A on B with values in the quotient bundle 

TM/B 

(I} A: B × B --* TM/B 

defined by the Lie bracket;  

(2) A(V,W) .~ [V,W] rood B. 

I t  is easy to verify tha t  the value of A(V,W) at a point peM 

depends only on the values of V and W at p. The bundle B defines a 

foliation if and only if it satisfies tile Frobenius integrability condition 

A = 0. Conversely, a contac t  s t ruc ture  on M is s subbundle B of the 

tangent  bundle of codimension I such that  A is non-singular at each 

point pcM. This can only occur  when the dimension of M is odd. 

I t  is an interest ing problem to find some geometric s t ructure  

which can be put on every three-manifold,  since this would be helpful 

in studying its topology. Along these lines we have the following 

remarkable theorem of  Imtz and Martinent {see [8], [I0]). 

1.1 T h e o r e L  E v e r F  c o m p a c t  o r i e n t a b l e  

t h r e e - m a n i f o l a  p o s s e s s e s  a c o n t a c t  s t r u c t u r e .  
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T h e r e  a r e  many d i f f e r e n t  c o n t a c t  s t r u c t u r e s  poss ib le ,  s i n c e  t h e  

s e t  o f  B wi th  A ~ 0 is  open.  Even  on S 3 t h e r e  a r e  c o n t a c t  

s t r u c t u r e s  fo r  which  t h e  bundles  B 1 and B 2 a r e  t o p o l o g i c a l l y  d i s t i nc t .  

N e v e r t h e l e s s  t h e  no t ion  of  a c o n t a c t  s t r u c t u r e  is r a t h e r  f l abby ,  in t he  

fo l lowing  sense .  We s a y  B is c o n j u g a t e  to  B ,  if  t h e r e  is a 

d i f f eomorph i sm ~ : M  --m* M which  has  ~ (B) = B=. Then  we have  the  

fo l lowing r e s u l t  due to  Gray  (see  [4]). 

1.2 Theorem.  G i v e n  a c o n t a c t  s t r u c t u r e  B, a n y  

o t h e r  c o n t a c t  s t r u c t u r e  B ,  c l o s e  e n o u g h  t o  B 

c o n j u ~ T a t e  t o  i t .  

~ s  

2. M e t r i c s  a d a p t e d  to  c o n t a c t  s t r u c t u r e s .  A c o n t a c t  form to 

is a 1 - f o r m  on M which  is nowhere  ze ro  and has  t h e  c o n t a c t  bundle  B 

for  i t s  null s p a c e .  In a t h r e e - m a n i f o l d  a n o n - z e r o  1 - fo rm to is a 

c o n t a c t  form f o r  t h e  c o n t a c t  s t r u c t u r e  B = Null co ff and only i f  

toAdw=0 a t  e v e r y  point .  The  c o n t a c t  s t r u c t u r e  B d e t e r m i n e s  t he  

c o n t a c t  form up to  a s c a l a r  muIt iple .  The cho i ce  of  a c o n t a c t  form to 

a lso  d e t e r m i n e s  a v e c t o r  f i e ld  V in t h e  fo l lowing  way.  

2.1 [,emma. T h e r e  e x i s t s  a u n i q u e  v e c t o r  f i e l d  

V s u c h  t h a t  t~{V) = 1 a n d  dtofV,W} = 0 f o r  a l l  W e T M .  

Proof .  Choose  V 0 wi th  co{V 0) = 1. S ince  dtoAco ~ 0, t h e  

form dto is  n o n - s i n g u l a r  on B. T h e r e f o r e  t h e r e  e x i s t s  a unique  V l e B  

wi th  

d~fVl ,W)  = dco(V0,W) 

fo r  a l l  W e B .  Le t  V = V0-V 1. Then  w(V) = to(V 0) - co(V 1) = 1, 

and dcoW,W) = 0 f o r  all  WeB.  S ince  V is t r a n s v e r s e  to  B and 

dco{V,V) = 0, we have  dco(V,W) = 0 for  al l  W e T M .  

Loca l ly  any  two  n o n - z e r o  v e c t o r  f i e l d s  a r e  c o n j u g a t e  by a 

d i f feomorphism.  However ,  th i s  f a i l s  g loba l ly ,  s i nce  a v e c t o r  f i e ld  may 

have  c losed  o rb i t s  whi le  a n e a r b y  v e c t o r  f i e ld  does  not .  I t  is a 

c l a s s i c a l  r e s u l t  t h a t  l oca l ly  any two  c o n t a c t  forms a r e  c o n j u g a t e  by a 
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diffeomorphism. But globally two nearby con tac t  forms may not be 

conjugate,  since the  vec to r  f ie lds  they  determine may not be. 

A choice of a Riemannian metr ic  on a con tac t  manifold 

determines  a choice of the  c o n t a c t  form t~ up to sign by the 

condition tha t  co have length 1. Let  = denote  the Hodge s ta r  

opera tor .  We make the  following defini t ion.  

2.2 Definition. A Riemannian metric on a contact 

three-manifold is said to be adapted to the contact form co if co is 

of length one and satisfies the structural equation 

{3) dt~ = 2 =w. 

Such metrics have nice properties with respect to the contact 

structure. For example, we have the following results. 

2.3 Lemma. I f  t h e  m e t r i c  i s  a d a p t e d  t o  t h e  

f o r m  to, t h e n  t h e  v e c t o r  f i e l d  V d e t e r m i n e d  by  to i s  

t h e  u n i t  v e c t o r  f i e l d  p e r p e n d i c u l a r  t o  B. 

Proof. Let  V be the unit vec to r  f ie ld perpendicular  to B. Then 

to(V) = 1, and for  all vec to r s  W in B we have dto(V,W)=2=to(V,W)=0. 

Hence V is the  vec to r  field d e t e ~ i n e d  by the con tac t  form to. 

2.4 bemma. I f  t h e  m e t r i c  i s  a d a p t e d  t o  t h e  

c o n t a c t  f o r m  ~, t h e n  t h e  a r e a  f o r m  on  B i s  g i v e n  b y  
1 

~i dto. 

Proof. The a rea  form on B is =~. 

A CR s t ruc tu r e  on a mainfold is a con tac t  s t ruc tu re  toge the r  

with a complex structure on the contact bundle B; that is, an 

involution J:B--*B with j2 = -I where I is the identity. If M has 

dimension 3 then B has dimension 2, and a complex structure on B is 

equivalent to a conformal structure; that is knowing how to rotate by 

90 °. Hence, a Riemannian metric on a contact three-manifold also 

produces a CR structure. CR structures have been extensively studied 
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since they arise naturally on the boundaries of complex manifolds. 

The following observation will be basic to our study. 

2.5 T h o o ~ m .  L e t  M be  an o r i e n t e d  t h r e e - m a n i f o l d  

w i t h  c o n t a c t  s t r u c t u r e  B. F o r  e v e r y  c h o i c e  o f  

c o n t a c t  f o r m  w a n d  a CR s t r u c t u r e  J t h e r e  e x i s t s  a 

u n i q u e  R i e m a n n ~ a n  m e t r i c  g a d a p t e d  t o  t h e  c o n t a c t  

f o r m  w a n d  i n d u c i n g  t h e  CR s t r u c t u r e  J. 

Proof. The form ¢o determines the unit vector field V 

perpendicular to B. The metric on B is determined by the conformal 

structure J and the volume form ,o~IB = 1 dwIB ' 

3. Structural equations. We beg:m with a review of the 

structural equations of Riemannian geometry. Let 

w a':l <~ a, ~,< dimM, be an orthonorm al basis of :l-forms on a 

Riemannian manifold M. Then there exists a unique anti-symmetric 

matrix of l-forms ~u~ such that the structural equations 

(4) dwa + ~aB A w~ = 0. 

hold on M. The forms ~ a ~  describe the Levi-Civita connection of 

the metric in the moving frame w a. We can also view the co a 

as intrinsically defined l-forms on the principal bundle of orthonormal 

bases. Then the ~aB are also intrinsically defined as 1-forms on this 

principal bundle, and the collection {c0 a, ~a~} forms an 

orthonormal basis of l-forms in the induced metric on the principal 

bundle. The curvature tensor R a ~v 5 is defined by the 

structural equation 

(5) dea~eavAev~s+Ra~vswvAws,l<a,~,v,~<dimM, 

where the summation convention applies. 

In three-dimensions it is natural to replace a pair of indices in 

an anti-symmetric tensor by the third index. Thus we will write ~12 
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= W3 and R1212 = K33, etc. Here K a $  are the components of the 

Einstein tensor 

{6) Ka~ = ~ } ~ o e  - RaB' 

which has the property that,  for any unit vector  V, K{V,V) is the 

Riemannian sectional curvature of the plane V ±. The structural 

equations then take the following form. 

3.1 Structural equations in three ~mensions. 

{7} 

and 

d~ 1 = WzA~3 - W3A~2, 

dw 2 = w3Awl - ~lAto3 , 

dw 3 = WlAW2 - ~2Aw1, 

d~ 1 = ~2A~o3+K11~o2ALo3+K12Lo3A~o1+K13~o1A~02 , 

{8) d~o 2 = ~3A~1+K21~2Aw3+K22~3Aw1+K23~o1Aw2 , 

= W A~ +K Lo A~o +K w A~ +K ~ Aw ,K K d~3 1 2 31 2 3 32 3 1 33 1 2 a~  = ~a" 

If  the metric is adapted to the contact  from w, we choose 

the frames such that  w 3 = to. As a consequence K33 is the sectional 

curvature  of  the plane V ± and ~ (K11+K22) is the Ricci curvature  in 

the direction V. The Webster curvature  is defined by 

(9} W = (K11+K22+2K33+4) 

and has remarkable properties. 

We proceed to illustrate these equations with three examples 

which are very relevant to our discussion, the sphere S 3, the unit 

tangent  bundle of a compact orientable surface of  genus > 1, and the 



Heisenberg group H 3. 

3.2 Example .  

( 1 0 )  

in R 4. 

(11) 
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The sphere S 3 is defined by the equation 

x2+y2+z2+w 2 = 1 

D i f f e r e n t i a t i n g  we  g e t  

~0  = xdx + y dy + z dz + w dw = 0. 

A specific choice of an orthonormal basis in the induced metric is 

e I 

w 2 

~3 

0 2 )  

= x dy - y dx + z dw - w dz, 

= x d z  - z d x  + y d w  - w d y ,  

= x dw - w dx + y dz - z dy.  

The  r e a d e r  can  v e r i f y  t h a t  i f  <dx,dx> = 1, <dx,dy> = 0, e t c . ,  t hen  

<Wl,Wl > = 1, <~1,w2 > = 0, e t c . ,  and t h a t  <¢~0,w0 > = 1, <w0,Wl> 

= 0. e tc .  Tak ing  e x t e r i o r  d e r i v a t i v e  we have  

(13) dw I = 2w2A~ 3, 

and h e n c e  m th i s  bas i s  

d ~  2 = 2w3Aw 1, d ~  3 = 2 ~ l A ~  2, 

(14) ~Pl = w1' ~'2 = w2' ¢P3 = t°3" 

which  makes  

(15) K l l  = 1, 

and  t h e  o t h e r  e n t r i e s  a r e  zero.  

K22 = 1, K33 = 1. 

The  W e b s t e r  c u r v a t u r e  W = 1. 

3.3 Example .  The  uni t  t a n g e n t  bundle  of  a c o m p a c t  

o r i e n t a b l e  s u r f a c e  o f  genus  ;~1. 
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Let N be a compact orientable surface of genus g. If N is 

equipped with a Riemannian metric, its orthonormal coframe 0 I, 02, 

and the connection form 012 satisfy the structural equations 

(16) dO 1 = 012A02, dO 2 = 01A012, d012 = -KO1AO 2, 

where K is the Gaussian curvature.  Suppose gg l .  We can choose 

the metric such that  

(17) 
P 

K - c - ~ +I , when g-0, 

t -I , when g>l . 

The unit tangent bundle TIN of N, as a three-dimensional manifold, 

has the metric 

(18) 

Putting 

(19) 

we find 

(20} 

and 

(21) 

1 2 ~" (e I + 022 + 012). 

Wl = ~ el' WZ = T e2, w3 = -  ~ ¢e12, 

d~ 1 = 2¢w2Aw 3, dw 2 = 2c~3A~01, dw 3 = 2WlAW 2, 

It follows that 

(22} 

~1 = Wl' ~2 = w2' ~3 = (2¢-1)~3" 

Kll = K22 = I, K33 = 4¢-3, 

all other Kcl$'s being zero. By (9) we get 

W ~ c. 
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This includes the example in ~3.2 when g = 0, for the unit tangent 

bundle of S 2 is the real projective space RP 3, which is covered by S 3, 

and our calculation is local. On the other hand, TIN, for g > I, has 

a contact structure and an adapted Riemannian metric with W = -I. 

matrix 

(23) 

3.4. Example. The Heisenberg group. 

We can make C 2 into a Lie group by identifying (z,w) with the 

The subgroup given by the variety 

(24) 

is the Heisenberg 

translations 

group 

~ + w + W = O  

H 3. The group acts on itself by the 

{25) 

Z --.# Z + 8, 

w ' - ' *  w - K z +  b. 

which leave invariant the complex forms 

{26) dz and dw + f dz. 

Hence an invariant metric is given by 

{27) ds 2= i !2+ Idw 

Introduce the real coordinates 

+ f d 12. 

{28) z = x + iy w = u + iv. 

Then the va r ie ty  (24) is 



(29)  
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x 2 + y2 + 2 u = 0 

and differentiat ion gives 

(30) du + x dx + y dy = 0. 

Then an orthonormal basis of 1-forms in the metric above is given by 

(31) Wl = dx, =2=dY, to3=dv + x dy - y dx, 

and we compute 

(32) I d w l i O ,  dw2=O,  d w 3 = 2 ~ i A w  2,  

~ I  = I '  ~ 2 = ~ 2  " ~3=-w3 ' 
K11 I , K22=I, K 3 3 = - 3 ,  

and the other entries are zero. By (9) we have W=0. All these 

examples give metrics adapted to a contact  form w=w 3, since in an 

orthonormal basis =w 3 = wlAw 2. 

In general, given a metric adapted to a contact  form ~, we 

shall res t r ic t  our at tention to orthonorma] bases of 1-forms Wl' w2' 

~3 with w3=co. Considering the dual basis of vectors,  we only need to 

choose a unit vector  in B. These form a principal circle bundle, and 

all of our structural  equations will live naturally on this circle bundle. 

I t  turns out to be advantageous to compare the general situation to 

tha t  on the Heisenberg group. Therefore,  we introduce the forms 

q/l' ¢/2' ¢3 and the matrix L l l ,  L12 ..... L33 defined by 

(33) 
~i=#i+~i " ~2=~2+~2 • ~3=#3-~3 , 

KI I=LI i +I , K22=L22 +I , K33=L33-3, 

K I 2 = L 1 2 ,  K I 3 = L I 3 ,  K 2 3 = L 2 3 .  

Thus the ~ and L all v~ni~h on the Heisenberg group. 

compute the f o U o ~ .  

We then 
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3.5. Structure equations for an adapted metric. They are: 

(34) 
d ~  1 = ¢ 2 A ~ 3 - ~ 3 A w 2 ,  

dw 2 = @ 3 A W l - C l A W  3 , 

d ~  3 = 2 ~ 1 A ~ 2 ,  

and 

(35) 
{ ~ l A w 2  - W2A~I  = o ,  

¢ I A ~ I  + ~ 2 A w 2  = o ,  

and 

(36) 
d e  1 

d e  2 

de 3 

= @ 2 A @ 3 + L l l W 2 A w 3 + L 1 2 w 3 A ~ I + L 1 3 W l A W 2  , 

= ¢ 3 A ¢ l + L 2 1 w 2 A ~ 3 + L 2 2 ~ 3 A ~ I + L 2 3 w 1 A w 2  , 

= ~ l A ¢ 2 + L 3 1 ~ 2 A ~ 3 + L 3 2 ~ 3 A ~ l + L 3 3 w I A ~ 2  . 

Proof .  The equat ion  dw 3 = 2WlAW 2 comes from the  

condit ion dw = 2.~0 t h a t  the  metr ic  is adap ted  to the  c o n t a c t  form 

t~. Then the  cor responding  s t ruc tu r a l  equa t ion  yields ~lAW2 - 

¢2A~1  = 0. Using ddw 3 = 0 we compute  ¢ 1 A w l  + ¢,2Aw2 = 

0 also. 

3.6. Corollary. We can find functions a and b on the 

principal circle bundle so that 

(37) 
@I = aWl+bW2' 
~2 = bWl-a~2" 

Proof .  This fol lows a lgebra ica l ly  f rom the equa t ions  (35). 

I t  is even more conven ien t  to wri te  these  equat ions  in complex 

form. We make the  fol lowing subs t i tu t ions .  
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3.7. Complex substitutions. 

On account of the complex structure in B it is convenient to 

use the complex notation. We shall set: 

(38) 

Q = w l + i ~  2 ,  W = W 3 ,  

t = @ 1 + i ~ 2  , ~ = @3'  
Z = a + i b ,  

l +L22 ) q . 1 p - ~ (LII , ~ (LII-L22), r = L 
s = q+ir, 

1 
z - ~ (LI3+iL23) , 
t=L 

33' 
l _a2b2 w = ~ ( t  ), 

12' 

where W is the Webster curvature, to be verified below. Note that 

= L Q. Thus D and ~ give a basis for the l-forms on M, while z 

and @ define the connection. 

(39) 

and 

3.8 Complex structur~ ~uations. 

dO = i(@AO-zQA~), 

(4O) 
{ d@ = i[2wQA~+(zO-iQ)A~], 

dz ~ i(2Z@+zO-sw) mod O, 

p + l ~ l  2 = O. 

Proof. This is a direct computation. Note that the real 

functions p,W and the complex functions z,s give the curvature of the 

metric. 

The equation p+[ z [2 = 0 has the important consequence that we 

can compute the Webster curvature W from the KaB. The result is 

the expression for W in (9). 
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The following notation will be useful. If f is a function on a 

Riemannian manifold with frame ~a' then 

(41) df = Daf • w a, 

where Daf  is the der ivat ive of f in the direct ion of the dual vec to r  

field V a. I f  f is a function on the principal bundle then we can still 

define D a f  as the der ivat ive in the direction of the horizontal lifting 

of V a. In this case we will have 

(42) df _= D a f - ~  a rood ~a~"  

I f  the  function f represen ts  a tensor  then D a f  are  i ts  covar iant  

der ivat ives ,  and the ex t ra  terms in ~ a B  depend on what  kind of  

tensor  is represented.  In the example if T is a covar ian t  1 - tensor  

and 

(43) f = T(Vv), 

then, 

(44) df = Daf-~o a + T(V$) ~ $ v '  

while if T is a covariant  2 - tensor  and 

(45) f = T(V v, Vs),  

then 

{46) df = D a f - •  a + T(V~, VS) W~.  + T(Vv, V~) ~ B ~ '  

and so on. In the  complex notat ion we wri te  

{471 df = a ¢ . O  + ~ f - O  ÷ Dvf .  W 
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as the definition of the differential operators ~f, ~f, and Dvf 

usual 

As 

(48) 

~f = ~ (Dlf  - iD2f), 

~f - ~ (Dlf  + iD2f ) ,  

Dvf " D3f , 

reflecting the transition from real to complex notation. If f is a 

function on the principal circle bundle coming from a symmetric 

k-tensor on B then 

(49) df = ~f-t~ + ~f-Q + Dvf - ~o + ikfq. 

For example, the function z represents a trace-free symmetric 2-form 

on B, and the structural equation for L tells us 

3.9. [,emma. 

(50) ~L = iz and DvZ = -is. 

4. Change of basis. We start with the simplest change of 

basis, namely rotation through an angle 0. We take 0 to be a 

function on M and study what happens on the principal circle bundle. 

The new basis ~, w[, w~ is given by ~=~3=~ and 

(51) 

w~ = cos.8 Wl-sin, ew 2, 

~ = sin.e Wl+COS.e co 2 

or in complex terms ~= = ~ and 

(52) Q* = e iO O. 

Then from the structural equations we immediately fred that 
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4.1.  Lemma. 

(53) 
¢= = ¢ + dO, 

z" = z e 2i~. 

Now a function or tensor on the principal circle bundle comes from 

one on M by the pull-back if and only if it is invariant under rotation 

by @. Thus we see that the curvature form de = = d¢~ is invariant 

and hence lives on M. The form OAO is also invariant, so W = 

W = is invariant and W is a function on M. This W is the scalar 

introduced by Webster (see [11]}. Likewise [z [2 is invariant curvature 

and hence a function on M. The function z defines a tensor z O 2 
s 

which is invariant. Hence its real and imaginary parts 

(54} 

2 2 
a{~l-W 2) + 2b ca)-] t~ 2 , 

- 2 °  

define trace-free symmetric bilinear forms on B {they differ by 

rotation}. This form is called the torsion tensor by Webster (see [11]}; 

it is analogous to the second fundamental form for a surface. 

We now consider more interesting changes of basis. First we 

change the CR structure while leaving the contact form w fixed. In 

order to keep the metric adapted to the contact form we must leave 

WlA~ 2 invariant. This gives a new basis 

(55) 

w~ = Au)I+B~2, 
,~  = C¢~I+DW 2, 
w~ = t~ 3 

with AD-BC = I. An infinitesimal change of basis is given by the 

tangent to a path at t = 0. Thus an infinitesimal change of the basis 

which changes CR structure but leaves the contact form invariant and 

keeps the metric adapted is given by 



~i = gWl+hC~ 2, 

~2 = kwl+lw2' 

w3=0 
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with g+l = O. Since the  ro ta t ions  are  t r ivial  we may as well t ake  

h=k. This gives 

(56) 

J 

~ 1  = gc° l+h~2 '  

~ 2  = h ~ l - g ~ 2 '  

to3 = 0. 

In complex notation if f = g+ih then 

{57) 
S 

f~ = fQ and ~o = O. 

and L 

For  fu tu re  use we compute  the  infini tesimal change  ¢ in ¢ 
J 

in z f rom the  s t ruc tu ra l  equa t ions  {39t, i40}. We find tha t  f 

transforms as a 2-tensor 

(58) df = Eft. O+~f .  ~+Dvf .  u~+2if¢ 

and that 

4.2. Lemma. 

( 59 )  

r 

z = -i Dvf, 

J 

= i(Df-CY-~f-Q) - {zf+~f)w 

using the fact that we know 4~AQ and ¢ is real. 

On the other hand we may wish to fix the CR structure and 

change the contact form while keeping the metric adapted. In this 

case let ¢~ = f2~ 3 where f is a positive real function. Excluding 

rotation we find that to keep the metric adapted we need 
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(60) 
w~ = f- ~l-D2f- uJ 3, 

~ = f.w2+Dlf.w 3, 

uJ~ = f2u>3, 

In complex  n o t a t i o n  

(61) 
O" = fO + 2i ~ f ' w ,  

~ ,  = f 2 ~ .  

For  an i n f i n i t e s ima l  v a r i a t i o n  we  d i f f e r e n t i a t e  to  o b t a i n  

{62) 

/ / / 

0 = f 0+2i  ~ f  -~, 

/ / 

w = 2f w .  

Hence  c h a n g e s  o f  m e t r i c  f ix ing t h e  CR s t r u c t u r e  a r e  given by a 

p o t e n t i a l  f unc t ion  f, much the  same way  as  c h a n g e s  of  me t r i c  f ix ing a 

conformaJ s t r u c t u r e .  The  main d i f f e r e n c e  is t h a t  t he  d e r i v a t i v e s  of  f 

e n t e r  t h e  fo rmula  f o r  the  new basis .  

As a c o n s e q u e n c e  of ddf  = 0 we have  

(63) D~f - ~Df + iDvf = 0. 

We also define the sub-Laplace operator 

(64) l::If = 2(~)B'f+BDf} = (DIDlf  + DBD2f). 

Then a straightforward computation substituting in the structural 

equations yields 

(4.3. L,emma.) 



(65) 

4.3. 
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z* = z - 2 " ~ ' -  6 2 

Differentiating the first we get  

dq* - dqt-2i l ~  oAH rood co, 

which shows the remarkable relation given by 

4.4 [,emma. 

(66) f3W* = fin - Eft. 

4.5. Corollary. In an infinitesimal variation 

/ '  s s 

(67) W = - o f  - 2 f W. 

5. Energies. 

(68) 

induced by the metric. 

may form. The first is 

Let ~ be the measure on M 

U = WlhW2hw 3 = ~ rlhHhw 

Here are two interesting energies which we 

which is analogous to the energy 

(70) E = f R 
J M 

in the Yamabe problem. The second is 

=I W~t, (69) EW M 
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(71) Ez = f M  Izl2 /~' 

which is a kind of Dirichtet energy. 

In this section we shall study the crit ical points of these 

energies. 

First we observe that  for  computational reasons it is easier to 

in tegra te  over the principal circle  bundle P. The measure there  is 

(72) r : ~IAWZA~3A¢3 : ½ QAQA~A¢. 

If f is a function on the base M then 

jr f v = 2K ,[M f U, (73) P 

so nothing is lost. 

Next we observe that  we can in tegra te  by parts. 

5.1. Lemma. For any f on P 

{74) ~p Of" ~ = 0 and ~ p D V f - v  = 0. 

Proof. The f irs t  follows from 

~ p d(fQA~A~} = 0 

and the second follows from 

~p d{fOA~q~} = O, 

since dQ~O rood ~, ~ and dw~O rood Q, ~ and d#~O rood Q. ~, 

5.2. T h e o r e L  T h e  e m e r o ~  E W i s  c r i t i c a l  o v e r  a ~ t  

c o n t a c t  ] o r m s  w i t h  a ] i x e d  CR s t r u c t u r e  a n d  ] i x e d  

v o t u m e  i 1  a~d  o ~ t y  i ]  W i s  c o n s t a n t .  I t  i s  c r i t i c a t  
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o v e r  a l l  CR s t r u c t u r e s  w i t h  a ] i x e d  c o n t a c t  1 a r m  i 1  

a n d  o n l y  ~ f  L = O. 

S 

Proof. We compute the infinitesimal variation E W . Fixing the 

CR s t ruc tu re  and varying the potent ia l  f of  the con tac t  form with w s 

= f2w gives ~ = 4f ~ and 

E W = {-Elf + 2f W) v = 2 f W y, 
P 

since o integrates away. The volume is fixed when ~ if" v = 0. 

Thus, F_~ = 0 precisely when W is constant. 

Fixing the contact form and varying the CR structure we use 

the following. 

5.3 Lemma. 

(75) ~ = ~ Ipd¢AwA¢. 

Proof.  We use the s t ruc tura l  equat ion to see  

dv~A~ = 2iWOAQA~a 

and in tegra te  by par ts  to ge t  the  result .  Then we have 

E W = A~A¢ + dCA~A¢ 

] 

(using ta = 0), and this gives 

F. w " _ _ . ~ p i  ~ ,/, "AD~SA~,. 

Then using Lemma 4.2 we get  

" I (Lf+~f) v. EW = - ½  p 

so that the CR structure is critical for fLxed w precisely when z=O. 



299 

Next we cons ider  the  energy  E L . 

5.4. Theorem.  T h e  e n e r g y  E z i s  c r i t i c a l  o v e r  

a l l  CR s t r u c t u r e s  w i t h  f i x e d  c o n t a c t  f o r m  i f  a n d  

o n l y  i f  DV~ = o, w h i c h  i s  e q u i v a l e n t  t o  s = O, o r  K l l  = 

K22 a n d  K12 = 0. T h e  e n e r g y  E L i s  c r i t i c a l  o v e r  a l l  

c o n t a c t  f o r m s  w i t h  f i x e d  CR s t r u c t u r e  a n d  f i x e d  

v o l u m e  i f  and  o n l y  i f  

(76) 2i(~z - ~z-) + 3p = c ons t a n t .  

Proof.  The energy  E L is given by 

_-f  Ez p 

so its f i r s t  va r i a t ion  is 

E z = (L ~ + L 2 )p + z y . 
P 

When w is fixed, ~ = 0 and p = 0. By Lemma 4.2 we have the 
P 

resu l t  tha t  ff C/ = f ~ then L = - iDvf ,  and this  gives 

5.5. Lemma. 

- f E~ = 2 Im {Dv~ ~ .  
P 

Since f is any rea l  f u n c t i o n  on M, we see  E z = 0 when DVL - 0. 

Then  s = 0 by Lemma 3.9 and K l l  = K22 and K12 = 0 by s u b s t i t u t i o n  

{38). 

This condi t ion  says tha t ,  a t  each  poin t  of M, the  s ec t i ona l  

c u r v a t u r e  of all  p lanes  pe rpend icu la r  to  the  c o n t a c t  p lane  B are  equal .  

If, on the  o the r  hand, we fix the  CR s t r u c t u r e  and va ry  the  

c o n t a c t  form by a po ten t i a l  f, we have from Lemma 4.3 
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2. Z ' =  ~: - 2  - 6  

Taking an infinitesimal var ia t ion 

" 2 ~ "  " " L = - . ~ = 3 f  ~' 

Then the variation in E z is 

" f " II E z = (-2(~ a~f + ~f'} + 3 L 2 f'} ~, 
P 

from which we see that E z = 0 precisely when 

2( a, + 3 l , j  2 

is constant. Since ~z = iz by Lemma 3.9, and I z 12+p = 0, this gives 

the equation {76). 

6. Changing Webster Scalar Curvature. The problem of 

fixing the CR structure and changing the Webster scalar curvature is 

precisely analogous to the Yamabe problem of fixing the conformal 

structure and changing the scalar curvature, except the problem is 

subelliptic, and the estimates and constants for the 3-dimensional CR 

case look like the 4-dimensional coP, formal case. The first result is 

the following. 

6.1. Theo~m. Let M be a compact orientable 

three-manifoZd with fixed CR structure. Then we can 

c h a n g e  t h e  c o n t a c t  ] o r m  so  t h a t  t h e  W e b s t e r  s c a l a r  

c u r ~ a t u r e  W o1 t h e  a d a p t e d  R i e m a n n i a n  m e t r i c  i s  

e i t h e r  p o s i t i v e  o r  z e r o  o r  ~ e g a t i v e  e v e r y w h e r e .  

Proof. We have f3W" = fW - Elf from [,emma 4.4. We take 

f to be the eigenfunction of W-Q with lowest eigenvalue k I. By 

the strict maximum principle for subelliptic equations (see Bony [1]) we 

conclude that f is strictly positive. Since Wf - of = X1f we have 
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f2W* = k 1. Hence W* always has the same sign as X]. 

Next we show that  in the negative curvature case we can make 

W whatever  we want, in particular, a negative constant.  

6.2. Theorem. L e t  M b e  a c o m p a c t  o r i e n t a b l e  

t h r e e - m a n i Y o l d  w i t h  a l i x e d  CR s t r u c t u r e ,  l I  s o m e  

c o n t a c t  f o r m  h a s  n e g a t i v e  W e b s t e r  s c a l a r  c u r v a t u r e ,  

t h e n  e v e r y  n e g a t i v e  f u n c t i o n  W<0 i s  t h e  W e b s t e r  

s c a l a r  c u r v a t u r e  o f  o n e  a n d  o n l y  o n e  c o n t a c t  f o r m  ~. 

Proof. Let C be the space of all contac t  forms and let Y be 

the space of functions. We define the operator P by 

P:C --=* Y, P(w) = W. 

Let Y- be the space of negative functions and let C- be the space of 

contact forms with negative Webster curvature. Then 

(77) P:C- -'* Y- 

is also defined. We claim the P in (77) is a global dfffeomorphism. 

This follows from the following observations. 

a) C- is not empty. 

b) P is locally invertible. 

c) 

compact). 

P is proper (the inverse image of a compact set is 

d) if- is simply connected. 

We then argue that (a) allows us to start inverting somewhere, 

(b) allows us to continue the inverse along paths, (c) says that the 

inverse doesn't stop until we run out of Y-, and (d) tells us that the 

inverse is independent of the path and hence unique. 
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Before we s tar t  the proof we remark on a few technical 

details. There are two possible approaches to the proof. One is to 

work with C °o functions and quote the Nash-Moser  theorem (see [5] for 

an exposition) using the ideas in [6] to handle the subelliptic 

estimates. The other is to work with the Folland-Stein spaces S~ 

{see [3]) which measure k derivatives in the direction of the contac t  

structure in L p norm. We can take ¢~¢8k÷ 2 p and W¢S p 

provided pk>8 so that WeC ° by the appropriate Sobolev inclusion. 

The easiest case analytically is to take p = 2, which necessitates 

k~>5. 

We proceed with the proof. Observation {a} follows from the 

hypothesis. To see {b) we compute the derivative of P, and apply the 

inverse function theorem. 

In fact, from Corollary 4.5 we write 

I S I 

f + 2CNf = -W , 

by putting dashes on the original metric. The operator C] + 2~/ has 

zero null space by the maximum principle, since W < 0. Since it is 

self-adjoint, it must also be onto and hence invertible. This proves 

that DP is invertible when ~" < 0, and so P is locally invertible on all 

of C-. 

To see assertion {c) that  P is proper, we apply the maximum 

prineipie to the equation 

Where f is a maximum Clf~<0, and where f is a minimum ~¢~0. 

Since W and W are both negative we get the estimate 

1 1 

1 1 (78) /W)min ~< f min ~< f max ~< /W) max 

Notice that the estimate fails ff W and ~N are positive. Having 

control of the maximum and minimum of f, it is easy to control the 
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higher der iva t ives  using the equation and the subelliptic Garding's  

inequali ty 

(79) Ilflls~¢+ 2 ~< C {llC-2flls[ + ilfllLp). 

In the C °o case  this shows P is proper. For given any compact  se t  of  

M, we have uniform bounds on Wma x and Wmi n and all iIWII~p. 
~k 

This gives bounds on fmax and fmin and all I l f l l s~  ¢ for  all f in the 

preimage, so the preimage is compact  since Coo is a Montel space.  

To work in the Banach space  Sk p we also need the following 

observat ion.  Suppose we have a sequence of con tac t  forms to n with 

W n --* W < 0 in S p. The previous es t imates  give bounds on ~n in 

Sk+  2 , p  which implies convergence of a subsequence  in S p. Let  
2 -  

ta n - - ,  G, and wri te  w n = fnCa. The maximum principle es t imate  

shows fn --* 1 in C °.  Then using the equation we get  the  es t imate  

(80) I l f n - l t i s ~ + 2  .< C IIW n - ~ q l t s [ ;  

.__, P this shows w n & i n  Sk+ 2, and proves P is proper.  

The asser t ion (d} that  ~ -  is simpb" connected follows by 

shrinking along s t ra ight  line paths to W = - I .  This completes  the 

proof of the theorem. 

7. ]~inimimng Torsion. We consider finally the problem of 

minimizing the energy 

(81) E z P 

represent ing  the L 2 norm of the torsion by the hea t  equation with the 

con tac t  form ~ fixed. From Lemma 5.5 we have the resul t  tha t  if we 
J 

take  a path of  O's depending on t with O = fO then 

E z ' =  2 lm J 'p  f ' D v L  )J. 

Following the gradient  flow of E z we let  f = i I~ . z .  This gives 
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hea t  equation for  E z. Since DVL = - is by Lemma 3.9 we get  the 

following results .  

7.1. Heat Equation Formulas. 

J 

o = i D r , - 5 ,  

= - 2  s 2 ~ ,  (82) E z p 

2 
z = DvL. 

These equations show tha t  if the solution exis ts  for  all t ime then the 

energy E z dec reases  and the curva ture  s ~ 0. The equation 
2 z =Dv z is a highly degenera te  parabol ic  equation,  since the r ight  

hand" side involves only the second de r iva t ive  in the  one direct ion V. 

Never theless ,  it  is not a bad equation,  s ince the  maximum principle 

applies.  This shows tha t  the maximum absolu te  value of z 

dec reases .  The equation is in f ac t  just  the ordinary heat  equation 

r e s t r i c t ed  to each orbit  in the  flow of V. Physical ly  we can imagine 

the manifold P to be made of a bundle of wires insulated from each 

other,  with the heat  flowing only along the wires.  When the orbi ts  of 

V are closed, the analysis  should Be fa i r ly  s t ra igh t forward .  When the 

orbi ts  of V are dense, things are  much more complicated,  and probably 

lead to small divisor problems. 

A regular  fol ia t ion is one where each lea f  is compact  and the 

space  of leaves is Hausdorff.  In this  case  we always have a Se i f e r t  

fol iat ion,  one where each leaf  has a neighborhood which is a f ini te  

quot ient  of a bundle. In th ree  dimensions the Se i fe r t  fo l ia ted  

manifolds are  wel l -unders tood  by the topologis t s ,  and provide many of 

the  nice examples. Wc conjec ture  the  following resul t .  

7.2. Conjecture .  Let M b e  a compact  th ree -mani fo ld  with a 

f ixed con tac t  form Lo whose vec to r  f ie ld V induces a Self  err  fol iat ion.  

There  there  exists  a CR s t ruc tu re  on M such tha t  the assoc ia ted  

metr ic  has s = 0, i.e., the sec t ional  cu rva tu re  of all planes a t  a given 

point perpendicular  to the con tac t  bundle B = Null ¢a are equal. The 
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metric is obtained as the limit of the heat equation flow as t --* **. 
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APPENDIX 

by 

Alan Weinstein 

THREE-DIMENSIONAL CONTACT MANIFOLDS 

WITH VANISHING TORSION TENSOR 

In a lecture on some of the material in the preceding paper, 

Professor  Chern raised the question of determining those 3-manifolds 

admitting a contac t  s t ructure  and adpated Riemnnnian metric for which 

the torsion invariant c2=a2+b 2 is identically zero. (See ~3. A 

variational characterization of such structures is given in Theorem 

5.2.) The purpose of this note is to show that the class of manifolds 

in question consists of certain Seifert fiber manifolds over orientable 

surfaces, and that the first real Betti number b]{M) of each such 

manifold M is even. These results are not new; see our closing 

remarks. 

By a simple computation, it may be seen that the matrix 

b 1 b - a  (see Corollary 3.5) represents  the Lie derivative of the 

ihduced inetric on the contact  bundle B with respect  to the contact  

vector field V. We thus have: 

A.]. [..emma. T h e  i n v a r i a n t  c 2 i s  i d e n t i c a l l y  

z e r o  i ]  a n d  o n l y  i ]  V i s  a k i l l i n g  v e c t o r  ] i e l d .  

o t h e r  w o r d s ,  M i s  a " k - c o n t a c t  m a n i f o l d " ;  s e e  [I]3 

(In 

We would like the flow generated by V to be periodic. If  this 

is not the case, we can make it so by changing the structures in the 

following way. Let G be the closure, in the automorphism group of M 

with its contact and metric structures, of the l-parameter group 

generated by V. G must be a torus, so in its Lie algebra we can find 

Killing vector fields V' arbitrarily close to V and having periodic flow. 

Let • be the ]-form which snnihilates the subbundle B' perpendicular 
I 

to V' and which satisfies w {V') - 1. For V' sufficiently close to V, 
I 

w will be so close to the original contact form ~ that it is itself a 
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contact form. Since the flow of V' leaves the metric invariant, it 

leaves the invariant the form to , from which it follows that V' is the 
P 

contact vector field associated with ~o . 

Having made the changes described in the previous paragraph, 

we may revert to our original notation, dropping primes, and assume 

that the flow of V is periodic. A rescaling of • will even permit us 

to assume that the least period of V is 1. {Note that, by Gray's 

theorem [2], we could actually assume that the new contact structure 

equals the one which was originally given.) 

Suppose for the moment that the action of S ] = IR/Z 

generated by V is free. Then M is a principal S 1 bundle over the 

surface M/S 1. The form w is a connection on this bundle; since 

is a contact form, the corresponding curvature form on M/S I is 

nowhere vanishing. Thus M/S 1 is an orientable surface, and the 

Chern class of the flbration M --* M/S I is non-zero. By the 

classification of surfaces, bl(M/SI) is even; by the Gysin s e q u e n c e ,  

= bI{M/SI) and is therefore even as well. b1(M) 

We are left to consider the case where the action of S I, 

although locally free, is not free. The procedure which we will follow 

is that of [8]. Let r~s I be the {finite) subgroup generated by the 

isotropy groups of all the elements of M. Then M is a branched 

cover of M/r, and M/r is a principal bundle over M/S I with fiber 

the circle S1/r. The branched covering map M --, M/r induces 

isomorphisms on real cohomology, so it suffices to show that b1(M/r) 

is even. To see this, we consider the fibration 

s1/r--.M/r--,M/S 1. The quotient spaces M/r and M/S I are 

V-manifolds in the sense of [4], and we have a fibre bundle in that 

category. The base M/S I is actually a topological surface which is 

orientable since it carries a nownere-zero 2-form on the complement 

of its singular points. Now the contact form may once again be 

considered as a connection on our V-fibration, and so, just as in the 

preceding paragraph, we may conclude that b1(M/r) is even. 

Remarks. A K-contact manifold is locally a 1-dimensional 

bundle over an almost-K~hler manifold. When the base is Kahler, the 

contact manifold is called Sasakian. Using harmonic forms, Tachibana 
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[5] has shown that the first Betti number of a compact Sasakian 

manifold is even. On the other hand, since every almost complex 

structure on a surface is integrable, every 3-dimensional K-contact 

mainfold is Sasakian, and hence our result follows from Tachibana's 

theorem. In higher dimensions, compact symplectic manifolds with odd 

Betti numbers in even dimension are known to exist [3] [7], and circle 

bundles over them will carry K-contact structures, while having odd 

Betti numbers in even dimension. 

The paper [6] contains a study of which Self err fiber manifolds 

over surfaces actually admit sl-invariant contact structures. 
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4-MANIFOLDS WITH INDEFINITE INTERSECTION FORM 

S.K. Donaldson 

All Souls College 

Oxford, England 

In writing up this lecture I shall not concentrate so much on des- 

cribing problems of 4-manifold topology; instead I shall explain how a 

simple topological construction has applications in two different direc- 

tions. First I will recall that, just as bundles over a single space have 

homotopy invariants, so do families of bundles, and that these define cor- 

responding invariants in families of connections. Next I will sketch the 

way in which such a topological invariant, when endowed with a geometric 

realisation, becomes important for studying holomorphic bundles over al- 

gebraic varieties. Last I will indicate how this same homotopy invariant 

of families of connections, combined with arguments involving moduli spa- 

ces of self-dual connections over a Riemannian 4-manifold, gives restric- 

tions on the possible homotopy types of smooth 4-manifolds and I will 

speculate on possible future progress in this area. 

Topology of bundles. 

This is standard material that may be found in [2] for example. Con- 

sider a fixed manifold X and a family of bundles over X parametrised 

by some auxiliary space T , so we have a bundle P over the product 

X × T with structure group G (compact and connected, say). Take first 

the case when T is a point so we have a single bundle over X , deter- 

mined up to equivalence by a homotopy class of maps from X to BG . 

This may be non-trivial, detected for example by characteristic classes 

in the cohomology of X . If we choose a connection A on the bundle 

the real characteristic classes can be represented by explicit differen- 

tial forms built from the curvature of the connection. Equally if D is 

an elliptic differential operator over X then using a connection it may 

be extended to act on objects (functions, forms, spinors etc.) twisted by 

a vector bundle associated to P . This has an integer valued index: 

index (DA) = dim ker D A - dim coker D A 
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which is a rigid invariant of the bundle, independent of the connection. 

So these are two ways in which the underlying homotopy may be represen- 

ted geometrically, by curvature and by differential operators. The Chern- 

Weil and Atiyah-Singer theorems then give formulae relating the three. 

In the same way for a general family parametrised by T the bundle 

P is classified by a homotopy class of maps from T to the mapping space 

Maps(X,BG) , and at the other extreme from the case T = point we have 

a universal family parametrised by this mapping space. Again we may al- 

ways choose a connection over X × T , which we may think of as a family 

of connections parametrised by T, and conversely any family of equiva- 

lence classes of connections on some bundle essentially arises in this 

way. (This is precisely true if we work with based maps and bundles, re- 

moving base points gives small technical differences which can safely be 

ignored here). Equivalently we have the infinite dimensional space B of 

all equivalence classes of connections obtained by dividing the affine 

space of connections A by the bundle automorphism group G . B has the 

homotopy type of Maps(X,BG) . 

Again we may construct topological invariants of such families of 

bundles. In cohomology we can use the characteristic classes again. There 

is a slant product: 

H p+q(x × T) ® H (X) --> H p(T) 
q 

so that characteristic classes of bundles over X x T contracted with, or 

integrated over, homology classes in the base manifold X yield coho- 

mology classes in families of connections. In particular if G is, say, 

a unitary group we obtain in this way a map: 

: H 2 (X) > H 2 (T) 

~(~) = c2 (P)/~ 

(A simpler example is to take the Jacobian parametrising complex line bund- 

les over a Riem~nn surface. Operating in the same way with the first Chern 

class gives the usual correspondence between the 1-dimensional homology 

of the surface and the cohomology of the Jacobian). We can do the corres- 
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ponding thing in K-theory and realise the resulting elements in the K- 

theory of T by using differential operators again. For example if the 

base manifold X is the 2-sphere then a unitary bundle over S 2 x T de- 

fines an element of K(S 2 × T) which maps to K(T) by the inverse of the 

Bott periodicity map. If we take the Dirac operator D over S 2 then a 

family of connections gives a family of Dirac operators {D t} parame- 

trised by T and, after suitable stabilisation the index of this family 

[2] defines the required class: 

index D t = [Ker D t] - [coker D t] 6 K(T) 

Of course we obtain other classes in this way and the Atiyah-Singer index 

theorem for families gives formulae relating these to the underlying ho- 

motopy. In particular we may understand our class above from either point 

of view via the formula: 

c1(index D t) : ~(fundamental class of S 2) 

S_table bundles on algebraic curves and surfaces ~ 

Here I only want to say enough to fit into our overall theme; more 

details and references may be found in [4], but I learnt the point of 

view we are adopting now from lectures of Quillen. 

There is a general algebraic theory dealing with the action of a 

complex reductive group G ~ on a vector space ~n+1 via a linear repre- 

sentation. Equivalently we may take the induced action on ~n and the 

hyperplane bundle H over it. In that theory there is a definition of a 

"stable" point. Now suppose that ~n+1 has a fixed Hermitian metric, in- 

ducing metrics on H and on ~pn , and picking out a maximal compact 

subgroup GcG ~ whose action preserves these metrics. There is a general 

theory dealing with the metrical properties of these actions and relating 

them to the purely complex algebraic properties. Roughly speaking if we 

restrict to the stable points then a transversal to the G~-action on 

~n is induced by taking the points in ~n+1 , or equivalently H -I , 

which minimise the norm in their G ~ orbits. The corresponding variati- 
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onal equations cutting out the transversal take a simple form and are the 

zeros of a map: 

m : E~n > j, [7] , [8] 

Large parts of this theory can be developed abstractly from general pro- 

perties of Lie groups and the fact that the curvature form of the Hermi- 

lian line bundle H gives the K~hler symplectic form on ~n 

Atiyah and Bott [I] observed that the theory of holomorphic struc- 

tures on a vector bundle E over an algebraic curve C could be cast in 

the same form, except with an infinite dimensional affine space in place 

of a projective space. For a holomorphic structure on E is given by a 

F-operator and these are parametrised by a complex affine space A . The 

infinite dimensional group G ~ of complex linear automorphisms of E 

acts by conjugation and the quotient set is by definition the set of equi- 

valence classes of holomorphic (or algebraic) bundles, topologically equi- 

valent to E Independently, and from another point of view, stability 

of algebraic bundles had been defined in algebraic geometry; the defini- 

tion uses the notion of the degree of a bundle - the integer obtained by 

evaluating the first Chern class on the fundamental cycle. 

If now E has a fixed Hermitian metric then a ~-operator induces 

a unique unitary connection. Regarded as connections the symmetry group 

of the affine space A is reduced to the subgroup GcG ~ of unitary 

automorphisms, and this subgroup preserves the natural metric form on the 

space of connections A derived from integration over C . We would have 

all the ingredients for the abstract theory described above if we had a 

Hermitian line bundle i over A with curvature generating this metric 

form, and acted on by G ~ 

It was explained above that over a space of connections we obtain vir- 

tual bundles from the associated elliptic operators. In particular we can 

take the Dirac operator over the algebraic curve C , which is the same 

as the ~-operator after tensoring with a square root ~I/2 of the ca- 
~C 

nonical bundle, so the kernel and cokernel form the usual sheaf cohomolo- 

gy. Moreover we get a genuine line bundle if we take the highest exterior 

power or determinant of the relevant vector spaces. Thus we get a complex 

line bundle i C over A : 
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i c = X(E®K I/2) = det H0(E®K I/2 ) ® det H I (E®K I/2 ) 
C C C 

-I 

acted upon by G ~ , and realising via the first Chern class the cohomo- 

logy class obtained under our map ~ from the fundamental cycle of the 

curve C , as in Section I. 

Now Quillen has defined Hermitian metrics [9] on such determinant 

line bundles and computed the associated curvature to be precisely the 

metric form above. Thus all the ingredients for applying the general the- 

ory are present - the map m cutting out a transversal to the stable 

orbits is given by the curvature of a connection and the preferred points, 

minimising Quillens analytic torsion norm, are given by the projectively 

flat unitary connections. 

We can study algebraic bundles over any projective variety; in par- 

ticular over an algebraic surface X . Now the definition of stability 

requires the choice of a polarisation - the first chern class of an am- 

ple line bundle L over X . This means that the degree of a bundle is 

defined, in the normal way. We can represent this polarising class by a 

K~hler form ~ , the curvature of some metric on L . Then the same the- 

ory holds; we do not find flat connections on stable bundles but connec- 

tions whose curvature is orthogonal to the K~hler metric at each point. 

The relation with metrics on cohomology is less well established but the 

relevant line bundle should probably be of a form such as: 

iX = X(E®KI/2x ® LI/2) ® X(E®~I/2 @ L-I/2)-I 

Suppose that L has a section s cutting out a curve CcX , we can 

think in the sense of currents of C as a degenerate form of a metric. 

There is an exact sequence: 

0 > E ® K I/2 ~ L I/2 s KI/2 LI/2 .... > E® ® > E! ®K > 0 
X X C C 

whose long exact sequence in cohomology gives an isomorphism i X ~ i C ; 

moreover one can compute formulae for the difference in norms, one defined ~ 
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relative to C and one to the metric ~ on X , compared under this iso- 

morphism, with an explicit difference term given by integrals involving 

Chern-Weil polynomials in the curvature. These are useful for throwing 

problems back to the curve from the surface. 

All this should probably be understood in the following way. Topo- 

logically we have a map ~ from H2(X) to the cohomology of any family 

of connections over X . If we wish to define stable bundles then we need 

a polarisation [~] of X which via this map ~ and Poincar6 Duality 

induces a corresponding "polarising class" in the infinite dimensional 

space of connections. We may represent the original class in various ex- 

plicit ways; by a metric or by a line bundle or by a curve, and to each 

such representation on X we get a corresponding representation in the 

space of connections. The usual formulae for homologies between the re- 

presentations on X go over to corresponding formulae on the connections 

which we can use in our arguments involving stable bundles. But the ex- 

istence of these formulae underlines that the basic correspondence bet- 

ween the geometry of the base manifold and its stable bundles is gene- 

rated by our simple construction of Section I. 

Connections over smooth 4-manifolds. 

Self dual connections are solutions to a differential equation which 

is special to 4-dimensions. On an oriented Riemannian 4-manifold the 2- 

forms decompose into the ±I eigenspaces of the star operator; the same 

is true for bundle valued forms, and a connection is self-dual if its 

curvature lies in the +I eigenspace. If the manifold is an algebraic 

surface with the standard orientation reversed these are the connections 

whose existence characterised stable bundles in the previous section. 

(For on a K~hler surface the self dual 2-forms are made up of the (0,2) 

and (2,0) forms and the span of the K~hler form). Correspondingly these 

solutions of differential equations in Riemannian geometry behave rather 

like objects in algebraic geometry; in particular the solutions, up to 

equivalence by bundle automorphisms, are parametrised by finite dimensi- 

onal moduli spaces rather as the Jacobian parametrises line bundles over 

a Riemann surface. Moreover these moduli spaces have applications in dif- 

ferential topology. 

At present there is no general theory of smooth 4-manifolds. A cen- 
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tral problem is to understand the relationship between homotopy and dif- 

ferentiable structures and to quantify the gap between them. For simply 

connected 4-manifolds the homotopy type is easily understood - the sole 

invariant is the intersection form on the integral 2-dimensional homolo- 

gy. Likewise the classification of topological 4-manifolds up to homeo- 

morphism has been established by Freedman [6], and is virtually the same 

as that up to homotopy. Now while there are many integral definite forms, 

and so corresponding topological 4-manifolds, it was proved by methods 

similar to those described below [5] that none of these arise from smooth 

manifolds beyond the obvious examples given by diagonalisable forms. The 

interesting remaining class of forms are the even (which corresponds to 

spin manifolds) indefinite forms which are all of the shape: 

n Es+m <0 11 

For smooth manifolds n must be even by Rohlin's Theorem and the simp- 

lest known example, beyond S 2 × S 2 which has form (~ ~, is the smooth 
k-- 

4-manifold underlying a complex K3-surface, having 2 E%s and 3 s 

in the intersection form. By taking connected sums with S 2 x S 2 one can 

always increase m so that the problem of realisation of these forms 

is to discover the minimal value of m for each given n. It is hoped 

that a proof that for positive n the value of m must be at least 3 

(implying in particular that the K3 surface is smoothly indecomposable, 

hence genuinely the simplest "non-obvious" smooth 4-manifold) using the 

methods described below, will appear very shortly. 

First a word on the formal structure of these proofs. We need some 

way of distinguishing the forms which are obviously realised when n is 

zero from the case when n is positive. The relevant property that emer- 

ges is that a direct sum H 1 @ H 2 @ .... @ H k of copies of the "hyperbo- 

lic" form (~ !h is distinguished by the fact that the symmetric power: 
\, U/ 

k+1 
(H 1 @ ... @ H k) 
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is identically zero mod 2 . For example when k = I 

any four integral elements ~i,...u,4 : 

this says that for 

(~I "~2 ) (~3"~4) + (~I"a3) (~2"e4) + (~I"e4) (~2"~3)=0 rood 2 

So our proofs are really to establish such identities when ~ are in- 
l 

tegral homology classes and (.) is the intersection pairing. 

These identities are obtained by pairing two kinds of information 

and, since we are interested in the differences between homotopy and 

differentiable structures, it is probably important to stress the con- 

trast in the ways that these arise. By definition our moduli space M 

of self dual connections on some bundle parametrises a family of connec- 

tions and we have seen in the first section above that we can produce 

cohomology classes in such parameter spaces. Alternatively we can think 

of the moduli space as a subset of the infinite dimensional space B of 

all equivalence classes of connections, cut out by the non-linear dif- 

ferential equations giving the self duality condition. Since we regard 

the homotopy type of the base manifold X 4 as known we may regard the 

homotopy type of this infinite dimensional parameter space of connections 

as known. For example we have our map; defined in an elementary way: 

: H 2(X 4) > H 2(Bx) 

in fact this generates a copy of the polynomial algebra on H2(X 4) and 

within H*(Bx) . 

Our moduli space M sits within this infinite dimensional space. 

At present we may regard this as largely unknown and mysterious, except 

for properties that can be understood by linearisation, for example the 

dimension of the space. What we do know is that the moduli space carries 

a fundamental class in homology; or rather, as we shall see, that it may 

be truncated, typically, to a manifold with boundary ~M so we may assert: 

< ~, [~M] > = 0 for any ~ in H*(B X) 
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To produce a suitable cohomology class # we may use our map ~ - this 

builds in the two dimensional homology that we wish to study; likewise 

we may produce more subtle cohomology classes coming, from our present 

point of view, from the index of the 4-dimensional Dirac operator on a 

spin 4-manifold. But all this is homotopy, the smooth structure and the 

difference between differentiable and topological manifolds enters by the 

existence of the relative homology class carried by the moduli space of 

solutions to the differential equation. 

Here is an explicit example, directly relevant to the case when we 

study 4-manifolds with one negative eigenvalue in their intersection form. 

Take the complex projective plane with its standard orientation reversed; 

then we may study the self-dual connections via the stable holomorphic 

bundles as above, and in particular if we consider rank 2 bundles with 

c I = 0 ; c 2 = -2 then the appropriate moduli space has been described 

by Barth [3] as follows. TO the original projective plane P we may as- 

sociate the dual plane P* , so points of one plane are lines in the 

other. The conic curves in P* are parametrised by a copy of ~5 ; the 

non-singular conics form an open subset, the complement of a divisor 

which is naturally identified with the symmetric product sym2(p) (since 

a singular conic is made up of two lines). According to Barth the moduli 

space of algebraic bundles may be identified with these non-singular co- 

nics, which we may obviously truncate by removing an open neighbourhood 

of sym2(p) to get a manifold M with boundary ~M made up; loosely 

speak£ng, of a circle bundle over sym2(p) with fibre L say. 

We can understand our map u very easily in this example, and doing 

so explicitly will illustrate the general case. Let Z be a line in P 

(so representing a generator of H2(P)) . Then it follows essentially im- 

mediately from our discussion of the previous sections and the descrip- 

tion by Barth of the "jumping lines" of a bundle that a representative 

for the cohomology class ~[Z] is given by the hyperplane V in ~5 

consisting of conics through the point z in P*. Consider four general 

lines £I,£Z,£3,£4 in P . The eight dimensional cohomology class 

~(£i ) • ~(£2 ) • ~(Z 3) • ~(£4 ) is represented by the projective line 

N N D . The intersection of this with our truncated moduli 
V~ I V~ 2 V~ 3 V~ 4 

space M is a surface with boundary three copies of the loop L , corres- 

ponding to the three point-pairs: 
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((~1N £2), (Z 3 A ~4)), ((£ 1A £3), (% 2 N Z4)),((Z I A Z4),(£ 2 N %3 ) ) 

in P . If we proceed analogously on any (simply connected) 4-manifold 

with one negative part of the intersection form then we have a broadly 

similar moduli space - a non-compact manifold of real dimension 10 . If 

we consider a cup product ~(~1)~(~2)~(~3)~(~ 4) for any 4 surfaces 

~. then we are led in the same way to consider a set of point pairs of l 
the form: 

((~i 0 ~j) , (~k N ~i )) 

and the number of such pairs, modulo 2, is just the expression in terms 

of the intersection pairing given above. The key additional fact is that 

for a manifold with a spin structure (unlike {~2) the corresponding 

loop L is essential in the space of connections, detected by a mod 2 

cohomology class w I , thus we argue in the manner above with the coho- 

mology class %q = w I • ~(~i ) • ~(~2 ) • ~(a3 ) • ~(~4 ) 

Finally I will make two general remarks. Following Taubes [10] the 

structure of these boundaries to moduli spaces can be understood reaso- 

nably explicitly in terms of a number of "instantons" - connections con- 

centrated near a finite set of points on the manifold. In the complex 

algebraic version we should probably think of these as being bundles ob- 

tained from deformations of ideal sheaves, rather in the way that the 

symmetric products of an algebraic curve map into the Jacobian. The ways 

that these instantons can be oriented relative to each other give the 

structure of the "link" L in the moduli space itself and this depends 

upon the values of the anti self-dual harmonic 2-forms at the points. 

The possibilities become rapidly more complicated as the number m of 

negative parts of the intersection form grows larger, and roughly spea- 

king what distinguishes the cases m = 0,1,2 is that the codimension 

of the "special divisors", on which the forms are aligned in exceptional 

ways, is sufficiently high. It would seem to be possible that the beha- 

viour of these harmonic forms (which of course globally reflect the co- 

homology, via Hodge Theory) contains differential topological informati- 

on about the 4-manifold. In the complex case these anti self-dual forms 



319 

are made up of the K~hler symplectic form and the holomorphic 2-forms 

and these are well known to carry a lot of information about the complex 

structure. Rather similarly the "periods" of the harmonic forms, the 

relation with the integral structure, also enter into the Riemannian the- 

ory via line bundles and Hodge Theory. 

I have emphasised here that no global properties of these moduli 

spaces beyond existence are really used in these arguments, and indeed 

the number of explicit examples that are known is rather small. On the 

other hand we have seen that we may easily construct cohomology classes 

over these moduli spaces and that we have obtained information by pairing 

these with the relative homology class carried by the manifold. It seems 

that the moduli spaces should carry an absolute homology class with re- 

spect to cohomology with sufficiently small support, which can then be 

paired to give integer valued invariants. Moreover these should be inde- 

pendent of the Riemannian metric on the 4-manifold in the usual way that 

the homology class carried by the fibre of a map is a deformation invari- 

ant. 

Of course there are many ways in which rigid integer valued invari- 

ants can be produced by analytic methods - integration of forms or in- 

dices of operators; but as I recalled in the first section these can all 

be understood entirely from homotopy, via the usual formulae. This is not 

obviously the case for our moduli spaces. For example if we take the case 

described above on the projective plane then we see that 

(~[£])5 [M] = I , given by the intersection of five hyperplanes. It is 

not clear that this could be predicted from the homotopy type of ~2 

alone. Again, the fact that these cohomology classes appear so naturally 

in the complex algebraic theory gives extra motivation in this direction. 
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§ I EINLEITUNG 

Die Konstruktion des Modulraumes A der prinzipal polarisierten 
g 

abelschen Variet~ten der Dimension g ~ber ~ ist seit langem bekannt. 

Man erh~it je nach Geschmack einen groben Modulraum oder ein algebra- 

isches Feld, nach Einf~hrung yon Level-Strukturen sogar einen feinen 

Modulraum. Es sind auch Methoden der Kompaktifizierung bekannt ~ber 

den komplexen Zahlen (siehe [AMRT], [N] ), doch fehlte bis jetzt die 

Beschreibung einer solchen ~ber ~ . Dies geschieht in dieser Arbeit. 

Genauer gesagt, konstruieren wir tin algebraisches Feld, welches 

eigentlich ~ber ~ ist, das A als offene Teilmenge enth~it, und 
g 

Ober dem eine universelle semiabelsche Variet~t existiert. Der Rand 

wird ziemlich genau beschrieben, und man erh~it f~r Level-n-Strukturen 

sogar einen algebraischen Raum. 
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Dabei wird fur unsere Zwecke ein algebraisches Feld gegeben durch ein 

Schema S , yon endlichem Typ ~ber ~ , sowie eine endliche Abbildung 

R+ S × ~ S , welche R zu einem Gruppoid ~ber S macht, und f~r die 

die Projektionen von R auf S 6tale sind. Man erkennt leicht die 

~quivalenz zur Definition in [DM], und wet will,kann sich nach Einf~h- 

rung yon Level-n-Strukturen darauf beschr~nken, dab R abgeschlossenes 

Unterschema von S × ~S ist, wobei man dann bei algebraischen R~umen 

landet ([A]). Bei der Konstruktion yon S benutzt man M. Artin's 

Deformations-Theorie ([A]) sowie eine leichte Verallgemeinerung yon 

D. Mumford's Konstruktion degenerierender abelscher Variet~ten. Als 

R nimmt man einfach die Normalisierung des yon dem Modulproblem A 
-- g 

gelieferten Gruppoids. DaB dies die gewOnschten Eigenschaften hat, folgt 

aus einer Betrachtung degenerierender abelscher Variet~ten, indem man 

zeigt, dab man die in Mumford's Konstruktion auftretenden Perioden aus 

den Koeffizienten der e-Reihe ablesen kann. 

SchlieBlich sei noch erw~hnt, dab anders als im Fall der Kurven die 

Kompaktifizierung nicht kanonischist, sondern yon der Wahl einer Kegel- 

zerlegung der positiv semidefiniten quadratischen Formen in g Variablen 

abh~ngt. Dies ist auch bei der komplexen toroidalen Kompaktifizierung 

der Fall, und in der Tat liefern unsere Methoden ~ber { gerade diese 

Modelle. 

Der Aufbau der Arbeit ist wie folgt: 

Zun~chst betrachten wir degenerierende abelsche Variet~ten und ordnen 

ihnen quadratische Formen zu. Dies wird zum einen benutzt, um sp~ter 

die Kompaktheit zu zeigen, und motiviert zum anderen die Wahl der Daten, 

welche bei der verallgemeinerten Mumford-Konstruktion eingehen. 

Diese folgt dann im n~chsten Kapitel. Dabei sind alle auftretenden 

Schwierigkeiten im wesentlichen sehon yon Mumford in [M4] gel~st worden. 

Wit brauchen dies nur noch von Tori auf semiabelsche Variet~ten zu ver- 

allgemeinern. 

Danach bereitet die Konstruktion von S und R keine groBen Probleme 

mehr. Ihr ist das vierte Kapitel gewidmet, worauf dann die Anwendungen 

folgen: 
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Wir betrachten Level-Strukturen, Modulformen (unter anderem eine arith- 

metische Behandlung der minimalen Kompaktifizierung), 6tale Garben und 

Kohomologie, die Torelli-Abbildung sowie die Beziehungen zur komplexen 

Theorie. Eine weitere Anwendung wire es, den ersten Teil des Beweises 

der Mordell-Vermutung zu vereinfachen (siehe [F]), und es bleibt zu 

hoffen, dab eine arithmetische Theorie der Siegel'schen Modulformen 

in Zukunft noch einiges Sch~ne hervorbringt. 

Der Leser wird bemerken, da~ alle wesentlichen Grundideen yon D. Mumford 

~bernommen worden sind, und dieser h~tte sicher auch noch die Resultate 

dieser Arbeit erhalten, wenn er sich nicht anderen Interessen zugewandt 

h~tte. Einer seiner Sch~ler, Ching-Li Chai, hat k~rzlich ebenfalls eine 

arithmetische Kompaktifizierung des Modulraums A beschrieben. (Siehe 
g 

[C]) . Nach den mir voliegenden Informationen hat er auch Mumford's 

Konstruktion verallgemeinert (entsprechend unserem § 3), benutzt aber 

for die Konstruktion der Kompaktifizierung Theta-Funktionen und Auf- 

blasungen. Dies hat den Vorteil groSer Explizitheit und den Nachteil, 

dab man keine universelle semiabelsche Variet~t erh~it, und dab man 

nur [ber ~ [I/2] kompaktifiziert. Auf jeden Fall hat er seine Resul- 
t ~ 

tate unabh~ngig yon mir und fr~her erhalten, so dab ihm bei Uberschnei- 

dungen der Vorrang geb~hrt. Da er sehr viel mehr Sorgfalt auf die 

Ausarbeitung der Details verwendet als der Verfasser dieser Arbeit, 

konnten seine Ergebnisse bisher noch nicht erscheinen. 

§ 2 DEGENERIERENDE ABELSCHE VARIETiTEN 

a) Sei R ein normaler kompletter lokaler Ring mit maximalem Ideal 

m , Restklassenk~rper k = R/m und Quotientenk~rper K . Wir nehmen 

an, dab K eine Charakteristik verschieden von zwei hat, doch ist es 

durchaus zugelassen, dab die Charakteristik von k zwei ist. s und 

n seien der spezielle und der generische Punkt von Spek(R) 

G sei eine semiabelsche Variet~t ~ber Spek(R) , d.h. G ist ein 

glattes algebraisches Gruppen-Schema ~ber R , yon endlichem Typ, 

dessen Fasern zusammenh~ngend sind und Erweiterungen von abelschen 

Variet~ten durch Tori. Die Darstellung vereinfacht sich sehr, wenn die 

spezielle Faser G s selbst ein Torus ist. Wir empfehlen, sich die 

Argumente zuerst an diesem Spezialfall klar zu machen. Der allgemeine 
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Fall erfordert keine neuen Ideen, sondern nut eine Reihe von Notationen 

und Definitionen. Wir setzen voraus, dab G eine abelsche Variet~t q 
i s t ,  u n d  d a b  d e r  m a x i m a l e  T o r u s  y o n  G s z e r f N l l t .  D a n n  i s t  d i e  f o r m a l e  

A 
K e m p t e t t i e r u n g  G e i n e  E r w e i t e r u n g  e i n e r  f o r m a l e n  a b e l s c h e n  V a r i e t f i t  
A 
A ( e n t s p r e c h e n d  e i n e m  A ~ b e r  R ) d u r c h  e i n e n  f o r m a l e n  T o r u s  

~ ~ G~ . E s  g i b t  e i n e  G r u p p e  G , m i t  ~ ~ , s o  d a g  G e i n e  E r w e i -  

t e r u n g  v o n  A d u r c h  T = G r i s t .  
m 

0~T~G~A~0 

Sei X = X(T) ---Z~ r die Charaktergruppe yon T . Dann wird ~ gegeben 

durch einen Morphismus X~Pic 0(A) (R) 

~F--> 0 , 

welcher jedem ~ 6 X das zugeh6rige GeradenbUndel auf A zuordnet. 

Es gibt kanonische Isomorphismen 

0 ®0 ---0 
w Z+~ 

b) Wir nehmen weiter an, dab auf G ein Geradenb~ndel L gegeben 

ist, welches auf der generischen Faser G eine prinzipale Polarisation 
n 

definiert. ([MI], Ch. 6, § 2). Dann besitzt L eine kanonische kubische 

Struktur, oder iquivalent dazu, definiert m,(im) ®Prl (L)-I ®Pr2(L)-1 

eine Biextension von G x G dutch G (siehe [MB], I, § 2) 
m 

A 

Das formale Geradenb~ndel L ist dann samt seiner kubischen Struktur 
A A 

Pullback eines M auf A , welches eine prinzipale Polarisation f~r 
A A 
A definiert. M kommt von einem M auf A , und ~ auf ~ sei das 

Pullback von M . Dann ist L isomorph zu L , wobei der Isomorphismus 

die kubische Struktur respektiert. Allerdings ist dieser Isomorphismus 

nicht eindeutig, sondern kann mit einem Charakter X : ~ ~G modifi- 
m 

ziert werden. Es sei noch bemerkt, dab ein solcher Charakter eindeutig 

bestim~t ist durch seine Einschr~nkung ~ C X auf T , und dab man auf 

diese Weise genau alle ~'s erh~it, welche im Kern der Abbildung 

X ~ Pic0(A) liegen. 

Bisweilen werden wir voraussetzen, dab L symmetrisch ist,d.h., dab 

[-I]*(L) =-L ([-I] = -id : G~G) . Dann ist auch [-I]*(M) =M , doch 
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sind diese Isomorphismen im allgemeinen nicht miteinander vertriglich. 

Wenn man sie so normalisiert, dab sie auf der Faser in Null die Iden- 
A 

tit~t sind, so unterscheiden sich die Symmetrien auf L und dem 
A 

Pullback yen M um einen Charakter X wie oben. 

c) M definiert einen Isomorphismus A ~> PicO(A) , und somit erh~it 

man eine AJ3bildung 

C : X~A(R) , 

mit c(~)*(M) ~ M --M® 0~ (Schnitte yon M ~ber einer offenen Tell- 

- - -  - - ~a  - -  A - -p~  
menge von A entsprechen Schnitte von L ~ber dem Urbild, welche 

sich unter T gem~B ~ transformieren). F~r das folgende m~ssen wir 

diese Isomorphismen geeignet normalisieren: 

Definition: 

Ein zul~ssiges System von Isemorphismen besteht aus Isomorphismen 

i) 
ii) 

a) 

b) 

c(~)*(0v) ~ 0 w 

M ~ c(~)*(M) , so dab 

Die Isomorphismen in i) sind linear in b und 

FOr ~,w 6 X kommutiert das Diagramm 

c(~+~)*(M) Z c(~)*Cc(v)* (M)) Zc(~)*(M ) 

M <---~ M ~0 <---~ C(~)*(~) ec(~)*(0 v) 
-~+w -~ v - - -- 

Man sieht leicht, dab zul~ssige Systeme von Isomorphismen existieren. 

Je zwei unterscheiden sich dadurch, dab man die Isomorphismen in ii) 

mit einem q(~) ff R* multipliziert, q : X --> R* muB die Eigenschaft 

haben, dab b(~,v) = q(b+w)/(q(~).q(v)) bilinear ist in ~ und v . 

Die Isomorphismen in i) werden dann mit b(~,u) multipliziert. Wir 

w~hlen von nun an ein festes zul[ssiges System von Isomorphismen. 

c) Da L auf G eine prinzipale Polarisation definiert, ist F(G,~) 

ein R-Modul vom Rang I (in der Tat sogar ein divisorielles Ideal). 
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Sei 0 L6 F(G,L) ein nicht verschwindendes Element. Genauso ist 

frei, mit einem Erzeugenden @M " F~r ~ 6 X erzeugt dann 

@MZ : c(g)*SM 'F(A,M ) = F(A,s(~)*(}j)) 

F (A,M) 

A A A 
D e n  f o r m a l e n  S c h n i t t  (~r, 6 I" ( G , L )  

entwickeln : 

kann man nun nach T-Eigenfunktionen 

@L = Z a(~). ~EX @M ~ 

Dabei sind die Koeffizienten a(~) E R , und sie konvergieren gegen Null 

in der m-adischen Topologie. Bei Wechsel des zul~ssigen Systems yon 

Isomorphismen erhalten sie einen Faktor q(~) . Damit ist klar, dab 

der Inhalt des folgenden Satzes nicht von dieser Wahl abh~ngt: 

Satz I: 

i) 

ii) 

iii) 

iv) 

a(~) % 0 f~r alle ~ 6 X 

b(~,~) = a(~+m)a(0)/(a(~)a(~)) 6K* ist bilinear in ~ und 

Falls ~ * 0 , so ist b(z,~) 6m 

Wenn ein Geradenb~ndel LI A auf^ G dieselbe prinzipale Polari- 

sation definiert, so dab ~i = L , so liefert ~I dieselbe 

Bilinearform b(~,v) 

Bemerkung: 

Die Aussage iii) folgt aus i) und ii) : 2 

Diese liefern, dab a(n~)a(-n~) = a(0)2, b(n~) n . Da die linke Seite 

in R liegt und fur n÷~ m-adisch gegen Null konvergiert, liegt auch 

b(~,~) in R und ist keine Einheit. 

Beweis yon Satz I: 

Man bettet R geeignet in einen kompletten diskreten Bewertungsring 

ein und darf dann annehmen, dab dim(R) = I . Es steht uns frei, den 

Grundk~rper zu erweitern, d. h., R durch die Normalisierung in einer 
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endlichen Erweiterung zu ersetzen. Wir dQrfen dann zum Beispiel annehmen, 

da~ alle 2-Teilungspunkte yon G K-rational sind. Wir behandeln 
q 

zun~chst den folgenden Spezialfall: 

~ [-I]*L ist symmetrisch, und die Symmetrie ist die Identit[t auf 

allen 2-Teilungspunkten von T . (Wir identifizieren 
A 

T[2] = T[2] ~[2] = ~[2] ~G[2] die 2-Teilungs-Untergruppen.) 

Dann ist auch M symmetrisch, und der Charakter X von G , welcher 
A A 

den Unterschied der Symmetrien zwischen L und M beschreibt, ist 

gleich Eins auf T[2] Somit ist XIT = 2#o , mit einem ~o 6 X . 

Dann ist [-I]'8L : ±SL , und so ergibt sich, dab a(2#0-~) = a(b)" 

(Einheit aus R*--) . Wir--zeigen zun~chst, dab Funktion b,c : X~K 

existieren mit 

(*) a(~)a(~) = b(~+~)c(~-~) . Dies ist ~quivalent zu der folgenden 

Behauptung: 

bp,C auf X mit (*)' Sei p 6 X . Dann gibt es Funktionen P 

a(#+v+p)a(~-v) = bp(~)c (v) 
P 

Dazu zun~chst etwas Terminologie: 

Ein Schnitt f 6 r(~- ^ ^2 × G,L @_{2 ) heist ein Produkt, falls f = g@ h 
A A 

mit g,h6 F(G,L 2) . Analog f[ir Schnitte yon _~2 . Das fundamentale 

Beispiel eines zerlegten Schnittes ergibt sich wie folgt: 

Betrachte die Isogenie 

~>G : G × G-~G x G 

(x,y) ~--> (x+y, x-y) 

* L 2 L 2 Bekanntlich ist #G (L@L) : _ @_ Sei H~G[2] eine endliche 

flache Untergruppe der Ordnung 2 d (d = dim(G)) , so dab H(K) EG[2](K) 

ein maximal isotroper Unterraum f~r die durch die Polarisation gegebene 

symplektische Form ist. Dann kann man H [quivariant auf ~2 operieren 

lassen, und descente liefert ein GeradenbNndel ~I auf GI = G/M , 

welches auf G I eine prinzipale Polarisationdefiniert. Jeder 
,q 

H × H-invariante Schnitt yon L 2 e L 2 liefert dann einen globalen 

Schnitt von ~1 @~I und ist damit ein Produkt. Beispiele fNr H × H- 

invariante Schnitte erhalten wir wie folgt: 



328 

~G*(eL ® G L) (x,y) : ~L(x+y) ®~_L(x-y) 

ist schon invariant unter der Diagonal-Aktion von H . Dann ist 

[L(x+y+z) ®~L(X-y+z) zEH(R) 

H x H-invariant, und damit ein Produkt. Man kann die H-Aktion auf L 

noch mit einem Charakter c : H +{±1} twisten, und erh~it,daB auch 

z6EH(R) s (Z)SL(x+y+z) ®8_L(x-y+z) 

ein Produkt ist° 

Wir w~hlen nun ein H , welches T[2] umfaBt. Dann ist H/T[2] = HI~A[2] 

maximal isotrop, und jedes solche HI kann man auf dies® Weise erhalten. 

Man l~Bt nun H so auf L ® 2 operieren, dab man den ~berblick [ber 

die zul~ssigen Isomorphismen nicht verliert. Dazu gehe man folgender- 

maBen vor: 

Lasse H I auf M2 operieren. Dies liefert ein ~I 

Die Abbildung 

auf A I : A/H I 

c 
c I : X:A+A I 

definiert dann eine Erweiterung 

0+T : T I +~-1 +A 1 +0 

via Geradenb~ndeln 01,~ und M] ~I @ 01 

nach A geht M],b ~ber in _M 2 J #02~: , und '#0 

ein kommutatives Diagramm 

auf A I . Beim Pullback 

I,~ in 02~ . Man erh~It 

0 - - >  T - - >  G - - >  A - - >  0 

0 -->T=TI--> ~-I --> AI --> 0 
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und es ist GI ~ GI/H . Weiter sieht man sofort, dab man ein zul~ssiges 

System yon Isomorphismen for GI,MI w[hlen kann, welches bei Pullback 

vertr~glich ist mit dem fHr G,M (z. B. ist das Pullback yon 

cI(~)*(01,~) gleich _c(~)*02~ und isomorph zu 02v , u.s.w.) 

Die Operation yon H I auf M2 liefert eine Operation von H auf ~2 

und ~2 . Diese Operation ist algebraisch, d. h., kommt yon einer 

Operation von H auf L 2 oder : Je zwei Operationen yon H auf L2 

~2 differieren um einen Charakter 8 : H(R) ÷ {±I} , und mindestens 

eine formale Operation ist algebraisch. 

Wir k~nnen nun (*)' zeigen: 

Sei p 6 X . Wihle ~ : H(R) ÷ {±I} mit sIT[2] : piT[2] . Dann ist der 

folgende Schnitt von £2 @£2 ein Produkt: 

A A 

Z 8(z) OL(x+y+z) @ 8L(x-y+z) z6HIR) 

A~ A 
zCH(R)~ (z) a(R)a(v) 0M(x+y+z ) @ O M (x-y+z) 

~,vOX 

Bei festem b,v verschwindet die Summe ~ber H(R) (sogar schon ~ber 

T[2]) , auBer wenn es ~,5 6 X gibt mit b = p+~+B , v = ~-B • Also 

ergibt sich 

P+~+[{(x+y+z) ® eMa-5(x-y-z) a(p+~+~) a(~-~) z~H(R)~(Z)UM ~, BOX 

Die inhere Summe l~Bt sich umschreiben als 

(c(~)* ® c(B)*) ~] (z) z* * P 
-- -- zOH I (R) s (~A (@M @ b_M)) 

mit 
¢ 
A : AxA+A×A 

(x,y) ~--> (x+y,x-y) 

* ( %A p Dabei ist eA0® 0 A der einzige Schnitt von c(p)*(_M) @M , 6A ® 0A) 

ein Schnitt yon (M 2 @ 0 9 ) ® (M 2 @ 0 0) , und die innereSumme wieder ein 

Produkt, etwa vonder Form g ®h . Wir erhalten schlieBlich, dab 



330 

~,86X a(p+e+8) a(e-~) c(~)*(g) 8c(8)*(h) 

ein Produkt ist. 

Da c(~)*(g) ein Schnitt ist von M 2 ® 02~+p , und c_(B)*(h) ein 

yon M2 ® 02~+ p , folgt daraus die Behauptung (*) ' , indem man Schnitt 

obige Summe schreibt als 

(o.6EX bp(e) ~ (~)*(g)) ® (B6ZX c p(B) c(8)*(h)) 

Damit sind (*) ' und (*) gezeigt, d. h. 

a(~) a(%~) = b(#+v) c(#-v) 

d) Wir zeigen zun~chst Teil i) yon Satz I: 

Wir wissen schon, da6 a(~) = 0 <=> a(2 #0-~) = 0 . Wit behaupten zu- 

n[chst, da6 eine Untergruppe y cX existiert mit 

a(~) # 0 <=> ~ 6 #0 + Y " 

Ersetzt man a(~) dutch a(~+~0) , so darf man annehmen, da~ ~0 = 0 . 
A 

Sei Y = {~la(g) ~ 0} . Da ~G % 0 , ist Y nicht leer, und es ist 

y = -y . 

i) 06 Y : Sei ~6 Y => a(~) a(~) : b(2~) c(0)@ 0 , 

a(~) a(-~) = b(0).c(2~)% 0 , somit ist 

b(0) %0 , c(0) % 0 und a(0) 2 = b(0) • c(0) # 0 

ii) ~,~6Y :> b(2~) % 0 , c(2~) t 0 (siehe i) 

=> a(~+~) a(~-~) = b(2~) c(2~) % 0 :>~±~6Y 

iii) Y : X : 

Andernfalls g~be es ein endlich flaches Untergruppenschema NcT, 

N #(0) , so dab alle ~ 6Y auf N identisch den Wert I annehmen, 
A A 

und 8 G ist ein Eigenvektor fir die Aktion von N auf L . F~r 

n 
Elemente x I ..... x n £ G(R) mit jZI = xj = 0 ist j~1= xj*(0G) ein 
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* ®n 
globaler Schnitt von ® xj (L) --L , welcher ein Eigenvektor fur N 

ist. G(R) ist Zariski-dicht in G , und es ist wohlbekannt, dab fur 
@n 

n_> 3 die oben definierten Schnitte von L eine projektive Einbet- 

tung von G liefern. Andererseits muB diese Einbettung ~ber (G/N) 
n n 

faktorisieren, was ein Widerspruch ist. 

Damit ist zun~chst i) gezeigt, ii) ist nun ganz einfach: 

Aus der Identit~t 

a(~) a(v) : b(~+~) c (b-v) 

folgt fur ~,~,~ 6 X : 

a(l+}~+~) .a(l+~)-1. a(l+~)-1.a(b+v)-1 

-I 
-a(l) .a(~) .a(m) a(O) : I 

(Berechne a(l+~+v).a(1), a(l+~) a(l+m) , a(~) a(~) und a(~+v)-a(0) 

nach obiger Identit~t), und dies ist Behauptung ii). 

e) Wir ko~men nun zu beliebigen L's . Diese erh~it man durch Trans- 

lation mit einem Element aus G(K) aus einem L der bisher betrachte- 

ten Art (symmetrisch, Symmetrie = I auf T[2]) . Wenn dieses Element 
A 

in G(R) liegt, so induziert es einen Automorphismus von G , und 

man rechnet alles direkt nach. Im allgemeinen kann man es jedenfalls 

ausdehnen zu einem Element aus G*(R) , wobei G* das N@ron-Modell von 

G bezeichne. G ist die Zusammenhangskomponente der Eins von G* , 

und ~ und 0 G dehnen sich aus auf G* . Allerdings hat die Ausdehnung 

L* yon L im allgemeinen keine kubische Struktur mehr. 

A A 
Wie bisher kann man 0G, auf jeder Komponente yon G* nach T-Eigen- 

funktionen entwickeln. Man erh~it dann Koeffizienten {~(~),b 6 X} , 

welche vonder Komponente abh~ngen. Wir mUssen zeigen, dab sie alle 

verschieden yon Null sind, und daft ~(~+~) ~(0)/(a(~)a(v)) = ~(~,m) 

bilinear und unabhingig vonder Komponente ist. Wir wissen s chon, daft 

nicht alle ~(~) verschwinden. Wir schlieBen mit unserem alten Trick: 

W~hle HcGcG* wie vorher. Dann ist fur jeden Charakter s :H(R) + {±I ] 

und jedes x 0 6 G*(R) 



332 

Z s(z)(~G.(x+Xo+Y+Z) ® GG.(X-y+z ) z6H 

wieder ein Produkt, und es ergibt sich, dab ~(~) a(v) = b(~+m) ~ (~-~), 

mit geeigneten Funktionen b,c auf X . Dabei sind a,a die Koeffi- 

zienten zu verschiedenen Komponenten. Da f~r die Funktion a zur 

Einskomponente schon alles n~here bekannt ist, folgt leicht die Be- 

hauptung, und Satz I ist vollst~ndig bewiesen. 

f) SchlieBlich ben~tigen wir noch ein Resultat, nach dem b(~,~) und 

die Polarisation auf A die Polarisation von G bestimmen. Es seien da- 
A An 

ZU gegeben zwei G's,G I und G 2 , so dab G I = G 2 und damit 

A I ~ A 2 ~ A . Weiter nehmen wir an, dab Geradenb~ndel ~I und ~2 auf 

G I bzw. G 2 existieren, welche prinzipale Polarisationen auf den ge- 

nerischen Fasern liefern und auch dieselbe Polarisation auf A ergeben. 

(d. h. ~I und ~2 unterscheiden sich um eine Translation). SchlieBlich 

sollen ~I und ~2 dieselbe Bilinearform b liefern. 

Satz 2: 

A A 

Unter diesen Umst[nden ist der formale Isomorphismus G I --~> G 2 a l g e -  
braisch, d. h., er wird induziert yon einem Isomorphismus polarisierter 

abelscher Variet~ten G1,B ~_T_> G2,n 

Beweis: Es ist stets erlaubt, zu einer endlichen Erweiterung von K 

~berzugehen. Weiter d~rfen wir annehmen, dab ~I~2/ ~ . Dann sind 
A A A 

~I und ~2 isomorph zum Pullback von M auf G I ~ G 2 = G . Diese 

Isomorphismen respektieren die kubische Struktur, sind aber nicht unbe- 

dingt eindeutig. Sie liefern aber kanonische Isomorphismen 

A A A A 
L I ~ [-I]*_L I ---L2@ [-I ]*L 2 = Pullback 

von M@ [-I]*M 

Wir zeigen, dab sich bei diesem Isomorphismus die algebraischen Schnitte 

F(GI,LI @ [-I]*~i ) und F(G2,~2 @ [-I]*L2 ) entsprechen. Genauer gesagt 
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zeigen wir, dab man ein Erzeugendensystem der algebraischen Schnitte von 

~I @[-I]*L oder von [2 ~[-I]*~2 erh~it durch die Reihen 

86ZX b(p+@,@) c(B)*(f) 

Dabei durchliuft p 6 X ein Vertretersystem f~r X/2X , und f eine 
A 

Basis der globalen Schnitte von M@ [-I]*M . W~hle wie bisher H~G[2] 

endlich und flach, maximal isotrop, mit H ~T[2] . Dann operiert H 

auf ~I @ [-I]*~i und ~2 @ [-I]*~2 ' ihnlich wie bisher. Es ist bekannt, 

dab f~r j = 1,2 F(Gj,~j @ [-I]*Lj) eine Basis aus H-Eigenvektoren 

besitzt, wobei jeder Charakter s: H(R) ÷ {£I} genau einmal vorkommt. 

Wenn 0L 6F(Gj,~) ein nicht verschwindendes Element ist, so liegt 
-j 

f~r y 6 G. (R) 
3 

6(z)6 (x+y+z)O (-x+y+z) 
zEH(R) L. L. 

--3 --3 

im s-Eigenraum, und man kann durch Wahl yon 

Menge yon G. (R) erreichen, dab dies #0 
3 

y in einer Zariski-dichten 

wird. Rechnen wir nun formal: 

w~hle 

^@L. (x) L aj (b)o-~-(x)M (dabei L ,  = Pullback von M ) 
~6X --3 -- --7 

p6X mit pl~[2] = sIT[2] 

=> 

Z E ( z )  ^ zCH(R) ~L.(x+y+z)OL. (-x+y+z) 
--3 --3 

8MP+~+B(x+y+ ~-5(-x+y+z) ~,B6XL s (z)aj(0+~+6)aj(~-~) ~ z)8 M 
z 6 H(R) 

~,~6X s (z) aj (p+~) aj (~) b (p, @) b (~, B) • 

z6H (R) 

-c(8)*(8MP+C~(x+y+z) @ QM(-x+y+z)) 

. Z E b(P+8'8) c(8) (~£X s(z)aj(p+e)aj(~)0MP+e(x+Y+Z)eM s(-x+y+z)) 
56x - - _ 

z6H (R) 
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Die innere Summe ist ein Schnitt yon M ® [-I]*M , (welcher noch von 

y abh~ngt), der sich unter H (bei einer geeignet zu definierenden 

Operation von H auf diesem B@ndel) als Eigenvektor transformiert. Der 

zugeh6rige Charakter ist unabh~ngig von j = 1,2 , und somit sind die 

inneren Summen Vielfache voneinander, f~r j = 1,2 . Es folgt, da~ der 
A ~ A 

formale Isomorphismus ~1 ® [-I]*L]~ ~2 ® [-I]*~2 einen Isomorphismus 

F(GI,q' ~1 ® [-I]*~1) Z r(G2,~'~2 @ [-I]*~2) 

induziert, und damit auch einen Isomorphismus 

F(GI ' n ® [-I] n) ~ ,L2n @ [_I],L2 n) 
n~0 O'~1 *LI n~0F(G2,~] -- 

Dies liefert aber unmittelbar die Behauptung. 

§ 3 Mumford's Konstruktion 

a) In diesem Kapitel liefern wir eine Art Umkehrung der vorhergehenden 

Betrachtungen. Dazu sei R ein exzellenter normaler Ring, I c_R ein 

Ideal, so dab R komplett ist in der I-adischen Topologie. 

Ferner geben wir vor. 

a) eine abelsche Variet~t A Nber R , zusammen mit einem amplen 

Geradenb0ndel M auf A . 

b) Eine Erweiterung G yon A durch einen Torus T---G r : 
m 

0 ~ T ~ A ~ 0  

c) Eine Bilinearform b auf X = X(T) , mit Werten in K* (K = 

Quotientenk@rper von R ) : 

b : X×X~K* . 

Dabei sei b(p.,~) 6 I , falls ~ # 0 . 

Unser Ziel ist es, eine semiabelsche Variet~t G ~ber R zu konstru- 

ieren, so dab b die Koeffizienten der zugeh~rigen 8-Reihe liefert 

(Falls M eine prinzipale Po!arisation definiert). Etwas allgemeiner 

ist das Datum c) folgendes: 
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i) 

ii) 

iii) 

iv) 

v) 

eine Untergruppe Y~X yon endlichem Index 

eine lineare Abbildung i : Y~(K) 

eine lineare Abbildung c : X~A(R) , 

so dab das folgende Diagramm kommutiert: 

Y --> ~(K) 

A(R) --> A(K) 

Ein System von Isomorphismen 

_c(~)*(00) ~ 0 v , ~6 Y,'~ 6 X , 

linear in ~ und ~ 

Ein System von Isomorphismen 

M = M@ 0 ~ c(~)*(M), ~6 Y , --~ -- ~ -- _ 

so dab for ~ , v6 Y das folgende Diagramm kommutiert: 

E(~+v)*(M) -~>E(~)*(c(~)*(_M))~c(~)*(M v) 

M <~ M @ 0 <-T-- c(b)*(M) ®c(~)*(0 ) 
-~+~ -~ v - - -- 

vi) Eine Bil inear form 

b : YxX~K* 

symmetrisch auf Y , mit b(~,~) 6 1 , falls ~ 6 Y , b % 0 . 

Die Abbildungen in ii) , iv) und vi) sollen kompatibel sein in dem fol- 

genden Sinne: b entspricht einer Abbildung y b> T(K) . Dann sei f~r 

6 Y i(y)b(y) -I 6 G(R) , und die Isomorphismen in iv) werden definiert 

durch Translation mit diesem Element. 

Wir definieren auf den Daten noch eine ~quivalenzrelation, wie folgt: 

Sei c : Y x X~R* eine Bilinearform, so dab eine Funktion q : Y ~R* 

existiert mit 

c(~,~) : q(b+~) q(0)/(q(~).q(~)) b,~ 6 Y 

Dann erlauben wir, dab man die Isomorphismen in v) mit q(~) , die in 

iv) mit c(z,v) multipliziert, und schlieBlich b durch b - c ersetzt. 

Aus der Definitheit der Form b folgt sofort, dab i : Y ~G(K) eine 

Injektion ist. 
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b) Wir werden einen Quotienten G = ~/i(Y) definieren, so dab G 

eine abelsche Variet~t ist, mit einer Polarisation vom Grad(M)-[X:Y] 

Dies wurde von Mumford in [M4] durchgefOhrt f~r den Fall, dab ~ = T 

ein Torus ist. 

Yon nun an folgen wir den AusfOhrungen in [M4] , § 2,3,4: 

Definition: 

besteht aus 

([M4], Definition 2.]). Ein relativ komplettes Modell 

a) 

b) 

c) 

d) 

e) 

Ein Schema P ~ber A , integer, lokal von endlichem Typ 

Eine offene Einbettung i : G~P 

Ein invertierbares Geradenb~ndel L auf 

Eine Aktion von ~ auf (P,L) , welche die Translationsoperation 

von G auf G fortsetzt. Bezeichnung: (Tg,Tg*) 

Eine Operation von Y auf (P,L8 Pullback von M ) 

Bezeichnung: (S ,Sg*) 

Diese m~gen erf~llen: 

i) ES gibt Uc~ offen, von endlichem Typ, so dab ~ : U S (U) 
~6Y 

ii Sei v6~ (~) eine Bewertung auf dem Funktionenk~rper K(~) yon 

, welche ~0 ist auf R . Sei x6 A das Zentrum von v auf 

A (A ist komplett), und f0r u6X sei X~ ein lokales (in x) 

Erzeugendes yon 0 X~ ist eindeutig bestimmt bis auf eine 

Einheit in 0A, x ,und ein Element aus K(G) . Dann gilt: 

v hat Zentrum auf P <:> V ~6X, 3~6Y mit v(x -b(~,v)) ~ 0 

(es reicht dabei, ~ C Y zu betrachten). 

ii ) Auf ~ operieren Y und G durch Translationen. (Es folgt, dab 

*(M) ~ c(~)*(M)) S und Tg auf P kommutieren, und dab S 

iv) Sei ~6Y . Dann ist c(~)*(M) ~ M® 0 , und somit induziert S * 
_ _ _ ~ 

einen Isomorphismus S * : S *(L) ~---> L ® 0 . Weiter ist fir 

g6~ , mit Bild x6A , kanonisch x*(0_9 ~ 0_~ , via Translation 

mit g . Dann kommutiert das folgende Diagramm 
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N 

Sb* 

*S *(L) ~ > T *(L @ 0_~) (L) @ (0 ~) Tg ~ _ g _ = Tg* _ Tg* - 

II Tg 

Sg*Tg*(L)_ _L®Tg*(0-~) 

*(L) > L@ 0 < L@x*(0 ) S _ _ -P _ -~ 

L @M ist ample auf P . 

Bemerkung: 

Die Bedingung iv) wird etwas einfacher, falls g 6 T , also x = 0 . 
-I 

Der Isomorphismus x*(0_9 ~> 0_~ ist Multiplikation mit ~(g) 

und man kann die Kommutativit~t schreiben als 

: * T * Tg*S~x* ~ (g) ~B g 

Bemerkung: Man kann die Kompatibilit~t iv) umformulieren: Es reicht, 

sie auf ~ c~ c~ zu verifizieren. Zun~chst liefern die T* eine 
n - n - g 

~quivariante Operation von ~ auf AI~ , und damit wird AI~ ~-linear 

trivial: AI~ = 0~ . (kanonisch bis auf Einheit aus R* ). Ebenso 

operiert G auf dem Pullback yon 0 v auf ~ , und es ist kanonisch 

Pullback (0 v) = 0~ . (Achtung: TL~ operiert kanonisch auf dem Pull- 

back von 0 v , doch unterscheidet sich diese Operation um den Charakter 

vonder Einschr[nkung der ~-Operation). Sei nun b6Y, i(~) 6 ~(K) 

Dann ist auf Gq S = Ti(z) , somit S (Ll~q) ~ LIGn . Der Isomorphismus 

S * : S~*(L)_ ~> _L@ 0 ~ --~-~> _L wird auf ~n gegeben durch eine globale 

Einheit auf GN . Dann bedeutet Bedingung iv), dab diese Funktion kon- 

stant ist, also gegeben durch ein a(~) 6 K* . Analog ist 

S * : a(~).c(b)*_ : 

S~*(_M~=LI~r~ } ~ S~*(_Mffnl ----> s(~)*(_MIZnl 

----> (M_~0~]Zn)~ (M~Le0~)IZ n-~-> (_Me_~)IZ n 

Es ist a(0) : I , a(b+v) : a(~) a(v) b(b,v) (Man beachte, dab auf 
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Gn die beiden Isomorphismen Pullback(c(~)*(0 v) -~> T* (Pullback - l(~) 

(0v)) -~> Pullback (0v) sich um b(~,~) unterscheiden: Der eine 

Isomorphismus ist Pullback des entsprechenden Isomorphismus auf A , 

der andere kommt yon der Operation yon i(~) auf Pullback (0)) 

Beispiel ([M4], 2.3-2.5.) 

Wir konstruieren unter bestimmten Voraussetzungen ein relativ komplettes 

Modell. Diese sind: 

Sei Z cX ein Erzeugendensystem, 0 6 Z : -Z . W~hle eine Funktion 

a : Y~K* mit a(0) = I , a(p+v) = b(~,m) a(~)a(v) (Man zeigt leicht, 

dab ein solches a existiert) . Es gelte 

(*) a(~) b(p,~) 6 R f~r ~6 Y,~6 E. 

Im allgemeinen kann man kein solches a( ) finden. Dies h[ngt damit 

zusammen, dab wir auch ein Geradenb~ndel auf der abelschen Variet~t 

konstruieren wollen, welches die Polarisation induziert. In den uns 

interessierenden F~llen wird dies aber kein Problem sein. Zum Beispiel 

kann man (*) stets erf~llen, wenn R faktoriell ist, und man Y durch 

n • Y ersetzt, n gen~gend groB. 

Betrachte die beiden folgenden quasikoh~renten graduierten Algebren 

S I und S 2 Ober A : 

}1 : 0A ® n>1@ 0~ 8 n : 0 A • n~10~ • 8 n 

= _ _ = _ (~n @ 0)) "O n ~2 0 A e n91 0~ Nn-0 n 0 A ® n>~1 ± 
vCX 

~- operiert offensichtl,ich auf S I (@ bleibt fest) , und Y operiert 

auf $2 ® R K , nach der Regel 

Sp*(~'fm~9 n) : a(b)nb(~,~) c (~)*(%) c (~)*(f~).8 

= a(p)n_c (~)*(%)i(b)*(fj0 n) 6Mn®0v+n ®RK'8 n 

(¢6~n' fv 6 0 lokale Schnitte) 
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RI ~ $I ®RK sei der Unterring, welcher erzeugt wird von 

{a(#) b(~,e) 0 .@Ib6 Y,~6 Z} b-~ 

und R2 ~ $2 ®R K werde erzeugt yon 

*(M® Oc~'O ) I ~6 Y,c~6 E} {S _ 

Dann ist ~ = ProJA (R) = ProJA(R2) ein relativ komplettes Modell: 

operiert auf (ProJA(R1), 0(I)) = (P,L) , und Y auf (~,L@M) 

F~r ~6 ~,8 6 F(A,M® 0 ) ist ~.@ ein globaler Schnitt in 

F(~;L_@M) , und U 0,~,8.@ = P-V(e-@) ist affin und von endlichem Typ 

/R . Da die 8's M® 0 2 erzeugen, ~berdecken die offenen Mengen 

U ,d,0. @ = S (U0,~,8.@) ganz p , und U0,0,8. G = G-V(0) 

Wenn man 0 eine Basis von F(A,M® 0 ) durchlaufen l~Bt, erh~it man 

auf diese Weise eine ~berdeckung von ~ wie in i). Die Bedingung ii) 

zeigt man wie in [M4], iii) ist leicht, v) schon gezeigt, und iv) 

rechnet man einfach nach. 

Von nun an bezeichne (P,~ .... ) ein relativ komplettes Modell. Es 

folgen nun eine Reihe yon Tatsachen, welche den S[tzen aus [M4], § 3, 

und 4 entsprechen: 

[M4], 3.1: 

, auf G besitzt Sei ~ 6 Y und f = b(~,~) 6 R . Das Pullback von 0 

ein kanonisches Erzeugendes h E F(~,0 ) (Das direkte Bild von 0~ 

bei G ~ A ist die direkte Summe aller 0v,~ E X) . Dann dehnt sich hz 

aus zu einem regul~ren Schnitt des Pullbacks yon 0 auf ~f = ~®RRf , 

welcher dort 0~ erzeugt. 

Beweis: Aus den Vertr~glichkeitsbedingungen zu Anfang dieses Kapite!s 

folgt i(~) 6 G(Rf) . Auf Pf stimmen dann S und Ti(~) ~berein, 

und die Isomorphismen 

* : S *(L) ~> L® 0 und * : *(L) ~> L ~ ~ -- _ -~ Ti(~) Ti(~) -- _ 
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liefern einen globalen Schnitt von 

dort erzeugt. 

0 ~ber ~f , welcher das B~ndel 

Die Einschr~nkung dieses Schnittes auf ~ transformiert sich unter T 

gem~8 -~ , genauso wie h . Also stimmen die beiden bis auf eine 

Einheit ~berein. 

[M4], 3.2: 

q q 

[M4], 3.3: 

Jede irreduzible Komponente von ~0 : ~®R (R/I) ist eigentlich ~ber 

R/I . 

Beweis: Sei Z eine irreduzible Komponente von ~0' v eine Bewertung 

des Funktionenk~rpers K(Z) , v ~ 0 auf R . W~hle eine Bewertung v I 

von K(~) (v I ~ 0 auf R ) mit Zentrum Z , und sei v 2 das Kompositum 

von v und v I . FOr p 6 Y sei hp C F(~,0 ) das kanonische erzeugende 

Element. Nach unserem Analogon zu [M413.1 ist for n >> 0 b(p,p)n.h 

regul~r im generischen Punkt von Z , und verschwindet dort. Sei x 6 A 

das Zentrum von v 2 auf A , und ~ ein lokales Erzeugendes yon 0 

nahe x . Dann ist b(~,~)n-h -(Pullback von ~ ) regul~r und gleich 
P 

Null im generischen Punkt von Z , hat also bei v 2 Bewertung >0 . 

Somit ist auch v 2 (X~ b(n~,~)) > 0 , im Sinne der Bedingung ii) bei der 

Definition eines relativ kompletten Modells. (h { R*.X -~ p) . Dies 

gilt f~r alle p C Y . Somit hat v 2 ein Zentrum auf P und v eins 

auf Z . Mache weiter wie in [M4]. 

[M4], 3,5: 

Sei U 0 = U@R R/I ' (U wie in Bedingung i ) an ~ ) 

~ber R/I . 

U0 ist eigentlich 

[M4], 3.6: 

Es gibt eine endliche Teilmenge S_cY , so dab fNr p,m 6 Y , p-~ ~ S 
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s (U 0) ns (U 0) : 

Beweis: 

Seien Fc~ die Fixpunkte unter ToG . F~r jede zusammenh~ngende 

Teilmenge F' ~F operiert T auf LIF' via einen Charakter v 6 X , 

und auf LIS (F ') via ~+~ . Also ist for b % 0 F' n S (F') = 

Weiter wie in [M4]. 

[M4], 3.7: 

Y operiert frei auf P0 

[M4], 3.8: 

P0 ist zusammenhangend 

Beweis: 

Genauso wie in [M4]: t0 ~0 definiert eine Zusammenhangskomponente 

von g0 . Wenn es eine zweite gibt, w~hle eine diskrete Bewertung v 

von K(~) mit Zentrum in dieser Zusammenhangskomponente. Sei 

R' {f 6 K(A) Iv(f) ~ 0} . Ersetze P durch den AbschluB der generischen 

Faser von ~ ×ASpek(R ') , und wende [M4] , 3.9. an. 

[M4], 3.10: 

FOr n ~ I existiert ein Schema P , projektiv Ober A/I n , mit amplem 
n 

Geradenb~ndel 0(I) , und ein 6taler surjektiver Morphismus 

: ~@R (R/In) ~ Pn ' 

welcher (Pn,0(1)) zum Quotienten unter Y macht yon 

(~®R (R/In) ,L@M) 

Die P definieren ein formales Schema F Ober R , welches algebraisch 
n ^ 

ist. Wir erhalten also ein projektives P ~ber R , mit P = P . P 

tr~gt ein amples Geradenb~ndel 0(1) . AuBerdem hat man ein 
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A 
abgeschlossenes Unterschema B~P , so dab B : Quotient von 

A ~ A 
(P-~Yt S (G))A~ . Sei G : P-B . Es ist G = G Q 

[M4], 4.2: 

G ist glatt ~ber R . 

[M4], 4.3: 

P ist irreduzibel 

Definition ([M4], 4.4) 

Eine semiabelsche Untergruppe GI ~ ~ ' 0 ~T I ~ A  I ~ 0 heiBt integrabel, 

falls gilt: 

i) YI = i-I (GI(R)) hat denselben Rang wie der Torus T I yon ~1 

ii) ~(YI) EAt (R) 

iii) FHr ~ 6 X,~IT I = I und # 6 YI ist der Isomorphismus 

c(~)*0 ~ 0~ auf A I die Identit~t (0 ]A I ~ 0) 

Beispiele integrabler Untergruppen erh~it man etwa durch Graphen der 

Multiplikation m : G x G~G oder der Inversenabbildung [-I] : ~ . 

Es gilt: 

Jede integrable Untergruppe GI ~ ~ definiert ein abgeschlossenes 

Unterschema G I ~G , wie folgt: 

a) Sei W I der Abschlu~ von GI in ~ . Dann ist W 1 Y1-invariant. 

b) Sei W I die I-adische Komplettierung von W I W I ist ebenfalls 

Y1-invariant, und die Vereinigung W2 = ~EY/yIU S (W I) ist lokal 

endlich (dies definiert W 2 als reduziertes Unterschema von P ). 

c) Sei W 3 = W2/Yc P 
A 

d) Sei W 3 E P definiert durch W 3 = W 3 . 

e) G I = W 3 D G . 

Nur Schritt b) ist nicht trivial. Er folgt aus einer Variante yon [M4]; 
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Prop. 4.5, wobei man im Beweis benutzt, dab fur ~6 Y und 

n > >0 b(~,~)n.h ( h = kanonisches Erzeugendes auf G des Pullbacks 

yon 0 ) auf U ein regul[rer Schnitt des Pullbacks von 0 ist, 

welcher auf U 0 verschwindet. Man beachte auch, dab f0r ~ 6 X mit 

~IT I = I das Pullback des Ceradenb~ndels 0 auf W I kanonisch 

trivial ist, wobei die Trialisierung auf GI dutch h gegeben wird. 

Es folgt: 

[M4], 4.8, 4.9: 

G ist ein Gruppenschema ~ber R , und G = P ist abelsche Variet~t. 

Welter k6nnen wir die Struktur der Torsions-Untergruppen yon G be- 

stimmen: 

Die Multiplikation auf G setzt sich fort zu einer Multiplikation auf 

~* : U S (~) cP und jedes ~ 6 Y definiert ein ~ E G*(R) 
~6Y -- ' 

FUr n ~ I sei z(n) ~* das vaserprodukt 

Z (n) --> G* 

I ~n 
{~} --> G* 

FUr m E Y liefert Translation mit ~ einen Isomorphismus 

(n) und die disjunkte Vereinigung I I Z (n) Z (n) _T_~> Z ~+n~ ' 
~6Y/nY 

zu einem Gruppenschema ~ber R . 

wird 

[M4], 4.10: 

Der Kern G 
(n) l i  z 

;cY/nY ~ 

(n) der Multiplikation mit n auf G ist isomorph zu 

Beweis: 

Wie in [M4] 
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[M4], 4.11: 

Sei ~R ein Primideal, YI : {~C Ylb(~,b) @p} , s I 6 Spek(R) der zuge- 

h~rige Punkt. Dann ist YI eine Untergruppe yon Y' Y/YI ist torsions- 

frei, und es gibt exakte Sequenzen yon Gruppenschemata ~ber dem K~rper 

k(s I ) : 

0~ -(n) ~ G (n) ~ YI/nYI ~ 0 
s I s I 

0 ~t°rs I ~ Gt°rs I ~ YI ~(~/2Z) ~ 0 

[M4], 4,12: 

G ist semiabelsch 

A A A A 
C) Das ample Geradenb~ndel 0(I) auf P erf~llt 0(]) IG 

Da ~ auf L[~ operiert, ist L[G kanonisch trivial, und somit er- 
A A A 

h~it L®M~ M eine kubische Struktur. Wir zeigen, dab diese mit der 
A 

kubischen Struktur auf 0(I) Obereinstimmt. Dies ist der Fall, wenn 
A 

die kubische Struktur auf 0(I) vertr~glich ist mit der T-Operation 
A A 

(T operiert auf L und (trivial) auf M ) . Dies ergibt sich aus den 

nun folgenden 0berlegungen: 

FOr J~ {I,2,3} erh~it man dutch Addition der Koordinaten in J einen 

Morphismus mj : ~3 ÷ ~ , und zusammen ein 

: ~mj : GI = ~3 ~8 

Der Graph von m ist eine integrable Untergruppe von ~11 . Man findet 

dann ein relativ komplettes Modell ~1 f0r GI ' so dag m sich 

fortsetzt zu ~ : ~I ~8 

Wegen der kubischen Struktur auf M ist m.(~M±I) trivial (die Ex- 

ponenten ergeben sich als (-I) IJ[ auf dem Faktor J ). Dann ist 

^ ^ ~:I) I) m*(®0(1) -+I) ~m*(® (L®M) ~m*(®L -+ 
-- j -- j -- j 
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Darauf operieren G 1 und YI : y3 . Es gilt nun, dab die Operationen 

von T I = T 3 und Y] kommutieren: 

F~r (gl,g2,g3) E T I und (~i,~2,P,3) 6 Y I ist 

Z( Z ~j(gk)) ±I 
J j,k6J = I 

A 

Da die kubische Struktur auf 0(I) durch ihre Y-Invarianz eindeutig 

bestimmt ist, folgt die Behauptung. 

Weiter k6nnen wir den Grad der durch 0(I) auf Gq definierten Pola- 

risation berechnen: 

Er ist gleich dem Rang des torsionsfreien R-Moduls 
A A 

F(P, 0(I)) = F(~,{@M) Y (Y-Invarianten) . Wir ersetzen zun~chst P 

durch seine Normalisierung, was nichts an diesen Invarianten ~ndert. 
A ~ A A 

Sei ~EF(P,L®M) . Da T_cC- auf L und (trivial) auf M operiert, 
A 

kann man ~ nach T-Eigenfunktionen entwickeln: 

A 
O = Z O ( ~ )  

'~EX 

Aus den Kommutationsregeln zwischen Y und T folgt, dab fur 

b6Y S*(8(v)) 6 L @M 
- -  --~+v 

Wenn also e Y-invariant ist, mu~ gelten: 

e(#+,J) = s *(0(v)) 

Andererseits kann man fur jedes v 6 X den Rang des v-Eigenraums in 
A 

F(~,L ®M) absch~tzen : 

A A A A A A 

F (~,n ® M) Vc I'(G, n ® M) v = F (A,M ® % ) 

(Da ~I~ trivial) 

Insgesamt folgt : 

Rang (F(P,0(1))) _< [X:Y].Grad (_M) (Grad (M)2=Grad der yon M gelieferten 
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dual 
Abbildung A ~ A ) 

Wir zeigen, dab hier Gleichheit gilt. Dazu bezeichne H = Ker(Y) ~T 

das durch X/Y definierte multiplikative Unterschema von T . F 
A 

operiert auf (P,L ® M) , und diese Operation kommutiert mit Y . Wir 

k6nnen dann zum H-Quotienten ~bergehen. (P/H, G/H u.s.w.) und anneh- 
A A A 

men, dab Y = X . Auf G ~ G sind 0(%) und der Pullback von 

isomorph als kubische B~ndel. Dann ist bekannt, dab der Grad der Pola- 

risation auf G mindestens so groB ist wie der von M auf A . Wir 

hatten jedoch schon eine Absch~tzung in die andere Richtung. 

Es folgt insgesamt (f~r beliebiges Y ) : 

0(I) definiert eine Polarisation vom Grad [X:Y]. Grad(M) 

Da in allen unseren Absch~tzungen nun die Gleichheit gilt, k~nnen wit 

auch eine Basis von F(G ,0(I)) angeben: Sei v6 X,8(~J)6 F(A,_M®0 ) 

Dann k~nnen wir 9(v) auffassen als Schnitt von L®M ~ber G , 

welcher sich unter T gem~B m transformiert. Es folgt: Es gibt ein 

r 6 R, r % 0 , so dab sich r. 9('~) ausdehnt zu einem regul~ren globalen 

Schnitt aus F(P,L®M) ~ 

Dann existiert ein 8 6 F(P,0(1)) mit 

= ~[Y S*(r.8(v)) 

Wenn ~ ein Vertretersystem f~r X/Y durchl~uft, und 9(u) eine Basis 

yon F(A,M® 0 ) , so erh~It man auf diese Weise eine Basis yon 

r(Gn,0(1)) 

Eine andere Schreibweise ist ~brigens 

A 
= 8 ~ y a(~) b(~,'o) c (~)* (r.9(~)) , 

mit einer Funktion a : Y~K* , 

a(0) = I, a(~+~) = a (~) a(~) b(~,v) 

Dies erinnert schon an das vorherige Kapitel. Es bleibt uns noch eine 
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Kleinigkeit: 

Wir haben bis jetzt ein relativ komplettes Modell nur unter der Annahme 

konstruiert, dab 

(*) M ist sehr ample, und a(~) b(b,~)C R f~r 

6 Y, ~ 6 ~ . Wir wollen noch aufzeigen, wie man dies fallen lassen kann: 

Wir setzen voraus, dab eine Funktion a( ) : X~K* existiert mit 

a(0) : I , a(~+v) = a(~)a(~)b(~,v) . AuBerdem existiere ein r 6 R , 

r % 0 , so dab r.a(~) 6 R f~r alle ~ 6 X . Ein solches a( ) l~8t sich 

in den for uns wichtigen F~llen finden, zum Beispiel wenn R regul~r 

ist. 

(*) ist dann immer erfNllt, wenn man for ein genOgend groBes n 

ersetzt durch M n Y dutch n.Y i : Y~G(K dutch i -~ : nY~(K), t t 
-- n 

und a( ) und b( ) durch ihre Einschr~nkungen auf nY bzw. (nY)×X . 

Falls (*) schon erf~llt ist, l~uft dies darauf hinaus, 0(I) durch 

0(n) zu ersetzen. 

W~hle nun nl,n 2 gen~gend groB, so dab man zwei semiabelsche Variet~ten 

G I und G 2 erh~it, mit Geradenb[ndeln ~I und ~2 . Dann ist 

n2) n 
(GI,NI ~ (G2,NI I) , und man erh~It 

G--G 1 ~G 2 

n n 2 
mit Geradenb~ndel N, N = N I,N2 = N Wir ben~tigen noch Information 

iiber die globalen Schnitte F(G,N) . Wir kennen schon die globalen 
n I n 2 

Schnitte von ~I = ~ und ~2 = ~ : Man erh[it zum Beispiel eine 
n 

Basis von F(Gq,N I) wie folgt: Durchlaufe m ein Vertretersystem von 
-- n I 

X/nIY , und 8(~) eine Basis von F(A,M ® 0 ) . Dann gibt ~? f~r ein 

passendes r 6 R , r # 0 , eine Basis aus Elementen 9 6 F(G,N ) mit 

A 

0 = r- Z a ~)b(~,~) c(~)*(8(~)) 
~6niY 

Es liegt dann nahe, dab man eine Basis von F(G,}j) erh~it aus 8's mit 
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A 

0 = r- c Z a(p)b(~,v) c (p)*(0(v)) ~y -- , 

~6X/Y, % (v) 6 F(A,M ® 0 ) 

A 

Und in der Tat rechnet man nach, da6 diese 0 folgende Bedingung er- 

f~llen: FOr ml,m 2 ganz und positiv mit mlnl-m2n 2 > 0 ist 

A m nl-m2n 2 
(e) I . F(G;N m2n2 

m n 

)_cr(G,N_ 1 1) 

Daraus folgt, dab dies algebraische Schnitte sind. 

B emerkung: 

Die Funktion a(p) h~ngt yon der Wahl des relativ kompletten Modells 

ab (siehe die Bemerkung nach der Definition eines solchen). Wirklieh 

wichtig ist nut die Bilinearform b mit a(~+m) = a(p)a(v)b(~,m) 

Der Leser wird sich leicht ~berzeugen, dab wit in der Tat gezeigt haben, 

dab man bei passender Wahl des kompletten Modells alle Funktionen a( ) 

erh~it, welche dieser Gleichung gen~gen, und fur die ein r 6 R, r # 0 

existiert mit r.a(p) 6 R. Zwei verschiedene unterscheiden sich um 

einen Homomorphismus Y ~ K* . 

Wir formulieren nun das Hauptergebnis dieses Kapitels. Der Einfachheit 

halber betrachten wir nun prinzipale Polarisationen. 

Satz 3: 

Sei R exzellent normal, I-adisch komplett, Quotientenk6rper K , 

Ober R eine semiabelsche Variet~t, 

0 ~ T ~ A ~ 0  , 

T ~ G r zerfallender Torus, Charaktergruppe X ~zr . A = abelsche 
m 

Variet~t. 

Das Geradenb~ndel M auf A definiere eine prinzipale Polarisation, 

mit charakteristischer Abbildung c : X~A(R) . W~hle ein zul~ssiges 

System von Isomorphismen daf~r, sowie eine symmetrische Bilinearform 
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b : X × X~K* , so dab b(~,~) 6 I f~r ~ % 0 . Dann existiert eine semi- 

abelsche Variet~t G ~ber R , so dab die generische Faser G abelsch 

ist, und ein Geradenb~ndel N auf G , welches auf G eine prinzi- -- q 

pale Polarisation definiert. 

(G,N) --- ( , Pullback (M)) mit kubischer Struktur. 

Sei 8 N 6 F(G,N)~N # 0 , 8 M 6 F(A;M) ein erzeugendes Element. 

Dann ist 

A 

8N = p6XZ a(~) _c (Z)*(%M) , mit a(z) CR, a(~) # 0 , und 

a(~+m) a(0) : a(p) a(~9)b(~,'~) 

Es gilt: 

i) 

ii) 

iil) Im geeignet zu erkl[renden Sinne ist 

G : ~/i(X) , wobei 

i : X~G(K) wie folgt zu erkl~ren ist: 

Das zul[ssige System von Isomorphismen liefert eine Liftung von ~ zu 

einer linearen Abbildung X~G(R) , und b liefert X~T(K) i ist 

das Produkt dieser beiden Abbildungen. 

d) AbschlieSend benStigen wir noch einige Anmerkungen zur Kodaira- 

Spencer Klasse: 

Die exakte Sequenz auf G 

I I (~ 1 
0 ~[~ROR 0G~Q~ ~G/R~0 : ~R/~) 

liefert eine Abbildung 

< : :  IG,  /RI ÷H I 

I 
Weiter gibt die erste Chern-Klasse c(N) 6 HI (G,~G/R) einen Morphismus 

I I 
!G® ~R ÷HI(G'~R @R0~ ) , welcher im generischen Punkt ein Isomorphismus 

wird. Man kann dann K auffassen als Bilinearform 

I 



350 

Es ist bekannt, dab K symmetrisch ist. AuBerdem enth~It t~ = t~ t* 
--A ' 

den dualen Tangentialraum zu A . </t~ x t~ ist die Kodaira-Spencer 

Klasse zu A , und </t~ ×t~_ beschreibt zus~tzlich die Deformation 

der Erweiterung 0 ~ T ~ A ~ 0  . Sie entspricht dem Problem, eine 

translationsinvariante Differentialform aus t~ zu einem T-invarianten 

Schnitt aus F(G,~I~) zu liften. 

Wir nehmen nun an, da~ (~,M) und das vertr~gliche System von Isomor- 

phismen schon 0ber einem Unterring R 0 ~R definiert sind, und betrach- 

ten,statt der absoluten Differentiale, Differentiale relativ R 0 

K : ~ × ~*G ~RK/R 0 verschwindet dann auf ~A x ~*G ' und definiert eine 

Bilinearform t~ x ~ ~/R0 . Es ist ~ ~ X@ R , wobei p 6 X dem 

Differential d log(~) = d~/~ auf T entspricht. K wird also zu 

einer symmetrischen Bilinearform auf X x X . 

Lemma : 

K(~,v) = d log(b(~,v)) 

Beweis: 

Zun~chst kann man die durch cI (N) vermittelte Abbildung 

~T ~!G ~ HI (G'0G) 

noch etwas anders beschreiben: Es ist die Tangentialabbildung zur durch 

definierten Abbildung G~Pic0(G) . Die entsprechende Abbildung 

TE~ +Pic(~) ist trivial, da T auf L ®M operiert, also 

g*(L®M) ~ L®M fur g 6 T . Allerdings ist dieser Isomorphismus nicht 

invariant unter Y = X . Vielmehr f~hrt ein b E X einen Faktor ~(g) 

ein. Man erh~it dann leicht die folgende Beschreibung von 

C I (N) I_tT : t T = Hom(X,R) ~H I (G,0 G) : 

A A 
Sei 1 : X~R eine Linearform. Da P : ~/X , definiert 1 eine Klasse 

in HI (P,0~)- = = HI (P,0p) . Deren Einschr~nkung auf G ist das Bild von 

1 . Andererseits sei ~ 6 X . 
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W~hle ~ 6~G* = ~* mit lIT : d(log(Z) . Da ~ ~ber R 0 definiert 

ist, liftet man 1 kanonisch zu einer ~(R0)-invarianten Form in 

F(~, I : ~ auch zu einer solchen Form in /R ) , und wegen ~ 

F(P-~/R~) @R K . 

Diese Form ist nicht notwendig invariant unter Translation mit i(v) , 

fur m 6 X . Vielmehr ~ndert sie sich um d log(b(z,m)) , da i : X÷~(R) 

bis auf Faktoren aus ~(R 0) ~bereinstimmt mit der durch b definierten 

Abbildung X~T(K) . Das Lemma folgt nun leicht. 

§ 4 KONSTRUKTION VON A G 

a) Wir kommen nun zum Hauptziel unserer Bem~hungen, n~mlich der Kon- 

struktion eines Ober ~ eigentlichen algebraischen Feldes, welches 

A als offene Teilmenge enth[it. Wie schon in der Einleitung erw~hnt, 
g 

ist fur uns ein algebraisches Feld eine Art Quotient S/R , wobei 

ein Schema von endlichem Typ Ober Z ist, und R~S x ~S eine endliche 

Abbildung, welche R zu einem Gruppoid macht ~ber S . AuBerdem wird 

vorausgesetzt, dab die Projektionen von R auf S @tale sind. Man 

Oberzeugt sieh leicht yon der ~quivalenz dieser Definition mit der in 

[DM] : 

Wenn man jedem Schema T die "descente-Daten zu Hom(T,S/R) " zuordnet, 

bestehend aus @talen Uberdeckungen T' ~T und Abbildungen 

T' ~S, T' x T' ~R , mit geeigneten Kompatibilit~tsbedingungen, so er- 
T 

h~it man ein Gruppoid ~ber T und ein algebraisches Feld im Sinne yon 

[DM] 

Zur Konstruktion von S benStigen wir einige zus[tzliche Daten: 

b) Sei X = Z g , B(X) bezeichne die symmetrischen Bilinearformen 

auf X (B(X) = Hom(S2(X),%)) , und B+(X)~B(X) ®Z~ den Kegel der 

positiv semi-definiten Formen. 

Wir fixieren eine Zerlegung 

+ 

B (X) = U~ 
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+ 
mit rationalen Kegeln ~ ~B (X)~ (Die d sind die konvexe H~lle 

e n d l i c h  v i e l e r  r a t i o n a l e r  H a l b g e r a d e n  in  B+(X)~  ) 

Diese erf~lle 

i) 

ii) 

iii) 

iv) 

Jede Seite eines c 

Die Inneren 

sind disjunkt. 

Unter GL(g,g) 

von o's . 

in der Zerlegung kommt ebenfalls vor. 

(im Sinne konvexer Mengen, nicht der Topologie!) 

gibt es nur endlich viele Konjugationsklassen 

Die Zerlegung heist glatt, wenn zus~tzlich gilt: 

Jedes u wird aufgespannt von einer Teilmenge einer Basis yon 

B(X) 

Es ist bekannt, daS man durch weiteres Unterteilen aus jeder Zerlegung 

eine glatte machen kann. In unserem Fall werden glatte Zerlegungen zu 

glatten Kompaktifizierungen f~hren. 

Weiter setzen wir voraus: 

v) FUr jedes u existiert eine lineare Abbildung I~ : X + S2(X) 

so dab fur alle b 6 X ra(~) = b ® ~ + i0(~) 6 2.$2(X) , 

und so dab f~r fast alle ~ r (~) £ o v 

Bedingung v) ist automatisch, wenn die Zerlegung glatt ist (also iv) ~v) , 

und kann sonst durch Unterteilen realisiert werden. Sie wird sp~ter die 

Existenz einer quadratischen Funktion au sicherstellen, welche die 

Bilinearform bo (weiter unten) liefert: 

I 
adIz) = ~Iz ® b+id(~) 6~. [S2(X) ] 

Weiter gilt f~r jedes Quotientengitter X ~X dab man durch Schneiden 
+I ' 

mit B(X I) ~B(X) eine Kegelzerlegung von B (XI) ~ erhilt. 

Sei S der Torus mit Charaktergruppe S2(X) : B(X)* . Dann definiert 

jedes a eine Torus-Einbettung S ~S , wobei S affin ist mit Alge- 

bra ~[B(X)*Nu v] . S operiert auf S , und besitzt einen einzigen abge- 
d 

schlossenen Orbit. Dessen Stabilisator ist der Untertorus von S , 
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welcher zu <0> cB(X) 

Untergitter. Wenn m 

Teilmenge von S 

geh6rt. Dabei sei <~> das von 

eine Seite von d ist, so ist S -[ 

aufgespannte 

eine offene 

Unsere Kompaktifizierung wird die Eigenschaft haben, dab sie lokal in 

der @talen Topologie isomorph ist zu einem S 
0 

F~r jedes o bezeichne X~X den maximalen Quotienten mit 
0 

B+(Xd)~ . Dann ist <o>~B(X ) ~B(X) S(d) bezeichne den Torus S 

, _ die Torus-Einbettung mit Charaktergruppe B(Xd)* und S(a) cS(d) g 

zu O ~B(X )~ . Die universelle symmetrische Bilinearform 

x X ~B(Xd)* : S2(X ) Xd d 

definiert eine symmetrische Bilinearform 

b : X ×X ~K* 
0 o @ d 

(K = Quotientenk~rper von R , R G = affiner Ring zu 

s{a) a : ~[B{Xa)*no~]) , 

so dab bd(~,~) 6 R~ f~r ~ 6 X o , und f~r ~ ~ 0 bd(~,Z) 

geschlossenen S(u)-Orbit von S(o) verschwindet. 
d 

Sei r der Rang von X 
d d 

auf dem ab- 

c) W~hle einen abgeschlossenen Punkt s 6 S(d) , welcher im abge- @ 

schlossenen Orbit von S(a) liegt, und eine prinzipal polarisierte 

abelsche Variet[t der Dimension g-r ~ber dem algebraischen AbschluB 
d 

von k(s) . Diese besitzt eine verselle Deformation, definiert ~ber der 

strikten Henselisierung eines Polynomrings ~ber Z . Die Erweiterungen 
r 

dieser versellen Deformation durch T = { ~ werden parametrisiert 
o m 

durch das r a -fache Produkt des Duals der universellen abelschen Va- 

riet~t. Sei R 0 die strikte Henselisierung in einem abgeschlossenen 

Punkt dieses Produkts, und R die strikte Henselisierung von R0 ®zRo 

im Punkte s . 

Dann ist R 0 c_R , ~ber R 0 existiert eine semiabelsche Variet~t 

~-, 0 ~T ~G~A~0 , so dab die Kodaira-Spencer Abbildung einen 
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Isomorphismus definiert t~x_t A " >  i~10/Z . Wenn K ° den Quotienten- 

k~rper von R bezeichnet, so existiert weiter die Bilinearform 

b :X xX ~K* , 
G O (7 C 

b (~,~) 6 m = maximales Ideal, falls ~ ~ 0 Sei M ein amples Geraden- 

b~ndel auf A , welches dort die prinzipale Polarisation definiert, und 

w~hle ein zul[ssiges System yon Isomorphismen f~r G , definiert ~ber 

R 0 • 

A 
Satz 3 liefert dann ~ber R (:m-adische Komplettierung yon R ) eine 

A A A 
abelsche Variet~t G mit einem Geradenb~ndel N , so dab (G,N) --- ( ,M) , 

und dab die zugeh~rige Bilinearform (nach Satz I) gleich b ist. Nach 

dem Approximationssatz yon M. Artin (siehe z. B. [A]) kann man annehmen, 

dab G und N schon [ber R definiert sind. 

d) Aus der Toruseinbettung S(o) ~S(o)o erhZlt man eine Stratifika- 

tion Spek(R) = U = U U , wobei 7 ~ber die Seiten von o l~uft. 
T~O T 

F~r jedes vEo ist X v ein Quotient von X ° , und S(z) ein Unter- 

torus yon S(o) . W~hle ein Komplement S' , so dab S(o) = S(T) x S T 

Dann ist S(T)T x S'7 eine offene Teilmenge von S(o) , somit RO ein 

Unterring von R T ®Z[S'] . Weiter erh~it man eine Zerlegung b ° = b ®b', 

wobei b' : X x X ~[S'] als Werte nur Einheiten annimmt. 
o 

Sei s I 6 U T ein Punkt. Die Faser von ~ in s1,Gsl , ist Erweiterung 

einer abelschen Variet~t A I durch einen Torus T I . Der Torus T 1 

ist in nat~rlicher Weise ein Untertorus yon T , zerf~llt also, und 
U 

die Charaktergruppe X I von T I ist ein Quotient von X 0 . Es liegt 

nahe zu vermuten, dab X I = X (also T I = T ) . Wir werden gleich sehen, 

dab dies in der Tat der Fall ist. Auf jeden Fall schlieBt man schon aus 

unserer Variante von [M4], 4.11 (siehe § 3), dab X I den gleichen Rang 

hat wie X 
T 

Es reicht dann, die vermutete Gleichheit X I : X fur den Fall zu zei- 

gen, dab s I einer der generischen Punkte von U 7 ist. Wegen U T 

normal kann man dann ~hnlich wie in IF], § 2, Lemma I, T I als Unter- 

torus in GI~ T einbetten. Aufgrund der bekannten Starrheitseigen- 

schaften von Tori kann man diese Einbettung auf die formale Komplettie- 
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rung von U l~ngst U fortsetzen. 
T 

Sei IcR das Ideal, welches den AbschluB von U definiert. Dann 
Y 

kann man formal l~ngs I und l~ngs m komplettieren. Wir unter- 
I 2 

scheiden dies durch Indizes: und . Dann gibt es exakte Sequenzen 

und 

^I ^1 
O_,T I _,~I _,GI -*0 , 

0 * ; 2  0 , 

(9 2 912) ~1 2 A 0~ / ~ ~A~0 

Die formale Komplettierung von N ist jeweils Pullback eines Geraden- 

bOndels auf den letzten Termen dieser Sequenzen. 

Sei 8 6 F (G,N) , @ , 0 . Dann k6nnen wir @ formal entwickeln: 

i) huf ~I : 

~1 = E 
#EX I @I (#) 

A 

Dabei sind die 8 1 (~) ~-Eigenfunktionen unter T 1 , und konvergieren 

g e g e n  N u l l  i n  d e r  I - a d i s c h e n  T o p o l o g i e  

A 

ii) Auf G 2 : 

~.2 = Z a(N) c(~)*(G M) 
~EX -- " 

O 

wobei a(#+v) a(0) = a(#) a(~) b(~,v) 

Durch Vergleich folgt: 

A 

012(v) : p,+vZ a(#) _c(P')*(0 M) 

fur ~ 6 X I (man summiert ~ber das Urbild von ~ ) 

Angenommen nun, es sei X I . X T . Dann gibt es ~ 6 X o , welches Bild 

0 in X I , aber Bild 0 2in X hat. Damit konvergiert einerseits 

a(n~)a(-n~) = a(0)2.b(~,~) n I-adisch gegen Null, so dab b(~,~) 6 I . 
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Andererseits ist b(~,~) = b' (b,#) = Einheit mod I . Also ist tats~ch- 

lich X I = X 

= .b' kann man a( ) analog zerlegen: Da b b T , 

wobei: 

a(#) : a I (#) a' (#) , 

i) a I (p) h~ngt nur vom Bild yon # in X I = X T ab, und 

a I (~+v) a I (0) = a I (~}a I (v}bT(#,v) 

ii) a '  (0)  = 1 ,  a '  ( p + v )  = a '  (# )  a '  (~)  b '  ( p , v )  

Damit folgt: 

A2 
e 1 ( v )  = a 1 ( v )  Z a '  (;z) c ( # ) * ( 6  M) , v E X 

I/+~0 -- T 

Man Oberlegt sich ~brigens leicht, dab man erreichen kann, dab 
A A 

a '  (g )  E K r e g u l f i r  i s t  a u f  dem P u l l b a c k  y o n  U c S p e k ( R )  i n  S p e k ( R )  
o T - -  

(Dies gilt schon, falls # C Kern(X ~ X) , und sonst modifiziere man 
A 

a 3 u n d  a '  m i t  e i n e r  l i n e a r e n  A b b i l d u n g  X ~ K* . )  

Wir wenden dies wie folgt an: 

Sei wieder s I 6 U T . Durch das Degenerieren Yon (G,N) in s I erh~it 

b I x X , mit man nach Satz I eine symmetrische Bilinearform auf X T T 

Werten im Quotientenk6rper der Komplettierung des lokalen Ringes von 

U in s I . Wir behaupten, dab bl/b 7 als Werte Einheiten (in s I ) 

hat: 

^ 
Dazu darf man zun~chst R durch R ersetzen. Sei R I dann der lokale 

A 
Ring zu s I , mit Komplettierung R 1 Die Reihe 

Z e 1 (#) 
Y 

induziert dann die entsprechende Zerlegung ~ber 
A 

R I . Da 

A2 
e t ( v )  = a~ , ( v )  p÷vZ a ' ( ~ . )  _c ( ~ ) * ( e  M) , 
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A 
und a'(~) = Einheit in R I , folgt dab 01(v) = a1(~) (regul~rer 

Schnitt, % 0 in s I ) . Es folgt, dab b I und die Bilinearform zu 

a I (dies ist b 7 ) sich nur um Einheiten unterscheiden. 

Schlieglich liefert G I auf der formalen Komplettierung yon 

UT eine Kodaira-Spencer Abbildung 

U l~ngs 

x t* ÷ ~/R T ® A ~*G -- G I R RI 

Diese induziert einen Isomorphismus. 
A $2 A 

Bild von (~*G ® t* ) in (t* G) ®RRI 
-- G I -- A I 

~> ~R/R ® RRI 

Beweis: 

Sie induziert einen Isomorphismus 

A I A 
Bild(t* G ®~*A ) ~> ~R/Ro ® RRI 

Die induzierte Abbildung 

I A 
S2 (~*(T/T]) ) ÷ ~R/R O ® RRI 

ist gegeben durch 

~Sv ~--> d(log(bo(~,~3)) = d log(b' (~,v)) , 

fNr ~, v6 X(T/T I) = Kern(X ° + X ) 

I 
Die d log(b' (~,v)) bilden aber eine Basis von 9Z[s,]/Z 

A I 
~R /R  T ®RR1 , u n d  e s  f o l g t  a l l e s .  

oder auch 

e) Bis jetzt war R einfach die strikte Henselisierung von R 0 @ ~R ° . 

Es ist dann induktiver Limes von endlich erzeugten ~-Algebren, und es 

ist "alles" schon ~ber einer solchen definiert. Wir erhalten dann ein 

Paar von endlich erzeugten Z-Algebren, welches wir wieder R 0 ~R nennen, 

so dab R ~tale ist ~ber R 0 ®R O , so dab (G,M) definiert sind ~ber 
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R 0 , und so dab (G,~) ~ber R existieren. AuBerdem erh~it man durch 

strikte Lokalisierung von R in einem abgeschlossenen Punkt 

s 6 U cU = Spek(R) die bisherige Situation. 

e) Lemma: 

Indem man U gegebenenfalls durch eine kleinere 6tale Umgebung von s 

ersetzt, kann man folgendes erreichen: 

i) Sei Spek(R) = U = U U die Stratifikation, und OT die formale 
T~@ T 

K o m p l e t t i e r u n g  v o n  U l f i n g s  U . Dann e x i s t i e r t  a u f  ~T e i n e  

exakte Sequenz 

T T T 

und ~T ist Pullback eines Geradenb~ndels ~T auf ~T 
-- - 7  7 

ii) Sei 6 6 F(G,N),0 ~ 0 . Auf ^ U T entwickelt man e nach 
AT 
T - E i g e n f u n k t i o n e n :  

~6X 
T 

Welter zerlege man b = b -b' Dann existiert ein 
T 

A 7 
ao 6R7 = F(U ,00, [) , ao % 0 , 

A t ^ 
SO dab 8y(V)87(-v) = b (v,v).a "f , wobei der Schnitt 

T ) auf U in keinem Punkt identisch auf der Faser 
-- T 

verschwindet. 

iii) Die Kodaira-Spencer Klasse von ~< induziert auf 
T T 

I s o m o r p h i s m u s  

i n  S 2 ( g ' G )  ® 0^ Bild yon ~*G @~*G T -- UT 

I 
~> ~R/R @ 0A 

T U 
T 

einen 

Beweis: 

Punkt i) ist klar. F~r ii) w~hlt man a 0 so, dab die Bedingung f~r 

= 0 erf~llt ist. Dann gilt sie auch in allen Punkten s] 6 U , 

welche s in ihrem AbschluB enthalten (nach den vorherigen ~berlegun- 

gen ~ber Bilinearformen). AuSerdem reicht es, sie f~r eine gewisse 

endliche Anzahl von ~'s zu verifizieren. (Wegen des Zusammenhangs 



359 

mit Bilinearformen). 

Damit l~Bt sich auch ii) erledigen, iii) geht genauso. 

Korollar: 

Sei s I E U ein abgeschlossener Punkt, s I 6 U T . Dann ist die Komp- 

lettierung der strikten Henselisierung von U in s isomorph zur 

Komplettierung eines der vorher konstruierten Ringe R (fOr % statt 

), wobei sich die G's und N's entsprechen. 

Beweis: 

A 
Sei R I der lokale Ring in s1,R I 

A 
Z e r l e g u n g  i n  G i n  s 1 : 

seine Komplettierung. Betrachte die 

A A A A A 

0~T I ~G~A~0 , T I : T T . 

A 
Wenn R 2 eine verselle Deformation ist von A (mit Polarisation) und 

der Erweiterung durch T I , so ist die Abbildung R2 ~ R7 ~ RI 6tale, 

nach Teil iii) des Lemmas. Weiter gilt fur die zur Degeneration geh~- 
A 

rige Bilinearform b I : X × X ~K~ , dab bl/b T Werte in den Ein- 
A T • A 

heiten RI* annimmt. Wenn man die Abbildung R T ~R I mit einem geeig- 
A 

neten Element aus S(T) (RI) twister, darf man annehmen, dab b I = b T , 

und alles hat seine Ordnung. 

f) Jetzt k~nnen wir den Hauptsatz zeigen: 

Satz 4: 

Es existiert ein Schema S , yon endlichem Typ ~ber ~ , glatt und mit 

geometrisch normalen Fasern, und ein Gruppoid R~S x ~S , endlich, 

mit 6talen Projektionen auf S , so dab gilt: 

i) Uber S existiert eine semiabelsche Variet~t G ,abelsch in den 

generischen Punkten, und ein Geradenb0ndel N , welches in den ge- 

nerischen Punkten eine prinzipale Polarisation definiert. 

ii) Seien G I und G 2 die beiden semiabelschen Variet~ten der Dimen- 

sion g , die man dutch Pullback mit den Projektionen auf 
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iii) 

iv) 

erh~it. Dann gibt es einen Isomorphismus G I ~ G 2 , welcher in 

den generischen Punkten die Polarisation respektiert und mit 

der Gruppoid-Struktur vertr~glich ist. 

Sei S 0 ~S die dichte offene Teilmenge, dber der G abelsch 
-I -1 

ist, R0 : Prl (S0) : Pr2 (S0} . Dann ist 

R 0 -~-~> I s o m ( G 1 , G  2 ; P o ] a r i s a t i o n ) .  Das d u r c h  (S0,R 0 ) _  _ d e f i n i e r -  

te algebraische Feld ist A 
g 

Das durch (S,R) definierte algebraische Feld ist eigentlich 

@ber ~ . 

v) S und R besitzen Stratifikationen S : U S , R = U R , para- 

_ B + unter metrisiert durch die Konjugationsklassen der o c (X)~ 

GL(g,~) . F@r einen abgeschlossenen Punkt s 6 S ist die strikte --0 

Henselisierung von S in s isomorph zur strikten Henselisie- 

rung yon s in einem Punkt des abgeschlossenen S-Orbits. Dieser 
o . sO 

Isomorphismus erh~it die Stratifikationen ist das Stratum 

zu ~ : (0) 

Beweis: 

Wir w~hlen S als endliche Vereinigung von den vorher konstruierten 

U's . Jedes solche U geh~rte zu einem c , und es gab eine @tale 

Abbildung U+S(0) x (Modulfeld der semiabelschen 0 +Grm*G~A÷0 ). 

Wir fordern, dad f(]r je e~n u in einer GL(g,~)-Konjugationsk]asse 

die zugeh~rigen U's die Menge (abgeschlossener S(0)-Orbit) x (Modul- 

feld) ~berdecken. Da das Modulfeld quasikompakt ist, und da es nur 

endlich viele Konjugationsklassen yon o's gibt, reichen dazu endlich 

viele U's . Wir haben nun S , und erhalten zwei semiabelsche Varie- 

t~ten G I und G 2 durch Pullback auf S x~S . Uber S0 x S0 ist 

R0 : isom S (GI,G2; Polarisation) endlich. Sei R die Normalisierung 

von R ° --o _ ~ber S x Z S Dann ist ~ normal und endlich ~ber S x S . 

AuBerdem existiert QDer R ein Isomorphismus G I z G 2 (siehe [F], § 2, 

Lemma I), und die Aussagen i) , ii) , iii) und v) folqen, wenn wir zeigen, 

dab di~ Projektionen yon R auf S @tale sind und die Stratifikati- 

onen respektieren. Dazu sei s 6 R ein abgeschlossener Punkt, mit Pro- 

jeKtionen s I und s 2 auf S . Sei R die Koraplettierung der strikten 
A 

Henselisierung von R in s , und entsprechend fQr R I ® R 2 . Dann ist 
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A 
R endlich ~ber R I ®R 2 (das komplette Tensorprodukt ist zu nehmen ~ber 

der Komplettierung der strikten Hense]ierung yon ~ in einem Primideal 

p~, p % 0 ), normal, enthilt R I und R 2 , und es ist 

GI ®R R = G 2 @R R = G12 . Zu den degenerierenden polarisierten abelschen 
I 2 

Variet~ten geh6ren Gitter X I = X 2 : X12 und symmetrische Bilinear- 

formen. 

b I : X I x X I ~ KI* 

b 2 : X 2 × X 2 ~ K2* 

b12: X12 x X12 ~K* 

(K],K2~ sind die Quotientenk6rper). Es ist b12 = b]-b I' = b 2- b 2' 

' ' : × ~R* als Werte Einheiten annehmen. wobei b I , b 2 X12 X12 

Welter hat man Polyeder ~1 ~B+(X] )~ und 0 2~B+(X2 )~ . Es ist 

°I : ~2 : 

Angenommen o12 = oIRO 2 ist eine echte Seite von 01 (oder analog 

von d 2 ). Dann gibt es endlich viele Elemente ~j,vj 6 X I , so dab 

fir jede Bilinearform bE0]2 E b(~j,vj) = 0 , abet dab diese Summe 

positiv wird fur jedes b in oi-d. 2 , und negativ fur b £ o2-o12 

Es sind dann [b1(~j,~ j) und Hb2-1 (Zj,v j) Elemente aus m I bzw. 

R 2 , wobei das erste Produkt keine Einheit ist. Ihr Produkt ist aber 

eine Einheit in R , und das geht nicht. 

Sei also 01 = o 2 = o , und damit X I : X 2 = X12 = X 

Es sei wieder R 0 die Basis einer versellen Deformation von G s Ober 

k(s) (d.h., Deformation des abelschen Tells und der Erweiterung durch 

den Torus). Dann sind R I und R 2 Komplettierungen yon strikten Hen- 

selisierungen gon R 0 @R und ~I und ~2 sind Pullback eines O t 

~ber R 0 . Man w~hle ein zul[ssiges System von Isomorphismen fur 

~ber R 0 , und erh[it dann einen Isomorphismus R I m R 2 , bei dem sich 

b] und b 2 entsprechen. Nach Satz 2 ist dann auch G I ~ G 2 , und der 

Isomorphismus ~ber R entsteht einfach durch Basiserweiterung. Da R 

Ober die Normalisierung yon Isom S (GI,G2; Polarisation) definiert 
----O 

wurde, ist R = R I : R 2 . Die Projektionen sind also e£ale in s 6R . 

Es bleibt die Aussage iv) . Dazu benutzt man ein Bewertungs-Kriterium: 

Sie V ein kompletter diskreter Bewertungsring, mit algebraisch abge- 

schlossenem Restklassenk~rper k und Quotientenk6rper K , und 
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%1 : Spek(K)+ 

ein Morphismus der den einzigen Punkt yon Spek(K) in einen der gene- 

rischen Punkte von S abbildet. Dann gibt es eine endliche Erweiterung 

K' mK , mit Normalisierung V' yon V , und 

~2 : Spek(V') ÷S , 

so dab man ~i × ~2 : Spek(K') ~S x ~S zu einem K'-wertigen Punkt yon 

R liften kann. 

Es ist also folgendes zu zeigen: 

Das Pullback ~I*(G) yon G unter ~I ist eine prinzipal polarisierte 

abelsche Varietat. Wit brauchen #2 ' so dab ~2*(G)I K' isomorph zu 

~I*(G) ist. 

, *(G) semistabile Reduktion hat Dazu w~hle man K' so groB dab ¢I 

~ber K' und ersetzt V dutch V' K durch K' • t 

Sei v : K* ÷~ die Bewertung. Das N~ron-Modell yon ~I*(G) definiert 

nach Satz I eine symmetrische Bilinearform b : ~ x X V~K x auf einem 

Gitter X V , und v o b ist positiv definit. Es gibt also ein ~ in 

der Kegel-Zerlegung, so dab v o b im Inneren yon ~ liegt, und 

X V ~ X ° (~,X) ist eindeutig bestimmt bis auf Konjugation mit GL(g,Z). 

Sei wieder R 0 eine verselle Deformation der speziellen Faser des 

N~ron-Modells. Wit erhalten eine Abbildung R 0 +V , so dab die univer- 

selle Uberlagerung des N~ron-Modells Ober R 0 definiert ist. Wenn man 

dann ~ber R 0 ein zul~ssiges System von Isomorphismen w~hlt, definiert 

b einen Morphismus R 0 ® R ° ÷V bzw. Spek(V) Spek(R0) x~ S(o)o , wo- 

bei der abgeschlossene Punkt yon Spek(V) in den abgeschlossenen Orbit 

von S(o) abgebildet wird. Nach Konstruktion von S kann man diese 
o 

Abbildung liften in eines der U's . 

Dies liefert ~2 " so dab das N~ron-Modell von ¢1"(G) und ~2*(G) 

dieselbe formale Komp!ettierung in V haben und dieselbe symmetrische 

Bilinearform definieren. Nach Satz 2 sind sie isomorph. 

g) Damit ist der Beweis von Satz 4 beendet. Wir notieren hier nur 

noch das Korollar, dab die geometrischen Fasern von A ~ber Z irre- 
g 

duzibel sind: Dies folgt aus der analytischen Theorie in Charakteristik 

0 , und der Rest ist genauso wie in [DM]. 



363 

§ 5 LEVEL-N-STRUKTUREN 

a) Alle unsere Oberlegungen lassen sich auch mit Level-Strukturen 

durchf~hren. Wir w~hlen eine nat~rliche Zahl n . Da sich bekanntlich 

Level-n-Strukturen schlecht mit Charakteristiken vertragen, welche n 

arbeiten wir ~ber ~[I/n,e2~ . Uber diesem Grundring hat teilen, 
L J 

man eine kanonische symplektische Form <,> auf (~/nZ) 2g , mit 

Werten in Pn = n.te Einheitswurzeln. Eine Level-n-Struktur auf 

einer prinzipal polarisierten abelschen Variet[t der Dimension g ist 

ein Isomorphismus A (n) ~> (~/n~) 2g (A (n) = n-Teilungspunkte) , welcher 

die symplektische Struktur erh~it. Die verschiedenen Level-n-Strukturen 

auf A sind konjugiert unter Sp(2g,Z/nZ) . Es gibt ein algebraisches 

Feld Ag,n ~ber Bit/n, e 2~i/n] j , welches die abelschen Variet[ten 

mit Level-n-Struktur klassifiziert. Fir n ~ 3 ist A sogar ein 
g,n 

algebraischer Raum. 

Sei A die Normalisierung yon A in A . A wird gegeben 
g,n g g,n g,n 

durch ein Paar (Sn,R n)_ _ - . Dabei ist S die Normalisierung von S 
--n --n 

in der dureh Hinzuf~gen von Level-n-Strukturen ~ber S0 definierten 
0 

Uberlagerung, und R wieder die Normalisierung yon R 
--n --n 

b) Wir wollen ein lokales Modell finden f~r die ~berlagerung S ÷ S . 
--n -- 

Dazu betrachtet man wieder den Torus S mit Charaktergruppe B(X)* , 

und die Torus-Einbettungen SmS Die Multiplikation mit n auf 

--> S S induziert eine verzweigte Uberlagerung n : S d 

Es gilt nun: 

Satz 5: 

i )  Die ~berlagerung S +S ist lokal in der 6talen Topologie iso- 
--n -- 

morph zu n : S o --> S O . Insbesondere erh~it auch --nS eine 

S t r a t i f i z i e r u n g ,  h a t  g e o m e t r i s c h  n o r m a l e  F a s e r n ,  u n d  f i h n l i c h e s  • 

ii) F~r n >- 3 ist --nR ÷_nS ×Z[rl/n,e2~i/n 71| --nS eine abgeschlossene 

J 

Einbettung, und A ein algebraischer Raum. 
g,n 
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Beweis: 

i) Sei R die Komplettierung der strikten Henselisierung von S in 

einem abgeschlossenen Punkt, G/R die universelle semiabelsche Variet~t, 

G, 0 + T +~+A÷ 0 , X und b : X ×X ÷K* wie ~blich. Die Behauptung 
C O G ~ C 

i) lauft darauf hinaus zu zeigen, da8 die n-Teilungspunkte von G den 

K~rper K(n/b) erzeugen. Aus unserem Analogon zu [M4], 4.11(siehe § 3) 

ergibt sich eine exakte Sequenz yon Gruppenschemata ~ber K 

0 +~(n) ÷ G(n) + Xo/n.X ÷ 0 
@ 

Dabei ist ~(n) ~tale vom Rang n 2g-r@ , und die Faser ~ber der Klasse 

modulo n.X von ~ C X ist isomorph zu 
o 

(n) (~) = {g6G(K), n.g : i(~)] Wenn b : X+T (K) die zu b (,) Z " d @ o 

geh~rige Injektion ist, so ist i(~) f ~(R) "b0(b) . Da G(R) n-divisibel 

ist, ist der von den Koordinaten der n-Teilungspunkte erzeugte KSrper 

gleich K(n/bd(x)) , und es folgt die Behauptung. 

ii) Wie bisher sind die Projektionen yon R auf S 6tale, und 
--n --n 

somit ist --nR ~ Sn x ~[]/n,e2~i/n] ~n unverzweigt. 

Es reicht dann zu zeigen, dab ~ber zwei geometrischen Punkten s I und 

s 2 von --nS h~chstens ein geometrischer Punkt von --nR liegen kann. 

Es m~gen wieder RI,R 2 und R die Komplettierungen der strikten 

Henselisierungen von S bzw. R in s s 2 und s bezeichnen. 
--n --n I' 

Es ist R I ~ R und R 2 ~ R , und der induzierte Isomorphismus R I = R 2 

ist unabh~ngig vonder Wahl von s (und R ), da schon bekannt ist, 
0 0 

dab R sich abgeschlossen einbettet in S 
--n 

Es folgt, dab es nur ein s 

0 
× S 

--n Spek(~[I/n,e2~i/n]) --n . 

in der Faser ~ber (Sl,S 2) geben kann. 

Korollar: 

Die geometrischen Fasern von 

irreduzibel. 

A 
g,n 

,[lJno2 iJn] sind 
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§ 6 MODULFORMEN UND MINIMALE KOMPAKTIFIZIERUNG 

a) Auf A erh~It man in nat~rlicher Weise eine Reihe von Vektor- 
g 

b~ndeln. Dabei ist ein Vektorb~ndel auf A gegeben durch ein Vektor- 
g 

b~ndel auf S , dessen beide Pullbacks zu R isomorph sind (unter 

ErfOllung geeigneter Bedingungen). 

I.) ~G' ~*G ' d.h. Tangential und KotangentialbOndel des universellen 

G's und ihre Tensorpotenzen u.s.w. Sei ~G = ig t* 
t -- G 

I 
2.) Im allgemeinen ist 9S/~ nicht lokal frei. Als Ersatz dient 

besser das B~ndel @ , definiert wie folgt: F~r jede Torus-Einbettung 

SoS sei 0So das Unterb~ndel des direkten Bildes von I -- o ~S/~ , welches 

von den d~/b erzeugt wird (b = Charakter von S ). Da S lokal in 

der 6talen Topologie isomorph ist zu einem S O , erh~it man 0 auf 

Wenn die Kegelzerlegung glatt ist, so ist @ die Garbe der Differen- 

tialformen mit logarithmischen Polen in ~ . Die Kodaira-Spencer Klasse 

S 2 liefert einen Isomorphismus K : (~*G) ---~> @ (Dies folgt aus der 

ziemlich expliziten Bestimmung von < ). 

3. Lokal existiert ein Geradenb~ndel N auf G , welches Nber S O 

die prinzipale Polarisation definiert. Wenn e : S --> G den Null- 

schnitt bezeichnet, kann man annehmen, dab e*(N) ~ ~ trivial ist. 

N® [-I]*N = H ist dann ein wohldefiniertes GeradenbNndel auf G , mit 

e*(H) ~ 0 s . Das direkte Bild p,(H) auf S (p : G+S die Projektion) 

ist eine-koh[rente reflexive Garbe vom Rang 2 g . Ihre lokale Struktur 

ist recht interessant, siehe z. B [MB] . Man kann 0brigens ihre lokale 

Struktur mit Hilfe unserer Uberlegungen beim Beweis yon Satz 2 aufhellen. 

Auf jeden Fall ist p,(H) lokal frei auf S0 . Wenn wir Level-2-Struk- 

turen einfNhren, also zu S~ ~bergehen, so ergibt sich eine irreduzible 

Darstellung der @-Gruppe auf p,(I~) , und p,(H) ~ K2g , f~r ein Ge- 

radenbNndel K auf S~ oder auf Ag,2_i Aus dem Satz von miemann-Roch 

folgt, dab in PiC(Ag,2) @~ K und ~ dasselbe Bild haben. Eine 
-I 

Potenz von K stimmt somit mit einer Potenz yon ~ ~berein. 

b) Eine Modulform vom Gewicht k zur Gruppe S (2g,Z) ist ein glo- 
k P 

baler Schnitt yon ~ ~ber A . Man definiert entsprechend Modul- 
g 
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formen ~ber {' ~/pZ oder allgemeiner ~ber einem beliebigen Ring. Man 
k 

kann auch Schnitte von ~ ~ber A betrachten. Diese lassen sich wie 
g 

folgt interpretieren: 

Jeder abelschen Variet[t A vonder Dimension g wird ein 

fA6 F(A, (~) k) zugeordnet. Die verschiedenen fA's entsprechen sich 
k 

bei Basiswechsel oder Automorphismen von A . Jeder Schnitt von 

~ber A besitzt dann Fourierentwicklungen: 
g 

Sei wieder X = Z g, o~B+(X)~ ein konvexer rationaler Polyeder stabil 

unter Homothetien. Dabei wird nicht vorausgesetzt, dab g in der vor- 

her gew~hlten Kegelzerlegung auftaucht. Wir kSnnen jedoch wieder 

Xa,r a : Rang(X u) , S,S(~) und S(g) a definieren. 

Sei A eine abelsche Variet~t der Dimension g-r . A sei prinzipal 

polarisiert, mit Dual A v . Uber (AV) ro existiert dann die universelle 
r 0 Erweiterung von A durch T : ~ : 

a m 

0+T ÷~ ~A÷0 

A 
Sei R die Komplettierung des Ringes R~ zu S(~)u 

Topologie, wobei das Ideal I den abgeschlossenen S(0)-Orbit in S(U) 

beschreibt. Dann liefert die Mumford-Konstruktion eine semiabelsche 

Variet~t G fiber Spek(Rj) x (AV) ~ , (zun~chst ~ber dem formalen 

Schema, aber man macht alles algebraisch, da die Konstruktion gleich 

eine Kompaktifizierung dieser Variet[t liefert), welche gute Reduktion 

hat auf dem Urbild des offenen S(o)-0rbits S(J) ~S(o) 
o 

in der I-adischen 

Wenn ~1,...,~r eine Basis yon X ist, so ist 
o 

Ag~*G ~ R~(d(l°g(~1)A---Ad~ l°g(~ r )) ® Ag-r~(!*A ) 

und fG hat eine Entwicklung 

mit 

fG = Z ,7.fx. (d log(~1)A...Ad log(~ r ))k 71CB (X u ) a 

f 6 (Ag-ro(t*A) )k 
× 
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k 
Die f liefern globale Schnitte yon ~ ~ber A 

X g-r o 
v 

ein _ 7 o , so dab fx verschwindet fur X { X o + ~ 

und es gibt 

Wenn o I ~ ein in ~ enthaltener Polyeder ist, so stimmen die fx 

fur ~1 mit denen fur ~ ~berein. SchlieSlich sind sie noch invariant 

unter der Gruppe GL(X ) , genauer gesagt, f~r a6 GL(X o) ist 

fa(x) = det(a)k.f X (beachte die Operation yon a auf 

d iog(~1)A...Ad 1og(~ r ) !) 
O 

Wenn r > I , so folgt dann schon automatisch, dab f % 0 nur gelten 
o X 

v (Koecher-Prinzip) : X definiert eine Linear- kann, wenn X 6 B+(Xo)~ 
+ 

form auf B(Xo) ~ . FUr jeden rationalen konvexen Polyeder ~I ~B (Xo) ~ 

v fur alle a E GL(X o) Wenn gibt es X I , so dab a(X) 6 X I + c I 

CE o] (~) eine kompakte Teilmenge ist, so ist dann die durch X de- 

finierte Linearform nach unten beschr~nkt auf a6~L(Xo) a(C) 

Wenn r > I ist, so kann man aber durch geeignete Wahl von C errei- 
c 

chen, dab die konvexe H~lle der obigen Menge gleich B+(Xo)~ ist. 

Also liegt X in B+(Xo) v 

Aus unserer Konstruktion yon A folgt, dab f sich genau dann zu 
k g 

einem regul~ren Schnitt von ~ auf A ausdehnt, wenn fur alle d 
g 

in der gew~hlten Kegelzerlegung die Koeffizienten fx verschwinden, 

falls X { ov - F~ir jedes einzelne d ist dies [quivalent zur Regulari- 

t~t von f auf dem Stratum S , und f ist schon auf ganz S re- 

gul~r, wenn dies in einem Punkt yon S gilt. 
--o 

Daraus folgt, dab man nur die o's mit dim(u) = g(g+1) maximal 
2 

betrachten muS. Dort erhilt man eine Entwicklung 

f : X ZB(X) *'X'f -(d log(~q)A...^d log(~g)) k , 
X 

mit f 6 
X 

f definiert eine Modulform 

automatisch, falls g ~ 2 ) 

<:> f : 0 fur X { B+ (X) v (Dies ist 
X 
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Man kann statt Z auch andere Grundringe w~hlen, wie {, Z/nZ u.s.w. 

Beim Grundring { erh~it man bis auf einen Faktor (2~i) gk die klas- 

sisehe Fourierentwicklung einer Modulform, indem man etwa B+(X) v ] 

identifiziert mit den halbganzen symmetrischen positiv definierten 

Matrizen. Es folgt zum Beispiel, dab der Raum der Modulformen Hber 

eine Basis besitzt, deren Elemente ganze Fourierkoeffizienten haben, 

und dab eine ~-Modulform genau dann ~ber ~ definiert ist, wenn alle 

Fourierkoeffizienten in (2~i)gk-z liegen. 

Wir notieren noch eine weitere Eigenschaft der Modulformen: Sei wieder 

f = X6B*Z (X)vX-fx(d log(~1)^...^d log(~r ))k 

Sei <o>~B(X ) das yon ~ aufgespannte Untergitter. Dann ist 

B+(X ) v N <~>i= {0} , da ~ eine positiv definite Form enth~it. Es 

folgt, dab f konstant ist auf dem abgeschlossenen S(~) --Orbit in 

S(~)~ 

Der konstante Wert wird gegeben durch die Modulform f0 ' vom Gewicht 

k , auf A . Man Oberlegt sich leicht, dab die Fourierkoeffizienten 
g-r~ 

der Entwicklung yon f0 parametrisiert werden durch 

) cB+(X) v , und dab man fir solche X dieselben X6B+(Kern(X+ X ) v 

Koeffizienten fur f und f0 erh~it. (Betrachte f auf Produkten 

A I x A 2 der Dimensionen (r ,g-r )) 

Entsprechendes gilt auch f~ir Modulformen mit Level-Struktur (~iber 

Z ~I/n, e2Zi/n I zum Beispiel) : Dort wird die Fourier-Entwicklung para- 

X 6 1--Bn (X~)v , und zu jedem 0 geh~ren metrisiert durch mehrere 

Fourier-Reihen. 

c) Beispiele fur Modulformen erh~it man durch @-Reihen : W~hle 
I g 

a,b6 (n Z/•.) . Dann ist bis auf 4.-te Einheitswurzeln 

8(Z;a,b) = e i~atb Z e i~((m+a)zt(m+a)) e 2i~mtb 

m£~g 
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eine Modulform vom Gewicht I/2 zum Level 2n 2 , und ein Produkt 4k 

solcher Q's liefert eine Modulform vom Gewicht 2k . Die Fourier- 

koeffizienten liegen in Z[eiZ/n 2] , so dab die entsprechenden Modul- 

formen ~ber diesem Ring definiert sind. (Bis auf 2~i's ). Die Fourier- 

koeffizienten von 8(Zja,b) werden parametrisiert durch 

X 6 1 B(X)* = I S2(X) Sie sind verschieden yon Null nur f~r X 
2n 2 2n 2 " 

vonder Form 

1 
{~(_m+a) ® (m+a), mEx : zg]. 

Es folgt, dab fNr einen Kegel ~B+(X) der konstante Term eines Produktes 

yon 8's verschwindet, auBer wenn alle vorkommenden a'S im Kern von 

I/n-X/X +I/n X ~ O liegen. In diesem Fall ist der konstante Term wieder 

ein Produkt solcher 8's , mit g-r statt g . 
G 

Die 8(Z;a,b) h~ngen mit den 6-Nullwerten zusammen: Wir arbeiten von 

nun an in Charakteristik #2 . Beim a) unter 3.) konstruierten Iso- 

morphismus p.(H) ~K 2g , mit K ~ -11 modulo Torsion in PiC(Ag,2) , 

entsprechen die 8(Z;a,b) mit a,b C jX/X im geeignet zu de finierenden 

Sinne einer Basis yon p,(H) . Entsprechendes gilt f~r die direkten 

Bilder p,(H 21) 

Es ist nun bekannt, dab diese Basen H erzeugen, und dab die 0-Null- 

werte sogar eine projektive Einbettung yon Ag definieren (genauer 

gesagt des groben Modulraums). Da wir das Verhalten der 8-Reihen am 

Rande auch kennen, so folgt leicht: 

Satz 6: 

W~hle n , und sei A = m~0 F(Ag,n,~m)@z[I/2] • Dann wird for gen~gend 

groBes m m ~ber Ag,n@7.[I/2] yon seinen globalen Schnitten erzeugt. 

Die dadurch definierte Abbildung 
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hat als Bild ein projektives normales Schema A* [ber Zte2~i/n,I/2n].[] 
g,n 

Sie definiert eine offene Einbettung des groben Modulraums zu A 
g,n 

in A* , und das Komplement hat auf jeder Faser Dimension g(g-1)/2 . 
g,n 

Genauer hat das Bild jedes Stratums An,o Dimension (g-ro) (g-ro+1)/2 . 

Das weitere Studium der arithmetischen Theorie der Siegel'schen Modul- 

formen verdient sicher noch einige Aufmerksamkeit: Vermutlich gelten die 

obigen Resultate auch in Charakteristik zwei, und es sollte auch Anwen- 

dungen auf Kongruenzen geben. Dies w0rde aber wohl den Rahmen der hie- 

sigen AusfOhrungen sprengen. 

Eine weitere Verfolgung der Ans~tze von L. Moret-Bailly ([MB]) scheint 

hier geboten. 

§ 7 ETALE GARBEN 

a) Durch die modulare Interpretation erh~lt man sofort ~tale Garben 

auf A , namlich die direkten Bilder RJp.(Z/m~) (p:G+A die univer- 
g g 

selle semiabelsche Variet~t). Der Einfachheit halber formulieren wir 

die Aussagen fdr ~i-Garben, doch gelten entsprechende Varianten f~r 

Z 1 oder ~/i~{~-- . AuBerdem nehmen wir an, dab Kegelzerlegung unsere 

glatt ist, so dab alle Strata A glatt 0ber Z sind. 
g,o 

W~hle eine Primzahl 1 und einen Level n . Wir arbeiten grunds~tzlich 

~ber Z[e2~i/n, I/nl] 

Auf Ag,n ist die Garbe R1p,(~ I) lokal konstant und besitzt eine 

nicht ausgeartete symplektische Form mit Werten in 91(-I) ((-I) = 

Tate-Twist). Am Rand ist sie zahm verzweigt: A -A ist ein Divisor 
g,n g,n 

mit normalen ~berkreuzungen. Seine irreduziblen Komponenten sind die 

Strata Ag,n,o f~r ocB+(X)~ ein eindimensionaler Kegel der Zerlegung. 

(FHr n = I entsprechen sie sogar eindeutig den Konjugationsklassen 

dieser o unter GL(X)) . Die Operation der zugeh~rigen Monodromie 

erh~it man aus der Beschreibung der l-Torsionspunkte einer degenerieren- 

den abelschen Variet~t, die wir in § 3 (entsprechend [M4], 4.11) gegeben 

haben: Sei s o ein Erzeugendes der Halbgruppe <o> A B+(X). s o ist eine 

positiv definite symmetrische Bilinearform s o : X~ x X ÷~ und 
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definiert ein unipotentes Element aus Sp(2g,Z) (Wenn s o durch 
I S 

eine symmetrische Matrix S gegeben wird, ist die (0 1 ) . Dieses 

Element liefert die gew0nschte Monodromie-Transformation. 

b) Da RIp* (~ l) zahm verzweigt ist im Unendlichen, sind die direkten 

Bildgarben (~ber X[e2~i/n,I/in]) lokal konstant. (Siehe zum Beispiel 

[L]). Dasselbe gilt for aus R1p*(~ I) abgeleitete Garben: 

Satz 7: 

Sei p : Csp(2g,~) ÷GL(V) eine algebraische Darstellung der Gruppe 

Csp der symplektischen ~hnlichkeiten auf einem endlich dimensionalen 

~-Vektorraum V . F~r n ~ 3 bezeichne F die zugeh~rige ~tale ~l- -p 

Garbe auf Ag,n, ~ : Ag,n~Spek(Z~e2~/n,~] ) r  _ i .  die Projektion. Dann sind 

alle direkten Bilder Rq~,(F ), Rq~, (Fp) lokal konstant. 
--p * -- 

Bemerkung: 

Es w~re w~nschenswert,auch die Eichler-Shimura Relation zu verallgemei- 

nern. Dies scheint jedoch sehr kompliziert zu sein. Auch hier ist noch 

ein weiteres Feld fur zuk~nftige Untersuchungen. 

§ 8 DIE TORELLI-ABBILDUNG 

a) Zu jeder glatten Kurve vom Geschlecht g geh~rt kanonisch ihre 

Jacobische, eine prinzipal polarisierte abelsche Variet~t der Dimension 

g . Wenn man die glatte Kurve in eine singul~re stabile Kurve degene- 

rieren !~t, ergibt sich eine semiabelsche Variet~t, und es liegt nahe, 

die Gegebenheiten der allgemeinen Theorie in § 2,3 bier n~her zu be- 

schreiben, Wir untersuchen dabei zugleich das Verhalten der Torelli- 

Abbildung M ÷A zwischen den Modulr~umen am Rande. 
g g 

b) Sei wieder R ein kompletter normaler lokaler Ring, K der Quo- 

tientenk~rper, C ÷Spek(R) eine stabile Kurve, so dab die generische 

Faser C glatt ist. Zur speziellen Faser C konstruiert man einen 
s 
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Graphen G ,dessen Ecken V den irreduziblen Komponenten yon C 
s 

entsprechen, und dessen Kanten E die singul~ren Punkte auf C s para- 

metrisieren. Eine Kante hat als Endpunkte die beiden Ecken, die den 

irreduziblen Komponenten entspreehen, auf denen der singul~re Punkt 

i ie gt. 

Wir nehmen weiter an, dab alle irreduziblen Komponenten yon C s geome- 

trisch irreduzibel sind und alle Doppelpunkte rational 0bet dem Rest- 

klassenk~rper k von R . Dies gilt immer, wenn k algebraisch ab- 

geschlossen ist. 

mR zu: Die Komplet- Jeder Kante e 6 E ordnet man ein Hauptideal I e 

tierung ~C,e des lokalen Rings im Punkt zu e ist isomorph zu 

R[[S,T]]/(ST-f e) , und I e werde erzeugt von fe 

e) Sei F = ~I(G) die Fundamentalgruppe des Graphen @ , und 

~ --> G die universelle Uberlagerungl mit Gruppe F . Dann gibt es 
A 

eine Uberlagerung formaler Schemata C ~ C , ebenfal!s mit Gruppe F . 

Sei X = F ab = HI(G,~), Y : X* = HI(G,~) , und T der zer fallende 

Torus mit Charaktergruppe X . Die Elemente aus T(R) entsprechen den 

Homomorphismen F +R* . Jeden solchen Homomorphismus kann man benutzen, 

tun eine ~quivariante Operation yon F auf dem trivialen GeradenbOndel 
A 

0~ zu definieren, und damit ein Geradenb~ndel auf C oder auch C . 
c 

Da F(C,0~) = R , erh~it man so einen Isomorphismus 
C 

A 
T(R) "~ > Kern(Pie (C) --> Pic (~)) 

c) Sei G : Pic 0 (C/R) . Dann ist G eine semiabelsche Variet~t Hber 

R , und der eben angegebene Isomorphismus stammt aus einer exakten 

Sequenz 

o -~ ~'-~ ~-~ ~.--, o , 

mit A abelsch ~ber R . Sei wieder G die entsprechende Erweiterung 

0~T~G~A~0 
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Es ist G(R) = G(R) . Man erh~It auch eine Abbildung T(K)G(R) ~Pic0(CQ) : 

Es reicht, die Restriktion T(K) ÷Pic0(Cq) anzugeben. Ein Element aus 

T(K) wird gegeben durch einen Homomorphismus F ÷K* , welcher eine 

~quivariante Operation yon F auf 0~ ® R K definiert. W~hle ein F-in- 
C 

variantes gebrochenes koh~rentes Ideal Jc0~®R K . Dies ergibt eine 
-- C 

koh~rente torsionsfreie Garbe auf ~ oder auch C , und auf der gene- 

rischen Faser ein Geradenb~ndel vom Grad 0 

Wir definieren nun eine Abbildung yon X in den Kern des obigen Mor- 

phismus: FUr e 6 [ sei 0C, e der zugeh~rige lokale Ring, und fe 

ein erzeugendes Element von I e . Ein X 6 X w£rd gegeben durch ganze 

Zahlen x 6Z , f~r alle e 6 E , so da6 f~r alle p E V Z ±x = 0 . 
e e÷p e 

Dabei w~hlt man eine Orientierung aller e 6 [ , und die Summe geht ~ber 

alle e's mit Anfangs-oder Endpunkt p , wobei das Vorzeichen je nach 

Orientierung zu w[hlen ist. Wir definieren dann eine symmetrische Bi- 

linearform 

dutch 

b : XxXcK* 

XeY e 
b(x,y) = e~[ fe 

Dann ist b(x,x) 6 m = maximales Ideal R , falls x % 0 

spricht einem Homomorphismus 

b( ) ent- 

Es gilt nun 

b : X~T(K) 

Satz 8: 

Es sei 

i) 

Char (K) % 2 

Es gibt einen Homomorphismus c : X~G(R) = Pic0(C) , so dab 

fur alle x6 X b(x) c (x) 6 G(K) das triviale Geradenb~nde! auf 

C definiert. 

ii) Sei M ein amples GeradenbUndel auf A , welches die prinzipale 

Polarisation definiert. Dann ist die Zusammensetzung 

X _c> G(R) ~A(R) die zur Erweiterung ~ yon A durch T 
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iii) 

geh~rige Abbildung. Ihre Liftung via c definiert ein zul~s- 

siges System von Isomorphismen fur (G,A,M) 

G ist isomorph zu der semiabelschen Variet~t, welche die Mum- 

ford-Konstruktion mit den obigen Daten liefert. 

Beweis: 

i) Sei x6 X . b(x, ) definiert eine Darstellung p : F ÷X+K* . 

Wir konstruieren ein p-invariantes gebrochenes Ideal jc 0~®K , 
-- C 

welches lokal prinzipal ist, und dessen Einschr~nkung auf jede Komponen- 

te von ~ den Grad Null hat. Die Komponenten C von ~ werden 
s p s 

parametrisiert durch p E~ = Ecken (7) . Wir w~hlen ~ so,daB es im 

Inneren von Cp von einem gp E K* erzeugt wird, und dab for eine 
X e 

Seite e 6 ~ , welche Pl und P2 verbindet, gP2 = fe gPl . Es 

gibt sicher solche gp'S , und das Ideal ~ ist auch p-invariant. Es 

bleibt zu zeigen, dab man J auch in den Doppelpunkten lokal prinzipal 

w~hlen kann: Sei e 6 ~ , und betrachte fur n ~ I den Ring 

(04 ) ® (R/mn) . Er besitzt zwei minimale Primideale ~I und ~2 ' 
c,e 

entsprechend pl,P2 6~ , welche durch e verbunden werden. ~I und ~2 

sind Hauptideale, und ~i.~2 = (fe) 

In der Komplettierung wird 

04c,e ~ R[[S'T]]/(ST-fe) 

A A 
und [I und P2 werden durch S bzw. T erzeugt. 

Man kann dann J so w~hlen, dab es in 0~ ® (R/ n) isomorph wird zu 
-- C , V  m 

einer Potenz yon ~I oder ~2 (etwa zu ~i ~v) ,-und es folgt die 

Behauptung. Der Grad von J auf jedem C ist Null, da Z ± x = 0 
-- p e÷p e 

Damit ist Teil i) bewiesen. Die Abbildung c ist nat~rlich eindeutig. 

d) Es folgt schon aus den S~tzen 1 und 2, dab man G durch die 

Mumford-Konstruktion mit Hilfe einer Bilinearform b* aus ~ erh~it. 

Wir m~ssen nun noch nachweisen, dab c ein zul~ssiges System yon Iso- 

morphismen definiert, und dab dann b = b* . Man bettet R in einen 

diskreten Bewertungsring ein, und reduziert sich damit auf den Fall, 
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dab R schon ein solcher ist. Dann ist das Problem fur den Fall einer 

voll degenerierenden Kurve schon in [MD] behandelt worden, und wit 

folgen den dortigen Ausf~hrungen: Wit k~nnen C,~ , G und G als 

rigid-analytische Objekte ~ber K auffassen. Es ist dann C = ~/F , 

und G/i(X) ist rigid-analytische abelsche Variet~t 

(i = b.c : X~G(K)) . Wit definieren zun~chst eine rigid-analytische 

Abbildung ¢ : C x C~G/i(X) , via ~ : C x C~G . Dazu m~ssen wir f0r 

jeden endlichen Erweiterungsk6rper L von K eine Abbildung 

: ~(L) × ~(L) ~G(L) definieren. Da alle unsere Konstruktionen inva- 

riant unter Grundk~rpererweiterung sein werden, reicht es, ~ auf 

~(K) x ~(K) zu definieren. Dazu ersetzen wir zun~chst C und ~ durch 

ihre regul~ren semistabiien Modelle ~ber R . Dies ~ndert nichts an 

allen Definitionen und Behauptungen. Dann ist ~(K) = ~(R) . Seien also 

Zl,Z 2 E C(R) zwei Punkte. Der Divisor D = y~Fy((z I) - (z2)) ist dann 

F-invariant auf ~ , doch hat die Einschr~nkung von 0(D) auf die 

irreduziblen Komponenten C im allgemeinen nicht den Grad Null. Dies 
P 

wird nun korrigiert: 

e) W~hle ein P0 , und definiere eine Abbildung 

f : p ~-> f(p0,p) 

V --> K* 

wie folgt: Orientiere F-invariant die Kanten 

i) 

i±) 

E . Es gilt: 

f(p0,P0 ) = I 

Wenn der kOrzeste Weg in G yon p nach P0 der Komponente als 

n~chste Ecke Pl trifft, so sei 

f(p0,p) = f(p0,pl) wenn die Orientierung der Kante e zwischen 

p und Pl so ist, dab p Anfangs- und 

Pl Endpunkt ist. 

f(p0,p) = f(p0,Pl)fe , bei anderer Orientierung. 

Definiere 

I~ (YPl 'p) f (YP2'P0) 1 
g(p1,P2;p) = H E K* 

yEF (7P2'P) f(YPl 'P0 ) 

Dabei seien p1,P2 E~ . Im Produkt ist ein Faktor nur dann verschieden 
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von Eins, wenn die k[rzesten Verbindungen (in ~ )von 7p I und YP2 
--> > 

mit dem Weg p0 p verschiedene Fu~punkte auf p0 p haben. Dies gilt 

aber nur fur endlich viele T's (Die Distanz von Pl naeh P2 mug 

gr~Ber sein als Konstante + Distanz (p0,TPl) ) 

Es ist g(pl,P3;p) = g(pl,P2; p) g(p2,P3;p) 

Wenn man von p zu einem benachbarten p' 6 ~ ~bergeht, und e die 

Kante zwischen p und p' bezeichnet, mit p=Anfangspunkt (e) , und 

p'=Endpunkt (e), so ist 

g(Pl "P2 'p' ) 
= I] 

g(PI'P2 "p) TEF 

f (YPl,P') f (YP2 ,P) 

f (yP2,P') f (YPI ,P) 

Die Faktoren sind verschieden yon Eins nut dann, wenn e auf dem Weg 

von YPl nach Tp 2 liegt, und zwar erh~It man dann fe ' wenn die 
-I 

Orientierung yon e mit der des Weges ~bereinstimmt, sonst f 
e 

Es folgt: 

i) Sei 6 6 F , entsprechend x : (x e) E X . 

Dann ist 

= _+x f(PI'P2;~ (P)) ][ f e 
............. > e 

f(P1'P2 ;p) e 6 piP2 

- - >  
Der Exponent ist + I , wenn die Orientierungenvon e und plP2 Ober- 

einstimmen, sonst - 1 . 

ii) Sei J(pl,P2 ) ~0~®K das invertierbare Ideal, welches auf Cp 

von f(pl,P2; p) erzeugt wird. (Die Existenz folgt [hn!ich wie bei der 

Konstruktion yon c ) 

Dann ist 

grad(J(pl,P2) / Cp) = 

0 , falls p ~ F.pl U F.p2 , oder p 6 F'pIDF.p 2 

-I , falls p 6 ~'Pl' P { FP2 

+I , falls p 6 F.p2, p ~ Vpl 
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Somit hat fir z I E Cpl , z 2 6 Cp2 

L(Zl,Z 2) = ~(pl,P2 ) @ 0(D) Grad 0 

entsprechend s = (x e) 6 X , ist 

die Einschr~nkung yon 

auf allen Komponenten. F~r 

6*(L(zl,z 2) 
±x e 

= ( ~--> fe (PI'P2))~(z1'z2) 
e 6 plP2 

£6F , 

Wenn man also einen Morphismus 

p : F+X÷K* 

+x e 
definiert durch p(6) = H > f - , entsprechend einem p 6 T(K) , 

eEPlP 2 e 

so kann man F via p ~quivariant operieren lassen und erh[it ein 

Geradenb~ndel aus G(R) = Pic0(C) . Wenn Pl = P2 ist, so wird dieses 

GeradenbQndel durch den Divisor Zl-Z 2 auf C gegeben. Wenn 

z 2 = 7(z I) mit y 6 F , entsprechend y = (ye) £ X , so erh~It man das 

Geradenb~ndel zu c(y) 6G(R) . Wenn man das obige Element aus G(R) 

noch mit p 6 T(K) multipliziert, ergibt sich schlieBlich eine Abbildung 

~ : ~(R) x ~(R) ~T(K)G(R) : G(K) 

mit 

i) 

ii) 

iii) 

~(Zl,Z 2) + ~(z2,z 3) = ~(Zl,Z 3) 

~(zl,7(zl)) = i(y) (y = Bild(7) E X ) 

Wenn Zl,Z 2 in derselben Komponente liegen, so ist 

~(Zl,Z 2) 6~(R) : Pic°(C) gegeben durch 0(zl-z 2) 

f) AuBerdem ist ~ vertr~glich mit Erweiterungen des Grundk6rpers. 

Andererseits hat man ~ber K eine kanonische Abbildung 

x C ~G = Pic 0 (C n) : Crl q q 

(Zl,Z 2) I > 0(Zl-Z 2) 

Es ist G der rigid-analytische Quotient G/i*(X) , mit einer Gruppe 
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yon Perioden i*(X) ~G(K) . Es ergibt sich dann eine rigid-analytische 

Abbildung der universellen Uberlagerungen 

CxC~G 

Da diese Abbildung mit ~ nahe der Diagonale ~bereinstimmt, ist sie 

nach dem Identit~tssatz gleich ~ . 

Wir erhalten also ein kommutatives Diagramm 

I i*(x) 
C x C----~> G 

Da ~(Zl,6Z 1) 6 i(X) , ist i(X) ~i*(X) . Aus einer Betrachtung der 

Bewertung folgt, dab i(X) endlichen Index in i*(X) hat. ¢ fakto- 

risiert dann ~ber ~/i(X) Dies ist eine endliche Dberlagerung yon 

G , damit algebraisch, und wegen der bekannten Eigenschaften der 

Jacobi'schen ist notwendigerweise i(X) = i*(X) . Wir m~ssen nun noch 

zeigen, dab i = i* . Auf jeden Fall stimmen sie schon ~berein bis auf 

einen Automorphismus yon X . Da i* ebenso wie i yon einer definiten 

symmetrischen Bilinearform stammt, wird dieser Isomorphismus in einer 

geeigneten Basis durch eine positiv definite symmetrische Matrix 

definiert. 

g) Alles in allem haben wir den Satz 8 bewiesen bis auf die Tatsache, 

dab man fur ii) und iii) i durch einen Automorphismus von X ab~ndern 

muB. Wir wollen zeigen, dab dieser Automorphismus die Identit~t ist. 

ES reicht, dies im "universellen" Fall zu tun, das heiBt,wenn R die 

Basis einer versellen Deformation der speziellen Faser C s ist. Dann 

ist R regul~r, und die f fur e 6 E bilden einen Teil eines regu- 
e 

l~ren Parametersystems. F~r jedes e sei ~e ~R das zugeh~rige Prim- 

ideal der H@he I und G e die Faser von G ~ber k(Ee) . Dann ist G e 

semiabelsch, mit einem Torusteil der Dimension ~ I . Die Dimension 

ist genau dann gleich I , wenn die Linearform x = (x e) ~--> x e auf 

X nicht verschwindet. Falls dies der Fall ist, so besteht der Kern 

dieser linearen Abbildung aus den x , die auf dem Torusteil von G 
e 

verschwinden. (Der Torusteil von G ist in natNrlicher Weise ein 
e 
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Untertorus von T ). Aus der Mumford-Konstruktion folgt, dab dies genau 

dann f~r x zutrifft, wenn i*(x) ganz ist in R 
Re 

Wenn I: X --~> X der Automorphismus mit i* = iol ist, so gilt dann 

x e : 0 <=> l(x) e = 0 

I respektiert also alle Hyperebenen {x : 0} , kann trigonalisiert 
e 

werden und hat somit Eigenwerte ± I . Da man 1 aber auch durch eine 

symmetrische positiv definite Matrix darstellen kann, ist I = id . 

Dies beendet den Beweis von Satz 8. 

Wir erhalten auch Informationen ~ber das Verhalten der Abbildung 

M ~A am Rande: Bei vorgegebenem g gibt es nut endlich viele M~glich- 
g g 

keiten f~r den Graphen G einer stabilen Kurve vom Geschlecht g . Zu 

jedem solchen G erh~it man symmetrische Bilinearformen (x,y) ~XeY e 

auf X = HI(G,Z) fur e 6 E . Dann bildet sich die verselle Deformation 

einer stabilen Kurve mit Graph G genau dann in die mit der Kegelzer- 

legung {o} definierte Kompaktifizierung A ab, wenn es ein o gibt, 
g 

welches alle Bilinearformen XeY e auf X enthilt. Wenn dies nicht der 

Fall ist, so muB man zun~chst noch die verselle Deformation durch eine 

Modifikation ersetzen. 

§ 9 DIE KOMPLEXE THEORIE 

a) Nach Basiserweiterung zu den komplexen Zahlen erh~lt man aus 

Ag, S u.s.w, komplexe R~ume. Es ergeben sich die toroidalen Kompakti- 

fizierungen aus [AMRT] oder auch [N] . Da sich auch die Mumford-Konstruk- 

tion ins analytische ~bersetzt, kann man auch die komplex-analytische 

Version der universellen semiabelschen Varietit beschreiben: 

Der Torus S wird ~ber • gegeben dutch 

S(~) = ~g(g+1)/~g(g+1)/2 = B(~g)/B(~g) 

Wenn ~ c{ g(g+1)/2 die Siegel'sche Halbebene bezeichnet 

(~ = {~ = X+iY/Z = tz, Y > 0} ) , so erh~it S({) als offene 
g 
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Teilmenge ~ g/B(Z g ) 

Wenn dcB+(~ g) ein konvexer rationaler Polyeder ist, so bestimmt 

eine Torus-Einbettung Sc S . S ist affin algebraisch, und eine 

Basis des Ringes der algebraischen Funktionen wird gegeben durch 

2~i Spur (MZ) 
ZM(Z) : e 

M eine halbganze symmetrische Matrix, mit ganzen Diagonalelementen, 

welche im Dual v liegt (Y 6 o~ Sp(MY) ~ 0) . Weiter existiert auf 

S eine "universelle" Bilinearform 

b : ~g x~zg~0 
s 

b(x,y) : X M , 

I 
wobei M die Matrix ist mit Eintrigen mjk~ = ~(xiy k~ + XkY j) . b(x,x) 

setzt sich fort zu einer regul~ren Funktion auf S 
d 

Sei XcZ g die 6tale Untergruppe, deren Faser ~ber s 6 S o aus den 

x E~e besteht mit b(x,x) (s) # 0 . Dann setzt sich b fort zu einer 

Bilinearform 

b : xxzg~0 * , 
-- S 

o 

und definiert damit b : X~ (~*)g = T . b ist ~ber ~ /B(~ g) eine 
-- g 

Einbettung, und der Quotient G = T/b(X) ist eine semiabelsche Varie- 

t~t ~ber einem offenen StUck von S . Dort ist S lokal isomorph zu 
o 

Ag(~) , und G liefert die universelle semiabelsche Variet~t. 

b) Das obige G besitzt ein GeradenbHndel L , welches [ber ~g/B(Z g) 

eine Polarisation definiert. Das Pullback von L nach T ist kanonisch 

trivial, und ein globaler Schnitt von L wird geliefert durch die 

8-Reihe auf T : 

2ziz I 2~iz 
8(e ..... e g) = 

g t 
= ~ ei~(mZtm+j~imjZjj)e2~im z 

= (ml, .... mg) 6~g 
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b ist die zu den Koeffizienten von ~ geh~rige Bilinearform (im Sinne 

von§ 2). 

c) Das Quadratintegral von g-Formen liefert eine kanonische hermite'- 

sche Metrik auf ~ = igt* G 

] ] ~ ] t 2 ( ~ )  = f I 1 ~ I I  2 
G 

s 

Man rechnet aus, dab f~r Z = X+iY6 ~ , entsprechend s 6 S , 
g 

dz I dz 2 
-- A . . . A 
z I Zg 

bis auf einen konstanten Faktor gegeben ist durch det(Y) . Da die 

Eintr~ge von Y sich aus den Logarithmen der absoluten Betr~ge der 

X M berechnen, hat die Metrik auf ~G am Rande nur eine logarithmische 

Singularit~t. 
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ANHANG: 

Dieses Manuskript gibt den Kenntnisstand zur Zeit der Arbeitstagung 

wieder (Juni 1984). Inzwischen (September 1984} gab es die folgenden 

Entwicklungen: 

I.) 

2.) 

Die Thesis von C.L. Chai liegt mir vor. 

Die minimale Kompaktifizierung l~Bt sich auch in Charakteristik 

2 behandeln: 

Betrachte Ag,n ~ber X[I/n,e 2'~i/n] 

Sei R = m~= 0 F(Ag,n, ®m) , A*g,n = Proj(R) 

Dann gilt: 

i) Eine geeignete Potenz von ~ wird yon globalen Schnitten erzeugt, 

so dab man eine Abbildung des groben Modulraums (zu Ag,n ) Ag,n nach 

A * erh~it: 
g,n 

: A ÷ A* 
g,n g,n 

-I 
ii) %IAg,n ist eine offene Einbettung, und Ag,n = ¢ (%(Ag,n)) 

iil) A* -A hat Kodimension g in A* 
g,n g,n g,n 

Der Beweis benutzt e-Funktionen. Einige Andeutungen: Man betrachtet 

die Uber!agerung M ÷ A , welehe die symmetrischen Geradenb~ndel in der 
g 

Polarisationsklasse liefert (nicht zu verwechseln mit level-2-Strukturen) . 

F~r m ungerade (der Einfachheit halber) erh~it man dann ein Geraden- 

b~ndel L auf Mx A A , welches f~r m ~ 3 von seinen globalen 
--m g,m 

g m 
Schnitten erzeugt wird, und so dab --mL = ~.~ in Pic ® ~ 

Dies liefert globale Erzeugtheit ~ber A . Man muB nun noch den Rand g 
betrachten,sowie zeigen, dab die Fasern yon ¢ : A ÷A* endlich ~ber g g 
A sind. 
g 
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THE SCHOTTKY PROBLEM 

Gerard van der Geer 

By associating to a (smooth irreducible) curve C of genus g > 0 

its Jacobian Jac(C) one obtains a morphism M ~ A from the moduli 
g g 

space of curves of genus g to the moduli space of principally polari- 

zed Abelian varieties of dimension g. A well-known theorem of Torelli 

says that this morphism is injective. The image of ~{g in Ag is not 

closed it is only closed inside A ° the set of points of A that , g, g 

correspond to indecomposable principally polarized abelian varieties 

(i.e. that are not products). For g=1,2,3 the closure of the image 

. Since dimA =g(g+l)/2 dim M =3g-3 (for g > i) of Mg equals Ag g , g 

> dim M , and so the question arises one sees that for g > 3 dimAg g 

how we can characterize the image of M in A . This question goes 
g g 

back to Riemann, but is usually called Schottky's problem. 

In "Curves and their Jacobians" Mumford treats the Schottky pro- 

blem and the closely related question how to distinguish Jacobians from 

general principally polarized abelian varieties. In his review of the 

situation at that moment (1975) he describes four approaches and their 

merits. He concludes that none of these seems to him a definitive 

solution. In the meantime the situation has changed a lot. Some of 

the approaches have been worked out more completely, while new and 

successfull approaches have appeared. This paper deals with them. I 

hope to convince the reader that Mumford's statement that problems in 

this corner of nature are subtle and worthy of his time still very much 

holds true. 
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The ingredients. 

To begin with, some standard notations. 

: the Siegel upper half space of degree g, 
g 

Fg : Sp(2g, 2) the symplectic group acting on ~g, 

A B : A ~ D 5 i (mod n) 
£g(n,2n) = {(C D ) CFg C B 0 (mod n) "diagtAC ~ diagtBD ~ 0(mod2n)} 

Ag = Fg\~g , the moduli space of principally polarized abelian 

varieties of dimension g over ~, 

, a Galois cover of A . Ag(n,2n) = Fg(n,2n)\~g g 

If X is a principally polarized abelian variety over { we 

denote by L X (or simply L) a symmetric invertible ample sheaf of 

degree 1 defining the polarization and by 0 the divisor of a non- 

zero section of L . We put X = {x E X : nx = 0}. If X = ~g/~g+ T ~g 
X n 

(~ ~ ~ ) as a complex torus then we write X = X 
g 

o2 
The space F (X,L X ) 

functions 

02[o](~,z) = ! 
m ~gg 

Here o 

has dimension 2 g. A basis is defined by the 

exp 2~i(t(m+2)~(m+2 ) + 2(m+~)z) 

z ~ {g, o c (zzg/2z~ g) 

is viewed as a vector of length g with zeroes and ones as 

entries. A different set of generators of F(X,Lx2) is given by the 

squares  of 
i 

e [ ~ , ] ( ' c , z )  = m!  ~g exp 7ri(t(m+2)-r(m+2) + 2(m+~)(z+ 2 )) 

with ~,~, ~ (2Z/2~)g, t , = 0 (mod 2) . These are related by 

e2[ ~,](T,z) = [ <o,~'>02[o+~3(<,0)@2[o](<,z) (i) 
O 

.t 
<o, s'> = expzl os' 

We call a principally polarized abelian variety indecomposable if 

it is not a product of two principally polarized abelian varietieS, i.e. 

if its theta divisor is irreducible. 

The functions @2[o](T,z) define for X = X a morphism 
Y 
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CX: X ~N N = 2g-1 

+ 

Z ÷ ( .... @2[0] (~,z),...)= @2(~,z) 

which factors through z ÷ -z and is of degree 2 for indecomposable 

X. The image is the Kummer variety of X. By taking z:0 and vary- 

ing X we get a morphism 

¢: Ag(2,4) ~ ~N 
+ 

+ ( .... e2[o](T,0) .... )= @2(s,0) 

which is generically of degree i. We also define 

~: A (2,4) ~ ~M M = 2g-l(2g+])-i 
g 

÷ ( .... e2E ~ 3(~,0) .... ). 
E 

and ~ are connected by the special Veronese V defined by (i) : 

~pN 

V 
Ag (2,4) ~ + 

]pM 

The morphisms % and 

compactification Ag(2,4) 

The functions @2[o] 

can be extended to morphisms of the Satake 

of Ag(2,4). 

satisfy the differential equations 

@2[o] = 4~Ti (i + &4) ~ @2[o] , I < i,j s g. ~z. ~z. 
1 ] 1] 

(6ij: Kronecker 6 ) 

which are called the }{eat Equations. 

If M is the moduli space of curves of genus g then the map 
g 

M ~ A defined by C + Jac(C) is injective. The closure of the image 
g g 

in Ag (or Ag) is called the Jacobian locus. Notation : Jg. 

APPROACH 1 : ALGEBRAIC EQUATIONS. 

This is Schottky's original approach for characterizing the Jaco- 

bian locus. It is based on the construction of Prym varieties. For an 

excellent treatment of Prym varieties, see Mumford [13]. 

Suppose we start with a curve C of genus g and a non-zero point 

of order 2 on J : Jac(C) . This determines an unramified covering 
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~: C ÷ C of degree 2 and an induced map Nm : J = Jac(C) ÷ J and 

gives us a diagram 

¢ t $ 6 = mm (2) 

J ~ J 
21 

where % = ~*, - denotes transpose and ~,I are the principal polari- 

zations. One defines the Prym variety of ~: C ÷ C as the identity 

component of the kernel of Nm : P = (ker Nm) O, It is an abelian 

variety of dimension g. Mumford showed that from a diagram (2) it 

follows that there exist a symplectic isomorphism Hl/{0'n} + P2 with 

HI = { ~ (J2 : e2(~'n) = i} (e2: Weil-pairing) such that 

= Jxp/{ (~,~ (~)) : ~ ~ H I} 

2~ 0) 
Let o: Jxp + J be the natural isogeny. Then the polarization (0 p 

is the pull back under ~ of the polarization ~ and this implies 

that p is twice a principal polarization. So P carries a principal 

polarization ~ For these facts, see [13],§2. 

Now use the elementary 

(i.i) Lemma. If D is a divisor of degree g-I on C, then 

h°(~*(D)) # 0 if and only if h°(D) # 0 or h°(D+ n) # 0. 

One finds (using that for Jacobians the theta divisor in Jac g-I con- 

sists of the effective divisor classes of degree g-l) 

0 -1(0o ) n (Jac(C) x (0)) = 0 + @ 
0 O,~ 

Here ~o (resp. Oo ) denotes the theta divisor on Jac g-l(C) (resp. 

Jac2g-2(C), i.e, ® = {x {Jacg-i (C) : h°(x) > 0} If one now chooses 
o 

(Jac(C) 4 such that 2~ = T) and a theta characteristic ~ on C, 

then ~ = -i(~ +~) is a theta characteristic on C. If 0 = 

{x c J : h°(x÷ ~) > 0} , 0= {x e: J : h°(x+ ~) > 0 } are the theta divisors 

on J and on J then (since 01Jx(0) = ~*)- 

+ e . (3) (~.)-i~ = 0 -~ 
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(1.2) The link between the Kummer variety of P and that of J is 

obtained as follows. There is a morphism 

6: P ~ 12oji 

-i p + (~*) ( ~ j ,-p) - 

Mumford shows in [MI] that 6 is the usual Kummer map followed by an 

inclusion 

~p/ ~ (H o (L~2) v) 

p / 

~ 12%1 

For any principally polarized abelian variety X the Riemann theta 

formula 

0(u+v)0(u-v) : Z c~Bs~(u)s~(v) 

with 8 a non-zero section of L X and {s } a basis of F(X,Lx2) 

e2 
gives us a non-degenerate form B on F (X,L X ) via the (caB) and 

gives rise to a diagram 

~X ®2 v) 
~ ]P(H°(X,Lx ) 

X ~ ~ ~ B ' 

~ 12°x[ 
= + and B' is induced by B. where %i(x) 0X, x OX,_x 

Formula (3) thus implies the fundamental relation 

i(¢p(0)) = B' (¢X(O,)). (4) 

(1.3) For any indecomposable principally polarized X the theta group 

G(L~ 2) acts on F(X,L~ 2) and this defines an action of G(L~ 2) modulo 

scalars ~ X 2 on ~(F(X,L~2)v). If ~ ~ X 2, ~# 0 , then ~ defines 

a projective involution i of ~N with 

i (%x(X)) = }x(X+~) . (5) 

It is a classical fact that the involution i on ~N= ~(F(X,L~2)v)) 

+ V[ each of dimen- has as its fixed point set two linear subspaces V , , 
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sion 2g-l-i and each intersecting the Kummer variety of X in 

22 (g-l) points; moreover, 

(v+~v~)n~x(X) =~x({X~X4: 2x=~ }). 

The linear spaces V ±e cut out on the modular variety %(Ag(2,4)) 

the boundary components. To be precise, 

(1.4) Proposition . Let Ag_l(2,4) be one of the 2(22g-i) boundary 

components of Ag(2,4) of maximal dimension. The image #(Ag_l(2,4)) 

~2g-I 
in is the intersection of }(Ag(2,4)) with one of the linear 

+ 
spaces V-. 

It follows from (4) and proposition (1.4) that for a Jacobian X 

the intersection }x(X) n #(Ag_l(2,4)) is not empty (Here we view 

Ag_l(2,4) as a boundary component of Ag(2,4).) : the intersection 

contains the image of a point of order 4 of X. 

(1.5) Definition. The Schottky locus S &X is the smallest closed g g 

subset of A containing the points IX] with X indecomposable for g 

which ~x(X) n ~(Ag_l(2,4))  ¢ ~ for  a l l  boundary components Ag_l(2,4). 

S g 

By construction S contains J , the Jacobian locus (cf. (4)). g g 

can be described in terms of theta constants as well. The point is 

that P can be written as 

p = {g-i/~ g-l+ Pg_l~g-i 

and that after suitable normalizations 

for some Pg-i e ~g-i 

02  s s ] (~g,0) 8 s 0) (6) [ ,](Pg_l,0) = cSE , [ ,l](Tg, 

with a constant c ~ ~* independent of e,~' ~ (Tz./2Z~) g-I Thus 

is a translation of (4). 

(6) 

Let 

Tg c~[ X[ ~'e ] : e,s' c (Tz/2[Z) g, t, = 0 ] 

be the ideal of ~(Ag(2,4)). To an element f ~ Tg_l we associate 
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o(f) = f( .... 8[ Es, ~38[~' Is 0] (~g,0) ,...) 

by substituting 8[~,0] 80 [~, 01] (Tg,0) for X ~,] The group Fg/Fg(4,8) 

a t be the smallest acts on ~[ 8[ ,] (~g,0) : a' = 0]. Let Zg 

Fg/Fg(4,8)-invariant ideal of this ring containing all a(f) with f 

in Tg_l. Then Sg is the zero-locus of Zg in Ag. 

Of course, this description is explicit only if we know Tg_l and 

in general the structure of this ideal is not known. 

For g=4 one finds that ~ is the ideal generated by a Siegel 
g 

modular form of weight 8 as Schottky showed. 

The important question about S is whether S = J and if not, 
g g g 

what the components of Sg are. For g=4 Igusa proved that S 4 is 

irreducible. This implies $4 = J4" Recently van Geemen proved 

(1.6) Theorem. (van Geemen [ 6 ]) J is an irreducible component of S . g g 

His proof uses an induction argument and an analysis of the inter- 

section of the Schottky locus with blow-up of a boundary component of 

(4,8). 
g 

It is a recurring phenomenon in the history of the Schottky problem 

that one finds algebraic subsets of A that contain J as as irred- 
g g 

ucible component but that may have other components as well. Another 

example is the Andreotti-Mayer approach. Since it is known that for a 

Jacobian one has dim Sing 0 > g-4 one looks at 

N m = {[X] e Ag : Sing@ # ~, dim Sing @->m } 
g 

Andreotti and Mayer proved that J is an irreducible component of 
g 

N g-4 , g >_4. However, N g-4 contains other components. 
g g 
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One of the remarkable features of Jacobians is that their Kummer 

varieties possess trisecants : 

(2.1) Proposition. Let C be a non-singular curve and let a,b,c,d be 

points of C. If r { X=Jac(C) is such that 2r = a+b-c-d, then 

%x(r), Cx(r-b+c) and %x(r-b+d) are collinear. 

Fay's trisecant identity [ 3 ] implies this fact. Gunning [ 9 ] 

has generalized this identity. The idea behind it is essentially the 

following. 

Let N be a line bundle on XxX such that 

N]xxt ~ T_[(0(28)) ( T t : translation by t). 

Fix a point p of C. This defines ¢: C + X= Jac(C) by c ~c-p. 

Let A be a divisor of degree g on C such that 9*0(@) ~ 0(£). We 

let M be the vector bundle on X whose fibre at t is 

H°(C,0(2A+2t)). Pull back of sections via 

H° (X,T_< (0 (20)) ~ H° (C,0 (2£+2t)) (7) 

gives rise to a bundle map 

~: (pl),N --~ M. 

(2.2) Lemma. The map ~ is surjective. 

Proof. The map H°(X,T_t0(0)) + H°(C,0(A+t)) is surjective if the 

divisor A+t is non-special. Therefore, if D { 12A+tl can be written 

as D = DI+ D 2 , DiEiA+tii with £+t i non-special, then D is the 

zero divisor of a section in the image of (7). Define a non-empty 

open set in the symmetric product C (g) by (K =canonical divisor) 

h ° U = {Zl+...+Zg 6 C (g) : (D- ~ zi)=l, h°(< - [ zi)=0 } . 

If D = Zl+...+Zg+Z{+...+z' with [z i { U, then h°( [ z i) = i, hence g 

z i and ~ z! are both non-special. This shows that the image of 
1 
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P(H°(X,T*t(0(2@)) + IP (H°(C,0(2A+t))) contains a non-empty open set. 

We put as usual 

r { x { Sac(d) (C) • h °(x) > r+l } W d = _ . 

(2.3) Theorem. (Gunning [i0]) If Zl,...,z n are distinct points of 

then 
n n-~ + n < 

Wn 2 - ~ z. + 2p = {2t ~ Sac(C) : rank @2(t+~(zi))i:] ~ } 
- i=l l 

C, 

Proof. By the lemma, the rank of this 2gxn-matrix is less than n ¢=~ 

g+l-~ Applying Serre duality h°(2A+2t - ~z i) > g+l- ~ ~=~ 2t+2£- ~z i c W2g_n 

g+l-~ 
K - W2g_n : W~_~ and the fact that ~(K)=¢(2A) gives the result. 

The special case n=~=3 gives proposition (2.1). 

We can generalize this by allowing the points z i to coincide. If 

= . if i # j then in the rank Zl+...+z n m]xl+...+meX e with x i # x 3 

condition the mj vectors @2(t+%(xj)) have to be replaced by 

O~t+~ (xj)) AlO2(t+ ~ (xj)) ... Am _l@2(t+~ (xj)) , 
3 

where the £k are differential operators defined as follows. The curve 

#(C) contains at %(xj) an artinian subscheme Spec C[c]/(Emj) and this 

is given by a local homomorphism 

0X,%(xj) 

f 

{[c]/(smJ) 

f(yj) + AIf(Yj)E + ... + ~m _if(Yj)~mJ -I , 
3 

y:% (xj) 

The special case n=~=3 is important since it gives us back the 

curve C : Note that T o ~ C and W 1 

3 
WlO _ ~ zi + 2p = {2t { Sac(C) : rank (~2(t+%(zi)) (t) < 2 } ' 

i=l 

Gunning's idea in F 8 ] was to use this property to characterize 

Jacobians. Gunning used distinct points z. but Welters has infini- 
l 

tesimalized Gunning's case to include the case of coinciding points and 

transformed it into the following beautiful criterion : 
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(2.4) Theorem. (Gunning-Welters [19]) Let X be an indecomposable prin- 

cipally polarized abelian variety and let y c X be an artinian sub- 

scheme of length 3. Assume that 

V = {2t c X : t+Yc #~i(/) for some 
~N 

line lc }. 
A 

has positive dimension at some point. Then V is a smooth irreducible 

curve and X is its Jacobian. 

v 

(2.5) The property of having flexes is closely related to the Kadomcev- 

Petviashvili equation (K-P-equation) ,a fourth order partial different- 

ial equation satisfied by the theta functions of Jacobians. In [16 ] 

Mumford noticed that if the points a,b,c,d in proposition (2.1) coin- 

cide, Fay's trisecant identity leads to the K-P-equation. 

To get the link, note that an inclusion Spec ~[~]/(a N+I) ÷(X,0) 

is given by a local homomorphism 

C E a ] / ( c  N + I  ) 
0X'0 N 

i 
f + [ A i (f) 

i=l 

where the 4. 
1 

A = id , 
O 

are differential operators satisfying 

Ai(gh) = k+~:iAk(g)~/(h) 

One can show that this is equivalent to the existence of translation 

invariant vector fields DI,...,D N on X such that 

h 
' ' -l-hl .D v 

A = ~ ( h  t . . . .  h . )  b 1 . .  v , 
hl+2h2+...+~h > 0 

or formally 

eJ~imj ~j 
~ Ak ak (mod aN+l). 

k=0 

We apply this to criterion (2.4). Note that V is defined by the van- 

ishing of the 3x3 minors f~ , ~ ~(~g/2~g) 3, of (~+ AI%÷ A2%)÷ at 

some point. If we assume that this point is the origin and that Y : 
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Spec~[c] /(E 3) ~ (X,0) is given by DI,D 2 one finds (using the fact 

+ + 

that the rank of (02 (~iSj @2) i, j) equals g(g+l)/2+ 1 at (~,0) ; ~i = 

~/$zi)) that (V) 2=y. Then, as Welters noticed, one has 

13+ 
(V) 3 = Spec~[~]/(~ 4) ~=~ 3 m 3 such that (~m I DID2+D3)f =0 (all v) 

24 DI+3 D ~=~ rank(( 1 D 1 - 3DID3)_2) (~,0) ~ 2. 

Without changing Spec {E~]/(E 4) ~ (X,0) one may effect the change 

D 1 ÷ aD I, D 2 ÷ a2D2+bD I, D 3 ÷ a3D3+a2bD2+cD I, a # 0,b,c, hence we can re- 

write this as 

32 ÷ 
((D - DID3 + ~D 2 + d) ~) (~,0) = 0 (8) 

This is the K-P equation. By (2.3) the theta functions @2[6] of a 

Jacobian yield solutions. (Usually, the K-P equation is written 

Uyy+(Ut+Uxxx+UUx)x= 0. It is satisfied on a Jacobian by 

2 
U=DllOg8(z+xa1+Ya2+ta 3) +c for some al,a2,a 3 ccg, c ~ {, see [15 ]. 

Dubrovin formulated the equivalent form (8).) That theta functions 

yield solutions was noticed by Krichever, who arrived at it in a com- 

pletely different way. Novikov conjectured then that this should char- 

acterize Jacobians : 

(2.6) Novikov's Conjecture. An indecomposable principally polarized 

abelian variety X is a Jacobian if and only if there exist constant 

vector fields DI,D2,D 3 on X and a constant d such that 

32 ÷ 
((D - DID 3 + ~D 2 + d) 82 ) (T,0) = 0. (9) 

Dubrovin proved in [2] that the locus of IX] in A for which 
g 

(9) holds for some DI,D2,D 3 and d contains the Jacobian locus as 

an irreducible component. 

(2.7) Soon after a weaker version of (2.4) had appeared Arbarello and 

De Concini realized that one does not need the positive dimensionality 

of V ,but only the fact that 0V, 0 contains an artinian subscheme of 
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sufficiently big length, i.e. the condition is that there exist constant 

vector fields DI,..,D M for some big M such that 

M 

X nj~J 
eJ:l (02A AI~2A £2~2) ~ 0 (mod s M) at (~,0). 

In this way they were the first to write down equations that characte- 

rize the Jacobian locus, see [ i ]. Using the version of (2.4) given 

here one can take M= 6gg~ + I. 

Recently, Shiota showed that if one makes a minor technical assum- 

ption on X then Novikov's conjecture is true, see section 4. 

APPROACH 3 : THE GEOMETRY OF THE MODULI SPACE. 

The approach here, worked out in joint work with van Geemen [ 6 ], 

is based on the observation that under # and ~X both the moduli 

space A (2,4) and the Kunumer variety of X are mapped to the same 
g 

projective space, so that we can compare their positions in this space. 

It was motivated by the special case g:2 studied in [ 7 ] and a 

paper of Frobenius dealing with g:3,[ 4 ]. 

(3.1) We first look at the tangent space to %(Ag(2,4)) at %([X]). 

i.e. we look at the hyperplanes 

[ ~ 02[a](~,0) = 0 (x=x) (10) 
T 

O 

satisfying 

~ij ( ~ ~ ~a@2[a])(T,0) = 0 for all i,j. 

By a p p l y i n g  t h e  H e a t  E q u a t i o n s  t h i s  i s  t r a n s f o r m e d  i n t o  

;2  
( [ ~a ~z.?z. 92[a]) (T,0) = 0. 

a l 3 
®2 

So let us look at the sections of F ( X , L  x ) s a t i s f y i n g  

i.e. define 

(ii) 

(10) and (ii), 

Foo(X,Lx 2) = { s {r(X,Lx2) : mo(S) > 4} . 

with m ° the multiplicity of a section at zero. Note that for s ~ 0 
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m (s) 
o 

is even). If X is indecomposable, then 

~2 2 
÷ ÷ 8 °02 

@2'''''3z ~z ) rk ( 02 3zl~zl g g 

in (T,0) equals ~g(g+l) + i, so the codimension of Foo in F(X,L~ 2) 

equals ½g(g+l) + I. If ¢(Ag(2,4)) is non-singular at ¢([X]) and if 

Ig c ~[...,Xo,...] is the ideal of ¢(Ag(2,4)), then Foo(X,L~ 2) eauals 

( [ ~0 ~f ( .... 02[0] (~,O) .... ) @2[o] (~,z) : f ~ Ig } . 

(3.2) AS an example we take g=3. The theory of theta functions gives us 

a relation 

- 0 0 0  000 000 000 
8 1 0 0 0 1 8 1 1 0 0 1 0 1 0 1 0 1 8 1 1 1 0  ] 

~001 , ~001 ~ 001 001 
6 ~ O 0 0 J e t l O  O] [ O l O ] e [ l l O  ] + 

o000~ r000 ~000 00O 
0 001JSll01]SL0!l]e[lll] : 0 

- - r 3 = 0 between the 8[s, ] (~,0). We write this as r I r 2 

the relation 

This implies 

4 4 4 22 22 22 
r I + r 2 + r 3 - 2rlr 2 - 2rlr 3 - 2r2r 3 : 0 

between the squares of the even thetas. Using (i) this gives an equa- 

tion 

F( .... @2[o] (t ,0) .... ) = 0 

of degree 16 defining a hypersurface in ]p7. 

¢= ~ ~F 
(" "" /92[°] (T'0) .... ) @2[o] (<,z) 

O 

Hence 

belongs to Poo and one can check that for indecomposable X~ it is 

non-zero. It generates Foo. In fact, when expressed in the theta 

squares this is the function studied by Frobenius in [ 4 ]. 

The first question about F is its zero locus. Define 
o@ 

®2 
F X = { x { X : s(x) = 0 for all s e Foo(X,L x ) } . 

(3.3) Proposition. If X=Jac(C) then F x n { (x-y) { Jac(C) : x,y ~ C]. 
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Proof. Use (2.1) and put a=b, c=d there. One finds a relation 

~2 (a-b) = ~2 (0) + ~ ~ij~i~j~2(0). 

(3.4) For a Jacobian one can use the geometry of C to construct ele- 

ments of Foo. Let 1201o O = { D c 1201 : mo(D) a 4 } . If x c Sing 0 

then @x u @-x { 12@Ioo" Define 

@ = { ~ (Jacg-l(c) : h°(~) > 0 } 
o 

Sing @o = { ~ ~ 0o : h°(~) > I } 

and define for ~ {Jac g-I (C) : 

0 = {x e Jac(C) : e-x e@ } . 
o 

Then obviously, 

F X ~_ n (e uG ). 
C~ K--C~ 

c Sing 0 

If C is hyperelliptic then 

1 W o 
Sing 00 = g2 + g-3 ' 

( K: canonical divisor) 

hence if f e F x one has +f- + g~ + W°g-3 c Wg_l ,° so +f + g21 c W 2° and 

this implies f = (a-b) for some a,b ~ C. So for hyperelliptic C one 

finds 

F x = { (x-y) ~ Jac(C) : x,y c C } . 

By semi-continuity it follows that for general X dim F X s 2 and for a 

general Jacobian dim F x= 2. We conjectured in [6 ] that for every 

C 

Fjac(C) = { (x-y) c Jac(C) : x,y c C } 

and provided a lot of evidence for it. Independently, the conjecture 

was formulated by Mumford [15] (in a dual form) and by Gunning [i@ • 

This conjecture has now been proved by Welters. However, there is one 

exceptional case, namely g=4, where 

Fjac(C) -- {(x-y) (Jac(C) : x,y ~ C } u {+(f-f') } , 
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with f,f' the two g~ 's on C, see [20] 

(3.5) Conjecture. Let X be a principally polarized abelian variety of 

dimension g ~ 2. Then X is a Jacobian if and only if dim F X a 2. 

An infinitesimal form of this conjecture is related to the Novikov 

conjecture. Note that 

x E F X ~=~ B l'~ij ~ { such that G2(x) =I@2(0) + [ ~ij$i~j ~2(0) 

Now, if Y=Spec ~[c]/(s N+I) is contained in X at 0 via the local 
N 

homomorphism 0X, 0 ~ Spec ~[~]/(N+I), f ÷ ~ Ai(f)~i, we have 
i=0 

Y c F X • =~ B l,~ij c {[El such that 

N 

Ak ~2(T,0)ck = ~2(~,0) + ~ ~ij?i~j~2(~,0). 
k=0 

Working out the condition for N=4 gives 

1 4 1 2 ÷ ÷ 
(( ~-~DI + ~D2- DID 3) @2)(~,0)=d ~ (~,0) + ~ eij~i~j@2(~,0) , 

+ 

where eij is the coefficient of 4 in ~ij" If ~ eij~i~j@2(~,0) 

2+ 
is a multiple of DI@2(~,0), then we can change coordinates such that 

this relation becomes the K-P equation. 

Gunning has studied the generalizations of Fay's identity. This 

leads to interesting analogues of (3.3) involving higher derivatives at 

zero, cf [ii] 

Instead of intersecting the Kummer variety with the tangent space 

of the moduli space we can also intersect the Kummer variety with the 

moduli space itself. As an analogue to (3.3) we find 

(3.6) Proposition. If X = Jac(C) then Cx(X) n #(Ag(2,4)) 

~X({¼(x-y) : x,yc C }). 

contains 

1 Here ~ means the inverse image under multiplication by 4. 
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Proof. A divisor class a with 2a = x+y defines a (2:l)-covering 

T: C~ C. The Prym variety P : ker ( Nm: Jac(C) ~ Jac(C) } is a prin- 

cipally polarized abelian variety of dimension g for general x,y c C. 

There exist theta structures on P and X such that 

1 
%(~(x-y)) = O([P]), 

1 cf. [13],p.340, where ~(x-y) 6 Jac(C) 

By symmetry it then follows that all of 

for general x,y, hence for all x,y. 

1 1 
is such that 2(~(x-y)) =~(x-a) . 

1 
~X(~ (x-y)) lies in ~ (Ag(2,4)) 

We made two conjectures in relation to this. First, for a Jacobian 

we conjectured that 

~x(X) n ~(Ag(2,4)) : ~X ( { ~ < X : 4~ :x-y, x,y < C ) 

and we proved this for g=3. Secondly, we hope that this characterizes 

Jacobians : 

(3.7) Conjecture. Let X be an indecomposable principally polarized 

abelian variety of dimension g > 2. Then X is a Jacobian if and only 

if dim ~x(X) n %(Ag(2,4) _> 2 . 

(3.8) The preceding sections suggest to look at the morphism 

-:: F (2,4) ~ ~2g\]Hg × ~g : U (2,4) ~ ]pN 
g g 

(~,z) ÷ ( .... @2[a](r,z) .... ) 

Is it everywhere of maximal rank ? Since the Kummer variety of an inde- 

composable X is singular at the images of the points of order 2 of 

X the rank is certainly not maximal at those (T,z) for which 2z 

zzg+ ~ZZ g . Using the Heat Equations the question becomes whether the 

rank of 

+ 

( ~ ~.  ~ ~ k ~ 2  0 2 ) i 3 2 1 ~i~ j -<g 1 <k<g 

at (7,z) is maximal. 
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that 2 g a lg(g+l) + g + 1 i.e. g > 4 and that X = X Suppose 
2 i - T 

indecomposable. If there exist a relation 

is 

(( ~ ~ij3iSj + [ 6k8 k + 7 )02) (<, z) : 0 

for z such that 2z i ~g+ T~ g then Cx(X) 

~x(Z). 

possesses a flex at 

A Jacobian is known to possess a lot of such flexes : if X = 

Jac(C), then applying (2.3) with Zl:Z2:Z3= p we find that all points 

1 
of { ~(x-y) E X : x,y ~ C } are flex points. Hence the rank of z is 

not maximal at these points. 

(3.9) Question. In view of (2.4) we can ask whether for an indecompo- 

sable Jacobian X= X with g ~ 4 the only points (T,z) where Z 
% 

1 
is not of maximal rank are those corresponding to {~(x-y) : x,y< C } 

and whether one could use this to characterize Jacobians. 

APPROACH 4 : RINGS OF DIFFERENTIAL OPERATORS 

As mentioned above Shiota has settled Novikov's conjecture up to 

a technical assumption. 

(4.1) Theorem. (Shiota [17]) An indecomposable principally polarized 

abelian variety X of dimension g is the Jacobian of a complete 

smooth non-singular curve C over ¢ of genus g if and only if 

+ 

i) the vector @2(~,z) satisfies the K-P equation (8) for some 

DI,D2,D 3 and d, and 

ii) no translate of the theta divisor of X contains an abelian 

subvariety of X which is tangent to DI(0). 

Shiota's approach incorporates ideas of Mulase and is based on 

Krichever's dictionary. Let D be the non-commutative ring which as 

an additive group equals ¢[[x]][~] with ~ = d__ and with multipli- 
dx 
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cation such that 

~.f = f ~ + f' for f c {[[x]][$]. (i2) 

If R is a commutative subring of D containing • and two ele- 

ments A,B with A= sn+ ... (... = lower order terms), B = ~m+ ... with 

(n,m) = i, then any element of R can be written as C = ~r + ... with 

c { , r c ~a0 (Proof: work out the commutator [A,C] ). If R n= 

{ C ~ R : C = e~r + ... with r s n one has dim Rn/Rn-i s 1 and =I 

for n >> 0. 

(4.2) Theorem. (Krichever) There is a natural bijection between the 

following two sets of data: 

I) C an irreducible curve, P a smooth point of C, a tangent vector 

at P and a torsion free rank 1 0c-mOdule F with h°(F) = hl(F) = 1 . 

2) R c D a commutative subring containing ~ and two elements A, 

B as above. 

Let us sketch how to go from i) to 2). Choose a neighbourhood U 

of P such that the local coordinate z at P is a unit on U-P. 

Let x be the standard coordinate on { . We now glue Fe0{ on U x 

and F®0~ on (C-P) x { by multiplication with e x/z This defines a 

sheaf F* on C × { . If V is a suitably chosen neighbourhood of 

0 6 • then Hi(c x V, F*) = 0 i=0,1. Define now 

V : F*(ZP.) ~ F*((Z+I)P) 

d 1 d 
by taking ~ on C-P and z + ~ on U. A non-zero section s o 

H °(F*(P)) generates H O(F*(P)) as a H O(V,0~)-mOdule. We normalize 

d . Put s o such that s o = 1 + O(z) at p ×V , i.e. ~s O = (z-l+o(z))So 

s n= vns. The sections s o .... ,s n generate H°(F * (n+l)P) . 

If a ~ F(C-P,0c) then aSo e H°(F*(nP)), hence 

n-I 

as O = ~ a i(x) vls . 
i=0 o 
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This gives us a map 

F (C-P,0 C) ~ D 
n-i 

a ÷ ~ ai(x) ~i. 
i=0 

The image is a commutative subring R of D. 

(4.3) In order to obtain Jacobians one observes that F defines a 

point of Jac(C). So let us deform F. Choose variables tl,...,t N 

and consider instead of F®0~ now F®0 N on U × ~N and (C-P) × ~N 
N 

and glue now by exp( [ t.z-J). We introduce formally a variable x 
j--i ] 

by replacing t I by tl+x. This now gives us F* as above. Define 

V as above and define 

F* F*(nP) 
n 

by taking ~ on C-P. We choose a normalized s o 
n 

We now obtain 

again as above. 

F (C-P,0 C) ~ D 

and the image is a commutative subring R t depending on t=(tl,...,tn). 

The question arises : how does R t deform with t ? If T denotes the 

the tangent space we get a map 

~: Tt~N ~ D 

+ B (t) 
~t n 

n 

where Bn(t) is defined as follows. By the normalization ~ s O = 
n 4 

• We put B (t) = [ bi ~i. (z-n+o(z))s O, so ~nSo = [ biVlso n 

We need some notation. Let ~ be the non-commutative ~-algebra 

d -i 
whose elements are formal Laurent series in (~-~) with coefficients 

from ~E[x]] ® 0~N ° The multiplicative structure is defined by extending 

the rule (12). Let 

'9 = {P c ~ : ordP _<-i } . 

So the elements of ~ are expressions 
-i 

ai(x ) ~i , where we sup- 
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press the dependence of t in the notation. By extending the map 

F (C-P,0 c) ~ D to Q(F (C-P,0c) ~ ~ ( Q : quotient field) we see that 

5 - I/z corresponds to an element of + ~ which we call L. From the 

we obtain B n= (Ln)+ , where ( )+ means taking the normalization 

differential operator part (non-negative powers of 9 ). 

The dependence of R t on t is now expressed by the following 

d 
deformation equations for L c ~ x + ~ : 

(~)L= [ (Ln)+,L] n=l .... ,N 
n 

Take now infinitely many variables tl,t2,... , i.e. 

d - lim÷ ~N and consider the equations for L ~ + ~ : 

te{ = 

(~-) L : [(Ln)+,L] n=l,2 .... 
n 

This set of equations is called the K-P hierarchy. We do not explain 

here the translation of solutions to this hierarchy of equations into 

differential equations satisfied by theta functions, but we refer to 

Shiota's paper and the references there. 

If L is a solution to the K-P hierarchy then consider 

dL : Tt{ ~ + [[ CnBn,L] , Cn~ t 
n 

the tangent map of the map t ÷ L(t) at t. We call L a finite 

dimensional solution if dL is of finite rank. Shiota considers for 

a finite dimensional L 

R L = ¢(ker dL) • 

with ¢: To{ ~ D, ~--~- + B n. He proves 
n 

R L = {P ~ D : [P,L] = 0} 

and that R L is a maximal commutative subring of D if R L ~ ~ . Thus 

a finite dimensional solution to the K-P hierarchy yields a curve by 

(4.2). Moreover, it turns out that ker dL can be identified with the 
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tangent space of the Jacobian of this curve at a certain point. 

Basically, this is the way Mulase arrived at his theorem which 

states that the whole K-P-hierarchy characterizes Jacobians. Both 

Mulase and Shiota then noticed that in fact finitely many equations 

from this hierarchy suffice,arriving thus at a theorem very similar to 

the result of Arbarello and De Concini. Shiota then continued by show- 

ingthat under condition 2) of (4.1) one can extend a solution to the 

K-P-equation (the first of the K-P-hierarchy) to a solution of the whole 

hierarchy, see [17]. Namikawa informed me that Mulase now also obtain- 

ed such a reduction. 

A FINAL REMARK. 

Our summaryof recent attacks on the Schottky problem is not intended to 

be complete. One of the approaches that should be mentioned also is 

the approach that uses the reducubility Of @ n0 a It is closely re- 

lated to approach 2 and was suggested by Mumford in [14]. For a Jaeobian 

X with theta divisor 0 one has : if x ~ X and x# 0 then there exist 

u,v in X with {0,x] n {u,v} : ~ such that 0 n 0 c @ u @ if and only 
X U V 

if x belongs to { (a-b)c X=Jac(C) : a,b ~ C} (Note that one implica- 

tion follows from (2.1) by using X~ ~N x÷ @x -x , u @ ~ 1281 .) Welters 

proved the following theorem : Let X be a complex principally polari- 

zed abelian variety of dimension g. Assume i) dim Sing@ s g-4, 2) there 

exist a one-dimensional subset y c X such that for generic y { Y one 

has : @n@y c @u n @v for some u,v c X with {0,y} n {u,v} = ~. Then 

X is the polarized Jacobian of a non-hyper-elliptic curve, see [21] 
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§ I. Nevanlinna theory 

Let f : ~d > X be a holomorphic map, where X is a complex non- 

singular variety of dimension d . Let D be an effective divisor on 

X , with associated invertible sheaf £ . Let s be a meromorphic sec- 

tion of £ , with divisor (s) = D . We suppose that f is non-dege- 

nerate, in the sense that its Jacobian is not zero somewhere. For po- 

sitive real r we define 

m(D,r,f) : S -logl f*s I 2 

Bd B (r) 

@ . 

where o is the natural normalized differential form invariant under 

rotations giving spheres area I . When d = I , then ~ = de/2~ . Ac- 

tually, m(D,r,f) should be written m(s,r,f) , but two sections with 

the same divisor differ by multiplication with a constant, so m(s,r,f) 

is determined modulo an additive constant. One can select this constant 

such that m(s,r,f) ~ 0 , so by abuse of notation, we shall also write 

m(D,r,f) ~ 0 . 

We also define 

N(D,r,d) = normalized measure of the analytic divisor in the ball 

of radius r whose image under f is contained in D ; 

(Cf. Griffiths [Gr] for the normalization.) 

r 
N(D,r,f) = S [N(D,r,f)-N(D,0,f)] dr + N(D,0,f)log r . 

0 r 

T(D,r,f) = m(D,r,f) + N(D,r,f) 
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Remark. If d = I then N(D,r,f) = n(D,r,f) is the number of points 

in the disc of radius r whose image under f lies in D 

One formulation of the FIRST MAIN THEOREM (FMT) of Nevanlinna the- 

ory runs as follows. The func~kon T(D,r,f) depends o n l y  on t h e  l i n e a r  

e q u i v a l e n c e  c~ass o f  D , moduZo bounded funet%o~s O(I) 

The first main theorem is relatively easy to prove. More important is 

the SECOND MAIN THEOREM (SMT) , which we state in the following form: 

Let  D be a d i v i s o r  on X w i t h  sZmple normal ~ o s s i n g s  (SNC, meaning t h a t  

t h e  i ~ r e d u c i b l e  componemO~ of  D c~e n o n - s i n g u l a r ,  and i n t e ~ e c t  t~amsver -  

s a l l y ] .  Le t  E be an ample d i v i s o r ,  and K t he  c a n o n i c a l  c l a ~ s .  Given s , 

t h e r e  e x i s t s  a s e t  of  f i n i t e  mem~ure z ( s )  such  t h a t  f o r  r n o t  i n  t h i s  s e t ,  

m(D,r,f) + T(K,r,f) ~ ~ T(E,r,f) 

This is an improved formulation of the statement as it is given for in- 

stance in Griffiths [Gr] , p. 68, formula 3.5. 

§ 2. Weil functions 

Let X be a projective variety defined over { or { (p-adic complex 
P 

numbers = completion of the algebraic closure of ~p) . Let £ be an 

invertible sheaf on X and let p be a smooth metric on £ . If s 

is a meromorphic section of £ with divisor D , we define the associ- 

ated Weil function (also called Green's function) 

I(P) = -log[ s(P) I for P { supp (D) 

If we change the metric or s with the same divisor, I changes by a 

bounded smooth function, so is determined mod O(I) . We denote such a 

function by 1 D . It has the following properties: 

The association D I > 1 D is a homomorphism mod O(I) 

If D = (f) on an open set U (Zariski) then there exists a 

smooth function ~ on U such that 
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ID(P) = -log L f(P) I + 5. 

If D is effective, then i D ~ -O(I) (agreeing that values of 

1 D on D are then ~ ). 

If v denotes the absolute value on { then we write 
v 

v(a) = -loglal 
v 

for any element a 6 {v' sO we can write 

~D = v°f + 

In the sequel, metrics will not be used as such; only the associated 

Weil functions and the above properties will play a role. Note that 

these Well-Green functions need not be harmonic. In some cases, they 

may be, for instance in the case of divisors of degree 0 on a curve. 

But if the divisor has non-zero degree, then the Green function is not 

harmonic. 

In the sequel, we shall deal with global objects, and then the Weil 

functions and others must be indexed by v , such as ID,v' ~v' etc. 

§ 3. Heights (Cf.[La]) 

Let K be a number field, and let {v} be its set of absolute values 

e x t e n d i n g  e i t h e r  t h e  o r d i n a r y  a b s o l u t e  v a l u e  o n  ~ , o r  t h e  p - a d i c  a b -  

s o l u t e  values such that Ipl v = I/p . We let Kv be the completion, and 

K a i t s  a l g e b r a i c  c l o s u r e .  T h e n  we h a v e  t h e  p r o d u c t  f o r m u l a  
v 

Z dvv(a) : 0 
v 

d v 
[Kv : ~v] and a 6 K , a ~ 0 . We let llalIv = ialv where dv - [K : ~] 

Let (x ° ..... Xn)E ~n(K) be a point in projective space over 

We define its height 

K . 
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h(P) : ~ log max II xillv 
v i 

If K : ~ and xo,...,XnE ~ are relatively prime, then 

h(P) : log max Ix il 

where the absolute value is the ordinary one. From this it is immediate 

that there is only a finite number of points of bounded height and boun- 

ded degree. 

Let 

: X --> ]pn 

be a morphism of a projective non-singular variety into projective space. 

We define 

h (P) = h(~(P)) for P 6 V(K a) 

The basic theorem about heights states: 

There e x i s t s  a unique homomorphism c t  ........ > h c 

Pic(X) - - >  functions from X(K a) to 

modulo bounded functions 

such t h a t  i f  D i s  very ample, and O(D)  : <o*Oip I )  , then  

H 1. h = h + 0(I) 
c <0 

In the above statement, we denote by h c any one of the func- 

tions in its class mod bounded functions. Similarly, if D lies in 

c , we also write h D instead of h c . This height function also satis- 

fies the following properties: 

H 2. If D is effective, then h D ~ -O(1) 
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H 3. If E is ample and D any divisor, then 

h D : O(hE) 

In particular, if E I, E 2 are ample, then 

hE1 >> << hE2 

We are using standard notation concerning orders of magnitude. Since 

according to our conventions, a given height h E is defined only mod 

bounded functions, the notation h D = O(h E) or h D << h E means that 

there exists a constant C such that for all points P with hE(P) 

sufficiently large, we have lhm(P) I K ChE (P) 

Essential to the existence and uniqueness of such height functions h c 
is the property of elementary algebraic geometry that given any divisor 

D , if E is ample, then D + mE is very ample for all m ~ m 
o 

A fundamental result also states that one can choose metrics Pv "uni- 

formly" such that 

h D = E dv ID,v + O(I) 
V 

The right hand side depends on Green-Weil functions lD,v' and so is a 

priori defined only for P outside the support of D . Since h D de- 

pends only on the linear equivalence class of D mod 0(1) , we can 

change D by a linear equivalence so as to make the right hand side 

defined at a given point. 

Now let S be a finite set of absolute values on K . We define, rela- 

tive to a given choice of Well-Green functions and heights: 

1 D m(D,S) = Z d v ,v 
v6S 

N(D,S) v$S dv ID'v 

Then 
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h D = m(D,S) + N(D,S) , 

and one basic property of heights says that h D depends only on the 

linear equivalence class of D . This is Vojta's translation of FMT 

into the number theoretic context, with the height h D corresponding 

to the function T(D) of Nevanlinnna theory. 

Remark. The properties of heights listed above also hold for T , 

as well as others listed for instance in [La], e.g. if D is alge- 

braically equivalent to 0 , then T(D) = O(T(E)) for E ample. As 

far as I can tell, in the analytic context, there has been no such 

systematic listing of the properties of T , similar to the listing of 

the properties of heights as in number theory. 

Vojta's translation of SMT yields his conjecture: 

Le t  X be a p r o j e c t i v e  n o n - s i n g u ~  v a r i e t y  d e f i n e d  over  a number f i e l d  K . 

L ~  S be a f i~g~e  s e t  o f  a b s o l u t e  va lues  on K . L e t  D be a d i v i s o r  on 

X r a t i o n a l  over  K and w i t h  s i m p l e  normal o t o s s i n g s .  Le t  E be ample on 

X . Give  ~ . Then t h e e  e x i s t s  a p r o p ~  Z a r i s k i  c l o s e d  s u b s e t  

Z ( S , D , E , s )  = Z ( s )  such  t h a t  

m(D,S,P) + hK(P ) <ShE(P ) for P6X(K) - Z(s) 

Or in other words, 

E dv lD,v + hK ~ s hE on X(K) - Z(s) 
v6S 

where K is the canonical class. 
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Example I. 

and let 

EXAMPLES 

Let X : ~I • K = ~ , E = (~) . Let ~ be algebraic, 

f(t) = ~ (d ~-t) 
d 

where the product is taken over all conjugates d~ of ~ over ~ . 

Let D be the divisor of zeros of f . The canonical class K is just 

-2(~) . A rational point P corresponds to a rational value t = p/q 

with p,q 6~ , q > 0 , and p,q relatively prime. We let S consist 

of the absolute value at infinity. If If(p/q) I is small, then p/q 

is close to some root of f If p/q is close to a , then it has to 

be far away from the other conjugates of ~ . Consequently Vojta's 

inequality yields from the definitions: 

-log [~- P/ql - 2h (p/q) 2~ sh (p/q) 

with a finite number of exceptional fractions. Exponentiating, this 

reads 

which is Roth's theorem. 

I~_ ~ >__/__I 
= 2+g 

q 

Remark. Some time ago, I conjectured that instead of the qS in Roth's 

theorem, one could take a power of log q (even possibly (log q)1+s). 

Similarly, in Vojta's conjecture, the right hand side should be re- 

placed conjecturally by O(log h E ) . If one looks back at the Nevanlinna 

theory, one then sees that the analogous statement is true, and relies 

on an extra analytic argument which is called the lemma on logarithmic 

derivatives. Cf. Griffiths [Gr]. 
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Example +...+L be the formal sum 2. Let X = ~n and let D = L O 
n 

of the hyperplane coordinate sections, with L at infinity, and 
o 

E = L ° . Let ~- m be a rational function such that 

(~i) = Li-L ° 

Let S be a finite set of absolute values. Note that in the case of 

~n , the canonical class K contains -(n+1)L O . Consequently, Vojta's 

inequality in this case yields 

TT 

i v6S H(p) n+l+C 

for all P outside the closed set Z(e) . This is Schmidt's theorem, 

except that Schmidt arrives at the conclusion that the exceptional set 

is a finite union of hyperplanes. In order to make Vojta's conjecture 

imply Schmidt strictly, one would have to refine it so as to give a 

bound on the degrees of the components of the exceptional set, which 

should turn out to be I if the original data is linear. 

Example 3. Let X be a curve of genus ~ 2 . Take S empty. The 

canonical class has degree 2g-2 where g is the genus, and so is 

ample. Then Vojta's inequality now reads 

h K ~ s h E o n  X(K) , 

except for a finite set of points. Since K is ample, such an in- 

equality holds only if X(K) is finite, which is Falting's theorem. 

Example 4. This is a higher dimensional version of the preceding 

example. Instead of assuming that X is a curve, we let X have any 

dimension, but assume that the canonical class is ample. The same 

inequality shows that the set of rational points is not Zariski dense. 
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This goes toward an old conjecture of mine, that if a variety is 

hyperbolic, then it has only a finite number of rational points. The 

effect of hyperbolicity should be to eliminate the exceptional Zariski 

set in Vojta's conjecture. For progress concerning this conjecture in 

the function field case, cf. Noguchi [No], under the related assumption 

that the cotangent bundle is ample, and that the rational points are 

Zariski dense. 

To apply the argument of Vojta's inequality it is not necessary to 

assume that the canonical invertible sheaf is ample, it suffices to be 

in a situation when for any ample divisor E , h E = O(h K) . This is 

the case for varieties of general type, which means that the rational 

map of X defined by a sufficiently high multiple of the canonical 

class gives a rational map of dimension d = dim X . Then we have 

h°(mK)>> m d for m sufficiently large, and we use the following lemma. 

Lemma. Let  x be a n o n - s i n g u l a ~  v a r i e t y .  Le t  E be v e r y  ample on X , and 

l e t  D be a d i v i s o r  on X such t h a t  h ° (roD) >> m d f o r  m >= m 
o 

Then t h e r e  e x i s t s  m I such  t h a t  h ° ( m D - E ) > > m  d , and i n  p a r t i c u l a r ,  

m D - E  i s  l i n e a r l y  e q u i v a l e n t  t o  an e f f e c t k v e  d i v ~ o r ,  f o r  a / /  m > m I . 

Proof. First a remark for any divisor D . Let E' be ample, and 

such that D + E' is ample. Then we have an inclusion 

H°(mD) m H°(mD + mE') , 

which shows that h°(mD) Sh°(mD + mE') = x(m(D + E')) for m large 

because the higher cohomology groups vanish for m large, so 

h°(mD)>> m d 

Now for the lemma, without loss of generality we can replace E 
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by any divisor in its class, and thus without loss of generality we 

may assume that E is an irreducible non-singular subvariety of X . 

We have the exact sequence 

0--> 0 (mD-E) > 0 (roD) ......... > 0 (mD)IE > 0 

whence the exact cohomology sequence 

0 ~ >  H°(X,mD-E) > H°(X,mD) > H°(E,(0(D) IE) ®m) 

noting that 0(mD) IE : (0(D)I E) em . Applying the first remark to this 

invertible sheaf on E we conclude that the dimension of the term on 

the right is <<m d-1 , so h°(X,mD-E)>>m d for m large, and in par- 

ticular is positive for m large, whence the lemma follows. 

For mD - E effective, we get h E ~ hmD + 0(I) as desired. 

Example 5. Let A be an abelian variety, and let D be a very ample 

divisor with SNC . Let S be a finite set of absolute values of K 

containing the archimedean ones. Let ~1,...,~n be a set of generators 

for the space of sections of 0(D) . Let 0 S be the ring of S-integers 

in K (elements of K which are integral at all v{ S) . A point 

P 6 A(K) is said to be S-integral relative to these generators if 

~i(P) 6 O S for i = 1,...,n . On the set of such S-integral points, we 

have 

E dv ~D,v = hD + O(]) 
v6S 

immediately from the definitions. The canonical class is 0 . Then 

again Vojta's inequality shows that the set of S-integral points as 

above is not Zariski dense. 

This is in the direction of my old conjecture that on any affine 

open subset of an abelian variety, the set of S-integral points is 
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finite. However, in this stronger conjecture, we again see the dif- 

ference between finiteness and the property of not being Zariski dense. 

E__xample 6. Hall's conjecture Marshall Hall conjectured that if 
3 2 

x,y are integers, and x -y # 0 then 

I 

Ix 3 y2 I > max(Ix31 , ly21) 

with a finite number of exceptions. Actually, Hall omitted the c , 

but Stark and Trotter for probabilistic reasons have pointed out that 

it is almost certainly needed, so we put it in. 

Vojta has shown that his conjecture implies Hall's. We sketch the 

argument. Let 

2 2 
f : ]PI > ]P2 

be the rational map defined on projective coordinates by 

f(x,y,z) = (x3,y 2z,z3) 

Then f is a morphism except at (0,1,0) . We have indexed projective 

2-space by indices I and 2 to distinguish the space of departure 

and the space of arrival. We let L = L I be the hyperplane at infinity 
2 

on ]P12 , and L 2 the hyperplane at infinity on ]P2 

2 defined by x 3 2 Let C be the curve in ]PI -y = 0 . Let ~ be 

the rational function defined by 

3 2 
~(x,y) = X-y 
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Then the divisor of ~ is given by 

(~) = C - 3L . 

In terms of heights, Hall's conjecture can be formulated in the form 

log l~(x,y) I > lhL2f(x,y)+ error term, 

or if v denotes the ordinary absolute value on ~ , 

(I) 
I 

vo<0 (x,y) < -~hL 2U = of(x,y) +error term. 

Note that vo~ = i(~) is a Weil function associated with the divisor 

(~) . Thus Hall's conjecture amounts to an inequality on Weil functions. 

By blowing up the point of indeterminacy of f and the singularity 

of C at (0,0) , one obtains a variety X and a corresponding mor- 

phism fl : X > ~2 making the following diagram commutative: 

X 

2 > 2 
]Pl ]P2 " 

The blow ups are chosen so that the exceptional divisor and C have 

simple normal crossings. By taking D to be their sum together with 

the hyperplane at infinity, Vojta shows that his conjecture implies 

Hall's. By a similar technique, Vojta shows that his conjecture implies 

several other classical diophantine conjectures. I refer the reader to 

his forthcoming paper on the subject. 
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A COUNTEREXAMPLE IN 3-SPACE TO A CONJECTURE OF H. HOPF 

Henry C. Wente 
Department of Mathematics 
The University of Toledo 
Toledo, Ohio 43606, U. S. A. 

In this article we produce a counterexample to the following conjecture 

of H. Hopf. We shall carefully state the theorems involved in the con- 

struction and also provide a geometric description (with suggestive 

sketches) of the surfaces giving the counterexample. An expanded ver- 

sion complete with proofs is to appear in a paper of the author [~ . 

Conjecture of Heinz Hopf; If Z is an immersion of an oriented closed 

hypersurface in R n with constant mean curvature H ~ 0, then the hyper- 

surface is the standard embedded (n-l)-sphere. 

If the immersed surface is known to be embedded then a well-known 

result of A. D. Alexandroff [i] asserts that the conjecture is true. 

H. Hopf himself [4] showed that if Z is an immersion of S 2 into R 3 

with constant mean curvature then the conjecture is still true. Recently 

Wu-Yi Hsiang [5] produced an immersion of S 3 into R 4 with constant 

mean curvature which is not isometric to the standard sphere. However, 

his construction does not work in the classical dimension (=3) and the 

conjecture has remained open in this case. We have the following. 

Counterexample Theorem: There exist closed immersed surfaces of genus 

one in R 3 with constant mean curvature. ( In fact, we exhibit a coun- 

tably infinite number of isometrically distinct examples.) 

We shall exhibit the surface by producing a conformal mapping of the 

plane R 2 into R 3 with constant mean curvature which is doubly per- 

iodic with respect to a rectangle in the plane. Let w = (u,v) = u +iv 

represent a typical point in R 2= C while x = (x,y,z) denotes a point 

in R 3 so that our immersion is given by a function x(u,v) We let 

2~ dx'dx = ds 2 = E (du 2 + dv 2) = e (du 2 + dv 2) 

-dx-d[ = Ldu 2 + 2Mdudv + Ndv 2 

(la) 

(Ib) 

be the first and second fundamental forms for the surface. We shall set 

the mean curvature H = ½. The Gauss and Codazzi-Mainardi equations in 

this case become (see [4] for details) 

Aw + Ke 2m = 0 , K = Gauss curvature = (LN - M2)/ E 2 (2a) 
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~[w) = (L - N)/2 - iM is a complex analytic function. (2b) 

NOW suppose that ~(u,v) is a solution to the differential equation 

6~ + sinh m cosh ~ = 0 (3) 

If we set E e 2~ = , L = e~sinh ~, M = 0, and N = e~cosh ~ , then it 

follows that the Gauss and Codazzi-Mainardi equations are satisfied and 

by a theorem of Bonnet the system can be integrated to yield a surface 

x(u,v) ,unique up to a Euclidean motion in R 3, having the given funda- 

mental forms. The equations to be integrated are 

XUU = ~uXu - ~vXv + L[ (4) 

~uv = ~v~u + ~uXv + ~ 

Xvv = -~u~u + ~vXv + N[ 

~u = -kl Xu 

~v = -k2 ~v 

Here k I = L/E = e-~sinh w, k 2 = e-~cosh ~ so we see that the lines 

of curvature correspond to lines parallel to the coordinate axes in R2° 

Furthermore, the surface is free of umbilic points. 

If x(u,v) is to be a doubly periodic mapping then so must ~(u,v). 

However the converse need not be true. Suppose that ~(u,v) is a pos- 

itive solution to the differential equation (3) on a rectangular domain 

~AB lying in the first quadrant with two of its sides on the coordin- 

ate axes and the vertex opposite the origin at (A,B). Suppose also 

that the solution ~(u,v) vanishes on the boundary of the rectangle. 

FolLowing the argument used in [3] , one can show that ~ (u,v} satisfies 

the following symmetry properties. 

a) ~(u,v) is symmetric about the lines u = A/2 and v = B/2. (5) 

b) For a fixed v, 0 < v < B, ~(u,v) is an increasing function 

of u, 0 ~ u ~ A/2 . For a fixed u, 0 < u < A, w(u,v) is an 

increasing function of v, 0 < v ~ B/2. 

c) ~u(U,0) is strictly increasing for 0 ~ u < A/2. 

Wv(0,v) is strictly increasing for 0 < v < B/2. 

Furthermore, ~(u,v) can be extended as a solution of the differential 

equation {3) on all of R 2 by odd reflections across the grid lines 

u = mA, v = nB (m, n integers). 
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Theorem 2: Suppose e(u,v) is a solution to the differential equation 

(3) on R 2 which is positive on the fundamental rectangle nAB , van- 

ishing on the boundary and satisfying the properties (5). The mapping 

x(u,v) obtained by integrating the system (4) is an immersed surface 

of constant mean curvature H = ½ and satisfying the following symmetry 

properties. 
(6) 

a) The curve x((m + ½)A, v) lies in a normal plane H m with 

as a normal vector to H . If R is the reflection map about 
u m m 

in R 3 then x((m + ½)A + u,v) = ROx((m + ½)A - u,v) 
m m 

b) The curve x(u, (n + ½)B) lies in a normal plane n n with 

as a normal vector to ~ . If R' is the reflection map about 
v R3 n n n 

in then x(u (n + ½)B + v) = R'ox(u, (n + ½)B - v) Each ~ is 
' n " n 

orthogonal to each 
m 

c) The curve x(u,0) is a planar curve lying in a plane F 0 which 

is a tangent plane to the surface at each point. This curve intersects 

each plane E m orthogonally. Xu(U,0) is an even function of u. 

This allows us to conclude that all of the planes H m are parallel. 

d) The curve x(0,v) satisfies the condition (x + ~) (0!v) = ~o 

a constant vector. Therefore x(0,v) lies on a sphere S(~o,l) with 

center ~ and radius one. Similarly x(kA,v) lies on a sphere 
O 

S(~ k ,i). The points Ck lie in every plane ~n 

e) x(u + 2A,v) = x(u,v) + 5 where b = ~2 - ~o is a vector nor~ 

mal to the planes H m carrying Z 0 to H 2. 

f) x(u,v + 2B) = 0 x(u,v) where @ is a rotation from n ° to n 2 

about their line of intersection, i. 

The surface will close up if we can select the rectangle nAB so 

that the translation b = 0 (i.e. all the planes H m are identical) 

and so that the rotation angle @ is a rational multiple of 2~. We use 

a continuity argument to show that this is possible. The procedure is 

as follows. Map (via a homothety)all rectangles of similar shape onto 

a representative rectangle which we select by the standard Schwartz- 

Christoffel mapping of rectangles onto the unit disk. 

v w-plane (A ,B ) 

v 

! -  J ~u' >u 

/~-plane 

Figure i: The Fundamental Domain. 
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We have the following identities satisfied by the various functions 

defined on the domains pictured in Figure I. 

(7) 

a) On ~(a,~). 

A~ + sinh ~ cosh ~ = 0 

Ao + sinh ~ = 0 where o = 2~. 

b) On ~(~) 

AW + 21sinh W cosh W = 0 where W = ~o~ ° 

AZ + 21 sinh Z = 0 where z = 2W. 

c) On the disk D. 

A~ + ~If' (z,~) 12(e ~ - e -U) = 0 , where ~ = Zof . 

w = f(z,~) = /0z(t 4 + 2(cos 2a)t 2 + i) -½ dt 

The proof of the existence of positive solutions to the system 

(7c) on D which vanish on the boundary (and such that small values 

for i correspond to large solutions ~) is based on a method devel- 

oped by V.K. Weston [7] and R.L. Moseley [6]. 

Theorem 3: There exists an open set 0 C (e,l)-plane where for each 

el,~2 with 0 < el < ~2 < 7/2 there exists ~ = ~(~i,~2) > 0 so that 

[~l,e2] x (0,~]C 0 , and a mapping from 0 to C(D) denoted by ~(z,~,l) 

such that 

a) Z(w,e,l)= ~(g(w,a),e,l) is a positive solution to (7b) which 

vanishes on the boundary. 

b) The functions ~' Zu ' Ev depend continuously on (e,l) down 

to I = 0 with Z(w,~,0) = Zo(W,e) = 4 log(i/Ig(w,~)I) 

c) For I > 0 the mapping (~,l)--~Y(z,~,l) is a continouosly 

differentiable mapping of O into C(D) 

Remark on the proof: One first constructs a good approximate solution 

Uo(Z,l) with the correct asymtotic limit as I approaches 0 by using 

the Liouville form of the exact solution to the differential equation 

AV + le V = 0, namely le V = IF' (z)12/(1 + IF(z)12) 2 where F(z) is a 

complex analytic function with at most simple zeros and poles. Then 

one applies a modified Newton iteration scheme, starting with Uo(Z,l) 

using the appropriate integral operator, and shows that the resulting 

sequence converges in C(D) to the desired solution. 

We want to measure the distance between the parallel planes ~0 

and ~i and wish to show that for certain (a,l) the distance is zero. 

It is better to look at the surfaces ~(w,e,l) = ~o¢(w,~,l)/! 2/~ defined 
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relative to the fundamental domain ~(e) and to measure the distance 

between the parallel planes ~' and K{ which correspond to the map- 
o 

ping y . We do this by looking at the curve y(u,0,e,l) , a planar 
i curve which cuts through the planes E m orthogonally and has the 

symmetry indicated in Figure 2. 
I 
[I ~ , ~ _ , ~ ( 3 A ( ~ ) I 2 , 0 , ~ , k )  

S(~,X) 

I //~ (A(~),0,~ ,~)I 
r / I 

o 

Figure 2:Measuring the Distance between the Parallel Planes ~' and ~i 
O 

The functions y(u.v,e,l) are conformal immersions into R 3 with 

constant mean curvature H = 2/~ , so that as I approaches 0 the mean 

curvature approaches 0 and the mapping tends to a planar map. The funct- 

ions y satisfy a system just like (4) with 0~ replaced by W : Z/2, 

L is replaced by L = /~ L and so on. Since by Theorem 3b the funct- 

ion W(u,v,~,l) approaches W(u,v,~,0) = 2 log(i/[g(w,~) I) as I approach- 

es 0, the curve y(u,0,~,l) approaches a limit curve y(u,0,~,0) as 

I approaches 0. It follows that the distance function S = S(a,X) , 

as indicated in Figure 2, is continuous down to I = 0 and differentia- 

ble if I is positive. Since W(u,v,~,0) is known explicitly one can 

calculate S(~,0), obtaining 

Z6 (8) 
S(~,0) = (cos 20/(2cos 2e - 2cos 26) 9 ) de , 6 = (~/2)-~. 

We immediately have the following conclusions. 

a) S(~,0) is strictly increasing for 0 < ~ < ~/2. 

b) S(~,0) approaches -~ as ~ approaches 0. 

c) S(~,0) is positive for e greater than ~/4. 

It follows that there is exactly one value ~* , 0 < e* < ~/4, for 

which S(~*,0) = 0. We have the following picture (see Figure 3). 

There is a small rectangle L~I,~J x [0,~] with S(el,l ) negative, 

S(~2,I) positive, and S(~*,0) = 0. There is a connected set X includ- 

ed in this small rectangle on which S vanishes and which separates 

the left side of the rectangle from the right side. In particular 

(e*,0) is in the set X and every line I = constant slices into X. 
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I s i so 
~i ~* e2 

Figure ~: The Set S=0: All the Planes Hm are Identical. 

Now we measure the rotation angle between the planes ~o and Q1 

by looking at the image of the curve y(0,v,~,~), B(~)/2 < v <3B(~)/2. 

From Theorem 2d it follows that this curve lles on the sphere with 

center ~ and radius (21) -½ o , connecting the planes ~o to ~i 

and intersecting them orthogonally. Let T(a,I) be the distance between 

these planes as measured on a great circle of the sphere whose radius 

is (21) -½ By repeating the calculation used to compute S(~,~), 

one finds that for small l/and ~ less than ~/4, T(~,I) is positive 

down to the limit I = 0 with the expression for T(e,0) being similar 

to that for S(~,0). However, for the angle function @(e,l) we have 

the identity @(~,i) = (21) ½ T(~,I) . This gives us the following: 

a) @(e,1) is positive for ~ positive. 

b) @(~,I) approaches 0 as I approaches 0. 

Since X is a connected set with more than one point (see Figure 3), 

it follows by continuity that on the set X the function @(~,~) 

takes on a continuum of values [0,~ where ~ is positive. Whenever 

0(~,~) is a rational multiple of 2~ the surface will close up. This 

establishes the existence of a countable number of isometrically dis- 

tinct immersions of a torus into R 3 with constant mean curvature. 

A View of the Immersed Tori. 

Let ~ = ~AB be a representative rectangle chosen so that the 

smallest eigenvalue of the Laplace differential equation 

Av + yv = 0 on ~ , v = 0 on boundary ~ (9) 

2((I/A2)+(I/B2)) and in par- is Y1 = I. This means that 1 = Yl = ~ 

ticular A and B are both greater than ~. We are to solve the differ- 

ential equation 

AW + 2lsinh W cosh W = 0 on ~ , W = 0 on 6~. (i0) 

We have the following facts regarding solutions to the differential 

equation (i0). 
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a) There exists a branch of positive solutions to (i0) which 

bifurcate from the zero solution at 21 = Y1 = 1 or I = 1/2. 

b) For any positive solution (W,I) we must have 0 < I < 1/2, 

and for any i in this interval there exists at least one positive sol- 

ution. 

c) As I approaches 0 there is a curve of large positive solutions 

(W,I) obtained by applying Theorem 3. 

It is tempting (but not yet proven) to conjecture that the branch 

bifurcating from the zero solution at I = 1/2 connects up with the 

branch of large solutions established in Theorem 3. Even more tempting 

is the following conjecture. 

conjecture: Let (WI,II) and (W2,12) be two positive solutions to 

the system (i0). If 0 < I 1 < 12 < 1/2 then W 1 is greater than W 2 

at every point inside ~. 

For each solution of the system (i0) we may apply (7) to get a 

solution ~(u,v) to the differential equation (3) and then apply our 

recipe to construct an immersion x(u,v) with constant mean curvature. 

In the limit case where W = 0 the resulting immersion is simply a 

conformal mapping of the plane onto a circular cylinder whose cross 

section is a circle of radius one. 

In the figures that follow we shall sketch the image x(u,v) of 

a portion of the fundamental rectangle 2/~ ~AB as indicated in the 

first figure and labeled {1,2,3,4,5,6}. A + sign indicates that 

~(u,v) is positive and hence the Gauss curvature of the image surface 

K = e-2~sinh ~ cosh e is positive, while a - sign indicates that both 

functions are negative. The rest of the surface is obtained by rotating 

the surface 180 ° about the normal line at the image of 2 followed by 

a series of reflections about the appropriate planes. 

V /~ (A ,B ) 

+ + - _ 
4 5 6 

+ + - _ 

1 i2 3 ____~u 

F i.gure 4: The Fundamental Domain /2}, ~(e) = [~[e,1). 

1 1 ,Xu 2 3 

9 > ~/2 

Figure ~: Case I, W=0, A Pure Cylinder. 
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Figure 6: Case 2. W is positive on ~(~,l) but not too Large. 

1 2 

3 

/ 
Figure ~: Case 3. W somewhat larger, the Planes ~o' ~i still separated. 

If one keeps ~ fixed and lets ~ approach 0, then one can easily 

show the following. 

i) /K dA = area of the Gauss map --9 47 as 
I~ (~+) 

2) ]e 2W dudv = Area of x(~+) > 4~(2) 2 

3) /e 2W dudv = Area of ~(~-) "~ 0 as 
/< 

These calculations suggest that as X approaches 

the shape of a sphere of radius 2. 

approaches 0. 

as ~ approaches 0. 

approaches 0. 

0, x(~+) takes on 
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/ 

, / ,( / 

Figure 8: Case 4. The Parallel Planes fro' HI are Identical. 

If one reflects the sketched Figure 8 about the plane of the 

paper (~o = ~i ) you obtain a surface which resembles a clam shell. 

Upon rotating this shall 180 ° about the vertical line Co-(2) one 

obtains the other shell. The combined figure is now a clam with the 

shells opened a bit. 
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I would like to describe a sampling of recent results concerning 

the moduli space M of Riemann surfaces. My plan is to present 
g 

several of the ideas underlying the recent work of John Harer on the 

topology of M and of myself on the Hermitian and symplectic geom- 
g 

etry. My purpose is not to give a survey; for instance the reader 

is referred to the papers [7, 9] for the recent progress on the 

question of whether Mg, the moduli space of stable curves, is 

unirational. 

The discussion will be divided into two parts: the topology of 

Mg and Mg, e s p e c i a l l y  the  homology of  t he  mapping c l a s s  group Fg 
and the geometry of the Weil-Petersson metric. As background I shall 

start with the basic definitions and notation. 

i. Definitions and Notation . 

i.i. Let F be a compact topological surface of genus g with r 

boundary components and s distinguished points in F - ~F; set 

S = ~F U {points}. I shall always assume that 2g - 2 + s + r > 0 

or equivalently that F - S admits a complete hyperbolic metric. 

Consider Homeo+(F,S), the group of orientation preserving homeo- 

morphisms of F restricting to the identity on S and the normal 

subgroup I(F,S) of homeomorphisms isotopic to the identity fixing S. 

Definition i.i. F s = Homeo+(F,S)/I(F,S) is the mapping class 
g,r 

group for genus g, r boundary components and s punctures. 

I shall use the convention that an omitted index is set equal to 

zero. For genus g and s punctures the mapping class group F s 
g 

acts properly discontinuously on the Teichmuller space T s via 
g 

biholomorphisms. The quotient M s , the classical moduli space of 
g 

Riemann surfaces, is a complex V-manifold. To be more specific 

start by considering triples (R,f,P), where f is a homeomorphism 

of the topological surface F to a Riemann surface R with f(S) =P. 

An equivalence relation (the marking) is introduced by defining: 

*Partially supported by the National Science Foundation, Max Planck 
Institute for Mathematics and Alfred P. Sloan Foundation. 
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(R0,f0,P 0) ~ (RI,fI,P I) provided there is a conformal map k with 

f0 
(F,S) ~ (R0,P 0) 

(RI,P 1 ) 

commutative modulo a homotopy fixing S and P. 

Definition 1.2. T s, the Teichmuller space for genus g and s 
g 

punctures, is the set of ~ equivalence classes of triples (R,f,P). 

Briefly T s is a complex manifold and is homeomorphic to 
g Fs T s ~46g-6+2s. The mapping class group acts naturally on : to 

the equivalence classes {h} 6 F s and g {(R,f,P)} 6 T s assig~ the 
g Fs g 

class { (R,f o h,P)} 6 T s. The action represents as biholomor- 

phisms of T s . g g 
g 

Definition 1.3. M s = Ts/F s is the moduli space for genus g and s 
g g g 

punctures. 

As an example the reader will check that for genus 1 and 1 

1 is the 1 is the upper half plane H c C and ~i puncthre T 1 

elliptic modular group SL(2;Z) acting on H by linear fractional 

transformations. 

1.2. NOW I shall review the definition of the complex structure on 

T s. For a Riemann surface R with 2g - 2 + s > 0 consider the 
g 2 

hyperbolic metric ~ = ds , of constant curvature -i. Associated 
2 

to R are the L (relative to ~) tensor spaces H(R) of harmonic 

Beltrami differentials (tensors of type ~ ~ dz) and Q(R) of 

holomorphic quadratic differentials (tensors of type dz ~ dz) . Of 

course harmonic is defined in terms of the Laplace Beltrami operator 

for the hyperbolic metric. A pairing H(R) × Q(R) -~ C is defined by 

integration over R : for ~ ~ H(R) and ~ 6 Q(R) define (p,~) = 

fR P~" The Ahflors and Bers description of the complex structure of 

T s is summarized in the diagram g 

l'0TS x (Tl'0)*TSg/i- ~ i T g 

) 

H (R) × Q (R)/ ' 
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where T l'0 is the holomorphic tangent space, (TI'0) * its dual and 

these spaces are naturally paired [i, 5]. The hyperbolic metric 

induces a natural inner product on every space of tensors for R. 

In particular Weil was the first to consider the Hermitian product 

on H(R) as a metric for T s. 
g 

Definition 1.4. Given ~,~ E H(R) the Hermitian product <~,~> = 

fR ;~ t -1  is  the Wei l -Pe te rsson  me t r i c .  

The Weil-Petersson metric is Kahler [2,3,10,21] and its Hermitian 

and symplectic geometry is the subject of Chapter 3. 

2. The Homology of the Mapping Class Group. 

2.1. In this chapter I shall concentrate on three recent exciting 

results of John Harer: i) the computation of H2(FS,r),~ in brief 

H2(F s ) ~ Z s+l, for g ~ 5, ii) the stability theorems, in brief 
g,r 

Hk(F~, r)~ is independent of g and r when g ~ 3k +i and iii) 

the virtual cohomological dimension of F s is d = 4g -4 +2r +s 
g,r 

for r + s > 0, 4g - 5 for r = s = 0, in particular Hk(MS;~) ~ = 0 
g 

for k > d, [ll, 12, 13]. Of course the reader will consult the 

references for the complete statements especially for the cases of 

punctures and boundary components. 

2.2. A useful technique for computing the homology of a group G is 

to construct a cell complex C on which G acts cellularly, i.e. 

cells are mapped to cells. Then the homology of G may be computed 

from the homology of the quotient C/G and a description of the 

cell stabilizers. Now F s is comprised of isotopy classes of 
g,r 

homeomorphisms; F s acts on the isotopy invariants of the surface 
g,r 

F. An obvious such invariant is the isotopy class of a union of 

simple loops. Cell complexes with vertices representing unions of 

simple loops, satisfying appropriate hypotheses, appeared previously 

in the work of Hatcher-Thurston [15] and Harvey [14]. I shall 

describe three such complexes (and simple variants) which are at the 

center of Harer's considerations. 

2.3. The cut system complex CS, [ll], A cut system <Cl,...,Cg> 

on F is the isotopy class of a colle&tion of disjoint simple 

closed curves Cl,...,Cg such that F - (C 1 U...U Cg) is connected. 

A 6imple mov~ of cut systems is the replacement of <C.> by <C~> 
1 1 

where Cj = C[3 for j ~ k and C k intersects C~ once (all 
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intersections are positive). I shall use the convention below that 

any loop omitted from the notation remains unchanged. Now consider 

the following sequences of simple moves (see Figure i). 

|> 
<Ci> <C i 

< " > C, 
1 

<C.,C.> <C.,C'.> 
z 3 i ] 

I I I 21 
<C~,C.> <C~,C',> 

l 3 i ] 

<C. ,C.> <C. ,C'.> 
± 3 J 3 

/ \ 
<C.,C!> <C.,C>. (R 3) 

1 1 \ / J  
<C ,C>--<C, C'> 

i 

Figure 1 

The three sequences can be described in terms of the relevant loops 

(see Figure 2) 

; /  C~ 

/ 

C~ ~ C ,  

~.__J C 

C j- 

¢i 

(R3) 

Figure 2 



435 

Now define a 0-complex CS 0 with one vertex for each cut 

system on F; a 1-complex CS 1 by attaching a 1-cell to CS 0 for 

each simple move; and a 2-complex CS 2 by attaching a 2-cell to 

CS 1 for each occurence of the cycles R I, R 2 and R 3. Hatcher and 

Thurston prove that CS 2 is connected and simply connected. Harer 

simplifies the description of CS 2 and then attaches 3 cells to 

obtain a 2-connected 3 complex CS 3, [ii]. The stabilizer of a 

cut system (a vertex of CS 3) is essentially a braid group and 

Hater analyzes the cell stabilizers of CS3o Combining this informa- 

tion with an analysis of the homology of the quotient CS3/Fg he 

obtains the following theorem, [ii]. 

Theorem 2.1. H2(F ~ ;Z) = Z s+l, ,r g ~ 5. 

The reader will find a slight difference between the above state- 

ment and that found in [Ii]. John Harer has assured me that the above 

is indeed the correct statement. 

The homology group H2(F) also admits an interpretation as 

bordism classes of fibre bundles F + W 4 ÷ T with T a closed 

oriented surface. In particular two bundles are bordant if they 

cobound a 5-manifold fibering over a 3-manifold with fibre F. The 

• defined by bundle F ÷ W 4 + T has s canonical sections ~i' "''°s 

the distinguished points of F. In this setting H 2 is spanned by 

the s + 1 natural invariants of W: ~(W)/4, ~ the signature and 

~. # 0 , j = 1 ..... s the self-intersection numbers of the sections. 
3 3 

2.4. Certainly a basic question is whether or not the homology of 

the mapping class group falls into any pattern. As an example con- 

sider the analogous question for A , the coarse moduli space of 
n 

principally polarized n dimensional abelian varieties. Borel in a 

fundamental paper computed the rational cohomology of A and found 
n 

Hi(An;R) is independent of n for n large relative to i, that 

[31]. Recently Charney and Lee have extended these results to ~ , 
n 

the Satake compactification of A , [8]. Harer establishes the 
n 

analogous result for Hk(F2,r) : ~  the answer is independent of g and 

r provided g ~ 3k + i. In fact the reader will find in Theorem 2.2 

that Harer establishes much more but first I would like to mention 

the work of E. Miller, [18]. Starting with the work of Harer as a 

basis Miller observes that the boundary connected sum for surfaces 

# Fh, 1 = Fg+h,! induces the structure on A = lim÷ H,(Fg,I;~) Fg,l 

of a polynomial algebra on even generators with an exterior algebra 

on odd generators. Furthermore by generalizing an example of Atiyah 
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for the generator of H2(Pg) Miller is able to find a generator in 

each even dimension. 

To give a precise statement of Harer's stability theorem it is 

necessary to consider the following three maps of surfaces 

¢: F s ÷ F s , r { 1 
g,r g,r+l 

~: F s ÷ F s r > 2 and 
g,r g+l,r-l' - 

Z: E s ÷ F s r a 2 
g,r g+l,r-2' 

where ¢ and ~ are given by sewing on a pair of pants (a copy of 

0 (see Figure 3) 
F0, 3 ) 

436 

Figure 3 
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along one boundary for ~, two for Y and E is given by sewing 

together two boundary components (see Figure 4) 

437 

Figure 4 

Certainly the maps induce homomorphisms of mapping class groups. 

The following results for the induced maps on homology with integer 

coefficients can be found in [12]. 

Theorem 2.2. 

~,: Hk(FS ) + Hk(Fg 
g,r , r + l  ) 

for k > I, g >_ 3k - 2, 

~,: Hk(FS r) ÷ Hk s , g, (Fg+l  r + l  ) 

for k > l, g _> 3k - i, 

E,: Hk(Fg,r) + Hk(Fg+l,r_2) 

for g > 3k, r >_ 2. 

2.3. Hk(F s r ) is independent of g and r for Corollary 
w, 

g >_ 3k + I. 

The proof of a stability theorem for ps requires suitable 
g,r 

is an isomorphism 

r h i 

is an isomorphism 

r ~ 2 

is an isomorphism 
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F complexes whose connectivity increases with g. Harer starts 

with the complex X a variant of the basic complex Z. In order to 

define X consider the sub cut system of rank k i.e. the isotopy 

class of k + 1 disjoint simple loops C = {C O .... ,C~ _ such that 

F - { C O , .... Cj_ is connected. Define the simplicial complex X of 

dimension g - 1 by taking a k-simplex for every rank k sub cut 

system of F and identifying C as a face of C' if C cC,. The 

first theorem is that X has the homotopy type of a wedge of g - 1 

dimensional spheres. This is proven by first enlarging X to Z, 

the analogous complex where F - C is now allowed to be disconnected 

but each component must have negative Euler characteristic. The 

complex Z, the second of the three basic complexes (CS being the 

first) , has dimension 3g - 4 + r + s and is 2g - 3 connected. 

After studying several additional complexes the proof follows a 

standard outline, [12]. 

2.5. For the sake of simplicity I shall only discuss one p~rt of 
1 

Harer's results on the virtual cohomological dimension: that M 
g 

has the homotopy type of a 4g - 3 dimensional spine. The discussion 

F 1 starts with the description of a invariant ideal triangulation of ~ 
g 

T I. The triangulation arises from the following result of Strebel, 
g 
[19] . 

Theorem 2.4. Given a compact Riemann surface R and a point p 

there exists a unique meromorphic quadratic differential ~ on R 

such that 

i) ~ has exactly one pole, 

ii) in terms of an appropriate complex coordinate z in a neigh- 
2 

dz 
borhood of p ~ = 2 and 

z 

iii) the real trajectories of ~ are closed. 

The differential ¢ may also be described by starting with the 

dz 2 
differential ..... 2 on the disc D = {Izl ~ i} and identifying arcs 

z 
on ~D (linearly in radian measure) to obtain the pair (R,~). To 

see this consider the following simple example (see Figure 5) where 

one obtains a surface of genus 2; in general any pattern for a genus 

g surface will occur. 

The data for a pair (R,~) is merely the combinatorial pattern 

for identifying arcs on DD, as well as their lengths. In order to 

record this information for each pair of arcs consider a loop 
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- #  

h ' 

Figure 5 

based at p, formed by rays from the origin with endpoints on ~D 

identified under the arc pairing and assign to ~ a weight w equal 

to the length of the arcs on 3D; to (R,¢) assign the tuple 

.,w.). Specifically for the loop intersecting A 1 in the above (Y] ] 
example the picture is (see Figure 6) 

Figure 6 
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To interpret this situation the third basic complex A is 

introduced. A rank k arc system {d0,...,~k} is the isotopy 

class of k + 1 simple loops based at p, intersecting only at p, 

and representing distinct, nontrivial homotopy classes. A is the 

cell complex with a k simplex ~ = <~0,...,~k > for each rank k 

arc system and ~ is identified as a face of ~' if ~ c ~' 

Strebel's theorem provides a F equivariant map T 1 ÷ A. To the 
g 

pair (R,p) associate the quadratic differential ~ and to 

associate the arc system {s 0 ..... ~k } with weights, choosing one 

arc for each pair of segments of ~D occurring in the construction 

of ¢. Simplicial coordinates on A are given simply by the 

weights. The map T 1 ÷ A is in fact a homeomorphism onto the 
g 

complement of a subcomplex A ; the ideal triangulation is the pull- 

back of the cell structure of A. 

Recalling the construction of R by identifying segments on ~D, 

observe that every pattern must have at least 4g segments. In 

particular the rank k arc systems arising from Strebel's theorem 

have rank ~ 2g - i; the 2g - 2 skeleton of A is contained in 

A . Now introduce the dual complex Y of A - A . Accordingly Y 

will not have cells for the 2g - 2 skeleton of A. Thus the 

dimension of Y is dim T 1 - (2g-l) = 4g - 3. Harer shows that 
g 

T 1 may be F equivariantly retracted onto Y. 
g 

1 provides a helpful example. A is the standard The case of T 1 

SL(2;Z) tessellation of H, A is the rational points of IR = ~H 

and Y is Serre's tree for SL(2;Z). 

3. The Weil-Petersson Geometry. 

3.1. Ideally the purpose of introducing an invariant metric on the 

Teichmuller space T s is to provide information on the intrinsic, 
g 

i.e. independent of the metric, properties of the space. I shall 

try to indicate the extent that the Weil-Petersson metric has success- 

fully filled this role. In brief a sketch will be given of the 

results in [2, 3, 17, 22-30]. Recently Fischer and Tromba have 

independently undertaken an investigation of Teichmuller space and 

the W-P metric, substituting the viewpoint of Riemannian geometry 

for the classical theory of quasiconformal maps, [20, 21]. 

As background the reader may check [2, 3, i0, 21] for proofs 

that the metric is K~hler. Recall that the W-P metric is invariant 

for the action of F s on T s and thus descends to the moduli space 

g T s M s of Riemann surfaces gM s. On both and the metric is not 
g g g 

complete, [22]. Now this result is best understood in terms of 
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the latter results [17, 26] that the metric has an extension to 

M s , the Deligne-Mumford stable curve compactification of M s . 
g g 

The study of the W-P geometry can be divided into three major 

topics: curvature considerations, extension of the metric to the 

compactification ~ and the symplectic geometry of the Kihler Mg, 

form. As a sample of the results I shall start by sketching three 

ap_plications. The Kihler form ~WP extends to the compactification 

MS; the extension e--WP defines a cohomology class in H2(~), 
g 1 g 
[26, 27, 28]. In [27] it is found that 2 ~WP is actually the 

2~ 
first Chern class of a known line bundle <I (discussed below) on 

M --g In particular 1 - is a rational class and the line bundle 
g" 22 ~WP 

~i is positive. At this point the Kodaira__ theorem may be quoted to 

obtain a purely analytic proof that M s is projective algebraic. As 
g 

a second application consider the Nielsen conjecture: every finite 

subgroup of F s fixes a point of T s. An important ingredient of 
g g 

Kerckhoff's proof of the conjecture is that the geodesic length 
functions i, are convex along Thurston's earthquake paths, [16]. 

I have recently found that the length functions i, are strictly 

convex along the W-P geodesics [30]. This result provides the 

basis of an independent but similar proof of the conjecture. The 

proof starts with an observation of Fricke-Klein: that a suitable 

sum S = ~ Z of length functions will be a proper function on T s. 
g 

Given ~ ~ 3 £g,S a finite subgroup, then the sum S O = Y ~ S(y) is 

invariant and is also a sum of length functions. Now S O is 

strictly convex along W-P geodesics and thus a critical point is 

necessarily a relative minimum (S O is an index 0 Morse function). 

Since S O is proper it follows that it has a unique minimum and 

finally the ~ invariance of S O guarantees that the minimum is 

fixed by ~, the desired conclusion. And finally since the W-P 

metric is Kahler it follows immediately that the length functions 

~, are in fact plurisubharmonic; this observation leads to a new 

proof that T s is a Stein manifold, [30]. 
g 

3.2. Ahlfors was the first to consider the curvature of the metric; 

he obtained singular integral formulas for the Riemann curvature 

tensor, [3]. As an application he found that the Ricci, holomorphic 

sectional and scalar curvatures are all negative. Royden later 

showed that the holomorphic sectional curvature is bounded away from 

zero and more recently Tromba has found that the general sectional 

curvature is indeed negative. I shall now present a simple formula 
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for the curvature tensor, [29]. Recall first that the holomorphic 

tangent space T I'0 T s at R ~ T s is identified with the space of 
g g 

harmonic Beltrami differentials H(R) and that dA denotes the 

hyperbolic area element on R and D the hyperbolic Laplacian. 

The Riemann curvature is a 4-tensor in particular for ~' ~B' ZY' 

UB 6 H(R) 

r -1 
- (D-2) (~a~8) (~y~) dA Re, By ~ -2 ] 

R 

r -i 
= -2 I (m-2) (lJc~ ~) (Py~B)di 

JR 

where (D-2) -I is the indicated self adjoint operator and observe 

for ~, ~ E H that the product ~ is a function. Starting with 

the above formula it follows that the metric has negative sectional 

curvature, that the holomorphic sectional and Ricci curvatures are 
-i bounded above by 2~(g-l) and that the scalar curvature is bounded 

-3(3g-2) In fact the arguments show that the curvatures above by 4~ 

are governed by the spectrum of the Laplacian: the negative curva- 

ture is a manifestation of the nonpositivity of the Laplacian. These 

last results have also been obtained by Royden. 

As a further application of the techniques I wish to consider the 

characteristic classes of the Teichmuller curve T . T is the 
^ g g 

natural fibre space over T ; the fibre above R ~ T is a compact 
g g 

submanifold isomorphic to R. If ~ : T ÷ T is the projection 
g g 

TI, 0 TI,0T then the kernel of the differential d~ : T + defines a g g 
line bundle (v) on T , the vertical bundle of the fibration. 

g 
The restriction of (v) to a fibre of z is simply the tangent 

bundle of the fibre; by the uniformization theorem the hyperbolic 

metric induces a metric on (v). I have computed the curvature 

2-form for this metric and found that it is negative, a pointwise 

version of Arakelov's result that the dual (v)* is 

numerically effective, [4]. Once again the curvature is governed 

by the spectrum of the Laplacian. By integrating powers of the 

Chern class Cl(V) over the fibers of ~ one obtains Fg invariant 

characteristic classes <n(P) = f -l(p) Cl(V)n+l defined on Tg. 

Mumford has many intriguing results on the behavior of these 

classes in the cohomology ring: in particular the ~ , n S 3g - 3 
n 

are nontrivial and many geometrically interesting cycles may be 

written in terms of the < . Mumford guesses that the low dimensional 
n 
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part of the cohomology ring may actually be polynomial in the K . 
1 n 

As an example in [29] I find that in fact <i 2 ~WP' eWP the 

W-P Kahler form. 2z 

3.3. Masur was the first to consider the extension of the W-P 

metric from Mg to ~[a' ~g the moduli space of stable curves. In 

the paper [17] Masur develops the foundations of this topic. Recall 

now that the compactification locus D = M - M is a divisor with 
g g 

normal crossings. Briefly Masur shows if D is given locally as 

z I = 0 in a coordinate chart z = (z I, .... z n) then 

dS~p = dZld~l 

lZll2(iog 1/l~ll)3 + O(iZli(log i/Izli)l 31, [17]. 

In particular the W-P length of a differentiable curve in ~ is 
g 

finite and the metric extends to a complete metric on M . Starting 
g 

from Masur's results it follows that the K'ahler form ~ extends 
WP 

to a closed, positive, (i,i) current ~I4P on ~ , [26]. In fact 
_ g 

the above singularity is sufficiently mild for ~WP to be written 

as ~F, F a continuous function (as an example consider 
1 

F= log i/[zr),~ ~ [28]. Standard approximation techniques may then be 

applied to conclude that ~WP is the limit of smooth Kahler forms 

in its cohomology class. Thus even though the Kahler form is not 

smooth it is suitable for applications in particular the Kodaira 

theorem may be quoted to conclude that there is a projective embedding. 

Now the discussion will continue with the results on describing the 

cohomology class of 
WP" 

3.4. The divisor D c M is reducible D = D O U...U P , whore 
g [~J 

the generic surface represented in D k has one node separating it 

into components of genus k and genus g - k (for k = 0 the node 

is nonseparating). Certainly the divisors ~k define cohomology 

classes in H6g_8(Mg) and by Poincar6 duality (over ~, ~g is a 

V-manifold) ~WP also defines a class in H6g_8. The first result 

is contained in the following, [27]. 

Theorem 3.1. {D O .... ,D[~], (~Wp)} is a basis for H6g_8(Mg;~). 

The sketch of the proof is simple enough. By the result of 

Harer on H2(M ) and an application of Mayer-Vietoris one verifies 
g 

at the outset that H2(~g;~) has rank 2 + [~]'z A candidate basis 
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is then presented for each of H 2 and H6g_8 and the intersection 

pairing is evaluated. The pairing is found to be nonsingular and 

the proof is complete. The trick for evaluating the integrals of 

~WP is to perform a single integration [27] and then deduce the 

remaining integrals by formal properties. 

As an example a 2-cycle E for M is obtained by considering 
g 

the family of (stable) curves given as the one point sum of a fixed 
surface S O of genus g - 1 and an elliptic curve E, which will 

vary over all (even degenerate) structures represented in its moduli 

space M~ (see Figure 7). 

So E 

Figure 7 

1 Now to state the desired The 2-cycle E is parametrized by M I. 

formal property of ~WP let s be the W-P K~hler form for M s . 
g g 

0 1 --; the restriction of 0 to E is Then briefly ~glE = ~llM~ __~ g 

naturally identified with the Kahler __f°rm for M~. And so the 
I 

integral fE ~WP is reduced to the M~ ± case. This last integral 
~2 

may be evaluated directly; the value is -~, [25]. The formal 

properties of the Kahler form will be discussed further in section 

3.6 as consequences of the Fen chel-Nielsen coordinates. 

After evaluating the intersection pairing one finds that 

1 -- : 71 
272 ~WP 

where ~i is the extension of the class K 1 discussed in section 

3.2. Indeed the above is the generalization to M of the earlier 
g 

result l-l--2 2 ~WP = <I for Mg. Finally the basic techniques for 
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constructing cycles and computing intersections may be applied to the 

higher homology groups. For instance in [27] it is shown that 

H2k(Mg) , k < g has rank at least gk I 

3.5. The last two sections will be devoted to the symplectic geometry 

of the Kahler form ~WP" The symplectic geometry of the triple 

(ewp,t,,i,), t, the Fenchel-Nielsen vector fields and ~, the 

geodesic length functions, is dual to the trigonometry, as will be 

described below, of geodesics in the hyperbolic metric of a surface. 

A construction of Fenchel-Nielsen provides for natural flows on 

Teichmuller space. Fix the free homotopy class of a nontrivial simple 

loop {e} on F and an increment 6 of time. If R = { (R,f)} ( T g 
then {f(~)} is represented on R by a unique geodesic e~. Cut R 

open along ~R' rotate one side of the cut relative to the other (by 

a distance of 6) and then glue the sides in their new position. The 

hyperbolic structure in the complement of the cut extends naturally 

to define a hyperbolic structure on the new surface. A geodesic 

intersecting e~ is deformed to a broken geodesic Yb with endpoints 

separated 6 units along ~. As $ varies a flow, the F-N flow, 

is defined on the Teichm~ller space T . The infinitesimal generator 
g 

of the flow is the F-N vector field t . The free homotopy class 

{e} also determines a function Z , the geodesic length function, 

on Tg. In brief define Ze(R), R ( Tg to be the length of e~ and 

the exterior derivative di will also be discussed. The basic 

formula of the symplectic geometry is a duality formula 

~wp(t , ) = -dZ , [23, 24, 26]. 

An immediate consequence is that the symplectic form is invariant 

under the F-N flows on Tg, in particular the flows are W-P 

volume preserving. There are also formulas for the Lie derivatives 

t~B and t t~ 7, [24]. 

~(t ,t B) = t Z = [ cos @ 
8 p(~#8 P 

(3.1) 
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41 Z2 
t t~ = ~ e +e 

Y (P'q) E~#Yx~#7 2(e ~-i) 

sin @ sin @ (3.2) 
P q 

m I m 2 
_[ e +e 

(r,s)(~#Bx~#Y 2 (e~_l) 
sin ~ sin 8 . 

r s 

The right hand side of (3.1) evaluated at R E T is the sum of 
g 

cosines of the angles at the intersections of the geodesics ~ and 

B~. Similarly the right hand side of (3.2) is a sum of trigonometric 

invariants for pairs of intersections; ~i and ~'2 are the lengths 

of the segments of y defined by p, q and likewise, for m I and 

m 2 relative to 8. Recently W. Goldman has generalized these formulas 

to the representation space Hom(zI(F),G)/G, G a Lie group with 

nondegenerate symmetric bilinear form on its Lie algebra, [i0]. Con- 

sequences of the above formulas are considered in [25, 26]. In 

particular if ~ # ~ @ ~ then t t Z B > 0 and (3.2) represents a 

quantitative version of Kerckhoff's observation that the geodesic 

length functions are convex along earthquake paths, [16]. Finally 

note that the infinitesimal generators of Thurston's earthquake flows 

form the completion (in the compact-open topology) of the F-N vector 

fields. 

3.6. Introducing coordinates on Teichmuller space is a question of 

parametrizing Riemann surfaces. Fenchel-Nielsen suggested a particu- 

larly simple solution to this problem. It starts with the observation 

that the lengths of alternating sides of a right hexagon in the 

hyperbolic plane may be chosen arbitrarily. Given such a hexagon, 

form its metric double across the remaining sides to obtain the basic 

object P, a pair of pants (see Figure 8). 

23 

Figure 8 
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Topologically P is the complement of three disjoint discs in $2; 

metrically P is a hyperbolic surface with geodesic boundary. The 

key observation is that pants P and P' may be metrically summed 

along their boundaries provided merely that the boundaries are of 

equal length. Now fixing a combinatorial pattern, then summing the 

pants Pl,...,P2g_2, one obtains the general genus g surface 

(see Figure 9). 

Figure 9 

The coordinates for T are simply the free parameters for this 
g 

construction. There are exactly two parameters at each summing locus. 

Of course the first is simply the length Z of the locus, this 

varies freely in IR +. The second, the twist parameter T, measures 

the net displacement between the boundaries. The parameter T is 

defined to be the hyperbolic distance between the feet of perpendiculars 

dropped from appropriate boundaries (see Figure i0). 

Figure i0 
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After an initial choice T is determined by analytic continuation 

and varies freely in IR. In this way Fenchel-Nielsen established 

the following result, [i, 26]. 

÷ 3g-3 Theorem 3.2. The map Tg (~+× IR) 3g-3 given by R ÷ (£j,Tj)j= 1 

is a homeomorphism. 

In particular T is a cell. Furthermore the Deligne-Mumford 
_ g 

compactification M can be constructed from M by simply allowing 
g g 

the length parameters Z, to vanish, [1,26]. The discussion of the 

previous section already suggests a relationship between the Kahler 

form WWp and the F-N coordinates. Recall that ~WP is invariant 

under the F-N vector fields and observe that the coordinate vector 

fields ~ are indeed F-N vector fields. Consequently the coeffi- 
3 

cients of ~WP in F-N coordinates (Tj,Zj) must be independent of 

the twist variables T.. In fact much more is true, [26]. 
3 

= [ dZ. A dT.. Theorem 3.3. ~WP j 3 3 

Briefly (~,T.,Z.) is a completely integrable Hamiltonian system. 
3 3 

The Kahler form ~WP is F invariant in particular the 2-form 
g 

dZ. ^ dT. is independent of the combinatorial pattern for combining 
j 3 3 

pants. Finally the discussion will be concluded with two applications 

of the above formula. Set a length parameter Z k equal to zero to 

obtain a degenerate surface S (see Figure ii) 

Figure ii 
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the sum at punctures of surfaces S 1 and S 2. It follows immediately 

from the above formula that ~S converges to the sum ~S + ~S as 
1 2 

Z k + 0. Briefly stated the Kahler form for a sum of surfaces is the 

sum of the component forms, [27]. To demonstrate the second formal 

property, behavior for an unramified covering R ÷ S of surfaces, 

consider the following example (see Figure 12). 

Figure 12 

R is a 4 punctured torus, S is a one punctured torus and the 

covering transformation is the order 4 rotation about the axis of 

the hole. Introducing F-N coordinates relative to the indicated 

loops the reader will easily check that ~R = 4eS; the Kahler form 

multiplies under unramified coverings, [27]. 
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Hirzebruch: Applications of Milnor’s results



Anhang 

Programme 

der  

25 ArbeZJ~stagungen von 1957 - 1984 
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I. M a t h e m ~ c h e  ~be~%ta~!u~ ~ 1957 

Die Akten enthalten kein offizielles Programm. Aus der Korrespondenz 

konnten folgende Vortragsthemen festgestellt werden. 

I ) Vortragsserie A. Grothendieck: Koh~rente Garben und verallge- 

meinerte Riemann-Roch-Hirzebruch-Formel auf 

algebraischen Mannigfaltigkeiten 

2) M.F. Atiyah sprach fur einen gr@Seren Kreis ~ber das Thema 

"Some examples of complex manifolds" 

Dieser Vortrag von Atiyah wurde in den Bonner Mathematischen 

Schriften Nr. 6 (1958) ver~ffentlicht. 

Das Programm der Tagung sah ungef~hr wie folgt aus: 

Samstag, den 13.7.: 

17.30 Uhr 

Sonntag, 14.7.: 

10.15 Uhr 

Montag, 15.~±: 

9.30 Uhr 

15.15 Uhr 

17.15 Uhr 

Dienstag, 16.7.: 

11.30 Uhr 

15.15 Uhr 

Mittwoch, 17.7.: 

11.30 Uhr 

15.15 Uhr 

Freitag, 19.7.: 

Samstag, 20.7.: 

A. Grothendieck 

Ausflug mit Dampferfahrt 

A. Grothendieck 

M.F. Atiyah 

N. Kuiper 

A. Grothendieck 

F. Hirzebruch 

A. Grothendieck 

M.F. At iyah 

J. Tits 

M.F. Atiyah 

H. Grauert 
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2. Mc~hemat~che ArbeZ~@~taguv~ 1958 

Die Akten enthalten kein gedrucktes Programm. Die Tagung fand 

vom 9. bis 16. Juli 1958 start. Nach privaten Aufzeichnungen haben 

die folgenden Herren vorgetragen: 

S. Abhyankar 

R. Bott 

H. Grauert 

A. Grothendieck 

M. Kervaire 

J. Milnor 

D. Puppe 

R. Remmert 

J.-P. Serre 

K. Stein 

R. Thom 
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3. Mathemat~che Arbe~staguung~ 1959 

Die Akten enthalten nur folgende Angaben: 

Samstag, den 11.7.: 

17.30 - 18.30 Uhr A. Borel: Something on transformation groups 

Sonntag, den 12.7.: 

10.30 - 11.30 Uhr 

12.00 - 13.00 Uhr 

J.-P. Serre: Fundamental groups 

D. Puppe: Semisimplicial monoid complexes 

Montag, den 13.7.: 

9.30 - 10.30 Uhr 

11.00 - 12.00 Uhr 

S. Lang: " .... 

J. Tits: " .... 

Dienstag, den 14.7.: 

10.00 - 11.00 Uhr 

11.30 - 12.30 Uhr 

17.00 - 17.30 Uhr 

17.30 - 18.30 Uhr 

K. Stein: On proper maps 

J.-P. Serre: Proalgebraic groups 

Pictures 

M.F. Atiyah: Fibre homotopy type 

Mittwoch, den 15.7.: 

I0.00 - 11.00 Uhr 

11.30 - 12.30 Uhr 

17.30 - 18.30 Uhr 

A. Borel: On torsion in Lie-groups 

H. Grauert: How to blow down 

J. Milnor: Scissor and paste arguments 

Nach privaten Aufzeichnungen haben auBerdem die Herren J.F. Adams, 

A. Dold und N. Kuiper vorgetragen. 
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4. Mathemat~che Arbe~s tagung  1960 (11. - 17. Juni] 

M.F. Atiyah : Sheaves and vector bundles 

J. Milnor: 

S. Smale: 

M. Kervaire: 

Spherical modifications 

Poincar6's conjecture in higher dimensions (I) 

A manifold without differentiable structures (I) 

J. Stallings: 

S. Smale: 

M. Kervaire: 

Combinatorial homotopy-spheres 

Poincar6's conjecture in higher dimensions (II) 

A manifold without differentiable structure (II 

H. Grauert: 

S. Lang: 

A. Dold: 

Some problems concerning non-compact K~hler manifolds 

Cross-sections on algebraic families of curves 

Pictures 

Representable functors and tensor-products 

R. Thom: 

R. Remmert: 

Singular homology and sheaf theory 

Rigid complex manifolds 

J.F. Adams: 

A. Borel: 

J.P. Serre: 

Old-fashioned topology 

Non-singular homology and sheaf theory 

L-series 

N. Kuiper: 

R. Bott: 

M. Hirsch: 

Curvature of index 

Cauchy formula 

Embedding theorems 
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5. Mathemati~che Arbeitsta@ung 1961 (16.- 23. Ju~_ ) 

A. Borel: Arithmetic subgroups of Lie groups I 

J. Milnor: 

M.F. Atiyah: 

J. Stallings: 

The handle body theorem I 

Finiteness theorem for eomapct Lie groups 

A 5-dimensional example against the Hauptvermutung 

A. Borel: 

J. Milnor: 

J. Milnor: 

Arithmetic subgroups of Lie groups II 

The handle body theorem II 

Handle body theorem and results of Wall 

A. Andreotti: 

M. Kneser: 

M. Kneser: 

A. Grothendieck: 

Vanishing theorems 

Approximation in algebraic groups 

Siegel's theorem and Tamagawa numbers 

Schemes of moduli 

B. Eckmann: 

J. Tits: 

R. Palais: 

Lusternik-Schnirelmann category 

Flags and Bruhat's theorem 

Conjugacy of compact diffeomorphism groups 

J. Kohn: 

A. Grothendieck: 

R. Remmert: 

Potential theory on non compact complex manifolds 

Duality theorems in algebraic geometry 

On homogeneous compact K~hler manifolds 

N. Kuiper: 

A. Shapiro: 

Manifolds admitting functions with few critical points 

Graded Clifford modules 

F. Peterson: 

I. Porteous: 

Squaring operations in a sphere bundle 

Homomorphisms of vector bundles 
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6. Mathematische Arbei t~ta~ung 1962 [13. - 20. Jubi)  

S. Lang: On the Nash embedding theorem ~ la Moser 

S. Smale: 

H. Hironaka: 

R. Swan: 

Stable manifolds of a diffeomorphism 

Resolution of singularities 

The Grothendieck ring of a finite group 

M.F. Atiyah: 

C.T.C. Wall: 

R. Remmert: 

Harmonic spinors 

Classification problems in differential topology 

On homogeneous compact complex manifolds 

J. Stallings: 

M. Kervaire: 

K. Stein: 

Piecewise linear approximation of stable 
homeomorphisms 

2-spheres in 4-manifolds 

Pictures 

Extension of meromorphic mappings 

A. Haefliger: 

R. Abraham: 

H. Grauert: 

Links 

Transversality of mappings 

Rigid singularities 

J. Eells - 
J.H. Sampson: 

Harmonic maps 

W. Browder: 

M.F. Atiyah: 

N. Kuiper: 

Homotopy type of differentiable manifolds 

Explanations of my preceding lecture 

Smoothing problems 

A. Kosinski: 

J.C. Moore: 

Piecewise linear functions on combinatorial manifolds 

Hopf algebras 
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7. Mathematische Arbeitstagung 1963 (14. - 21. Juni) 

S. Lang: Transcendental numbers 

M.F. Atiyah: 

J. Eells: 

M. Kervaire: 

Elliptic operators 

Deformations of maps 

Higher dimensional knots 

F. Oort: 

H. Grauert: 

S. Lang: 

On automorphisms of varieties 

On Super-Cocycles 

On Manin's theorem 

A. Haefliger: 

J. Cerf: 

R. Palais: 

Combinatorial manifolds 

F 4 = 0 

Pictures 

Integro-differential operators 

F. Hirzebruch: 

S. Abhyankar: 

A. Dold: 

Elementary proof of Bott's periodicity theorem 

Jungian singularities 

Obstruction theory for cohomology functors 

R. Thom: On generic singularities of envelopes (with slides) 

R. Palais: 

M.F. Atiyah: 

N. Kuiper: 

Integro-differential operators (If) 

Boundary value problems 

Smoothing of combinatorial manifolds 

R. Palais: 

V. Poenaru: 

i. Cs~sz[r: 

Morse theory 

Thickening and unknotting 

Allgemeine Approximationss~tze 
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8. M a t h e m ~ c h e  Arbeit~ta~u~{:g 1964 (15. - 19. J u ~ ]  

A. Borel: Introduction to automorphic forms 

N. Kuiper: 

R. Wood: 

S.S. Chern: 

The unitary group of Hilbert space is k-connected 

Generalization of Bott's periodicity theorem 

Holomorphic vector bundles 

W. Haken: 

M. Kneser: 

W. Browder: 

Poincar~'s conjecture in dimension three 

Galois cohomology of p-adic linear groups 

Introduction to cobordism theory 

D. Gromoll: 

J. Eells: 

R. Sacksteder: 

Exotic spheres and metrics of positive curvature 

Variational theory on manifolds 

Pictures 

Foliated manifolds 

K. Jinich: (X,Fredholm) = K(X) 

E. Thomas: 

J.F. Adams: 

D. Anderson: 

Enumeration of vector bundles 

Some applications of K-theory to homotopy theory 

Several aspects of K-theory 

R. Wood: 

R. Palais: 

A. Borel: 

Pre-Palais 

Index theorem for elliptic boundary problems 

Pseudo-concavity for arithmetic groups 

A. Kosinski: 

Shih Weishu: 

R. Palais: 

Is the Hauptvermutung true for manifolds? 

Characteristic classes in K-theory 

The homotopy type of some infinite dimensional 

manifolds 
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9. M a t h e m ~ c h e  A~beZl~stagun~ 1965 (19. - 25. Juni)  

M.F. Atiyah: Elliptic operators on manifolds and generalized 

Lefschetz fixed point theorem I 

A. Douady: 

M.F. Atiyah: 

S. Lang: 

An hour of counterexamples 

Elliptic operators on manifolds and generalized 

Lefschetz fixed point theorem II 

Division points on curves 

W. K]ingenberg: 

R. Thom: 

H. Hironaka: 

Closed geodesics 

Topological models for morphogenesis in biology 

Projectiveness criterions of Kleiman 

A. Grothendieck: 

J.P. Serre: 

Riemann-Roch I 

Formal groups 

A. Grothendieck: 

J. Milnor: 

N. Kuiper: 

Riemann-Roch II 

Projective class groups in topology 

Piecewise linear microbundles are bundles 

G. Harder: 

I.G. Macdonald: 

D. Epstein: 

Galois cohomology of semi-simple groups 

Spherical functions on p-adic groups 

Duality theorems for abelian schemes 

A. Van de Ven: 

D. Husemoller: 

G. Segal: 

R. Palais: 

Almost complex manifolds 

Cohomology theory 

Equivariant K-theory 

Symplectic manifolds (im Rahmen des Mathematischen 

Kolloquiums) 
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10. Mathemati~che Arbei;Lsta~un~ 1966 (16. - 22. Juni)  

M.F. Atiyah: Global aspects of elliptic operators 

H. Grauert: 

J. Eells: 

M. Kervaire: 

Non-archimedean analysis 

Deformations of structures 

Congruence subgroups after H. Bass 

J.P. Serre: 

L. Siebenmann: 

S. Smale: 

1-adic Galois groups 

Applications of Wall's invariant 

On the structure of diffeomorphisms 

M.F. Atiyah: 

J. Tate: 

R. Bott: 

Index theorem (I) 

p-adic Galois representations 

Vector fields and characteristic numbers 

M.F. Atiyah: 

F. Hirzebruch: 

Index theorem (II) 

Exotic spheres and singularities 

S. Smale: 

A. Borel: 

J. Milnor: 

Group constructions in the theory of diffeomorphisms 

Rigidity of arithmetic groups 

Singularities of hypersurfaces 

J.F. Adams: 

A. Van de Ven: 

D. Sullivan: 

Mahowald's result on the J-homomorphism 

Chern numbers of (almost-) complex surfaces 

Manifolds with singularities 
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11. Mathemat ische  A r b e ~ t a g u n  9 1967 (76. - 22. Juni)  

M.F. Atiyah: Hyperbolic equations and algebraic geometry 

J.P. Serre: 
v v 

I. Safarevic: 

D.V. Anosov: 

Congruence subgroups and Coxeter hyperbolic groups 

Simple Lie algebras in finite characteristics 

Dynamical systems 

N. Kuiper: 

J.W.S. Cassels: 

M. Postnikov: 

Algebraic equations for combinatorial 8-manifolds 

Definite functions as sums of squares 

K-theory for infinite complexes 

v v 
I. Safarevic: 

D.V. Anosov: 

M. Karoubi: 

Algebraic analogue of uniformisation 

Asymptotic theory of some partial differential 

equations 

Real and complex K-theory 

H. Levine: 

B. Venkov: 

Extending immersions of the circle in the plane 

Cohomology of some groups 

J.F. Adams: 

A. Brumer: 

J.I. Manin: 

Complex cobordism 

p-adic L-functions 

On rational surfaces 

R. Abraham: 

T. Matsumoto: 

K. Jinich: 

Generic properties of Hamiltonian systems 

Congruence subgroups and central group extensions 

Report on part of the Tulane Conference 
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12. Mathemat ische  A r b e i t ~ t a q u n q  1969 (13. - 20..lug,,),,, 

N. Kuiper: Stable homeomorphisms and the annulus conjecture, 

Kirby's results 

P.A. Griffiths: 

J.F. Adams: 

R. Bott: 

Algebraic cycles 

Quillen's work on cobordism and formal groups 

Topological obstructions for foliations 

W.-C. Hsiang: 

W. $chmid: 

P. Deligne: 

Manifolds with fundamental group k 

Langlands ~ conjecture 

Hodge theory of singular varieties 

A. Borel: 

F. Hirzebruch: 

Picard-Lefschetz transformations and arithmetic 
groups 

s l - a c t i o n s  on m a n i f o l d s  

L. Siebenmann: 

J. Mather: 

D. Quillen: 

Topological manifolds and related examples 

Stratification of a generic mapping 

Homotopy theory of schemes 

J. Tate: 

R. Thom: 

D. Gromoll: 

R. Gardner: 

K 2 of global fields 

Topological linguistics 

Periodic geodesics 

Geometric solution of the Gauchy Problem and a 
generalization of characteristics 

C.T.C. Wall: 

J. Eells: 

G. Harder: 

Integrable almost piecewise linear structures 

Topology of Banach manifolds 

A remark on Tamagawa numbers 

A. Bak: 

A. Weinstein: 

W.C. Hsiang: 

Quadratic modules and unitary K-theory 

Symplectic manifolds 

Falsity of the s-cobordism theorem for lower 

dimensional manifolds 
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13. MathematNmche A r b e ~ t a g u n £  1970 (12. - 19. Juni)  

C.T.C. Wall: A survey of free actions on spheres 

S. Lang: 

R. Kirby: 

M. Kervaire: 

Transcendental mappings 

Triangulation of manifolds 

Projective class groups and class field theory 

S. Hildebrandt : 

D. Burghelea : 

T. tom Dieck: 

Boundary values in capillarities 

Homotopy groups of spaces of diffeomorphisms 

Bordism of commuting involutions 

S. Smale: 

D.V. Anosov: 

Report on work of Moulton (celestial mechanics) 

New examples of smooth ergodic systems 

R. Kiehl: 

T.A. Springer: 

E. Brieskorn: 

Satz von Grauert (direkte Bilder von Garben) 

Discrete series of finite Chevalley groups 

Singular elements in simple Lie groups 

R. Takens: 

H. Bass: 

J. Eells: 

Partially hyperbolic fixed points 

The Milnor ring of a field 

Fredholm structures and Wiener integrals 

J.-L. Verdier: 

H.V. Pittie : 

F. Waldhausen: 

Serre's duality theorem 

The representation ring of compact Lie groups 

Attempt on higher Withehead groups 

R. Gardner: 

U. Koschorke: 

Rigidity and uniqueness of convex hypersurfaces 

Pseudo-kompakte Teilmengen unendlich dimensionaler 

Mannigfaltigkeiten 
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14. Mathemat~che A r b e ~ t a q u n g  1971 (10. - 14. Juni) 

M.F. Atiyah: The Riemann-Roch theorem for multihomogeneous 

varieties 

W. Schmid: 

I.G. Macdonald: 

P. Deligne: 

The singularities of Griffith's period mapping 

Affine root systems and theta-identities 

The Weil conjecture for surfaces of degree 4 in P3 

S. Lang: 

G. Lusztig: 

F. Waldhausen: 

Frobenius automorphisms of modular function fields 

The Novikov higher signatures and families of 

elliptic operators 

Applications of infinite simple homotopy types 

G. Segal: 

C.T.C. Wall: 

H. Grauert: 

Algebraic K-theory 

Quadratic forms 

Deformation of singularities 

D. Mumford: 

R. Bott: 

Degeneration of curves and non-archimedean 

uniformisation 

The classifying space of foliations 

R. Thom: 

W.-Ch. Hsiang: 

J. Tits: 

The four vertex theorem 

A reduction theorem of differentiable actions 

Free groups in linear groups 

M. Artin : 

E. Bombier i : 

A.I. Kostr ikin : 

L~roth's theorem 

On pluricanonical models of algebraic surfaces 

Deformation of Lie algebras 

R. Langlands: 

J. Simons: 

K. Shiohama: 

On arithmetically equivalent representations 

Geometric invariants related to characteristic classes 

On the differentiable "pinching problem" 
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15. M~hemat ische  Arbei t~ta~ung 1972 (09. - 15. Juni) 

W. Schmid: 

M. Karoubi: 

T.A. Springer: 

J. Cheeger: 

T. Petrie: 

D.I. Liebermann: 

E. Winkelnkemper: 

A. Bak: 

A. Michenko: 

M.F. Atiyah: 

S. Lichtenbaum: 

F.J. Almgren: 

M. Platonov: 

J.W. Robbin: 

K. Ueno: 

M. Miranda: 

M. Shub: 

J.A. Shaneson: 

Degeneration of algebraic manifolds 

Hermitian K-theory 

Steinberg functions on a finite Lie algebra 

Manifolds with non-negative curvature 

Real algebraic actions on projective spaces 
th 

n order de Rham theory 

Open book decomposition of manifolds 

Computation of surgery obstruction groups 

On infinite dimensional representations of 

discrete groups 

Invariants of odd dimensional manifolds 

Values of zeta-functions at negative integers 

Geometric measure theory and elliptic variational 

problems 

Conjectures of Artin and Kneser-Tits 

Topological classification of linear endomorphisms 

of R n 

Classifications of algebraic varieties 

Hypersurfaces in R n of prescribed mean curvature 

Dynamical systems, filtrations and entropy 

Codimension -2 problems and homology equivalent 

manifolds 
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16. Mathematische Arbei t s tagung 1974 (12. - 18. luni]  

I.M. Singer: ~-invariant and its relation to re]l quadratic fields 

H. Bass: 

N.A'Campo: 

J.-P. Serre: 

Russian progress on Serre's problem 

Resolution and deformation of plane curve singularities 

Modular forms and Galois representations 

J. Eells: Introduction to stochastic Riemannian geometry 

R. Howe: 

G. Lusztig: 

S. Kobayashi - 

S. Lang: 

The Weyl representation over finite fields 

Some discrete series representations of finite 

classical groups 

Hyperbolic geometry and diophantine problems 

D. Epstein: 

D. Quillen: 

D. Zagier: 

Foliations with compact leaves 

Finite generation of K-groups in the function 

field case 

Modular forms in one and two variables 

G. Harder: 

W. Schmid: 

E. Ruh: 

K. Ueno: 

Betti numbers of modular spaces of vector bundles 

On the discrete series of semi-simple Lie groups 

Equivariant pinching problems 

Canonical bundle formula for certain fibre spaces 

and algebraic varieties of parabolic type 

M.F. Atiyah: 

C.T.C. Wall: 

S. Lang: 

Asymptotic properties of eigenvalues in Riemannian 

geometry 

Norms of units in group rings 

Fermat curves and units in the modular function 

field 
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17. M a t h e m a ~ c h e  A r b ~ t a g u n g  19~5 21. - 2~. Juni )  

M.F. Atiyah: Algebras of operators ±n Hilbert space and 
K-theory 

J. Moser: 

G. Lusztig: 

B. Kostant: 

Isospectral deformations 

Macdonald's conjecture on discrete series of 
finite Chevalley groups 

The ~]-function formula of Macdonald 

R. MacPherson: 

W. Ziller: 

J.-P. Serre: 

Gelfand's formula for the first Pontrjagin class 

Closed geodesics and homotopy symmetric spaces 

Lower bounds of discrimimants of number fields 

T.tom Dieck: Burnside ring of a compact Lie group 

J.C. Jantzen: 

W. Schmid: 

A.N. Varchenko: 

Modular representations of semi simple groups 

Blattner's conjecture on the discrete series of 
semi simple real Lie groups 

Newton diagrams of singularities 

A.I. Kostrikin: 

B. Mazur: 

W. Casselman: 

Tannaka-Artin's conjecture on the multiplicative 
group of division algebras 

Rational points on modular curves 

The n-cohomology of representations of semi simple 
Lie groups 

A.N. Parshin: 

J.H.M. Steenbrink: 

E. Calabi: 

Residues and symbols 

Mixed Hodge structure on vanishing cycles 

Nearly flat triangulations of Riemannian manifolds 
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18. M a t h e m ~ c h e  A ~ b e i . ~ t a g u n g  1977 (21.  - 27.  Jun i ]  

M.F. Atiyah: The classical geometry of Yang-Mills Fields (I) 

J.-P. Serre: 

H.W. Lenstra: 

A. Tromba: 

Function field analogue of SL2(Z) 

Euclidean number fields 

Recent progress in Plateau's problem 

M.F. Atiyah: 

M. Gromov: 

P. Griffiths: 

The classical geometry of Yang-Mills fields (II) 

Hyperbolicity in dynamical systems 

Application of residues to geometry 

M. Berger: 

A. Van de Ven: 

G. Zuckerman: 

Wiedersehensmannigfaltigkeiten 
(Conjecture of Blaschke) 

Inequalities for Chern numbers of surfaces 

Representations of semi simple lie groups 

Ch. Thomas: 

R. Finn: 

J.-P. Bourguignon 
C.L. Terng: 

Space form problems 

Surface tension phenomena and geometry 

Solution of the Calabi conjecture 

C. Procesi: 

F. Sakai: 

A. Andreotti: 

Ideals of determinants and Young diagrams 

Kondaira dimension of open complex manifolds 

Domain of regularity of solutions of partial 
differential equations 
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19. Ma t hem a t ~che  ~ b e ~ t a g u n  9 1978 (16. - 23. Juni] 

M.F. At iyah : Yang-Mills instantons and algebraic geometry 

E. Calabi: 

H. Jacquet: 

J.-P. Bourguignon: 

SU(n)- and Sp(n)-manifolds 

From GL(2) to GL(3) 

Differential-geometry of the Yang-Mills equation 

J. Eells: 

J. Steenbrink: 

B. Gross: 

Holomorphic and harmonic maps of surfaces 

Non-rationality of the quartic threefold 

The Chowla-Selberg formula 

B. Mazur: 

D. Burghelea: 

P. Schweitzer: 

Rational points on elliptic curves and 
congruences of L-series 

Computation of homotopy groups of diffeomorphism 
groups of compact manifolds 

Residues of real foliation singularities 

T. Banchoff: 

J. Milnor: 

The fourth dimension and computer animated geometry 

Volume of hyperbolic manifolds 

K. Ueno: 

F. Adams: 

N. Hitchin: 

Birational geometry of fibre spaces 

Finite H-spaces and algebras over the 
Steenrod Algebra 

Twistor spaces 

A. Todorov: 

P. Baum: 

J. Brining: 

Surfaces with pg = I and K 2 : I 

K-homology and Riemann-Roch 

Representations of compact Lie groups and 
elliptic operators 

I. Piatetsk~Sbmp~o: 

F. Waldhausen: 

Automorphic forms on the metaplectic group 

Algebraic K-theory of topological spaces 
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20. Mathematische Arbei t~tagung 1979 (06. - 16. f u j i )  

J. Tits: On Leech's lattice and sporadic groups 

F. Adams: 

F. Bogomolov: 

Wang Yuan: 

G. Segal's Burnside ring conjecture 

Converse Galois problems for some Chevalley groups 

Goldbach problem 

D. Vogan: 

L. Berard-Bergery: 

V. Kac: 

G. Mostow: 

G. Lusztig: 

Size of representations 

A new example of Einstein manifolds 

Infinite dimensional Lie algebras 

New negatively curved surfaces 

Representations of Hecke algebras 

B. Gross: 

Wu-chung Hsiang: 

E. Looijenga: 

M.F. Vigneras: 

Conjectures of Stark and Tate 

Topological space form problems 

Singularities and generalized root systems 

Isospectral but not isometric Riemannian surfaces 

A.N. Parshin: 

Min-Oo: 

G. Harder: 

Zeta functions and K-theory 

Curvature deformations relating to the 
Yang-Mills fields 

Cohomology and values of L-functions 

A. Todorov: 

R.P. Langlands: 

J.-P. Serre: 

Moduli of K~hlerian K3-surfaces 

On orbital integrals for real groups 

The monster game 
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21. M a t h e m ~ c h e  A r b e ~ t a q u n g  1980 (15. - 19. Juni} 

M.F. Atiyah: Vector Bundles on Riemann Surfaces 

A. Katok: 

R. Bott: 

K. Ribet: 

Counting closed geodesics on surfaces 

Equivariant Morse theory 

Mazur and Wiles (cyclotomic fields) 

A. Borel : 

I. Bake iman" 

H. King : 

J. Milnor : 

L 2- cohomology of arithmetic groups 

Topological methods in the theory of 

Monge-Amp@re equations 

Topology of real algebraic varieties 

Groups of polynomial growth (Gromov's work) 

Y.-t. Siu: 

M. Ar%in: 

B. Gross: 

Andreotti-Fraenkel conjecture 

Mori's work 

L-series of elliptic curves 

F. Takens: 

W. Ziller: 

P. Slodowy: 

Turbulence and strange attractors 

Periodic motions in Hamiltonian systems 

Simple groups over ~((t)) and simple-elliptic 
singularities 

S. Kudla: 

D. Epstein: 

F. Adams: 

Geodesic cycles and the Weil representation 

A theorem of Thurston with applications to 
group actions and foliations 

Recent work on homotopy theory 
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22. M a t h e m ~ c h e  A ~ b e i ~ t a q u n ~  1981 (12. - 18. ]un i )  

M.F: Atiyah: Convexity and commuting Hamiltonians 

B. Mazur: 

D. De Turck: 

B. Malgrange: 

Abelian extensions of 

"Manifold" of Ricci curvatures 

Vanishing cohomology and Bernstein polynomials 

D. Mostow: 

W. Fulton: 

R. MacPherson: 

Complex reflection groups 

Complex projective geometry (varieties of small 
codimension) 

Intersection homology and nilpotent orbits 

J. Tate: 

W. Meyer: 

K. Diederich: 

Stark's conjecture about L-series at s = 0 

Gromov's work on Betti numbers 

Complete K~hler domains 

W.D. Neumann: Thurston's work 

A. Derdzinski: 

S. Zucker: 

A. Wiles: 

Einstein metrics 

L2-cohomology of arithmetic groups 
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