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I would like to describe a sampling of recent results concerning 

the moduli space M of Riemann surfaces. My plan is to present 
g 

several of the ideas underlying the recent work of John Harer on the 

topology of M and of myself on the Hermitian and symplectic geom- 
g 

etry. My purpose is not to give a survey; for instance the reader 

is referred to the papers [7, 9] for the recent progress on the 

question of whether Mg, the moduli space of stable curves, is 

unirational. 

The discussion will be divided into two parts: the topology of 

Mg and Mg, e s p e c i a l l y  the  homology of  t he  mapping c l a s s  group Fg 
and the geometry of the Weil-Petersson metric. As background I shall 

start with the basic definitions and notation. 

i. Definitions and Notation . 

i.i. Let F be a compact topological surface of genus g with r 

boundary components and s distinguished points in F - ~F; set 

S = ~F U {points}. I shall always assume that 2g - 2 + s + r > 0 

or equivalently that F - S admits a complete hyperbolic metric. 

Consider Homeo+(F,S), the group of orientation preserving homeo- 

morphisms of F restricting to the identity on S and the normal 

subgroup I(F,S) of homeomorphisms isotopic to the identity fixing S. 

Definition i.i. F s = Homeo+(F,S)/I(F,S) is the mapping class 
g,r 

group for genus g, r boundary components and s punctures. 

I shall use the convention that an omitted index is set equal to 

zero. For genus g and s punctures the mapping class group F s 
g 

acts properly discontinuously on the Teichmuller space T s via 
g 

biholomorphisms. The quotient M s , the classical moduli space of 
g 

Riemann surfaces, is a complex V-manifold. To be more specific 

start by considering triples (R,f,P), where f is a homeomorphism 

of the topological surface F to a Riemann surface R with f(S) =P. 

An equivalence relation (the marking) is introduced by defining: 
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(R0,f0,P 0) ~ (RI,fI,P I) provided there is a conformal map k with 

f0 
(F,S) ~ (R0,P 0) 

(RI,P 1 ) 

commutative modulo a homotopy fixing S and P. 

Definition 1.2. T s, the Teichmuller space for genus g and s 
g 

punctures, is the set of ~ equivalence classes of triples (R,f,P). 

Briefly T s is a complex manifold and is homeomorphic to 
g Fs T s ~46g-6+2s. The mapping class group acts naturally on : to 

the equivalence classes {h} 6 F s and g {(R,f,P)} 6 T s assig~ the 
g Fs g 

class { (R,f o h,P)} 6 T s. The action represents as biholomor- 

phisms of T s . g g 
g 

Definition 1.3. M s = Ts/F s is the moduli space for genus g and s 
g g g 

punctures. 

As an example the reader will check that for genus 1 and 1 

1 is the 1 is the upper half plane H c C and ~i puncthre T 1 

elliptic modular group SL(2;Z) acting on H by linear fractional 

transformations. 

1.2. NOW I shall review the definition of the complex structure on 

T s. For a Riemann surface R with 2g - 2 + s > 0 consider the 
g 2 

hyperbolic metric ~ = ds , of constant curvature -i. Associated 
2 

to R are the L (relative to ~) tensor spaces H(R) of harmonic 

Beltrami differentials (tensors of type ~ ~ dz) and Q(R) of 

holomorphic quadratic differentials (tensors of type dz ~ dz) . Of 

course harmonic is defined in terms of the Laplace Beltrami operator 

for the hyperbolic metric. A pairing H(R) × Q(R) -~ C is defined by 

integration over R : for ~ ~ H(R) and ~ 6 Q(R) define (p,~) = 

fR P~" The Ahflors and Bers description of the complex structure of 

T s is summarized in the diagram g 

l'0TS x (Tl'0)*TSg/i- ~ i T g 

) 

H (R) × Q (R)/ ' 
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where T l'0 is the holomorphic tangent space, (TI'0) * its dual and 

these spaces are naturally paired [i, 5]. The hyperbolic metric 

induces a natural inner product on every space of tensors for R. 

In particular Weil was the first to consider the Hermitian product 

on H(R) as a metric for T s. 
g 

Definition 1.4. Given ~,~ E H(R) the Hermitian product <~,~> = 

fR ;~ t -1  is  the Wei l -Pe te rsson  me t r i c .  

The Weil-Petersson metric is Kahler [2,3,10,21] and its Hermitian 

and symplectic geometry is the subject of Chapter 3. 

2. The Homology of the Mapping Class Group. 

2.1. In this chapter I shall concentrate on three recent exciting 

results of John Harer: i) the computation of H2(FS,r),~ in brief 

H2(F s ) ~ Z s+l, for g ~ 5, ii) the stability theorems, in brief 
g,r 

Hk(F~, r)~ is independent of g and r when g ~ 3k +i and iii) 

the virtual cohomological dimension of F s is d = 4g -4 +2r +s 
g,r 

for r + s > 0, 4g - 5 for r = s = 0, in particular Hk(MS;~) ~ = 0 
g 

for k > d, [ll, 12, 13]. Of course the reader will consult the 

references for the complete statements especially for the cases of 

punctures and boundary components. 

2.2. A useful technique for computing the homology of a group G is 

to construct a cell complex C on which G acts cellularly, i.e. 

cells are mapped to cells. Then the homology of G may be computed 

from the homology of the quotient C/G and a description of the 

cell stabilizers. Now F s is comprised of isotopy classes of 
g,r 

homeomorphisms; F s acts on the isotopy invariants of the surface 
g,r 

F. An obvious such invariant is the isotopy class of a union of 

simple loops. Cell complexes with vertices representing unions of 

simple loops, satisfying appropriate hypotheses, appeared previously 

in the work of Hatcher-Thurston [15] and Harvey [14]. I shall 

describe three such complexes (and simple variants) which are at the 

center of Harer's considerations. 

2.3. The cut system complex CS, [ll], A cut system <Cl,...,Cg> 

on F is the isotopy class of a colle&tion of disjoint simple 

closed curves Cl,...,Cg such that F - (C 1 U...U Cg) is connected. 

A 6imple mov~ of cut systems is the replacement of <C.> by <C~> 
1 1 

where Cj = C[3 for j ~ k and C k intersects C~ once (all 
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intersections are positive). I shall use the convention below that 

any loop omitted from the notation remains unchanged. Now consider 

the following sequences of simple moves (see Figure i). 

|> 
<Ci> <C i 

< " > C, 
1 

<C.,C.> <C.,C'.> 
z 3 i ] 

I I I 21 
<C~,C.> <C~,C',> 

l 3 i ] 

<C. ,C.> <C. ,C'.> 
± 3 J 3 

/ \ 
<C.,C!> <C.,C>. (R 3) 

1 1 \ / J  
<C ,C>--<C, C'> 

i 

Figure 1 

The three sequences can be described in terms of the relevant loops 

(see Figure 2) 

; /  C~ 

/ 

C~ ~ C ,  

~.__J C 

C j- 

¢i 

(R3) 

Figure 2 
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Now define a 0-complex CS 0 with one vertex for each cut 

system on F; a 1-complex CS 1 by attaching a 1-cell to CS 0 for 

each simple move; and a 2-complex CS 2 by attaching a 2-cell to 

CS 1 for each occurence of the cycles R I, R 2 and R 3. Hatcher and 

Thurston prove that CS 2 is connected and simply connected. Harer 

simplifies the description of CS 2 and then attaches 3 cells to 

obtain a 2-connected 3 complex CS 3, [ii]. The stabilizer of a 

cut system (a vertex of CS 3) is essentially a braid group and 

Hater analyzes the cell stabilizers of CS3o Combining this informa- 

tion with an analysis of the homology of the quotient CS3/Fg he 

obtains the following theorem, [ii]. 

Theorem 2.1. H2(F ~ ;Z) = Z s+l, ,r g ~ 5. 

The reader will find a slight difference between the above state- 

ment and that found in [Ii]. John Harer has assured me that the above 

is indeed the correct statement. 

The homology group H2(F) also admits an interpretation as 

bordism classes of fibre bundles F + W 4 ÷ T with T a closed 

oriented surface. In particular two bundles are bordant if they 

cobound a 5-manifold fibering over a 3-manifold with fibre F. The 

• defined by bundle F ÷ W 4 + T has s canonical sections ~i' "''°s 

the distinguished points of F. In this setting H 2 is spanned by 

the s + 1 natural invariants of W: ~(W)/4, ~ the signature and 

~. # 0 , j = 1 ..... s the self-intersection numbers of the sections. 
3 3 

2.4. Certainly a basic question is whether or not the homology of 

the mapping class group falls into any pattern. As an example con- 

sider the analogous question for A , the coarse moduli space of 
n 

principally polarized n dimensional abelian varieties. Borel in a 

fundamental paper computed the rational cohomology of A and found 
n 

Hi(An;R) is independent of n for n large relative to i, that 

[31]. Recently Charney and Lee have extended these results to ~ , 
n 

the Satake compactification of A , [8]. Harer establishes the 
n 

analogous result for Hk(F2,r) : ~  the answer is independent of g and 

r provided g ~ 3k + i. In fact the reader will find in Theorem 2.2 

that Harer establishes much more but first I would like to mention 

the work of E. Miller, [18]. Starting with the work of Harer as a 

basis Miller observes that the boundary connected sum for surfaces 

# Fh, 1 = Fg+h,! induces the structure on A = lim÷ H,(Fg,I;~) Fg,l 

of a polynomial algebra on even generators with an exterior algebra 

on odd generators. Furthermore by generalizing an example of Atiyah 
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for the generator of H2(Pg) Miller is able to find a generator in 

each even dimension. 

To give a precise statement of Harer's stability theorem it is 

necessary to consider the following three maps of surfaces 

¢: F s ÷ F s , r { 1 
g,r g,r+l 

~: F s ÷ F s r > 2 and 
g,r g+l,r-l' - 

Z: E s ÷ F s r a 2 
g,r g+l,r-2' 

where ¢ and ~ are given by sewing on a pair of pants (a copy of 

0 (see Figure 3) 
F0, 3 ) 

436 

Figure 3 



L--/ 

along one boundary for ~, two for Y and E is given by sewing 

together two boundary components (see Figure 4) 

437 

Figure 4 

Certainly the maps induce homomorphisms of mapping class groups. 

The following results for the induced maps on homology with integer 

coefficients can be found in [12]. 

Theorem 2.2. 

~,: Hk(FS ) + Hk(Fg 
g,r , r + l  ) 

for k > I, g >_ 3k - 2, 

~,: Hk(FS r) ÷ Hk s , g, (Fg+l  r + l  ) 

for k > l, g _> 3k - i, 

E,: Hk(Fg,r) + Hk(Fg+l,r_2) 

for g > 3k, r >_ 2. 

2.3. Hk(F s r ) is independent of g and r for Corollary 
w, 

g >_ 3k + I. 

The proof of a stability theorem for ps requires suitable 
g,r 

is an isomorphism 

r h i 

is an isomorphism 

r ~ 2 

is an isomorphism 
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F complexes whose connectivity increases with g. Harer starts 

with the complex X a variant of the basic complex Z. In order to 

define X consider the sub cut system of rank k i.e. the isotopy 

class of k + 1 disjoint simple loops C = {C O .... ,C~ _ such that 

F - { C O , .... Cj_ is connected. Define the simplicial complex X of 

dimension g - 1 by taking a k-simplex for every rank k sub cut 

system of F and identifying C as a face of C' if C cC,. The 

first theorem is that X has the homotopy type of a wedge of g - 1 

dimensional spheres. This is proven by first enlarging X to Z, 

the analogous complex where F - C is now allowed to be disconnected 

but each component must have negative Euler characteristic. The 

complex Z, the second of the three basic complexes (CS being the 

first) , has dimension 3g - 4 + r + s and is 2g - 3 connected. 

After studying several additional complexes the proof follows a 

standard outline, [12]. 

2.5. For the sake of simplicity I shall only discuss one p~rt of 
1 

Harer's results on the virtual cohomological dimension: that M 
g 

has the homotopy type of a 4g - 3 dimensional spine. The discussion 

F 1 starts with the description of a invariant ideal triangulation of ~ 
g 

T I. The triangulation arises from the following result of Strebel, 
g 
[19] . 

Theorem 2.4. Given a compact Riemann surface R and a point p 

there exists a unique meromorphic quadratic differential ~ on R 

such that 

i) ~ has exactly one pole, 

ii) in terms of an appropriate complex coordinate z in a neigh- 
2 

dz 
borhood of p ~ = 2 and 

z 

iii) the real trajectories of ~ are closed. 

The differential ¢ may also be described by starting with the 

dz 2 
differential ..... 2 on the disc D = {Izl ~ i} and identifying arcs 

z 
on ~D (linearly in radian measure) to obtain the pair (R,~). To 

see this consider the following simple example (see Figure 5) where 

one obtains a surface of genus 2; in general any pattern for a genus 

g surface will occur. 

The data for a pair (R,~) is merely the combinatorial pattern 

for identifying arcs on DD, as well as their lengths. In order to 

record this information for each pair of arcs consider a loop 
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- #  

h ' 

Figure 5 

based at p, formed by rays from the origin with endpoints on ~D 

identified under the arc pairing and assign to ~ a weight w equal 

to the length of the arcs on 3D; to (R,¢) assign the tuple 

.,w.). Specifically for the loop intersecting A 1 in the above (Y] ] 
example the picture is (see Figure 6) 

Figure 6 
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To interpret this situation the third basic complex A is 

introduced. A rank k arc system {d0,...,~k} is the isotopy 

class of k + 1 simple loops based at p, intersecting only at p, 

and representing distinct, nontrivial homotopy classes. A is the 

cell complex with a k simplex ~ = <~0,...,~k > for each rank k 

arc system and ~ is identified as a face of ~' if ~ c ~' 

Strebel's theorem provides a F equivariant map T 1 ÷ A. To the 
g 

pair (R,p) associate the quadratic differential ~ and to 

associate the arc system {s 0 ..... ~k } with weights, choosing one 

arc for each pair of segments of ~D occurring in the construction 

of ¢. Simplicial coordinates on A are given simply by the 

weights. The map T 1 ÷ A is in fact a homeomorphism onto the 
g 

complement of a subcomplex A ; the ideal triangulation is the pull- 

back of the cell structure of A. 

Recalling the construction of R by identifying segments on ~D, 

observe that every pattern must have at least 4g segments. In 

particular the rank k arc systems arising from Strebel's theorem 

have rank ~ 2g - i; the 2g - 2 skeleton of A is contained in 

A . Now introduce the dual complex Y of A - A . Accordingly Y 

will not have cells for the 2g - 2 skeleton of A. Thus the 

dimension of Y is dim T 1 - (2g-l) = 4g - 3. Harer shows that 
g 

T 1 may be F equivariantly retracted onto Y. 
g 

1 provides a helpful example. A is the standard The case of T 1 

SL(2;Z) tessellation of H, A is the rational points of IR = ~H 

and Y is Serre's tree for SL(2;Z). 

3. The Weil-Petersson Geometry. 

3.1. Ideally the purpose of introducing an invariant metric on the 

Teichmuller space T s is to provide information on the intrinsic, 
g 

i.e. independent of the metric, properties of the space. I shall 

try to indicate the extent that the Weil-Petersson metric has success- 

fully filled this role. In brief a sketch will be given of the 

results in [2, 3, 17, 22-30]. Recently Fischer and Tromba have 

independently undertaken an investigation of Teichmuller space and 

the W-P metric, substituting the viewpoint of Riemannian geometry 

for the classical theory of quasiconformal maps, [20, 21]. 

As background the reader may check [2, 3, i0, 21] for proofs 

that the metric is K~hler. Recall that the W-P metric is invariant 

for the action of F s on T s and thus descends to the moduli space 

g T s M s of Riemann surfaces gM s. On both and the metric is not 
g g g 

complete, [22]. Now this result is best understood in terms of 
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the latter results [17, 26] that the metric has an extension to 

M s , the Deligne-Mumford stable curve compactification of M s . 
g g 

The study of the W-P geometry can be divided into three major 

topics: curvature considerations, extension of the metric to the 

compactification ~ and the symplectic geometry of the Kihler Mg, 

form. As a sample of the results I shall start by sketching three 

ap_plications. The Kihler form ~WP extends to the compactification 

MS; the extension e--WP defines a cohomology class in H2(~), 
g 1 g 
[26, 27, 28]. In [27] it is found that 2 ~WP is actually the 

2~ 
first Chern class of a known line bundle <I (discussed below) on 

M --g In particular 1 - is a rational class and the line bundle 
g" 22 ~WP 

~i is positive. At this point the Kodaira__ theorem may be quoted to 

obtain a purely analytic proof that M s is projective algebraic. As 
g 

a second application consider the Nielsen conjecture: every finite 

subgroup of F s fixes a point of T s. An important ingredient of 
g g 

Kerckhoff's proof of the conjecture is that the geodesic length 
functions i, are convex along Thurston's earthquake paths, [16]. 

I have recently found that the length functions i, are strictly 

convex along the W-P geodesics [30]. This result provides the 

basis of an independent but similar proof of the conjecture. The 

proof starts with an observation of Fricke-Klein: that a suitable 

sum S = ~ Z of length functions will be a proper function on T s. 
g 

Given ~ ~ 3 £g,S a finite subgroup, then the sum S O = Y ~ S(y) is 

invariant and is also a sum of length functions. Now S O is 

strictly convex along W-P geodesics and thus a critical point is 

necessarily a relative minimum (S O is an index 0 Morse function). 

Since S O is proper it follows that it has a unique minimum and 

finally the ~ invariance of S O guarantees that the minimum is 

fixed by ~, the desired conclusion. And finally since the W-P 

metric is Kahler it follows immediately that the length functions 

~, are in fact plurisubharmonic; this observation leads to a new 

proof that T s is a Stein manifold, [30]. 
g 

3.2. Ahlfors was the first to consider the curvature of the metric; 

he obtained singular integral formulas for the Riemann curvature 

tensor, [3]. As an application he found that the Ricci, holomorphic 

sectional and scalar curvatures are all negative. Royden later 

showed that the holomorphic sectional curvature is bounded away from 

zero and more recently Tromba has found that the general sectional 

curvature is indeed negative. I shall now present a simple formula 
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for the curvature tensor, [29]. Recall first that the holomorphic 

tangent space T I'0 T s at R ~ T s is identified with the space of 
g g 

harmonic Beltrami differentials H(R) and that dA denotes the 

hyperbolic area element on R and D the hyperbolic Laplacian. 

The Riemann curvature is a 4-tensor in particular for ~' ~B' ZY' 

UB 6 H(R) 

r -1 
- (D-2) (~a~8) (~y~) dA Re, By ~ -2 ] 

R 

r -i 
= -2 I (m-2) (lJc~ ~) (Py~B)di 

JR 

where (D-2) -I is the indicated self adjoint operator and observe 

for ~, ~ E H that the product ~ is a function. Starting with 

the above formula it follows that the metric has negative sectional 

curvature, that the holomorphic sectional and Ricci curvatures are 
-i bounded above by 2~(g-l) and that the scalar curvature is bounded 

-3(3g-2) In fact the arguments show that the curvatures above by 4~ 

are governed by the spectrum of the Laplacian: the negative curva- 

ture is a manifestation of the nonpositivity of the Laplacian. These 

last results have also been obtained by Royden. 

As a further application of the techniques I wish to consider the 

characteristic classes of the Teichmuller curve T . T is the 
^ g g 

natural fibre space over T ; the fibre above R ~ T is a compact 
g g 

submanifold isomorphic to R. If ~ : T ÷ T is the projection 
g g 

TI, 0 TI,0T then the kernel of the differential d~ : T + defines a g g 
line bundle (v) on T , the vertical bundle of the fibration. 

g 
The restriction of (v) to a fibre of z is simply the tangent 

bundle of the fibre; by the uniformization theorem the hyperbolic 

metric induces a metric on (v). I have computed the curvature 

2-form for this metric and found that it is negative, a pointwise 

version of Arakelov's result that the dual (v)* is 

numerically effective, [4]. Once again the curvature is governed 

by the spectrum of the Laplacian. By integrating powers of the 

Chern class Cl(V) over the fibers of ~ one obtains Fg invariant 

characteristic classes <n(P) = f -l(p) Cl(V)n+l defined on Tg. 

Mumford has many intriguing results on the behavior of these 

classes in the cohomology ring: in particular the ~ , n S 3g - 3 
n 

are nontrivial and many geometrically interesting cycles may be 

written in terms of the < . Mumford guesses that the low dimensional 
n 
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part of the cohomology ring may actually be polynomial in the K . 
1 n 

As an example in [29] I find that in fact <i 2 ~WP' eWP the 

W-P Kahler form. 2z 

3.3. Masur was the first to consider the extension of the W-P 

metric from Mg to ~[a' ~g the moduli space of stable curves. In 

the paper [17] Masur develops the foundations of this topic. Recall 

now that the compactification locus D = M - M is a divisor with 
g g 

normal crossings. Briefly Masur shows if D is given locally as 

z I = 0 in a coordinate chart z = (z I, .... z n) then 

dS~p = dZld~l 

lZll2(iog 1/l~ll)3 + O(iZli(log i/Izli)l 31, [17]. 

In particular the W-P length of a differentiable curve in ~ is 
g 

finite and the metric extends to a complete metric on M . Starting 
g 

from Masur's results it follows that the K'ahler form ~ extends 
WP 

to a closed, positive, (i,i) current ~I4P on ~ , [26]. In fact 
_ g 

the above singularity is sufficiently mild for ~WP to be written 

as ~F, F a continuous function (as an example consider 
1 

F= log i/[zr),~ ~ [28]. Standard approximation techniques may then be 

applied to conclude that ~WP is the limit of smooth Kahler forms 

in its cohomology class. Thus even though the Kahler form is not 

smooth it is suitable for applications in particular the Kodaira 

theorem may be quoted to conclude that there is a projective embedding. 

Now the discussion will continue with the results on describing the 

cohomology class of 
WP" 

3.4. The divisor D c M is reducible D = D O U...U P , whore 
g [~J 

the generic surface represented in D k has one node separating it 

into components of genus k and genus g - k (for k = 0 the node 

is nonseparating). Certainly the divisors ~k define cohomology 

classes in H6g_8(Mg) and by Poincar6 duality (over ~, ~g is a 

V-manifold) ~WP also defines a class in H6g_8. The first result 

is contained in the following, [27]. 

Theorem 3.1. {D O .... ,D[~], (~Wp)} is a basis for H6g_8(Mg;~). 

The sketch of the proof is simple enough. By the result of 

Harer on H2(M ) and an application of Mayer-Vietoris one verifies 
g 

at the outset that H2(~g;~) has rank 2 + [~]'z A candidate basis 
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is then presented for each of H 2 and H6g_8 and the intersection 

pairing is evaluated. The pairing is found to be nonsingular and 

the proof is complete. The trick for evaluating the integrals of 

~WP is to perform a single integration [27] and then deduce the 

remaining integrals by formal properties. 

As an example a 2-cycle E for M is obtained by considering 
g 

the family of (stable) curves given as the one point sum of a fixed 
surface S O of genus g - 1 and an elliptic curve E, which will 

vary over all (even degenerate) structures represented in its moduli 

space M~ (see Figure 7). 

So E 

Figure 7 

1 Now to state the desired The 2-cycle E is parametrized by M I. 

formal property of ~WP let s be the W-P K~hler form for M s . 
g g 

0 1 --; the restriction of 0 to E is Then briefly ~glE = ~llM~ __~ g 

naturally identified with the Kahler __f°rm for M~. And so the 
I 

integral fE ~WP is reduced to the M~ ± case. This last integral 
~2 

may be evaluated directly; the value is -~, [25]. The formal 

properties of the Kahler form will be discussed further in section 

3.6 as consequences of the Fen chel-Nielsen coordinates. 

After evaluating the intersection pairing one finds that 

1 -- : 71 
272 ~WP 

where ~i is the extension of the class K 1 discussed in section 

3.2. Indeed the above is the generalization to M of the earlier 
g 

result l-l--2 2 ~WP = <I for Mg. Finally the basic techniques for 
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constructing cycles and computing intersections may be applied to the 

higher homology groups. For instance in [27] it is shown that 

H2k(Mg) , k < g has rank at least gk I 

3.5. The last two sections will be devoted to the symplectic geometry 

of the Kahler form ~WP" The symplectic geometry of the triple 

(ewp,t,,i,), t, the Fenchel-Nielsen vector fields and ~, the 

geodesic length functions, is dual to the trigonometry, as will be 

described below, of geodesics in the hyperbolic metric of a surface. 

A construction of Fenchel-Nielsen provides for natural flows on 

Teichmuller space. Fix the free homotopy class of a nontrivial simple 

loop {e} on F and an increment 6 of time. If R = { (R,f)} ( T g 
then {f(~)} is represented on R by a unique geodesic e~. Cut R 

open along ~R' rotate one side of the cut relative to the other (by 

a distance of 6) and then glue the sides in their new position. The 

hyperbolic structure in the complement of the cut extends naturally 

to define a hyperbolic structure on the new surface. A geodesic 

intersecting e~ is deformed to a broken geodesic Yb with endpoints 

separated 6 units along ~. As $ varies a flow, the F-N flow, 

is defined on the Teichm~ller space T . The infinitesimal generator 
g 

of the flow is the F-N vector field t . The free homotopy class 

{e} also determines a function Z , the geodesic length function, 

on Tg. In brief define Ze(R), R ( Tg to be the length of e~ and 

the exterior derivative di will also be discussed. The basic 

formula of the symplectic geometry is a duality formula 

~wp(t , ) = -dZ , [23, 24, 26]. 

An immediate consequence is that the symplectic form is invariant 

under the F-N flows on Tg, in particular the flows are W-P 

volume preserving. There are also formulas for the Lie derivatives 

t~B and t t~ 7, [24]. 

~(t ,t B) = t Z = [ cos @ 
8 p(~#8 P 

(3.1) 
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41 Z2 
t t~ = ~ e +e 

Y (P'q) E~#Yx~#7 2(e ~-i) 

sin @ sin @ (3.2) 
P q 

m I m 2 
_[ e +e 

(r,s)(~#Bx~#Y 2 (e~_l) 
sin ~ sin 8 . 

r s 

The right hand side of (3.1) evaluated at R E T is the sum of 
g 

cosines of the angles at the intersections of the geodesics ~ and 

B~. Similarly the right hand side of (3.2) is a sum of trigonometric 

invariants for pairs of intersections; ~i and ~'2 are the lengths 

of the segments of y defined by p, q and likewise, for m I and 

m 2 relative to 8. Recently W. Goldman has generalized these formulas 

to the representation space Hom(zI(F),G)/G, G a Lie group with 

nondegenerate symmetric bilinear form on its Lie algebra, [i0]. Con- 

sequences of the above formulas are considered in [25, 26]. In 

particular if ~ # ~ @ ~ then t t Z B > 0 and (3.2) represents a 

quantitative version of Kerckhoff's observation that the geodesic 

length functions are convex along earthquake paths, [16]. Finally 

note that the infinitesimal generators of Thurston's earthquake flows 

form the completion (in the compact-open topology) of the F-N vector 

fields. 

3.6. Introducing coordinates on Teichmuller space is a question of 

parametrizing Riemann surfaces. Fenchel-Nielsen suggested a particu- 

larly simple solution to this problem. It starts with the observation 

that the lengths of alternating sides of a right hexagon in the 

hyperbolic plane may be chosen arbitrarily. Given such a hexagon, 

form its metric double across the remaining sides to obtain the basic 

object P, a pair of pants (see Figure 8). 

23 

Figure 8 
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Topologically P is the complement of three disjoint discs in $2; 

metrically P is a hyperbolic surface with geodesic boundary. The 

key observation is that pants P and P' may be metrically summed 

along their boundaries provided merely that the boundaries are of 

equal length. Now fixing a combinatorial pattern, then summing the 

pants Pl,...,P2g_2, one obtains the general genus g surface 

(see Figure 9). 

Figure 9 

The coordinates for T are simply the free parameters for this 
g 

construction. There are exactly two parameters at each summing locus. 

Of course the first is simply the length Z of the locus, this 

varies freely in IR +. The second, the twist parameter T, measures 

the net displacement between the boundaries. The parameter T is 

defined to be the hyperbolic distance between the feet of perpendiculars 

dropped from appropriate boundaries (see Figure i0). 

Figure i0 
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After an initial choice T is determined by analytic continuation 

and varies freely in IR. In this way Fenchel-Nielsen established 

the following result, [i, 26]. 

÷ 3g-3 Theorem 3.2. The map Tg (~+× IR) 3g-3 given by R ÷ (£j,Tj)j= 1 

is a homeomorphism. 

In particular T is a cell. Furthermore the Deligne-Mumford 
_ g 

compactification M can be constructed from M by simply allowing 
g g 

the length parameters Z, to vanish, [1,26]. The discussion of the 

previous section already suggests a relationship between the Kahler 

form WWp and the F-N coordinates. Recall that ~WP is invariant 

under the F-N vector fields and observe that the coordinate vector 

fields ~ are indeed F-N vector fields. Consequently the coeffi- 
3 

cients of ~WP in F-N coordinates (Tj,Zj) must be independent of 

the twist variables T.. In fact much more is true, [26]. 
3 

= [ dZ. A dT.. Theorem 3.3. ~WP j 3 3 

Briefly (~,T.,Z.) is a completely integrable Hamiltonian system. 
3 3 

The Kahler form ~WP is F invariant in particular the 2-form 
g 

dZ. ^ dT. is independent of the combinatorial pattern for combining 
j 3 3 

pants. Finally the discussion will be concluded with two applications 

of the above formula. Set a length parameter Z k equal to zero to 

obtain a degenerate surface S (see Figure ii) 

Figure ii 
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the sum at punctures of surfaces S 1 and S 2. It follows immediately 

from the above formula that ~S converges to the sum ~S + ~S as 
1 2 

Z k + 0. Briefly stated the Kahler form for a sum of surfaces is the 

sum of the component forms, [27]. To demonstrate the second formal 

property, behavior for an unramified covering R ÷ S of surfaces, 

consider the following example (see Figure 12). 

Figure 12 

R is a 4 punctured torus, S is a one punctured torus and the 

covering transformation is the order 4 rotation about the axis of 

the hole. Introducing F-N coordinates relative to the indicated 

loops the reader will easily check that ~R = 4eS; the Kahler form 

multiplies under unramified coverings, [27]. 
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