A COUNTEREXAMPLE IN 3-SPACE TO A CONJECTURE OF H. HOPF

Henry C. Wente Department of Mathematics The University of Toledo Toledo, Ohio 43606, U. S. A.

In this article we produce a counterexample to the following conjecture of H. Hopf. We shall carefully state the theorems involved in the construction and also provide a geometric description (with suggestive sketches) of the surfaces giving the counterexample. An expanded version complete with proofs is to appear in a paper of the author [8]. <u>Conjecture of Heinz Hopf</u>: If Σ is an immersion of an oriented closed hypersurface in \mathbb{R}^n with constant mean curvature $H \neq 0$, then the hypersurface is the standard embedded (n-1)-sphere.

If the immersed surface is known to be embedded then a well-known result of A. D. Alexandroff [1] asserts that the conjecture is true. H. Hopf himself [4] showed that if Σ is an immersion of S^2 into R^3 with constant mean curvature then the conjecture is still true. Recently Wu-Yi Hsiang [5] produced an immersion of S^3 into R^4 with constant mean curvature which is not isometric to the standard sphere. However, his construction does not work in the classical dimension (=3) and the conjecture has remained open in this case. We have the following.

<u>Counterexample Theorem</u>: There exist closed immersed surfaces of genus one in \mathbb{R}^3 with constant mean curvature. (In fact, we exhibit a countably infinite number of isometrically distinct examples.)

We shall exhibit the surface by producing a conformal mapping of the plane R^2 into R^3 with constant mean curvature which is doubly periodic with respect to a rectangle in the plane. Let w = (u,v) = u + iv represent a typical point in $R^2 = C$ while $\bar{x} = (x,y,z)$ denotes a point in R^3 so that our immersion is given by a function $\bar{x}(u,v)$. We let

$$d\bar{x} \cdot d\bar{x} = ds^2 = E (du^2 + dv^2) = e^{2\omega} (du^2 + dv^2)$$
 (1a)

$$-d\bar{\mathbf{x}} \cdot d\bar{\boldsymbol{\xi}} = Ldu^2 + 2Mdudv + Ndv^2$$
(1b)

be the first and second fundamental forms for the surface. We shall set the mean curvature $H = \frac{1}{2}$. The Gauss and Codazzi-Mainardi equations in this case become (see [4] for details)

$$\Delta \omega$$
 + Ke^{2 ω} = 0 , K = Gauss curvature = (LN - M²)/E² (2a)

$$\Phi(w) = (L - N)/2 - iM$$
 is a complex analytic function. (2b)

Now suppose that $\omega(u,v)$ is a solution to the differential equation

$$\Delta \omega + \sinh \omega \cosh \omega = 0 . \tag{3}$$

If we set $E = e^{2\omega}$, $L = e^{\omega} \sinh \omega$, M = 0, and $N = e^{\omega} \cosh \omega$, then it follows that the Gauss and Codazzi-Mainardi equations are satisfied and by a theorem of Bonnet the system can be integrated to yield a surface $\bar{x}(u,v)$, unique up to a Euclidean motion in R^3 , having the given fundamental forms. The equations to be integrated are

$$\bar{x}_{uu} = \omega_{u} \bar{x}_{u} - \omega_{v} \bar{x}_{v} + L\bar{\xi}$$

$$\bar{x}_{uv} = \omega_{v} \bar{x}_{u} + \omega_{u} \bar{x}_{v} + M\bar{\xi}$$

$$\bar{x}_{vv} = -\omega_{u} \bar{x}_{u} + \omega_{v} \bar{x}_{v} + N\bar{\xi}$$

$$\bar{\xi}_{u} = -k_{1} \bar{x}_{u}$$

$$\bar{\xi}_{v} = -k_{2} \bar{x}_{v}$$

$$(4)$$

Here $k_1 = L/E = e^{-\omega} \sinh \omega$, $k_2 = e^{-\omega} \cosh \omega$ so we see that the lines of curvature correspond to lines parallel to the coordinate axes in R^2 . Furthermore, the surface is free of umbilic points.

If $\bar{\mathbf{x}}(\mathbf{u},\mathbf{v})$ is to be a doubly periodic mapping then so must $\omega(\mathbf{u},\mathbf{v})$. However the converse need not be true. Suppose that $\omega(\mathbf{u},\mathbf{v})$ is a positive solution to the differential equation (3) on a rectangular domain Ω_{AB} lying in the first quadrant with two of its sides on the coordinate axes and the vertex opposite the origin at (A,B). Suppose also that the solution $\omega(\mathbf{u},\mathbf{v})$ vanishes on the boundary of the rectangle. Following the argument used in [3], one can show that $\omega(\mathbf{u},\mathbf{v})$ satisfies the following symmetry properties.

- a) $\omega(u,v)$ is symmetric about the lines u = A/2 and v = B/2. (5)
- b) For a fixed v, 0 < v < B, $\omega(u,v)$ is an increasing function of u, $0 \le u \le A/2$. For a fixed u, 0 < u < A, $\omega(u,v)$ is an increasing function of v, $0 \le v \le B/2$.
- c) $\omega_u(u,0)$ is strictly increasing for $0 \le u \le A/2$. $\omega_u(0,v)$ is strictly increasing for $0 \le v \le B/2$.

Furthermore, $\omega(u,v)$ can be extended as a solution of the differential equation (3) on all of R^2 by odd reflections across the grid lines u = mA, v = nB (m, n integers).

Theorem 2: Suppose $\omega(u,v)$ is a solution to the differential equation (3) on R^2 which is positive on the fundamental rectangle Ω_{AB} , vanishing on the boundary and satisfying the properties (5). The mapping $ar{\mathbf{x}}(\mathtt{u},\mathtt{v})$ obtained by integrating the system (4) is an immersed surface of constant mean curvature $H = \frac{1}{2}$ and satisfying the following symmetry properties. (6)

a) The curve $\bar{x}((m + \frac{1}{2})A, v)$ lies in a normal plane π_m with \bar{x}_u as a normal vector to π_m . If R_m is the reflection map about π_m in R^3 then $\bar{x}((m + \frac{1}{2})A + u, v) = R_m \mathbf{o} \, \bar{x}((m + \frac{1}{2})A - u, v)$.

b) The curve $\bar{x}(u, (n + \frac{1}{2})B)$ lies in a normal plane Ω_n with \bar{x}_v as a normal vector to Ω_n . If R'_n is the reflection map about Ω_n in R^3 then $\bar{x}(u, (n + \frac{1}{2})B + v) = R'_n \circ \bar{x}(u, (n + \frac{1}{2})B - v)$. Each Ω_n is orthogonal to each Π_m .

c) The curve $\bar{x}(u,0)$ is a planar curve lying in a plane Γ_0 which is a tangent plane to the surface at each point. This curve intersects each plane I_m orthogonally. $\bar{x}_{ij}(u,0)$ is an even function of u. This allows us to conclude that all of the planes π_m are parallel.

d) The curve $\bar{x}(0,v)$ satisfies the condition $(\bar{x} + \bar{\xi})(0,v) = \bar{c}_{0}$ a constant vector. Therefore $\bar{x}(0,v)$ lies on a sphere $S(\bar{c}_0,1)$ with center \bar{c}_{o} and radius one. Similarly $\bar{x}(kA,v)$ lies on a sphere $S(\overline{c}_{k}, 1)$. The points \overline{c}_{k} lie in every plane Ω_{n} . e) $\overline{x}(u + 2A, v) = \overline{x}(u, v) + \overline{b}$ where $\overline{b} = \overline{c}_{2} - \overline{c}_{0}$ is a vector nor-

mal to the planes Π_m carrying Π_0 to Π_2 .

f) $\bar{\mathbf{x}}(\mathbf{u},\mathbf{v}+2\mathbf{B}) = \Theta \ \bar{\mathbf{x}}(\mathbf{u},\mathbf{v})$ where Θ is a rotation from Ω_0 to Ω_2 about their line of intersection, 1.

The surface will close up if we can select the rectangle Ω_{AB} so that the translation $\overline{b} = \overline{0}$ (i.e. all the planes Π_m are identical) and so that the rotation angle Θ is a rational multiple of 2π . We use a continuity argument to show that this is possible. The procedure is as follows. Map (via a homothety)all rectangles of similar shape onto a representative rectangle which we select by the standard Schwartz-Christoffel mapping of rectangles onto the unit disk.

Figure 1: The Fundamental Domain.

We have the following identities satisfied by the various functions defined on the domains pictured in Figure 1.

a) On
$$\Omega(\alpha, \lambda)$$
.
 $\Delta \omega + \sinh \omega \cosh \omega = 0$
 $\Delta \sigma + \sinh \sigma = 0$ where $\sigma = 2\omega$.
b) On $\Omega(\alpha)$.
 $\Delta W + 2\lambda \sinh W \cosh W = 0$ where $W = \omega \circ \Phi$.
 $\Delta \Sigma + 2\lambda \sinh \Sigma = 0$ where $\Sigma = 2W$.
c) On the disk D.
 $\Delta \Psi + \lambda |f'(z, \alpha)|^2 (e^{\Psi} - e^{-\Psi}) = 0$, where $\Psi = \Sigma \circ f$.
 $W = f(z, \alpha) = \int_0^Z (t^4 + 2(\cos 2\alpha)t^2 + 1)^{-\frac{1}{2}} dt$

The proof of the existence of positive solutions to the system (7c) on D which vanish on the boundary (and such that small values for λ correspond to large solutions Ψ) is based on a method developed by V.K. Weston [7] and R.L. Moseley [6].

<u>Theorem 3</u>: There exists an open set $O \subset (\alpha, \lambda)$ -plane where for each α_1, α_2 with $0 < \alpha_1 < \alpha_2 < \pi/2$ there exists $\tilde{\lambda} = \tilde{\lambda}(\alpha_1, \alpha_2) > 0$ so that $[\alpha_1, \alpha_2] \ge (0, \tilde{\lambda}] \subset 0$, and a mapping from O to $C(\bar{D})$ denoted by $\Psi(z, \alpha, \lambda)$ such that

a) $\Sigma(\mathbf{w},\alpha,\lambda) = \Psi(g(\mathbf{w},\alpha),\alpha,\lambda)$ is a positive solution to (7b) which vanishes on the boundary.

b) The functions Σ , Σ_{u} , Σ_{v} depend continuously on (α, λ) down to $\lambda = 0$ with $\Sigma(w, \alpha, 0) = \Sigma_{o}(w, \alpha) = 4 \log(1/|g(w, \alpha)|)$.

c) For $\lambda > 0$ the mapping $(\alpha, \lambda) \longrightarrow \Psi(z, \alpha, \lambda)$ is a continouosly differentiable mapping of 0 into $C(\overline{D})$.

<u>Remark on the proof</u>: One first constructs a good approximate solution $U_{o}(z,\lambda)$ with the correct asymtotic limit as λ approaches 0 by using the Liouville form of the exact solution to the differential equation $\Delta V + \lambda e^{V} = 0$, namely $\lambda e^{V} = |F'(z)|^{2}/(1 + |F(z)|^{2})^{2}$ where F(z) is a complex analytic function with at most simple zeros and poles. Then one applies a modified Newton iteration scheme, starting with $U_{o}(z,\lambda)$ using the appropriate integral operator, and shows that the resulting sequence converges in $C(\bar{D})$ to the desired solution.

We want to measure the distance between the parallel planes Π_0 and Π_1 and wish to show that for certain (α, λ) the distance is zero. It is better to look at the surfaces $\overline{Y}(w, \alpha, \lambda) = \overline{x} \circ \Phi(w, \alpha, \lambda) / \sqrt{2\lambda}$ defined relative to the fundamental domain $\Omega(\alpha)$ and to measure the distance between the parallel planes π'_0 and π'_1 which correspond to the mapping \bar{y} . We do this by looking at the curve $\bar{y}(u,0,\alpha,\lambda)$, a planar curve which cuts through the planes π'_m orthogonally and has the symmetry indicated in Figure 2.

Figure 2:Measuring the Distance between the Parallel Planes I_0' and I_1'

The functions $\overline{y}(u.v,\alpha,\lambda)$ are conformal immersions into \mathbb{R}^3 with constant mean curvature $H = \sqrt{2\lambda}$, so that as λ approaches 0 the mean curvature approaches 0 and the mapping tends to a planar map. The functions \overline{y} satisfy a system just like (4) with ω replaced by $W = \Sigma/2$, L is replaced by $\widetilde{L} = \sqrt{2\lambda} L$ and so on. Since by Theorem 3b the function $W(u,v,\alpha,\lambda)$ approaches $W(u,v,\alpha,0) = 2 \log(1/|g(w,\alpha)|)$ as λ approaches 0, the curve $\overline{y}(u,0,\alpha,\lambda)$ approaches a limit curve $\overline{y}(u,0,\alpha,0)$ as λ approaches 0. It follows that the distance function $S = S(\alpha,\lambda)$, as indicated in Figure 2, is continuous down to $\lambda = 0$ and differentiable if λ is positive. Since $W(u,v,\alpha,0)$ is known explicitly one can calculate $S(\alpha,0)$, obtaining

$$S(\alpha,0) = \int_0^\beta (\cos 2\theta / (2\cos 2\theta - 2\cos 2\beta)^{\frac{1}{2}}) d\theta , \beta = (\pi/2) - \alpha.$$

We immediately have the following conclusions.

- a) $S(\alpha,0)$ is strictly increasing for $0 < \alpha < \pi/2$.
- b) $S(\alpha, 0)$ approaches $-\infty$ as α approaches 0.

c) $S(\alpha, 0)$ is positive for α greater than $\pi/4$.

It follows that there is exactly one value α^* , $0 < \alpha^* < \pi/4$, for which $S(\alpha^*, 0) = 0$. We have the following picture (see Figure 3). There is a small rectangle $[\alpha_1, \alpha_2] \times [0, \tilde{\lambda}]$ with $S(\alpha_1, \lambda)$ negative, $S(\alpha_2, \lambda)$ positive, and $S(\alpha^*, 0) = 0$. There is a connected set X included in this small rectangle on which S vanishes and which separates the left side of the rectangle from the right side. In particular $(\alpha^*, 0)$ is in the set X and every line λ = constant slices into X.

Figure 3: The Set S=0: All the Planes Π_m are Identical.

Now we measure the rotation angle between the planes Ω_0 and Ω_1 by looking at the image of the curve $\bar{y}(0,v,\alpha,\lambda)$, $B(\alpha)/2 < v < 3B(\alpha)/2$. From Theorem 2d it follows that this curve lies on the sphere with center \tilde{c}_0 and radius $(2\lambda)^{-\frac{1}{2}}$, connecting the planes Ω_0 to Ω_1 and intersecting them orthogonally. Let $T(\alpha,\lambda)$ be the distance between these planes as measured on a great circle of the sphere whose radius is $(2\lambda)^{-\frac{1}{2}}$. By repeating the calculation used to compute $S(\alpha,\lambda)$, one finds that for small λ , and α less than $\pi/4$, $T(\alpha,\lambda)$ is positive down to the limit $\lambda = 0$ with the expression for $T(\alpha,0)$ being similar to that for $S(\alpha,0)$. However, for the angle function $\Theta(\alpha,\lambda)$ we have the identity $\Theta(\alpha,\lambda) = (2\lambda)^{\frac{1}{2}} T(\alpha,\lambda)$. This gives us the following:

- a) $\Theta(\alpha, \lambda)$ is positive for λ positive.
- b) $\Theta(\alpha, \lambda)$ approaches 0 as λ approaches 0.

Since X is a connected set with more than one point (see Figure 3), it follows by continuity that on the set X the function $\Theta(\alpha,\lambda)$ takes on a continuum of values $[0,\varepsilon]$ where ε is positive. Whenever $O(\alpha,\lambda)$ is a rational multiple of 2π the surface will close up. This establishes the existence of a countable number of isometrically distinct immersions of a torus into R³ with constant mean curvature.

A View of the Immersed Tori.

Let $\Omega = \Omega_{AB}$ be a representative rectangle chosen so that the smallest eigenvalue of the Laplace differential equation

 $\Delta W + 2\lambda \sinh W \cosh W = 0 \text{ on } \Omega \text{ , } W = 0 \text{ on } \delta \Omega \text{.} \tag{10}$ We have the following facts regarding solutions to the differential equation (10).

a) There exists a branch of positive solutions to (10) which bifurcate from the zero solution at $2\lambda = \gamma_1 = 1$ or $\lambda = 1/2$.

b) For any positive solution (W, λ) we must have 0 < λ < 1/2, and for any λ in this interval there exists at least one positive solution.

c) As λ approaches 0 there is a curve of large positive solutions (W, λ) obtained by applying Theorem 3.

It is tempting (but not yet proven) to conjecture that the branch bifurcating from the zero solution at $\lambda = 1/2$ connects up with the branch of large solutions established in Theorem 3. Even more tempting is the following conjecture.

<u>Conjecture</u>: Let (W_1, λ_1) and (W_2, λ_2) be two positive solutions to the system (10). If $0 < \lambda_1 < \lambda_2 < 1/2$ then W_1 is greater than W_2 at every point inside Ω .

For each solution of the system (10) we may apply (7) to get a solution $\omega(u,v)$ to the differential equation (3) and then apply our recipe to construct an immersion $\bar{x}(u,v)$ with constant mean curvature. In the limit case where W = 0 the resulting immersion is simply a conformal mapping of the plane onto a circular cylinder whose cross section is a circle of radius one.

In the figures that follow we shall sketch the image $\bar{x}(u,v)$ of a portion of the fundamental rectangle $\sqrt{2\lambda} \, \Omega_{AB}$ as indicated in the first figure and labeled {1,2,3,4,5,6}. A + sign indicates that $\omega(u,v)$ is positive and hence the Gauss curvature of the image surface $K = e^{-2\omega} \sinh \omega \cosh \omega$ is positive, while a - sign indicates that both functions are negative. The rest of the surface is obtained by rotating the surface 180° about the normal line at the image of 2 followed by a series of reflections about the appropriate planes.

V A	·							
T	+	4	+	5	-	6	-	
T	+	1	+	2	_	3	-	u

Figure 4: The Fundamental Domain $\sqrt{2\lambda} \Omega(\alpha) = \Omega(\alpha, \lambda)$.

Figure 5: Case 1, W=0, A Pure Cylinder.

Figure 6: Case 2. W is positive on $\Omega(\alpha, \lambda)$ but not too Large.

Figure 7: Case 3. W somewhat larger, the Planes Π_0 , Π_1 still separated. If one keeps α fixed and lets λ approach 0, then one can easily show the following.

1)
$$\int_{\mathbf{X}}^{K} dA = \text{ area of the Gauss map} \rightarrow 4\pi \text{ as } \lambda \text{ approaches } 0.$$

2) $\int_{\Omega^{+}}^{e^{2\omega}} dudv = \text{ Area of } \mathbf{x}(\Omega^{+}) \longrightarrow 4\pi(2)^{2} \text{ as } \lambda \text{ approaches } 0.$
3) $\int_{\Omega^{-}}^{e^{2\omega}} dudv = \text{ Area of } \mathbf{x}(\Omega^{-}) \longrightarrow 0 \text{ as } \lambda \text{ approaches } 0.$

These calculations suggest that as λ approaches 0, $\bar{\mathbf{x}}(\Omega^+)$ takes on the shape of a sphere of radius 2.

Figure 8: Case 4. The Parallel Planes II, I, are Identical.

If one reflects the sketched Figure 8 about the plane of the paper ($\Pi_0 = \Pi_1$) you obtain a surface which resembles a clam shell. Upon rotating this shall 180° about the vertical line $c_0^{-}(2)$ one obtains the other shell. The combined figure is now a clam with the shells opened a bit.

References:

 A.D. Alexandroff, <u>Uniqueness Theorems for Surfaces in the Large</u>, V. Vestnik, Leningrad Univ. No. 19 (1958) 5-8: Am. Math. Soc. Transl. (Series 2) 21, 412-416.
 L.P. Eisenhart, <u>A Treatise on the Differential Geometry of Curves and Surfaces</u>, Dover Reprint (1960).
 B. Gidas, W. Ni, L. Nirenberg, <u>Symmetry and Related Properties via the Maximum Principle</u>, Comm. Math. Physics 68 (1979) No. 3, 209-243.
 H. Hopf, <u>Differential Geometry in the Large</u>, (<u>Seminar Lectures New York Univ. 1946 and Stanford Univ. 1956</u>) Lecture Notes in Mathematics No. 1000, Springer Verlag, 1983.
 Wu-Yi Hsiang, <u>Generalized Rotational Hypersurfaces of Constant Mean Curvature in the Euclidean Space I</u>, Jour. Diff. Geometry 17(1982)337-356.
 J.L. Moseley, <u>On Asymtotic Solutions for a Dirichlet Problem with an exponential Singularity</u>, Rep Amr I, West Virginia University (1981)
 V.H. Weston, <u>On the Asymtotic Solution of a Partial Differential Equation with an Exponential Nonlinearity</u>, SIAM J. Math Anal 9(1978) 1030-1053.
 H. C. Wente, <u>Counterexample to a Conjecture of H. Hopf</u>, (to appear) Pac. Jour. of Math.