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In this article we produce a counterexample to the following conjecture 

of H. Hopf. We shall carefully state the theorems involved in the con- 

struction and also provide a geometric description (with suggestive 

sketches) of the surfaces giving the counterexample. An expanded ver- 

sion complete with proofs is to appear in a paper of the author [~ . 

Conjecture of Heinz Hopf; If Z is an immersion of an oriented closed 

hypersurface in R n with constant mean curvature H ~ 0, then the hyper- 

surface is the standard embedded (n-l)-sphere. 

If the immersed surface is known to be embedded then a well-known 

result of A. D. Alexandroff [i] asserts that the conjecture is true. 

H. Hopf himself [4] showed that if Z is an immersion of S 2 into R 3 

with constant mean curvature then the conjecture is still true. Recently 

Wu-Yi Hsiang [5] produced an immersion of S 3 into R 4 with constant 

mean curvature which is not isometric to the standard sphere. However, 

his construction does not work in the classical dimension (=3) and the 

conjecture has remained open in this case. We have the following. 

Counterexample Theorem: There exist closed immersed surfaces of genus 

one in R 3 with constant mean curvature. ( In fact, we exhibit a coun- 

tably infinite number of isometrically distinct examples.) 

We shall exhibit the surface by producing a conformal mapping of the 

plane R 2 into R 3 with constant mean curvature which is doubly per- 

iodic with respect to a rectangle in the plane. Let w = (u,v) = u +iv 

represent a typical point in R 2= C while x = (x,y,z) denotes a point 

in R 3 so that our immersion is given by a function x(u,v) We let 

2~ dx'dx = ds 2 = E (du 2 + dv 2) = e (du 2 + dv 2) 

-dx-d[ = Ldu 2 + 2Mdudv + Ndv 2 

(la) 

(Ib) 

be the first and second fundamental forms for the surface. We shall set 

the mean curvature H = ½. The Gauss and Codazzi-Mainardi equations in 

this case become (see [4] for details) 

Aw + Ke 2m = 0 , K = Gauss curvature = (LN - M2)/ E 2 (2a) 
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~[w) = (L - N)/2 - iM is a complex analytic function. (2b) 

NOW suppose that ~(u,v) is a solution to the differential equation 

6~ + sinh m cosh ~ = 0 (3) 

If we set E e 2~ = , L = e~sinh ~, M = 0, and N = e~cosh ~ , then it 

follows that the Gauss and Codazzi-Mainardi equations are satisfied and 

by a theorem of Bonnet the system can be integrated to yield a surface 

x(u,v) ,unique up to a Euclidean motion in R 3, having the given funda- 

mental forms. The equations to be integrated are 

XUU = ~uXu - ~vXv + L[ (4) 

~uv = ~v~u + ~uXv + ~ 

Xvv = -~u~u + ~vXv + N[ 

~u = -kl Xu 

~v = -k2 ~v 

Here k I = L/E = e-~sinh w, k 2 = e-~cosh ~ so we see that the lines 

of curvature correspond to lines parallel to the coordinate axes in R2° 

Furthermore, the surface is free of umbilic points. 

If x(u,v) is to be a doubly periodic mapping then so must ~(u,v). 

However the converse need not be true. Suppose that ~(u,v) is a pos- 

itive solution to the differential equation (3) on a rectangular domain 

~AB lying in the first quadrant with two of its sides on the coordin- 

ate axes and the vertex opposite the origin at (A,B). Suppose also 

that the solution ~(u,v) vanishes on the boundary of the rectangle. 

FolLowing the argument used in [3] , one can show that ~ (u,v} satisfies 

the following symmetry properties. 

a) ~(u,v) is symmetric about the lines u = A/2 and v = B/2. (5) 

b) For a fixed v, 0 < v < B, ~(u,v) is an increasing function 

of u, 0 ~ u ~ A/2 . For a fixed u, 0 < u < A, w(u,v) is an 

increasing function of v, 0 < v ~ B/2. 

c) ~u(U,0) is strictly increasing for 0 ~ u < A/2. 

Wv(0,v) is strictly increasing for 0 < v < B/2. 

Furthermore, ~(u,v) can be extended as a solution of the differential 

equation {3) on all of R 2 by odd reflections across the grid lines 

u = mA, v = nB (m, n integers). 
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Theorem 2: Suppose e(u,v) is a solution to the differential equation 

(3) on R 2 which is positive on the fundamental rectangle nAB , van- 

ishing on the boundary and satisfying the properties (5). The mapping 

x(u,v) obtained by integrating the system (4) is an immersed surface 

of constant mean curvature H = ½ and satisfying the following symmetry 

properties. 
(6) 

a) The curve x((m + ½)A, v) lies in a normal plane H m with 

as a normal vector to H . If R is the reflection map about 
u m m 

in R 3 then x((m + ½)A + u,v) = ROx((m + ½)A - u,v) 
m m 

b) The curve x(u, (n + ½)B) lies in a normal plane n n with 

as a normal vector to ~ . If R' is the reflection map about 
v R3 n n n 

in then x(u (n + ½)B + v) = R'ox(u, (n + ½)B - v) Each ~ is 
' n " n 

orthogonal to each 
m 

c) The curve x(u,0) is a planar curve lying in a plane F 0 which 

is a tangent plane to the surface at each point. This curve intersects 

each plane E m orthogonally. Xu(U,0) is an even function of u. 

This allows us to conclude that all of the planes H m are parallel. 

d) The curve x(0,v) satisfies the condition (x + ~) (0!v) = ~o 

a constant vector. Therefore x(0,v) lies on a sphere S(~o,l) with 

center ~ and radius one. Similarly x(kA,v) lies on a sphere 
O 

S(~ k ,i). The points Ck lie in every plane ~n 

e) x(u + 2A,v) = x(u,v) + 5 where b = ~2 - ~o is a vector nor~ 

mal to the planes H m carrying Z 0 to H 2. 

f) x(u,v + 2B) = 0 x(u,v) where @ is a rotation from n ° to n 2 

about their line of intersection, i. 

The surface will close up if we can select the rectangle nAB so 

that the translation b = 0 (i.e. all the planes H m are identical) 

and so that the rotation angle @ is a rational multiple of 2~. We use 

a continuity argument to show that this is possible. The procedure is 

as follows. Map (via a homothety)all rectangles of similar shape onto 

a representative rectangle which we select by the standard Schwartz- 

Christoffel mapping of rectangles onto the unit disk. 

v w-plane (A ,B ) 

v 

! -  J ~u' >u 

/~-plane 

Figure i: The Fundamental Domain. 
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We have the following identities satisfied by the various functions 

defined on the domains pictured in Figure I. 

(7) 

a) On ~(a,~). 

A~ + sinh ~ cosh ~ = 0 

Ao + sinh ~ = 0 where o = 2~. 

b) On ~(~) 

AW + 21sinh W cosh W = 0 where W = ~o~ ° 

AZ + 21 sinh Z = 0 where z = 2W. 

c) On the disk D. 

A~ + ~If' (z,~) 12(e ~ - e -U) = 0 , where ~ = Zof . 

w = f(z,~) = /0z(t 4 + 2(cos 2a)t 2 + i) -½ dt 

The proof of the existence of positive solutions to the system 

(7c) on D which vanish on the boundary (and such that small values 

for i correspond to large solutions ~) is based on a method devel- 

oped by V.K. Weston [7] and R.L. Moseley [6]. 

Theorem 3: There exists an open set 0 C (e,l)-plane where for each 

el,~2 with 0 < el < ~2 < 7/2 there exists ~ = ~(~i,~2) > 0 so that 

[~l,e2] x (0,~]C 0 , and a mapping from 0 to C(D) denoted by ~(z,~,l) 

such that 

a) Z(w,e,l)= ~(g(w,a),e,l) is a positive solution to (7b) which 

vanishes on the boundary. 

b) The functions ~' Zu ' Ev depend continuously on (e,l) down 

to I = 0 with Z(w,~,0) = Zo(W,e) = 4 log(i/Ig(w,~)I) 

c) For I > 0 the mapping (~,l)--~Y(z,~,l) is a continouosly 

differentiable mapping of O into C(D) 

Remark on the proof: One first constructs a good approximate solution 

Uo(Z,l) with the correct asymtotic limit as I approaches 0 by using 

the Liouville form of the exact solution to the differential equation 

AV + le V = 0, namely le V = IF' (z)12/(1 + IF(z)12) 2 where F(z) is a 

complex analytic function with at most simple zeros and poles. Then 

one applies a modified Newton iteration scheme, starting with Uo(Z,l) 

using the appropriate integral operator, and shows that the resulting 

sequence converges in C(D) to the desired solution. 

We want to measure the distance between the parallel planes ~0 

and ~i and wish to show that for certain (a,l) the distance is zero. 

It is better to look at the surfaces ~(w,e,l) = ~o¢(w,~,l)/! 2/~ defined 
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relative to the fundamental domain ~(e) and to measure the distance 

between the parallel planes ~' and K{ which correspond to the map- 
o 

ping y . We do this by looking at the curve y(u,0,e,l) , a planar 
i curve which cuts through the planes E m orthogonally and has the 

symmetry indicated in Figure 2. 
I 
[I ~ , ~ _ , ~ ( 3 A ( ~ ) I 2 , 0 , ~ , k )  

S(~,X) 

I //~ (A(~),0,~ ,~)I 
r / I 

o 

Figure 2:Measuring the Distance between the Parallel Planes ~' and ~i 
O 

The functions y(u.v,e,l) are conformal immersions into R 3 with 

constant mean curvature H = 2/~ , so that as I approaches 0 the mean 

curvature approaches 0 and the mapping tends to a planar map. The funct- 

ions y satisfy a system just like (4) with 0~ replaced by W : Z/2, 

L is replaced by L = /~ L and so on. Since by Theorem 3b the funct- 

ion W(u,v,~,l) approaches W(u,v,~,0) = 2 log(i/[g(w,~) I) as I approach- 

es 0, the curve y(u,0,~,l) approaches a limit curve y(u,0,~,0) as 

I approaches 0. It follows that the distance function S = S(a,X) , 

as indicated in Figure 2, is continuous down to I = 0 and differentia- 

ble if I is positive. Since W(u,v,~,0) is known explicitly one can 

calculate S(~,0), obtaining 

Z6 (8) 
S(~,0) = (cos 20/(2cos 2e - 2cos 26) 9 ) de , 6 = (~/2)-~. 

We immediately have the following conclusions. 

a) S(~,0) is strictly increasing for 0 < ~ < ~/2. 

b) S(~,0) approaches -~ as ~ approaches 0. 

c) S(~,0) is positive for e greater than ~/4. 

It follows that there is exactly one value ~* , 0 < e* < ~/4, for 

which S(~*,0) = 0. We have the following picture (see Figure 3). 

There is a small rectangle L~I,~J x [0,~] with S(el,l ) negative, 

S(~2,I) positive, and S(~*,0) = 0. There is a connected set X includ- 

ed in this small rectangle on which S vanishes and which separates 

the left side of the rectangle from the right side. In particular 

(e*,0) is in the set X and every line I = constant slices into X. 
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I s i so 
~i ~* e2 

Figure ~: The Set S=0: All the Planes Hm are Identical. 

Now we measure the rotation angle between the planes ~o and Q1 

by looking at the image of the curve y(0,v,~,~), B(~)/2 < v <3B(~)/2. 

From Theorem 2d it follows that this curve lles on the sphere with 

center ~ and radius (21) -½ o , connecting the planes ~o to ~i 

and intersecting them orthogonally. Let T(a,I) be the distance between 

these planes as measured on a great circle of the sphere whose radius 

is (21) -½ By repeating the calculation used to compute S(~,~), 

one finds that for small l/and ~ less than ~/4, T(~,I) is positive 

down to the limit I = 0 with the expression for T(e,0) being similar 

to that for S(~,0). However, for the angle function @(e,l) we have 

the identity @(~,i) = (21) ½ T(~,I) . This gives us the following: 

a) @(e,1) is positive for ~ positive. 

b) @(~,I) approaches 0 as I approaches 0. 

Since X is a connected set with more than one point (see Figure 3), 

it follows by continuity that on the set X the function @(~,~) 

takes on a continuum of values [0,~ where ~ is positive. Whenever 

0(~,~) is a rational multiple of 2~ the surface will close up. This 

establishes the existence of a countable number of isometrically dis- 

tinct immersions of a torus into R 3 with constant mean curvature. 

A View of the Immersed Tori. 

Let ~ = ~AB be a representative rectangle chosen so that the 

smallest eigenvalue of the Laplace differential equation 

Av + yv = 0 on ~ , v = 0 on boundary ~ (9) 

2((I/A2)+(I/B2)) and in par- is Y1 = I. This means that 1 = Yl = ~ 

ticular A and B are both greater than ~. We are to solve the differ- 

ential equation 

AW + 2lsinh W cosh W = 0 on ~ , W = 0 on 6~. (i0) 

We have the following facts regarding solutions to the differential 

equation (i0). 
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a) There exists a branch of positive solutions to (i0) which 

bifurcate from the zero solution at 21 = Y1 = 1 or I = 1/2. 

b) For any positive solution (W,I) we must have 0 < I < 1/2, 

and for any i in this interval there exists at least one positive sol- 

ution. 

c) As I approaches 0 there is a curve of large positive solutions 

(W,I) obtained by applying Theorem 3. 

It is tempting (but not yet proven) to conjecture that the branch 

bifurcating from the zero solution at I = 1/2 connects up with the 

branch of large solutions established in Theorem 3. Even more tempting 

is the following conjecture. 

conjecture: Let (WI,II) and (W2,12) be two positive solutions to 

the system (i0). If 0 < I 1 < 12 < 1/2 then W 1 is greater than W 2 

at every point inside ~. 

For each solution of the system (i0) we may apply (7) to get a 

solution ~(u,v) to the differential equation (3) and then apply our 

recipe to construct an immersion x(u,v) with constant mean curvature. 

In the limit case where W = 0 the resulting immersion is simply a 

conformal mapping of the plane onto a circular cylinder whose cross 

section is a circle of radius one. 

In the figures that follow we shall sketch the image x(u,v) of 

a portion of the fundamental rectangle 2/~ ~AB as indicated in the 

first figure and labeled {1,2,3,4,5,6}. A + sign indicates that 

~(u,v) is positive and hence the Gauss curvature of the image surface 

K = e-2~sinh ~ cosh e is positive, while a - sign indicates that both 

functions are negative. The rest of the surface is obtained by rotating 

the surface 180 ° about the normal line at the image of 2 followed by 

a series of reflections about the appropriate planes. 

V /~ (A ,B ) 

+ + - _ 
4 5 6 

+ + - _ 

1 i2 3 ____~u 

F i.gure 4: The Fundamental Domain /2}, ~(e) = [~[e,1). 

1 1 ,Xu 2 3 

9 > ~/2 

Figure ~: Case I, W=0, A Pure Cylinder. 
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Figure 6: Case 2. W is positive on ~(~,l) but not too Large. 

1 2 

3 

/ 
Figure ~: Case 3. W somewhat larger, the Planes ~o' ~i still separated. 

If one keeps ~ fixed and lets ~ approach 0, then one can easily 

show the following. 

i) /K dA = area of the Gauss map --9 47 as 
I~ (~+) 

2) ]e 2W dudv = Area of x(~+) > 4~(2) 2 

3) /e 2W dudv = Area of ~(~-) "~ 0 as 
/< 

These calculations suggest that as X approaches 

the shape of a sphere of radius 2. 

approaches 0. 

as ~ approaches 0. 

approaches 0. 

0, x(~+) takes on 
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/ 

, / ,( / 

Figure 8: Case 4. The Parallel Planes fro' HI are Identical. 

If one reflects the sketched Figure 8 about the plane of the 

paper (~o = ~i ) you obtain a surface which resembles a clam shell. 

Upon rotating this shall 180 ° about the vertical line Co-(2) one 

obtains the other shell. The combined figure is now a clam with the 

shells opened a bit. 
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