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§ I. Nevanlinna theory 

Let f : ~d > X be a holomorphic map, where X is a complex non- 

singular variety of dimension d . Let D be an effective divisor on 

X , with associated invertible sheaf £ . Let s be a meromorphic sec- 

tion of £ , with divisor (s) = D . We suppose that f is non-dege- 

nerate, in the sense that its Jacobian is not zero somewhere. For po- 

sitive real r we define 

m(D,r,f) : S -logl f*s I 2 

Bd B (r) 

@ . 

where o is the natural normalized differential form invariant under 

rotations giving spheres area I . When d = I , then ~ = de/2~ . Ac- 

tually, m(D,r,f) should be written m(s,r,f) , but two sections with 

the same divisor differ by multiplication with a constant, so m(s,r,f) 

is determined modulo an additive constant. One can select this constant 

such that m(s,r,f) ~ 0 , so by abuse of notation, we shall also write 

m(D,r,f) ~ 0 . 

We also define 

N(D,r,d) = normalized measure of the analytic divisor in the ball 

of radius r whose image under f is contained in D ; 

(Cf. Griffiths [Gr] for the normalization.) 

r 
N(D,r,f) = S [N(D,r,f)-N(D,0,f)] dr + N(D,0,f)log r . 

0 r 

T(D,r,f) = m(D,r,f) + N(D,r,f) 
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Remark. If d = I then N(D,r,f) = n(D,r,f) is the number of points 

in the disc of radius r whose image under f lies in D 

One formulation of the FIRST MAIN THEOREM (FMT) of Nevanlinna the- 

ory runs as follows. The func~kon T(D,r,f) depends o n l y  on t h e  l i n e a r  

e q u i v a l e n c e  c~ass o f  D , moduZo bounded funet%o~s O(I) 

The first main theorem is relatively easy to prove. More important is 

the SECOND MAIN THEOREM (SMT) , which we state in the following form: 

Let  D be a d i v i s o r  on X w i t h  sZmple normal ~ o s s i n g s  (SNC, meaning t h a t  

t h e  i ~ r e d u c i b l e  componemO~ of  D c~e n o n - s i n g u l a r ,  and i n t e ~ e c t  t~amsver -  

s a l l y ] .  Le t  E be an ample d i v i s o r ,  and K t he  c a n o n i c a l  c l a ~ s .  Given s , 

t h e r e  e x i s t s  a s e t  of  f i n i t e  mem~ure z ( s )  such  t h a t  f o r  r n o t  i n  t h i s  s e t ,  

m(D,r,f) + T(K,r,f) ~ ~ T(E,r,f) 

This is an improved formulation of the statement as it is given for in- 

stance in Griffiths [Gr] , p. 68, formula 3.5. 

§ 2. Weil functions 

Let X be a projective variety defined over { or { (p-adic complex 
P 

numbers = completion of the algebraic closure of ~p) . Let £ be an 

invertible sheaf on X and let p be a smooth metric on £ . If s 

is a meromorphic section of £ with divisor D , we define the associ- 

ated Weil function (also called Green's function) 

I(P) = -log[ s(P) I for P { supp (D) 

If we change the metric or s with the same divisor, I changes by a 

bounded smooth function, so is determined mod O(I) . We denote such a 

function by 1 D . It has the following properties: 

The association D I > 1 D is a homomorphism mod O(I) 

If D = (f) on an open set U (Zariski) then there exists a 

smooth function ~ on U such that 
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ID(P) = -log L f(P) I + 5. 

If D is effective, then i D ~ -O(I) (agreeing that values of 

1 D on D are then ~ ). 

If v denotes the absolute value on { then we write 
v 

v(a) = -loglal 
v 

for any element a 6 {v' sO we can write 

~D = v°f + 

In the sequel, metrics will not be used as such; only the associated 

Weil functions and the above properties will play a role. Note that 

these Well-Green functions need not be harmonic. In some cases, they 

may be, for instance in the case of divisors of degree 0 on a curve. 

But if the divisor has non-zero degree, then the Green function is not 

harmonic. 

In the sequel, we shall deal with global objects, and then the Weil 

functions and others must be indexed by v , such as ID,v' ~v' etc. 

§ 3. Heights (Cf.[La]) 

Let K be a number field, and let {v} be its set of absolute values 

e x t e n d i n g  e i t h e r  t h e  o r d i n a r y  a b s o l u t e  v a l u e  o n  ~ , o r  t h e  p - a d i c  a b -  

s o l u t e  values such that Ipl v = I/p . We let Kv be the completion, and 

K a i t s  a l g e b r a i c  c l o s u r e .  T h e n  we h a v e  t h e  p r o d u c t  f o r m u l a  
v 

Z dvv(a) : 0 
v 

d v 
[Kv : ~v] and a 6 K , a ~ 0 . We let llalIv = ialv where dv - [K : ~] 

Let (x ° ..... Xn)E ~n(K) be a point in projective space over 

We define its height 

K . 
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h(P) : ~ log max II xillv 
v i 

If K : ~ and xo,...,XnE ~ are relatively prime, then 

h(P) : log max Ix il 

where the absolute value is the ordinary one. From this it is immediate 

that there is only a finite number of points of bounded height and boun- 

ded degree. 

Let 

: X --> ]pn 

be a morphism of a projective non-singular variety into projective space. 

We define 

h (P) = h(~(P)) for P 6 V(K a) 

The basic theorem about heights states: 

There e x i s t s  a unique homomorphism c t  ........ > h c 

Pic(X) - - >  functions from X(K a) to 

modulo bounded functions 

such t h a t  i f  D i s  very ample, and O(D)  : <o*Oip I )  , then  

H 1. h = h + 0(I) 
c <0 

In the above statement, we denote by h c any one of the func- 

tions in its class mod bounded functions. Similarly, if D lies in 

c , we also write h D instead of h c . This height function also satis- 

fies the following properties: 

H 2. If D is effective, then h D ~ -O(1) 
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H 3. If E is ample and D any divisor, then 

h D : O(hE) 

In particular, if E I, E 2 are ample, then 

hE1 >> << hE2 

We are using standard notation concerning orders of magnitude. Since 

according to our conventions, a given height h E is defined only mod 

bounded functions, the notation h D = O(h E) or h D << h E means that 

there exists a constant C such that for all points P with hE(P) 

sufficiently large, we have lhm(P) I K ChE (P) 

Essential to the existence and uniqueness of such height functions h c 
is the property of elementary algebraic geometry that given any divisor 

D , if E is ample, then D + mE is very ample for all m ~ m 
o 

A fundamental result also states that one can choose metrics Pv "uni- 

formly" such that 

h D = E dv ID,v + O(I) 
V 

The right hand side depends on Green-Weil functions lD,v' and so is a 

priori defined only for P outside the support of D . Since h D de- 

pends only on the linear equivalence class of D mod 0(1) , we can 

change D by a linear equivalence so as to make the right hand side 

defined at a given point. 

Now let S be a finite set of absolute values on K . We define, rela- 

tive to a given choice of Well-Green functions and heights: 

1 D m(D,S) = Z d v ,v 
v6S 

N(D,S) v$S dv ID'v 

Then 
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h D = m(D,S) + N(D,S) , 

and one basic property of heights says that h D depends only on the 

linear equivalence class of D . This is Vojta's translation of FMT 

into the number theoretic context, with the height h D corresponding 

to the function T(D) of Nevanlinnna theory. 

Remark. The properties of heights listed above also hold for T , 

as well as others listed for instance in [La], e.g. if D is alge- 

braically equivalent to 0 , then T(D) = O(T(E)) for E ample. As 

far as I can tell, in the analytic context, there has been no such 

systematic listing of the properties of T , similar to the listing of 

the properties of heights as in number theory. 

Vojta's translation of SMT yields his conjecture: 

Le t  X be a p r o j e c t i v e  n o n - s i n g u ~  v a r i e t y  d e f i n e d  over  a number f i e l d  K . 

L ~  S be a f i~g~e  s e t  o f  a b s o l u t e  va lues  on K . L e t  D be a d i v i s o r  on 

X r a t i o n a l  over  K and w i t h  s i m p l e  normal o t o s s i n g s .  Le t  E be ample on 

X . Give  ~ . Then t h e e  e x i s t s  a p r o p ~  Z a r i s k i  c l o s e d  s u b s e t  

Z ( S , D , E , s )  = Z ( s )  such  t h a t  

m(D,S,P) + hK(P ) <ShE(P ) for P6X(K) - Z(s) 

Or in other words, 

E dv lD,v + hK ~ s hE on X(K) - Z(s) 
v6S 

where K is the canonical class. 
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Example I. 

and let 

EXAMPLES 

Let X : ~I • K = ~ , E = (~) . Let ~ be algebraic, 

f(t) = ~ (d ~-t) 
d 

where the product is taken over all conjugates d~ of ~ over ~ . 

Let D be the divisor of zeros of f . The canonical class K is just 

-2(~) . A rational point P corresponds to a rational value t = p/q 

with p,q 6~ , q > 0 , and p,q relatively prime. We let S consist 

of the absolute value at infinity. If If(p/q) I is small, then p/q 

is close to some root of f If p/q is close to a , then it has to 

be far away from the other conjugates of ~ . Consequently Vojta's 

inequality yields from the definitions: 

-log [~- P/ql - 2h (p/q) 2~ sh (p/q) 

with a finite number of exceptional fractions. Exponentiating, this 

reads 

which is Roth's theorem. 

I~_ ~ >__/__I 
= 2+g 

q 

Remark. Some time ago, I conjectured that instead of the qS in Roth's 

theorem, one could take a power of log q (even possibly (log q)1+s). 

Similarly, in Vojta's conjecture, the right hand side should be re- 

placed conjecturally by O(log h E ) . If one looks back at the Nevanlinna 

theory, one then sees that the analogous statement is true, and relies 

on an extra analytic argument which is called the lemma on logarithmic 

derivatives. Cf. Griffiths [Gr]. 
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Example +...+L be the formal sum 2. Let X = ~n and let D = L O 
n 

of the hyperplane coordinate sections, with L at infinity, and 
o 

E = L ° . Let ~- m be a rational function such that 

(~i) = Li-L ° 

Let S be a finite set of absolute values. Note that in the case of 

~n , the canonical class K contains -(n+1)L O . Consequently, Vojta's 

inequality in this case yields 

TT 

i v6S H(p) n+l+C 

for all P outside the closed set Z(e) . This is Schmidt's theorem, 

except that Schmidt arrives at the conclusion that the exceptional set 

is a finite union of hyperplanes. In order to make Vojta's conjecture 

imply Schmidt strictly, one would have to refine it so as to give a 

bound on the degrees of the components of the exceptional set, which 

should turn out to be I if the original data is linear. 

Example 3. Let X be a curve of genus ~ 2 . Take S empty. The 

canonical class has degree 2g-2 where g is the genus, and so is 

ample. Then Vojta's inequality now reads 

h K ~ s h E o n  X(K) , 

except for a finite set of points. Since K is ample, such an in- 

equality holds only if X(K) is finite, which is Falting's theorem. 

Example 4. This is a higher dimensional version of the preceding 

example. Instead of assuming that X is a curve, we let X have any 

dimension, but assume that the canonical class is ample. The same 

inequality shows that the set of rational points is not Zariski dense. 
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This goes toward an old conjecture of mine, that if a variety is 

hyperbolic, then it has only a finite number of rational points. The 

effect of hyperbolicity should be to eliminate the exceptional Zariski 

set in Vojta's conjecture. For progress concerning this conjecture in 

the function field case, cf. Noguchi [No], under the related assumption 

that the cotangent bundle is ample, and that the rational points are 

Zariski dense. 

To apply the argument of Vojta's inequality it is not necessary to 

assume that the canonical invertible sheaf is ample, it suffices to be 

in a situation when for any ample divisor E , h E = O(h K) . This is 

the case for varieties of general type, which means that the rational 

map of X defined by a sufficiently high multiple of the canonical 

class gives a rational map of dimension d = dim X . Then we have 

h°(mK)>> m d for m sufficiently large, and we use the following lemma. 

Lemma. Let  x be a n o n - s i n g u l a ~  v a r i e t y .  Le t  E be v e r y  ample on X , and 

l e t  D be a d i v i s o r  on X such t h a t  h ° (roD) >> m d f o r  m >= m 
o 

Then t h e r e  e x i s t s  m I such  t h a t  h ° ( m D - E ) > > m  d , and i n  p a r t i c u l a r ,  

m D - E  i s  l i n e a r l y  e q u i v a l e n t  t o  an e f f e c t k v e  d i v ~ o r ,  f o r  a / /  m > m I . 

Proof. First a remark for any divisor D . Let E' be ample, and 

such that D + E' is ample. Then we have an inclusion 

H°(mD) m H°(mD + mE') , 

which shows that h°(mD) Sh°(mD + mE') = x(m(D + E')) for m large 

because the higher cohomology groups vanish for m large, so 

h°(mD)>> m d 

Now for the lemma, without loss of generality we can replace E 
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by any divisor in its class, and thus without loss of generality we 

may assume that E is an irreducible non-singular subvariety of X . 

We have the exact sequence 

0--> 0 (mD-E) > 0 (roD) ......... > 0 (mD)IE > 0 

whence the exact cohomology sequence 

0 ~ >  H°(X,mD-E) > H°(X,mD) > H°(E,(0(D) IE) ®m) 

noting that 0(mD) IE : (0(D)I E) em . Applying the first remark to this 

invertible sheaf on E we conclude that the dimension of the term on 

the right is <<m d-1 , so h°(X,mD-E)>>m d for m large, and in par- 

ticular is positive for m large, whence the lemma follows. 

For mD - E effective, we get h E ~ hmD + 0(I) as desired. 

Example 5. Let A be an abelian variety, and let D be a very ample 

divisor with SNC . Let S be a finite set of absolute values of K 

containing the archimedean ones. Let ~1,...,~n be a set of generators 

for the space of sections of 0(D) . Let 0 S be the ring of S-integers 

in K (elements of K which are integral at all v{ S) . A point 

P 6 A(K) is said to be S-integral relative to these generators if 

~i(P) 6 O S for i = 1,...,n . On the set of such S-integral points, we 

have 

E dv ~D,v = hD + O(]) 
v6S 

immediately from the definitions. The canonical class is 0 . Then 

again Vojta's inequality shows that the set of S-integral points as 

above is not Zariski dense. 

This is in the direction of my old conjecture that on any affine 

open subset of an abelian variety, the set of S-integral points is 
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finite. However, in this stronger conjecture, we again see the dif- 

ference between finiteness and the property of not being Zariski dense. 

E__xample 6. Hall's conjecture Marshall Hall conjectured that if 
3 2 

x,y are integers, and x -y # 0 then 

I 

Ix 3 y2 I > max(Ix31 , ly21) 

with a finite number of exceptions. Actually, Hall omitted the c , 

but Stark and Trotter for probabilistic reasons have pointed out that 

it is almost certainly needed, so we put it in. 

Vojta has shown that his conjecture implies Hall's. We sketch the 

argument. Let 

2 2 
f : ]PI > ]P2 

be the rational map defined on projective coordinates by 

f(x,y,z) = (x3,y 2z,z3) 

Then f is a morphism except at (0,1,0) . We have indexed projective 

2-space by indices I and 2 to distinguish the space of departure 

and the space of arrival. We let L = L I be the hyperplane at infinity 
2 

on ]P12 , and L 2 the hyperplane at infinity on ]P2 

2 defined by x 3 2 Let C be the curve in ]PI -y = 0 . Let ~ be 

the rational function defined by 

3 2 
~(x,y) = X-y 
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Then the divisor of ~ is given by 

(~) = C - 3L . 

In terms of heights, Hall's conjecture can be formulated in the form 

log l~(x,y) I > lhL2f(x,y)+ error term, 

or if v denotes the ordinary absolute value on ~ , 

(I) 
I 

vo<0 (x,y) < -~hL 2U = of(x,y) +error term. 

Note that vo~ = i(~) is a Weil function associated with the divisor 

(~) . Thus Hall's conjecture amounts to an inequality on Weil functions. 

By blowing up the point of indeterminacy of f and the singularity 

of C at (0,0) , one obtains a variety X and a corresponding mor- 

phism fl : X > ~2 making the following diagram commutative: 

X 

2 > 2 
]Pl ]P2 " 

The blow ups are chosen so that the exceptional divisor and C have 

simple normal crossings. By taking D to be their sum together with 

the hyperplane at infinity, Vojta shows that his conjecture implies 

Hall's. By a similar technique, Vojta shows that his conjecture implies 

several other classical diophantine conjectures. I refer the reader to 

his forthcoming paper on the subject. 
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