
THE SCHOTTKY PROBLEM 

Gerard van der Geer 

By associating to a (smooth irreducible) curve C of genus g > 0 

its Jacobian Jac(C) one obtains a morphism M ~ A from the moduli 
g g 

space of curves of genus g to the moduli space of principally polari- 

zed Abelian varieties of dimension g. A well-known theorem of Torelli 

says that this morphism is injective. The image of ~{g in Ag is not 

closed it is only closed inside A ° the set of points of A that , g, g 

correspond to indecomposable principally polarized abelian varieties 

(i.e. that are not products). For g=1,2,3 the closure of the image 

. Since dimA =g(g+l)/2 dim M =3g-3 (for g > i) of Mg equals Ag g , g 

> dim M , and so the question arises one sees that for g > 3 dimAg g 

how we can characterize the image of M in A . This question goes 
g g 

back to Riemann, but is usually called Schottky's problem. 

In "Curves and their Jacobians" Mumford treats the Schottky pro- 

blem and the closely related question how to distinguish Jacobians from 

general principally polarized abelian varieties. In his review of the 

situation at that moment (1975) he describes four approaches and their 

merits. He concludes that none of these seems to him a definitive 

solution. In the meantime the situation has changed a lot. Some of 

the approaches have been worked out more completely, while new and 

successfull approaches have appeared. This paper deals with them. I 

hope to convince the reader that Mumford's statement that problems in 

this corner of nature are subtle and worthy of his time still very much 

holds true. 



386 

The ingredients. 

To begin with, some standard notations. 

: the Siegel upper half space of degree g, 
g 

Fg : Sp(2g, 2) the symplectic group acting on ~g, 

A B : A ~ D 5 i (mod n) 
£g(n,2n) = {(C D ) CFg C B 0 (mod n) "diagtAC ~ diagtBD ~ 0(mod2n)} 

Ag = Fg\~g , the moduli space of principally polarized abelian 

varieties of dimension g over ~, 

, a Galois cover of A . Ag(n,2n) = Fg(n,2n)\~g g 

If X is a principally polarized abelian variety over { we 

denote by L X (or simply L) a symmetric invertible ample sheaf of 

degree 1 defining the polarization and by 0 the divisor of a non- 

zero section of L . We put X = {x E X : nx = 0}. If X = ~g/~g+ T ~g 
X n 

(~ ~ ~ ) as a complex torus then we write X = X 
g 

o2 
The space F (X,L X ) 

functions 

02[o](~,z) = ! 
m ~gg 

Here o 

has dimension 2 g. A basis is defined by the 

exp 2~i(t(m+2)~(m+2 ) + 2(m+~)z) 

z ~ {g, o c (zzg/2z~ g) 

is viewed as a vector of length g with zeroes and ones as 

entries. A different set of generators of F(X,Lx2) is given by the 

squares  of 
i 

e [ ~ , ] ( ' c , z )  = m!  ~g exp 7ri(t(m+2)-r(m+2) + 2(m+~)(z+ 2 )) 

with ~,~, ~ (2Z/2~)g, t , = 0 (mod 2) . These are related by 

e2[ ~,](T,z) = [ <o,~'>02[o+~3(<,0)@2[o](<,z) (i) 
O 

.t 
<o, s'> = expzl os' 

We call a principally polarized abelian variety indecomposable if 

it is not a product of two principally polarized abelian varietieS, i.e. 

if its theta divisor is irreducible. 

The functions @2[o](T,z) define for X = X a morphism 
Y 
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CX: X ~N N = 2g-1 

+ 

Z ÷ ( .... @2[0] (~,z),...)= @2(~,z) 

which factors through z ÷ -z and is of degree 2 for indecomposable 

X. The image is the Kummer variety of X. By taking z:0 and vary- 

ing X we get a morphism 

¢: Ag(2,4) ~ ~N 
+ 

+ ( .... e2[o](T,0) .... )= @2(s,0) 

which is generically of degree i. We also define 

~: A (2,4) ~ ~M M = 2g-l(2g+])-i 
g 

÷ ( .... e2E ~ 3(~,0) .... ). 
E 

and ~ are connected by the special Veronese V defined by (i) : 

~pN 

V 
Ag (2,4) ~ + 

]pM 

The morphisms % and 

compactification Ag(2,4) 

The functions @2[o] 

can be extended to morphisms of the Satake 

of Ag(2,4). 

satisfy the differential equations 

@2[o] = 4~Ti (i + &4) ~ @2[o] , I < i,j s g. ~z. ~z. 
1 ] 1] 

(6ij: Kronecker 6 ) 

which are called the }{eat Equations. 

If M is the moduli space of curves of genus g then the map 
g 

M ~ A defined by C + Jac(C) is injective. The closure of the image 
g g 

in Ag (or Ag) is called the Jacobian locus. Notation : Jg. 

APPROACH 1 : ALGEBRAIC EQUATIONS. 

This is Schottky's original approach for characterizing the Jaco- 

bian locus. It is based on the construction of Prym varieties. For an 

excellent treatment of Prym varieties, see Mumford [13]. 

Suppose we start with a curve C of genus g and a non-zero point 

of order 2 on J : Jac(C) . This determines an unramified covering 
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~: C ÷ C of degree 2 and an induced map Nm : J = Jac(C) ÷ J and 

gives us a diagram 

¢ t $ 6 = mm (2) 

J ~ J 
21 

where % = ~*, - denotes transpose and ~,I are the principal polari- 

zations. One defines the Prym variety of ~: C ÷ C as the identity 

component of the kernel of Nm : P = (ker Nm) O, It is an abelian 

variety of dimension g. Mumford showed that from a diagram (2) it 

follows that there exist a symplectic isomorphism Hl/{0'n} + P2 with 

HI = { ~ (J2 : e2(~'n) = i} (e2: Weil-pairing) such that 

= Jxp/{ (~,~ (~)) : ~ ~ H I} 

2~ 0) 
Let o: Jxp + J be the natural isogeny. Then the polarization (0 p 

is the pull back under ~ of the polarization ~ and this implies 

that p is twice a principal polarization. So P carries a principal 

polarization ~ For these facts, see [13],§2. 

Now use the elementary 

(i.i) Lemma. If D is a divisor of degree g-I on C, then 

h°(~*(D)) # 0 if and only if h°(D) # 0 or h°(D+ n) # 0. 

One finds (using that for Jacobians the theta divisor in Jac g-I con- 

sists of the effective divisor classes of degree g-l) 

0 -1(0o ) n (Jac(C) x (0)) = 0 + @ 
0 O,~ 

Here ~o (resp. Oo ) denotes the theta divisor on Jac g-l(C) (resp. 

Jac2g-2(C), i.e, ® = {x {Jacg-i (C) : h°(x) > 0} If one now chooses 
o 

(Jac(C) 4 such that 2~ = T) and a theta characteristic ~ on C, 

then ~ = -i(~ +~) is a theta characteristic on C. If 0 = 

{x c J : h°(x÷ ~) > 0} , 0= {x e: J : h°(x+ ~) > 0 } are the theta divisors 

on J and on J then (since 01Jx(0) = ~*)- 

+ e . (3) (~.)-i~ = 0 -~ 
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(1.2) The link between the Kummer variety of P and that of J is 

obtained as follows. There is a morphism 

6: P ~ 12oji 

-i p + (~*) ( ~ j ,-p) - 

Mumford shows in [MI] that 6 is the usual Kummer map followed by an 

inclusion 

~p/ ~ (H o (L~2) v) 

p / 

~ 12%1 

For any principally polarized abelian variety X the Riemann theta 

formula 

0(u+v)0(u-v) : Z c~Bs~(u)s~(v) 

with 8 a non-zero section of L X and {s } a basis of F(X,Lx2) 

e2 
gives us a non-degenerate form B on F (X,L X ) via the (caB) and 

gives rise to a diagram 

~X ®2 v) 
~ ]P(H°(X,Lx ) 

X ~ ~ ~ B ' 

~ 12°x[ 
= + and B' is induced by B. where %i(x) 0X, x OX,_x 

Formula (3) thus implies the fundamental relation 

i(¢p(0)) = B' (¢X(O,)). (4) 

(1.3) For any indecomposable principally polarized X the theta group 

G(L~ 2) acts on F(X,L~ 2) and this defines an action of G(L~ 2) modulo 

scalars ~ X 2 on ~(F(X,L~2)v). If ~ ~ X 2, ~# 0 , then ~ defines 

a projective involution i of ~N with 

i (%x(X)) = }x(X+~) . (5) 

It is a classical fact that the involution i on ~N= ~(F(X,L~2)v)) 

+ V[ each of dimen- has as its fixed point set two linear subspaces V , , 
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sion 2g-l-i and each intersecting the Kummer variety of X in 

22 (g-l) points; moreover, 

(v+~v~)n~x(X) =~x({X~X4: 2x=~ }). 

The linear spaces V ±e cut out on the modular variety %(Ag(2,4)) 

the boundary components. To be precise, 

(1.4) Proposition . Let Ag_l(2,4) be one of the 2(22g-i) boundary 

components of Ag(2,4) of maximal dimension. The image #(Ag_l(2,4)) 

~2g-I 
in is the intersection of }(Ag(2,4)) with one of the linear 

+ 
spaces V-. 

It follows from (4) and proposition (1.4) that for a Jacobian X 

the intersection }x(X) n #(Ag_l(2,4)) is not empty (Here we view 

Ag_l(2,4) as a boundary component of Ag(2,4).) : the intersection 

contains the image of a point of order 4 of X. 

(1.5) Definition. The Schottky locus S &X is the smallest closed g g 

subset of A containing the points IX] with X indecomposable for g 

which ~x(X) n ~(Ag_l(2,4))  ¢ ~ for  a l l  boundary components Ag_l(2,4). 

S g 

By construction S contains J , the Jacobian locus (cf. (4)). g g 

can be described in terms of theta constants as well. The point is 

that P can be written as 

p = {g-i/~ g-l+ Pg_l~g-i 

and that after suitable normalizations 

for some Pg-i e ~g-i 

02  s s ] (~g,0) 8 s 0) (6) [ ,](Pg_l,0) = cSE , [ ,l](Tg, 

with a constant c ~ ~* independent of e,~' ~ (Tz./2Z~) g-I Thus 

is a translation of (4). 

(6) 

Let 

Tg c~[ X[ ~'e ] : e,s' c (Tz/2[Z) g, t, = 0 ] 

be the ideal of ~(Ag(2,4)). To an element f ~ Tg_l we associate 
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o(f) = f( .... 8[ Es, ~38[~' Is 0] (~g,0) ,...) 

by substituting 8[~,0] 80 [~, 01] (Tg,0) for X ~,] The group Fg/Fg(4,8) 

a t be the smallest acts on ~[ 8[ ,] (~g,0) : a' = 0]. Let Zg 

Fg/Fg(4,8)-invariant ideal of this ring containing all a(f) with f 

in Tg_l. Then Sg is the zero-locus of Zg in Ag. 

Of course, this description is explicit only if we know Tg_l and 

in general the structure of this ideal is not known. 

For g=4 one finds that ~ is the ideal generated by a Siegel 
g 

modular form of weight 8 as Schottky showed. 

The important question about S is whether S = J and if not, 
g g g 

what the components of Sg are. For g=4 Igusa proved that S 4 is 

irreducible. This implies $4 = J4" Recently van Geemen proved 

(1.6) Theorem. (van Geemen [ 6 ]) J is an irreducible component of S . g g 

His proof uses an induction argument and an analysis of the inter- 

section of the Schottky locus with blow-up of a boundary component of 

(4,8). 
g 

It is a recurring phenomenon in the history of the Schottky problem 

that one finds algebraic subsets of A that contain J as as irred- 
g g 

ucible component but that may have other components as well. Another 

example is the Andreotti-Mayer approach. Since it is known that for a 

Jacobian one has dim Sing 0 > g-4 one looks at 

N m = {[X] e Ag : Sing@ # ~, dim Sing @->m } 
g 

Andreotti and Mayer proved that J is an irreducible component of 
g 

N g-4 , g >_4. However, N g-4 contains other components. 
g g 
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One of the remarkable features of Jacobians is that their Kummer 

varieties possess trisecants : 

(2.1) Proposition. Let C be a non-singular curve and let a,b,c,d be 

points of C. If r { X=Jac(C) is such that 2r = a+b-c-d, then 

%x(r), Cx(r-b+c) and %x(r-b+d) are collinear. 

Fay's trisecant identity [ 3 ] implies this fact. Gunning [ 9 ] 

has generalized this identity. The idea behind it is essentially the 

following. 

Let N be a line bundle on XxX such that 

N]xxt ~ T_[(0(28)) ( T t : translation by t). 

Fix a point p of C. This defines ¢: C + X= Jac(C) by c ~c-p. 

Let A be a divisor of degree g on C such that 9*0(@) ~ 0(£). We 

let M be the vector bundle on X whose fibre at t is 

H°(C,0(2A+2t)). Pull back of sections via 

H° (X,T_< (0 (20)) ~ H° (C,0 (2£+2t)) (7) 

gives rise to a bundle map 

~: (pl),N --~ M. 

(2.2) Lemma. The map ~ is surjective. 

Proof. The map H°(X,T_t0(0)) + H°(C,0(A+t)) is surjective if the 

divisor A+t is non-special. Therefore, if D { 12A+tl can be written 

as D = DI+ D 2 , DiEiA+tii with £+t i non-special, then D is the 

zero divisor of a section in the image of (7). Define a non-empty 

open set in the symmetric product C (g) by (K =canonical divisor) 

h ° U = {Zl+...+Zg 6 C (g) : (D- ~ zi)=l, h°(< - [ zi)=0 } . 

If D = Zl+...+Zg+Z{+...+z' with [z i { U, then h°( [ z i) = i, hence g 

z i and ~ z! are both non-special. This shows that the image of 
1 
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P(H°(X,T*t(0(2@)) + IP (H°(C,0(2A+t))) contains a non-empty open set. 

We put as usual 

r { x { Sac(d) (C) • h °(x) > r+l } W d = _ . 

(2.3) Theorem. (Gunning [i0]) If Zl,...,z n are distinct points of 

then 
n n-~ + n < 

Wn 2 - ~ z. + 2p = {2t ~ Sac(C) : rank @2(t+~(zi))i:] ~ } 
- i=l l 

C, 

Proof. By the lemma, the rank of this 2gxn-matrix is less than n ¢=~ 

g+l-~ Applying Serre duality h°(2A+2t - ~z i) > g+l- ~ ~=~ 2t+2£- ~z i c W2g_n 

g+l-~ 
K - W2g_n : W~_~ and the fact that ~(K)=¢(2A) gives the result. 

The special case n=~=3 gives proposition (2.1). 

We can generalize this by allowing the points z i to coincide. If 

= . if i # j then in the rank Zl+...+z n m]xl+...+meX e with x i # x 3 

condition the mj vectors @2(t+%(xj)) have to be replaced by 

O~t+~ (xj)) AlO2(t+ ~ (xj)) ... Am _l@2(t+~ (xj)) , 
3 

where the £k are differential operators defined as follows. The curve 

#(C) contains at %(xj) an artinian subscheme Spec C[c]/(Emj) and this 

is given by a local homomorphism 

0X,%(xj) 

f 

{[c]/(smJ) 

f(yj) + AIf(Yj)E + ... + ~m _if(Yj)~mJ -I , 
3 

y:% (xj) 

The special case n=~=3 is important since it gives us back the 

curve C : Note that T o ~ C and W 1 

3 
WlO _ ~ zi + 2p = {2t { Sac(C) : rank (~2(t+%(zi)) (t) < 2 } ' 

i=l 

Gunning's idea in F 8 ] was to use this property to characterize 

Jacobians. Gunning used distinct points z. but Welters has infini- 
l 

tesimalized Gunning's case to include the case of coinciding points and 

transformed it into the following beautiful criterion : 
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(2.4) Theorem. (Gunning-Welters [19]) Let X be an indecomposable prin- 

cipally polarized abelian variety and let y c X be an artinian sub- 

scheme of length 3. Assume that 

V = {2t c X : t+Yc #~i(/) for some 
~N 

line lc }. 
A 

has positive dimension at some point. Then V is a smooth irreducible 

curve and X is its Jacobian. 

v 

(2.5) The property of having flexes is closely related to the Kadomcev- 

Petviashvili equation (K-P-equation) ,a fourth order partial different- 

ial equation satisfied by the theta functions of Jacobians. In [16 ] 

Mumford noticed that if the points a,b,c,d in proposition (2.1) coin- 

cide, Fay's trisecant identity leads to the K-P-equation. 

To get the link, note that an inclusion Spec ~[~]/(a N+I) ÷(X,0) 

is given by a local homomorphism 

C E a ] / ( c  N + I  ) 
0X'0 N 

i 
f + [ A i (f) 

i=l 

where the 4. 
1 

A = id , 
O 

are differential operators satisfying 

Ai(gh) = k+~:iAk(g)~/(h) 

One can show that this is equivalent to the existence of translation 

invariant vector fields DI,...,D N on X such that 

h 
' ' -l-hl .D v 

A = ~ ( h  t . . . .  h . )  b 1 . .  v , 
hl+2h2+...+~h > 0 

or formally 

eJ~imj ~j 
~ Ak ak (mod aN+l). 

k=0 

We apply this to criterion (2.4). Note that V is defined by the van- 

ishing of the 3x3 minors f~ , ~ ~(~g/2~g) 3, of (~+ AI%÷ A2%)÷ at 

some point. If we assume that this point is the origin and that Y : 
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Spec~[c] /(E 3) ~ (X,0) is given by DI,D 2 one finds (using the fact 

+ + 

that the rank of (02 (~iSj @2) i, j) equals g(g+l)/2+ 1 at (~,0) ; ~i = 

~/$zi)) that (V) 2=y. Then, as Welters noticed, one has 

13+ 
(V) 3 = Spec~[~]/(~ 4) ~=~ 3 m 3 such that (~m I DID2+D3)f =0 (all v) 

24 DI+3 D ~=~ rank(( 1 D 1 - 3DID3)_2) (~,0) ~ 2. 

Without changing Spec {E~]/(E 4) ~ (X,0) one may effect the change 

D 1 ÷ aD I, D 2 ÷ a2D2+bD I, D 3 ÷ a3D3+a2bD2+cD I, a # 0,b,c, hence we can re- 

write this as 

32 ÷ 
((D - DID3 + ~D 2 + d) ~) (~,0) = 0 (8) 

This is the K-P equation. By (2.3) the theta functions @2[6] of a 

Jacobian yield solutions. (Usually, the K-P equation is written 

Uyy+(Ut+Uxxx+UUx)x= 0. It is satisfied on a Jacobian by 

2 
U=DllOg8(z+xa1+Ya2+ta 3) +c for some al,a2,a 3 ccg, c ~ {, see [15 ]. 

Dubrovin formulated the equivalent form (8).) That theta functions 

yield solutions was noticed by Krichever, who arrived at it in a com- 

pletely different way. Novikov conjectured then that this should char- 

acterize Jacobians : 

(2.6) Novikov's Conjecture. An indecomposable principally polarized 

abelian variety X is a Jacobian if and only if there exist constant 

vector fields DI,D2,D 3 on X and a constant d such that 

32 ÷ 
((D - DID 3 + ~D 2 + d) 82 ) (T,0) = 0. (9) 

Dubrovin proved in [2] that the locus of IX] in A for which 
g 

(9) holds for some DI,D2,D 3 and d contains the Jacobian locus as 

an irreducible component. 

(2.7) Soon after a weaker version of (2.4) had appeared Arbarello and 

De Concini realized that one does not need the positive dimensionality 

of V ,but only the fact that 0V, 0 contains an artinian subscheme of 
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sufficiently big length, i.e. the condition is that there exist constant 

vector fields DI,..,D M for some big M such that 

M 

X nj~J 
eJ:l (02A AI~2A £2~2) ~ 0 (mod s M) at (~,0). 

In this way they were the first to write down equations that characte- 

rize the Jacobian locus, see [ i ]. Using the version of (2.4) given 

here one can take M= 6gg~ + I. 

Recently, Shiota showed that if one makes a minor technical assum- 

ption on X then Novikov's conjecture is true, see section 4. 

APPROACH 3 : THE GEOMETRY OF THE MODULI SPACE. 

The approach here, worked out in joint work with van Geemen [ 6 ], 

is based on the observation that under # and ~X both the moduli 

space A (2,4) and the Kunumer variety of X are mapped to the same 
g 

projective space, so that we can compare their positions in this space. 

It was motivated by the special case g:2 studied in [ 7 ] and a 

paper of Frobenius dealing with g:3,[ 4 ]. 

(3.1) We first look at the tangent space to %(Ag(2,4)) at %([X]). 

i.e. we look at the hyperplanes 

[ ~ 02[a](~,0) = 0 (x=x) (10) 
T 

O 

satisfying 

~ij ( ~ ~ ~a@2[a])(T,0) = 0 for all i,j. 

By a p p l y i n g  t h e  H e a t  E q u a t i o n s  t h i s  i s  t r a n s f o r m e d  i n t o  

;2  
( [ ~a ~z.?z. 92[a]) (T,0) = 0. 

a l 3 
®2 

So let us look at the sections of F ( X , L  x ) s a t i s f y i n g  

i.e. define 

(ii) 

(10) and (ii), 

Foo(X,Lx 2) = { s {r(X,Lx2) : mo(S) > 4} . 

with m ° the multiplicity of a section at zero. Note that for s ~ 0 
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m (s) 
o 

is even). If X is indecomposable, then 

~2 2 
÷ ÷ 8 °02 

@2'''''3z ~z ) rk ( 02 3zl~zl g g 

in (T,0) equals ~g(g+l) + i, so the codimension of Foo in F(X,L~ 2) 

equals ½g(g+l) + I. If ¢(Ag(2,4)) is non-singular at ¢([X]) and if 

Ig c ~[...,Xo,...] is the ideal of ¢(Ag(2,4)), then Foo(X,L~ 2) eauals 

( [ ~0 ~f ( .... 02[0] (~,O) .... ) @2[o] (~,z) : f ~ Ig } . 

(3.2) AS an example we take g=3. The theory of theta functions gives us 

a relation 

- 0 0 0  000 000 000 
8 1 0 0 0 1 8 1 1 0 0 1 0 1 0 1 0 1 8 1 1 1 0  ] 

~001 , ~001 ~ 001 001 
6 ~ O 0 0 J e t l O  O] [ O l O ] e [ l l O  ] + 

o000~ r000 ~000 00O 
0 001JSll01]SL0!l]e[lll] : 0 

- - r 3 = 0 between the 8[s, ] (~,0). We write this as r I r 2 

the relation 

This implies 

4 4 4 22 22 22 
r I + r 2 + r 3 - 2rlr 2 - 2rlr 3 - 2r2r 3 : 0 

between the squares of the even thetas. Using (i) this gives an equa- 

tion 

F( .... @2[o] (t ,0) .... ) = 0 

of degree 16 defining a hypersurface in ]p7. 

¢= ~ ~F 
(" "" /92[°] (T'0) .... ) @2[o] (<,z) 

O 

Hence 

belongs to Poo and one can check that for indecomposable X~ it is 

non-zero. It generates Foo. In fact, when expressed in the theta 

squares this is the function studied by Frobenius in [ 4 ]. 

The first question about F is its zero locus. Define 
o@ 

®2 
F X = { x { X : s(x) = 0 for all s e Foo(X,L x ) } . 

(3.3) Proposition. If X=Jac(C) then F x n { (x-y) { Jac(C) : x,y ~ C]. 
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Proof. Use (2.1) and put a=b, c=d there. One finds a relation 

~2 (a-b) = ~2 (0) + ~ ~ij~i~j~2(0). 

(3.4) For a Jacobian one can use the geometry of C to construct ele- 

ments of Foo. Let 1201o O = { D c 1201 : mo(D) a 4 } . If x c Sing 0 

then @x u @-x { 12@Ioo" Define 

@ = { ~ (Jacg-l(c) : h°(~) > 0 } 
o 

Sing @o = { ~ ~ 0o : h°(~) > I } 

and define for ~ {Jac g-I (C) : 

0 = {x e Jac(C) : e-x e@ } . 
o 

Then obviously, 

F X ~_ n (e uG ). 
C~ K--C~ 

c Sing 0 

If C is hyperelliptic then 

1 W o 
Sing 00 = g2 + g-3 ' 

( K: canonical divisor) 

hence if f e F x one has +f- + g~ + W°g-3 c Wg_l ,° so +f + g21 c W 2° and 

this implies f = (a-b) for some a,b ~ C. So for hyperelliptic C one 

finds 

F x = { (x-y) ~ Jac(C) : x,y c C } . 

By semi-continuity it follows that for general X dim F X s 2 and for a 

general Jacobian dim F x= 2. We conjectured in [6 ] that for every 

C 

Fjac(C) = { (x-y) c Jac(C) : x,y c C } 

and provided a lot of evidence for it. Independently, the conjecture 

was formulated by Mumford [15] (in a dual form) and by Gunning [i@ • 

This conjecture has now been proved by Welters. However, there is one 

exceptional case, namely g=4, where 

Fjac(C) -- {(x-y) (Jac(C) : x,y ~ C } u {+(f-f') } , 
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with f,f' the two g~ 's on C, see [20] 

(3.5) Conjecture. Let X be a principally polarized abelian variety of 

dimension g ~ 2. Then X is a Jacobian if and only if dim F X a 2. 

An infinitesimal form of this conjecture is related to the Novikov 

conjecture. Note that 

x E F X ~=~ B l'~ij ~ { such that G2(x) =I@2(0) + [ ~ij$i~j ~2(0) 

Now, if Y=Spec ~[c]/(s N+I) is contained in X at 0 via the local 
N 

homomorphism 0X, 0 ~ Spec ~[~]/(N+I), f ÷ ~ Ai(f)~i, we have 
i=0 

Y c F X • =~ B l,~ij c {[El such that 

N 

Ak ~2(T,0)ck = ~2(~,0) + ~ ~ij?i~j~2(~,0). 
k=0 

Working out the condition for N=4 gives 

1 4 1 2 ÷ ÷ 
(( ~-~DI + ~D2- DID 3) @2)(~,0)=d ~ (~,0) + ~ eij~i~j@2(~,0) , 

+ 

where eij is the coefficient of 4 in ~ij" If ~ eij~i~j@2(~,0) 

2+ 
is a multiple of DI@2(~,0), then we can change coordinates such that 

this relation becomes the K-P equation. 

Gunning has studied the generalizations of Fay's identity. This 

leads to interesting analogues of (3.3) involving higher derivatives at 

zero, cf [ii] 

Instead of intersecting the Kummer variety with the tangent space 

of the moduli space we can also intersect the Kummer variety with the 

moduli space itself. As an analogue to (3.3) we find 

(3.6) Proposition. If X = Jac(C) then Cx(X) n #(Ag(2,4)) 

~X({¼(x-y) : x,yc C }). 

contains 

1 Here ~ means the inverse image under multiplication by 4. 
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Proof. A divisor class a with 2a = x+y defines a (2:l)-covering 

T: C~ C. The Prym variety P : ker ( Nm: Jac(C) ~ Jac(C) } is a prin- 

cipally polarized abelian variety of dimension g for general x,y c C. 

There exist theta structures on P and X such that 

1 
%(~(x-y)) = O([P]), 

1 cf. [13],p.340, where ~(x-y) 6 Jac(C) 

By symmetry it then follows that all of 

for general x,y, hence for all x,y. 

1 1 
is such that 2(~(x-y)) =~(x-a) . 

1 
~X(~ (x-y)) lies in ~ (Ag(2,4)) 

We made two conjectures in relation to this. First, for a Jacobian 

we conjectured that 

~x(X) n ~(Ag(2,4)) : ~X ( { ~ < X : 4~ :x-y, x,y < C ) 

and we proved this for g=3. Secondly, we hope that this characterizes 

Jacobians : 

(3.7) Conjecture. Let X be an indecomposable principally polarized 

abelian variety of dimension g > 2. Then X is a Jacobian if and only 

if dim ~x(X) n %(Ag(2,4) _> 2 . 

(3.8) The preceding sections suggest to look at the morphism 

-:: F (2,4) ~ ~2g\]Hg × ~g : U (2,4) ~ ]pN 
g g 

(~,z) ÷ ( .... @2[a](r,z) .... ) 

Is it everywhere of maximal rank ? Since the Kummer variety of an inde- 

composable X is singular at the images of the points of order 2 of 

X the rank is certainly not maximal at those (T,z) for which 2z 

zzg+ ~ZZ g . Using the Heat Equations the question becomes whether the 

rank of 

+ 

( ~ ~.  ~ ~ k ~ 2  0 2 ) i 3 2 1 ~i~ j -<g 1 <k<g 

at (7,z) is maximal. 
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that 2 g a lg(g+l) + g + 1 i.e. g > 4 and that X = X Suppose 
2 i - T 

indecomposable. If there exist a relation 

is 

(( ~ ~ij3iSj + [ 6k8 k + 7 )02) (<, z) : 0 

for z such that 2z i ~g+ T~ g then Cx(X) 

~x(Z). 

possesses a flex at 

A Jacobian is known to possess a lot of such flexes : if X = 

Jac(C), then applying (2.3) with Zl:Z2:Z3= p we find that all points 

1 
of { ~(x-y) E X : x,y ~ C } are flex points. Hence the rank of z is 

not maximal at these points. 

(3.9) Question. In view of (2.4) we can ask whether for an indecompo- 

sable Jacobian X= X with g ~ 4 the only points (T,z) where Z 
% 

1 
is not of maximal rank are those corresponding to {~(x-y) : x,y< C } 

and whether one could use this to characterize Jacobians. 

APPROACH 4 : RINGS OF DIFFERENTIAL OPERATORS 

As mentioned above Shiota has settled Novikov's conjecture up to 

a technical assumption. 

(4.1) Theorem. (Shiota [17]) An indecomposable principally polarized 

abelian variety X of dimension g is the Jacobian of a complete 

smooth non-singular curve C over ¢ of genus g if and only if 

+ 

i) the vector @2(~,z) satisfies the K-P equation (8) for some 

DI,D2,D 3 and d, and 

ii) no translate of the theta divisor of X contains an abelian 

subvariety of X which is tangent to DI(0). 

Shiota's approach incorporates ideas of Mulase and is based on 

Krichever's dictionary. Let D be the non-commutative ring which as 

an additive group equals ¢[[x]][~] with ~ = d__ and with multipli- 
dx 
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cation such that 

~.f = f ~ + f' for f c {[[x]][$]. (i2) 

If R is a commutative subring of D containing • and two ele- 

ments A,B with A= sn+ ... (... = lower order terms), B = ~m+ ... with 

(n,m) = i, then any element of R can be written as C = ~r + ... with 

c { , r c ~a0 (Proof: work out the commutator [A,C] ). If R n= 

{ C ~ R : C = e~r + ... with r s n one has dim Rn/Rn-i s 1 and =I 

for n >> 0. 

(4.2) Theorem. (Krichever) There is a natural bijection between the 

following two sets of data: 

I) C an irreducible curve, P a smooth point of C, a tangent vector 

at P and a torsion free rank 1 0c-mOdule F with h°(F) = hl(F) = 1 . 

2) R c D a commutative subring containing ~ and two elements A, 

B as above. 

Let us sketch how to go from i) to 2). Choose a neighbourhood U 

of P such that the local coordinate z at P is a unit on U-P. 

Let x be the standard coordinate on { . We now glue Fe0{ on U x 

and F®0~ on (C-P) x { by multiplication with e x/z This defines a 

sheaf F* on C × { . If V is a suitably chosen neighbourhood of 

0 6 • then Hi(c x V, F*) = 0 i=0,1. Define now 

V : F*(ZP.) ~ F*((Z+I)P) 

d 1 d 
by taking ~ on C-P and z + ~ on U. A non-zero section s o 

H °(F*(P)) generates H O(F*(P)) as a H O(V,0~)-mOdule. We normalize 

d . Put s o such that s o = 1 + O(z) at p ×V , i.e. ~s O = (z-l+o(z))So 

s n= vns. The sections s o .... ,s n generate H°(F * (n+l)P) . 

If a ~ F(C-P,0c) then aSo e H°(F*(nP)), hence 

n-I 

as O = ~ a i(x) vls . 
i=0 o 
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This gives us a map 

F (C-P,0 C) ~ D 
n-i 

a ÷ ~ ai(x) ~i. 
i=0 

The image is a commutative subring R of D. 

(4.3) In order to obtain Jacobians one observes that F defines a 

point of Jac(C). So let us deform F. Choose variables tl,...,t N 

and consider instead of F®0~ now F®0 N on U × ~N and (C-P) × ~N 
N 

and glue now by exp( [ t.z-J). We introduce formally a variable x 
j--i ] 

by replacing t I by tl+x. This now gives us F* as above. Define 

V as above and define 

F* F*(nP) 
n 

by taking ~ on C-P. We choose a normalized s o 
n 

We now obtain 

again as above. 

F (C-P,0 C) ~ D 

and the image is a commutative subring R t depending on t=(tl,...,tn). 

The question arises : how does R t deform with t ? If T denotes the 

the tangent space we get a map 

~: Tt~N ~ D 

+ B (t) 
~t n 

n 

where Bn(t) is defined as follows. By the normalization ~ s O = 
n 4 

• We put B (t) = [ bi ~i. (z-n+o(z))s O, so ~nSo = [ biVlso n 

We need some notation. Let ~ be the non-commutative ~-algebra 

d -i 
whose elements are formal Laurent series in (~-~) with coefficients 

from ~E[x]] ® 0~N ° The multiplicative structure is defined by extending 

the rule (12). Let 

'9 = {P c ~ : ordP _<-i } . 

So the elements of ~ are expressions 
-i 

ai(x ) ~i , where we sup- 
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press the dependence of t in the notation. By extending the map 

F (C-P,0 c) ~ D to Q(F (C-P,0c) ~ ~ ( Q : quotient field) we see that 

5 - I/z corresponds to an element of + ~ which we call L. From the 

we obtain B n= (Ln)+ , where ( )+ means taking the normalization 

differential operator part (non-negative powers of 9 ). 

The dependence of R t on t is now expressed by the following 

d 
deformation equations for L c ~ x + ~ : 

(~)L= [ (Ln)+,L] n=l .... ,N 
n 

Take now infinitely many variables tl,t2,... , i.e. 

d - lim÷ ~N and consider the equations for L ~ + ~ : 

te{ = 

(~-) L : [(Ln)+,L] n=l,2 .... 
n 

This set of equations is called the K-P hierarchy. We do not explain 

here the translation of solutions to this hierarchy of equations into 

differential equations satisfied by theta functions, but we refer to 

Shiota's paper and the references there. 

If L is a solution to the K-P hierarchy then consider 

dL : Tt{ ~ + [[ CnBn,L] , Cn~ t 
n 

the tangent map of the map t ÷ L(t) at t. We call L a finite 

dimensional solution if dL is of finite rank. Shiota considers for 

a finite dimensional L 

R L = ¢(ker dL) • 

with ¢: To{ ~ D, ~--~- + B n. He proves 
n 

R L = {P ~ D : [P,L] = 0} 

and that R L is a maximal commutative subring of D if R L ~ ~ . Thus 

a finite dimensional solution to the K-P hierarchy yields a curve by 

(4.2). Moreover, it turns out that ker dL can be identified with the 
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tangent space of the Jacobian of this curve at a certain point. 

Basically, this is the way Mulase arrived at his theorem which 

states that the whole K-P-hierarchy characterizes Jacobians. Both 

Mulase and Shiota then noticed that in fact finitely many equations 

from this hierarchy suffice,arriving thus at a theorem very similar to 

the result of Arbarello and De Concini. Shiota then continued by show- 

ingthat under condition 2) of (4.1) one can extend a solution to the 

K-P-equation (the first of the K-P-hierarchy) to a solution of the whole 

hierarchy, see [17]. Namikawa informed me that Mulase now also obtain- 

ed such a reduction. 

A FINAL REMARK. 

Our summaryof recent attacks on the Schottky problem is not intended to 

be complete. One of the approaches that should be mentioned also is 

the approach that uses the reducubility Of @ n0 a It is closely re- 

lated to approach 2 and was suggested by Mumford in [14]. For a Jaeobian 

X with theta divisor 0 one has : if x ~ X and x# 0 then there exist 

u,v in X with {0,x] n {u,v} : ~ such that 0 n 0 c @ u @ if and only 
X U V 

if x belongs to { (a-b)c X=Jac(C) : a,b ~ C} (Note that one implica- 

tion follows from (2.1) by using X~ ~N x÷ @x -x , u @ ~ 1281 .) Welters 

proved the following theorem : Let X be a complex principally polari- 

zed abelian variety of dimension g. Assume i) dim Sing@ s g-4, 2) there 

exist a one-dimensional subset y c X such that for generic y { Y one 

has : @n@y c @u n @v for some u,v c X with {0,y} n {u,v} = ~. Then 

X is the polarized Jacobian of a non-hyper-elliptic curve, see [21] 

References. 

Arbarello, E.,De Concini, C.: On a set of equations characterizing 

Riemann matrices. Preprint 1983. 

Dubrovin, B.A.: theta functions and non-linear equations. Uspekhi 

Mat. Nauk. 36:2 (1981),11-80 = Russian math. surveys 36,(1981),11. 



406 

3 Fay, J.D.: Theta functions on Riemann surfaces. Lecture Notes in 

Math. 352. Springer Verlag,Berlin etc. 1973. 

4 Frobenius, F.: Uber die Jacobischen Functionen dreier Variabelen. 

Journal f~r die reine und angewandte Mathematik 105(1889),35-100. 

5 van Geemen, B.: Siegel modular forms vanishing on the moduli space 

of curves. Preprint Univ. of Utrecht, to appear in Invent. Math. 

6 van Geemen, B.,van der Geer, G.: Kummer varieties and the moduli 

spaces of abelian varieties. Preprint Univ. of Utrecht 1983. 

7 van der Geer, G.: On the geometry of a Siegel modular threefold. 

Math. Annalen 260 (1982),317-350 

8 Gunning, R.C.: Some curves in abelian varieties. Invent. Math. 66 

(1982),377-389. 

9 Gunning, R.C.: On generalized theta functions. ~er. J. Math. 104 

(1982),183-208. 

i0 Gunning, R.C.: Riemann surfaces and their associated Wirtinger 

varieties. Preprint 1983. 

ii Gunning, R.C.: Some identities for abelian integrals. Preprint 1983. 

12 Mulase, M.: Cohomological structure of soliton equations, isospec- 

tral deformations of ordinary differential operators and a charac- 

terization of Jacobian varieties. Preprint MSRI 003-84. 

13 Mumford, D.: Prym varieties I. In: Contributions to Analysis, p. 

325-350. Academic press, London, New-York 1974. 

14 Mumford, D. : Curves and their Jacobians. Univ. of Michigan Press, 

Ann Arbor 1975. 

15 Mumford, D.: Tata lectures on theta II, to appear. 

16 Mumford, D.,Fogarty, J.: Geometric invariant theory. Ergebnisse 

der Mathematik 34, Springer Verlag 1982. 

17 Shiota, T.: Characterization of Jacobian varieties in terms of 

soliton equations. Preprint 1984. 

18 Welters, G. : On the flexes of the Kummer variety. Preprint 1983. 

19 Welters, G. : A criterion for Jacobi varieties. Preprint 1983. 

20 Welters, G. : Preprint 1984. 

21 Welters, G.: A characterization of non-hyperelliptic Jacobi varie- 

ties. Invent. Math. 71 (1983),437-440. 

Gerard van der Geer 

Mathematisch Instituut 

Universiteit van ~sterdam 

Reetersstraat 15 

1018 WB Amsterdam. 


