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In writing up this lecture I shall not concentrate so much on des- 

cribing problems of 4-manifold topology; instead I shall explain how a 

simple topological construction has applications in two different direc- 

tions. First I will recall that, just as bundles over a single space have 

homotopy invariants, so do families of bundles, and that these define cor- 

responding invariants in families of connections. Next I will sketch the 

way in which such a topological invariant, when endowed with a geometric 

realisation, becomes important for studying holomorphic bundles over al- 

gebraic varieties. Last I will indicate how this same homotopy invariant 

of families of connections, combined with arguments involving moduli spa- 

ces of self-dual connections over a Riemannian 4-manifold, gives restric- 

tions on the possible homotopy types of smooth 4-manifolds and I will 

speculate on possible future progress in this area. 

Topology of bundles. 

This is standard material that may be found in [2] for example. Con- 

sider a fixed manifold X and a family of bundles over X parametrised 

by some auxiliary space T , so we have a bundle P over the product 

X × T with structure group G (compact and connected, say). Take first 

the case when T is a point so we have a single bundle over X , deter- 

mined up to equivalence by a homotopy class of maps from X to BG . 

This may be non-trivial, detected for example by characteristic classes 

in the cohomology of X . If we choose a connection A on the bundle 

the real characteristic classes can be represented by explicit differen- 

tial forms built from the curvature of the connection. Equally if D is 

an elliptic differential operator over X then using a connection it may 

be extended to act on objects (functions, forms, spinors etc.) twisted by 

a vector bundle associated to P . This has an integer valued index: 

index (DA) = dim ker D A - dim coker D A 
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which is a rigid invariant of the bundle, independent of the connection. 

So these are two ways in which the underlying homotopy may be represen- 

ted geometrically, by curvature and by differential operators. The Chern- 

Weil and Atiyah-Singer theorems then give formulae relating the three. 

In the same way for a general family parametrised by T the bundle 

P is classified by a homotopy class of maps from T to the mapping space 

Maps(X,BG) , and at the other extreme from the case T = point we have 

a universal family parametrised by this mapping space. Again we may al- 

ways choose a connection over X × T , which we may think of as a family 

of connections parametrised by T, and conversely any family of equiva- 

lence classes of connections on some bundle essentially arises in this 

way. (This is precisely true if we work with based maps and bundles, re- 

moving base points gives small technical differences which can safely be 

ignored here). Equivalently we have the infinite dimensional space B of 

all equivalence classes of connections obtained by dividing the affine 

space of connections A by the bundle automorphism group G . B has the 

homotopy type of Maps(X,BG) . 

Again we may construct topological invariants of such families of 

bundles. In cohomology we can use the characteristic classes again. There 

is a slant product: 

H p+q(x × T) ® H (X) --> H p(T) 
q 

so that characteristic classes of bundles over X x T contracted with, or 

integrated over, homology classes in the base manifold X yield coho- 

mology classes in families of connections. In particular if G is, say, 

a unitary group we obtain in this way a map: 

: H 2 (X) > H 2 (T) 

~(~) = c2 (P)/~ 

(A simpler example is to take the Jacobian parametrising complex line bund- 

les over a Riem~nn surface. Operating in the same way with the first Chern 

class gives the usual correspondence between the 1-dimensional homology 

of the surface and the cohomology of the Jacobian). We can do the corres- 
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ponding thing in K-theory and realise the resulting elements in the K- 

theory of T by using differential operators again. For example if the 

base manifold X is the 2-sphere then a unitary bundle over S 2 x T de- 

fines an element of K(S 2 × T) which maps to K(T) by the inverse of the 

Bott periodicity map. If we take the Dirac operator D over S 2 then a 

family of connections gives a family of Dirac operators {D t} parame- 

trised by T and, after suitable stabilisation the index of this family 

[2] defines the required class: 

index D t = [Ker D t] - [coker D t] 6 K(T) 

Of course we obtain other classes in this way and the Atiyah-Singer index 

theorem for families gives formulae relating these to the underlying ho- 

motopy. In particular we may understand our class above from either point 

of view via the formula: 

c1(index D t) : ~(fundamental class of S 2) 

S_table bundles on algebraic curves and surfaces ~ 

Here I only want to say enough to fit into our overall theme; more 

details and references may be found in [4], but I learnt the point of 

view we are adopting now from lectures of Quillen. 

There is a general algebraic theory dealing with the action of a 

complex reductive group G ~ on a vector space ~n+1 via a linear repre- 

sentation. Equivalently we may take the induced action on ~n and the 

hyperplane bundle H over it. In that theory there is a definition of a 

"stable" point. Now suppose that ~n+1 has a fixed Hermitian metric, in- 

ducing metrics on H and on ~pn , and picking out a maximal compact 

subgroup GcG ~ whose action preserves these metrics. There is a general 

theory dealing with the metrical properties of these actions and relating 

them to the purely complex algebraic properties. Roughly speaking if we 

restrict to the stable points then a transversal to the G~-action on 

~n is induced by taking the points in ~n+1 , or equivalently H -I , 

which minimise the norm in their G ~ orbits. The corresponding variati- 



312 

onal equations cutting out the transversal take a simple form and are the 

zeros of a map: 

m : E~n > j, [7] , [8] 

Large parts of this theory can be developed abstractly from general pro- 

perties of Lie groups and the fact that the curvature form of the Hermi- 

lian line bundle H gives the K~hler symplectic form on ~n 

Atiyah and Bott [I] observed that the theory of holomorphic struc- 

tures on a vector bundle E over an algebraic curve C could be cast in 

the same form, except with an infinite dimensional affine space in place 

of a projective space. For a holomorphic structure on E is given by a 

F-operator and these are parametrised by a complex affine space A . The 

infinite dimensional group G ~ of complex linear automorphisms of E 

acts by conjugation and the quotient set is by definition the set of equi- 

valence classes of holomorphic (or algebraic) bundles, topologically equi- 

valent to E Independently, and from another point of view, stability 

of algebraic bundles had been defined in algebraic geometry; the defini- 

tion uses the notion of the degree of a bundle - the integer obtained by 

evaluating the first Chern class on the fundamental cycle. 

If now E has a fixed Hermitian metric then a ~-operator induces 

a unique unitary connection. Regarded as connections the symmetry group 

of the affine space A is reduced to the subgroup GcG ~ of unitary 

automorphisms, and this subgroup preserves the natural metric form on the 

space of connections A derived from integration over C . We would have 

all the ingredients for the abstract theory described above if we had a 

Hermitian line bundle i over A with curvature generating this metric 

form, and acted on by G ~ 

It was explained above that over a space of connections we obtain vir- 

tual bundles from the associated elliptic operators. In particular we can 

take the Dirac operator over the algebraic curve C , which is the same 

as the ~-operator after tensoring with a square root ~I/2 of the ca- 
~C 

nonical bundle, so the kernel and cokernel form the usual sheaf cohomolo- 

gy. Moreover we get a genuine line bundle if we take the highest exterior 

power or determinant of the relevant vector spaces. Thus we get a complex 

line bundle i C over A : 
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i c = X(E®K I/2) = det H0(E®K I/2 ) ® det H I (E®K I/2 ) 
C C C 

-I 

acted upon by G ~ , and realising via the first Chern class the cohomo- 

logy class obtained under our map ~ from the fundamental cycle of the 

curve C , as in Section I. 

Now Quillen has defined Hermitian metrics [9] on such determinant 

line bundles and computed the associated curvature to be precisely the 

metric form above. Thus all the ingredients for applying the general the- 

ory are present - the map m cutting out a transversal to the stable 

orbits is given by the curvature of a connection and the preferred points, 

minimising Quillens analytic torsion norm, are given by the projectively 

flat unitary connections. 

We can study algebraic bundles over any projective variety; in par- 

ticular over an algebraic surface X . Now the definition of stability 

requires the choice of a polarisation - the first chern class of an am- 

ple line bundle L over X . This means that the degree of a bundle is 

defined, in the normal way. We can represent this polarising class by a 

K~hler form ~ , the curvature of some metric on L . Then the same the- 

ory holds; we do not find flat connections on stable bundles but connec- 

tions whose curvature is orthogonal to the K~hler metric at each point. 

The relation with metrics on cohomology is less well established but the 

relevant line bundle should probably be of a form such as: 

iX = X(E®KI/2x ® LI/2) ® X(E®~I/2 @ L-I/2)-I 

Suppose that L has a section s cutting out a curve CcX , we can 

think in the sense of currents of C as a degenerate form of a metric. 

There is an exact sequence: 

0 > E ® K I/2 ~ L I/2 s KI/2 LI/2 .... > E® ® > E! ®K > 0 
X X C C 

whose long exact sequence in cohomology gives an isomorphism i X ~ i C ; 

moreover one can compute formulae for the difference in norms, one defined ~ 
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relative to C and one to the metric ~ on X , compared under this iso- 

morphism, with an explicit difference term given by integrals involving 

Chern-Weil polynomials in the curvature. These are useful for throwing 

problems back to the curve from the surface. 

All this should probably be understood in the following way. Topo- 

logically we have a map ~ from H2(X) to the cohomology of any family 

of connections over X . If we wish to define stable bundles then we need 

a polarisation [~] of X which via this map ~ and Poincar6 Duality 

induces a corresponding "polarising class" in the infinite dimensional 

space of connections. We may represent the original class in various ex- 

plicit ways; by a metric or by a line bundle or by a curve, and to each 

such representation on X we get a corresponding representation in the 

space of connections. The usual formulae for homologies between the re- 

presentations on X go over to corresponding formulae on the connections 

which we can use in our arguments involving stable bundles. But the ex- 

istence of these formulae underlines that the basic correspondence bet- 

ween the geometry of the base manifold and its stable bundles is gene- 

rated by our simple construction of Section I. 

Connections over smooth 4-manifolds. 

Self dual connections are solutions to a differential equation which 

is special to 4-dimensions. On an oriented Riemannian 4-manifold the 2- 

forms decompose into the ±I eigenspaces of the star operator; the same 

is true for bundle valued forms, and a connection is self-dual if its 

curvature lies in the +I eigenspace. If the manifold is an algebraic 

surface with the standard orientation reversed these are the connections 

whose existence characterised stable bundles in the previous section. 

(For on a K~hler surface the self dual 2-forms are made up of the (0,2) 

and (2,0) forms and the span of the K~hler form). Correspondingly these 

solutions of differential equations in Riemannian geometry behave rather 

like objects in algebraic geometry; in particular the solutions, up to 

equivalence by bundle automorphisms, are parametrised by finite dimensi- 

onal moduli spaces rather as the Jacobian parametrises line bundles over 

a Riemann surface. Moreover these moduli spaces have applications in dif- 

ferential topology. 

At present there is no general theory of smooth 4-manifolds. A cen- 
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tral problem is to understand the relationship between homotopy and dif- 

ferentiable structures and to quantify the gap between them. For simply 

connected 4-manifolds the homotopy type is easily understood - the sole 

invariant is the intersection form on the integral 2-dimensional homolo- 

gy. Likewise the classification of topological 4-manifolds up to homeo- 

morphism has been established by Freedman [6], and is virtually the same 

as that up to homotopy. Now while there are many integral definite forms, 

and so corresponding topological 4-manifolds, it was proved by methods 

similar to those described below [5] that none of these arise from smooth 

manifolds beyond the obvious examples given by diagonalisable forms. The 

interesting remaining class of forms are the even (which corresponds to 

spin manifolds) indefinite forms which are all of the shape: 

n Es+m <0 11 

For smooth manifolds n must be even by Rohlin's Theorem and the simp- 

lest known example, beyond S 2 × S 2 which has form (~ ~, is the smooth 
k-- 

4-manifold underlying a complex K3-surface, having 2 E%s and 3 s 

in the intersection form. By taking connected sums with S 2 x S 2 one can 

always increase m so that the problem of realisation of these forms 

is to discover the minimal value of m for each given n. It is hoped 

that a proof that for positive n the value of m must be at least 3 

(implying in particular that the K3 surface is smoothly indecomposable, 

hence genuinely the simplest "non-obvious" smooth 4-manifold) using the 

methods described below, will appear very shortly. 

First a word on the formal structure of these proofs. We need some 

way of distinguishing the forms which are obviously realised when n is 

zero from the case when n is positive. The relevant property that emer- 

ges is that a direct sum H 1 @ H 2 @ .... @ H k of copies of the "hyperbo- 

lic" form (~ !h is distinguished by the fact that the symmetric power: 
\, U/ 

k+1 
(H 1 @ ... @ H k) 
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is identically zero mod 2 . For example when k = I 

any four integral elements ~i,...u,4 : 

this says that for 

(~I "~2 ) (~3"~4) + (~I"a3) (~2"e4) + (~I"e4) (~2"~3)=0 rood 2 

So our proofs are really to establish such identities when ~ are in- 
l 

tegral homology classes and (.) is the intersection pairing. 

These identities are obtained by pairing two kinds of information 

and, since we are interested in the differences between homotopy and 

differentiable structures, it is probably important to stress the con- 

trast in the ways that these arise. By definition our moduli space M 

of self dual connections on some bundle parametrises a family of connec- 

tions and we have seen in the first section above that we can produce 

cohomology classes in such parameter spaces. Alternatively we can think 

of the moduli space as a subset of the infinite dimensional space B of 

all equivalence classes of connections, cut out by the non-linear dif- 

ferential equations giving the self duality condition. Since we regard 

the homotopy type of the base manifold X 4 as known we may regard the 

homotopy type of this infinite dimensional parameter space of connections 

as known. For example we have our map; defined in an elementary way: 

: H 2(X 4) > H 2(Bx) 

in fact this generates a copy of the polynomial algebra on H2(X 4) and 

within H*(Bx) . 

Our moduli space M sits within this infinite dimensional space. 

At present we may regard this as largely unknown and mysterious, except 

for properties that can be understood by linearisation, for example the 

dimension of the space. What we do know is that the moduli space carries 

a fundamental class in homology; or rather, as we shall see, that it may 

be truncated, typically, to a manifold with boundary ~M so we may assert: 

< ~, [~M] > = 0 for any ~ in H*(B X) 
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To produce a suitable cohomology class # we may use our map ~ - this 

builds in the two dimensional homology that we wish to study; likewise 

we may produce more subtle cohomology classes coming, from our present 

point of view, from the index of the 4-dimensional Dirac operator on a 

spin 4-manifold. But all this is homotopy, the smooth structure and the 

difference between differentiable and topological manifolds enters by the 

existence of the relative homology class carried by the moduli space of 

solutions to the differential equation. 

Here is an explicit example, directly relevant to the case when we 

study 4-manifolds with one negative eigenvalue in their intersection form. 

Take the complex projective plane with its standard orientation reversed; 

then we may study the self-dual connections via the stable holomorphic 

bundles as above, and in particular if we consider rank 2 bundles with 

c I = 0 ; c 2 = -2 then the appropriate moduli space has been described 

by Barth [3] as follows. TO the original projective plane P we may as- 

sociate the dual plane P* , so points of one plane are lines in the 

other. The conic curves in P* are parametrised by a copy of ~5 ; the 

non-singular conics form an open subset, the complement of a divisor 

which is naturally identified with the symmetric product sym2(p) (since 

a singular conic is made up of two lines). According to Barth the moduli 

space of algebraic bundles may be identified with these non-singular co- 

nics, which we may obviously truncate by removing an open neighbourhood 

of sym2(p) to get a manifold M with boundary ~M made up; loosely 

speak£ng, of a circle bundle over sym2(p) with fibre L say. 

We can understand our map u very easily in this example, and doing 

so explicitly will illustrate the general case. Let Z be a line in P 

(so representing a generator of H2(P)) . Then it follows essentially im- 

mediately from our discussion of the previous sections and the descrip- 

tion by Barth of the "jumping lines" of a bundle that a representative 

for the cohomology class ~[Z] is given by the hyperplane V in ~5 

consisting of conics through the point z in P*. Consider four general 

lines £I,£Z,£3,£4 in P . The eight dimensional cohomology class 

~(£i ) • ~(£2 ) • ~(Z 3) • ~(£4 ) is represented by the projective line 

N N D . The intersection of this with our truncated moduli 
V~ I V~ 2 V~ 3 V~ 4 

space M is a surface with boundary three copies of the loop L , corres- 

ponding to the three point-pairs: 
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((~1N £2), (Z 3 A ~4)), ((£ 1A £3), (% 2 N Z4)),((Z I A Z4),(£ 2 N %3 ) ) 

in P . If we proceed analogously on any (simply connected) 4-manifold 

with one negative part of the intersection form then we have a broadly 

similar moduli space - a non-compact manifold of real dimension 10 . If 

we consider a cup product ~(~1)~(~2)~(~3)~(~ 4) for any 4 surfaces 

~. then we are led in the same way to consider a set of point pairs of l 
the form: 

((~i 0 ~j) , (~k N ~i )) 

and the number of such pairs, modulo 2, is just the expression in terms 

of the intersection pairing given above. The key additional fact is that 

for a manifold with a spin structure (unlike {~2) the corresponding 

loop L is essential in the space of connections, detected by a mod 2 

cohomology class w I , thus we argue in the manner above with the coho- 

mology class %q = w I • ~(~i ) • ~(~2 ) • ~(a3 ) • ~(~4 ) 

Finally I will make two general remarks. Following Taubes [10] the 

structure of these boundaries to moduli spaces can be understood reaso- 

nably explicitly in terms of a number of "instantons" - connections con- 

centrated near a finite set of points on the manifold. In the complex 

algebraic version we should probably think of these as being bundles ob- 

tained from deformations of ideal sheaves, rather in the way that the 

symmetric products of an algebraic curve map into the Jacobian. The ways 

that these instantons can be oriented relative to each other give the 

structure of the "link" L in the moduli space itself and this depends 

upon the values of the anti self-dual harmonic 2-forms at the points. 

The possibilities become rapidly more complicated as the number m of 

negative parts of the intersection form grows larger, and roughly spea- 

king what distinguishes the cases m = 0,1,2 is that the codimension 

of the "special divisors", on which the forms are aligned in exceptional 

ways, is sufficiently high. It would seem to be possible that the beha- 

viour of these harmonic forms (which of course globally reflect the co- 

homology, via Hodge Theory) contains differential topological informati- 

on about the 4-manifold. In the complex case these anti self-dual forms 
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are made up of the K~hler symplectic form and the holomorphic 2-forms 

and these are well known to carry a lot of information about the complex 

structure. Rather similarly the "periods" of the harmonic forms, the 

relation with the integral structure, also enter into the Riemannian the- 

ory via line bundles and Hodge Theory. 

I have emphasised here that no global properties of these moduli 

spaces beyond existence are really used in these arguments, and indeed 

the number of explicit examples that are known is rather small. On the 

other hand we have seen that we may easily construct cohomology classes 

over these moduli spaces and that we have obtained information by pairing 

these with the relative homology class carried by the manifold. It seems 

that the moduli spaces should carry an absolute homology class with re- 

spect to cohomology with sufficiently small support, which can then be 

paired to give integer valued invariants. Moreover these should be inde- 

pendent of the Riemannian metric on the 4-manifold in the usual way that 

the homology class carried by the fibre of a map is a deformation invari- 

ant. 

Of course there are many ways in which rigid integer valued invari- 

ants can be produced by analytic methods - integration of forms or in- 

dices of operators; but as I recalled in the first section these can all 

be understood entirely from homotopy, via the usual formulae. This is not 

obviously the case for our moduli spaces. For example if we take the case 

described above on the projective plane then we see that 

(~[£])5 [M] = I , given by the intersection of five hyperplanes. It is 

not clear that this could be predicted from the homotopy type of ~2 

alone. Again, the fact that these cohomology classes appear so naturally 

in the complex algebraic theory gives extra motivation in this direction. 
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