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0. Introduction It was proved by R. Lutz and J. Martinet 

[8} that every compact orientable three-dimensional manifold M has a 

contact structure. The latter can be given by a one-form co, the 

contact form. such that coAdco never vanishes; ~0 is defined up to a 

non-zero factor. A Riemannian metric on M is said to be adapted to 

the contact form ~ if: 1) co has the length I; and 2) dco=2.,.~,. 

being the Hodge operator. The Webster curvature W, defined below in 

|9], is a linear combination of the sectional curvature of the plane co 

and the Ricci curvature in the direction perpendicular to co. 

Adapted Riemannian metrics have interesting properties. The 

main result of the paper is the theorem: 

E v e r y  c o n t a c t  s t r u c t u r e  o n  a c o m p a c t  o r i e n t a b l e  

t h r e e - d i m e n s i o n a l  m a n i ] o l d  h a s  a c o n t a c t  ] o r m  a n d  a n  

a d a p t e d  R i e ~ a n n i a n  m e t r i c  w h o s e  W e b s t e r  c u r v a t u r e  i a  

e i t h e r  a c o n s t a n t  ~ 0 o r  i s  e v e r y w h e r e  s t r i c t t V  

p o s i t i v e .  

The problem is analogous to Yamabe's problem on the conformed 

transformation of Riemannian manifolds Most recently, R. Schoen has 

proved Yamabe's conjecture in all cases, including that of positive 

scalar curvature 19|. It is thus an interesting question whether in the 

second case of our theorem the Webster curvature can be made a 

positive constant. 

1),2) Research supported in part by NSF grants DMS84-03201 and 

DMS84-01959. 
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AfLer our theorem was proved, we learned that a similar 

theorem on CR-manifolds of any odd dimension has been proved by 

Jerison and Lee. [7] As a result, our curvature was identified with 

the Webster curvature. We feel that our viewpoint is sufficiently 

different from Jerison-Lee and that the three-dimensional case has so 

many special features to merit a separate treatment. 

In an appendix, Alan Weinstein gives a topological implication 

of the vanishing of the second fundamental form in {54}. For an 

interesting account  of  three-dimensional contact  manifolds, cf. [2]. 

1. Contac t  Structure~. Let M be a manifold and B a 

subbundle of  the t~ngent  bundle TM. There is a naturally defined 

anti-symmetric bilinear form A on B with values in the quotient bundle 

TM/B 

(I} A: B × B --* TM/B 

defined by the Lie bracket;  

(2) A(V,W) .~ [V,W] rood B. 

I t  is easy to verify tha t  the value of A(V,W) at a point peM 

depends only on the values of V and W at p. The bundle B defines a 

foliation if and only if it satisfies tile Frobenius integrability condition 

A = 0. Conversely, a contac t  s t ruc ture  on M is s subbundle B of the 

tangent  bundle of codimension I such that  A is non-singular at each 

point pcM. This can only occur  when the dimension of M is odd. 

I t  is an interest ing problem to find some geometric s t ructure  

which can be put on every three-manifold,  since this would be helpful 

in studying its topology. Along these lines we have the following 

remarkable theorem of  Imtz and Martinent {see [8], [I0]). 

1.1 T h e o r e L  E v e r F  c o m p a c t  o r i e n t a b l e  

t h r e e - m a n i f o l a  p o s s e s s e s  a c o n t a c t  s t r u c t u r e .  
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T h e r e  a r e  many d i f f e r e n t  c o n t a c t  s t r u c t u r e s  poss ib le ,  s i n c e  t h e  

s e t  o f  B wi th  A ~ 0 is  open.  Even  on S 3 t h e r e  a r e  c o n t a c t  

s t r u c t u r e s  fo r  which  t h e  bundles  B 1 and B 2 a r e  t o p o l o g i c a l l y  d i s t i nc t .  

N e v e r t h e l e s s  t h e  no t ion  of  a c o n t a c t  s t r u c t u r e  is r a t h e r  f l abby ,  in t he  

fo l lowing  sense .  We s a y  B is c o n j u g a t e  to  B ,  if  t h e r e  is a 

d i f f eomorph i sm ~ : M  --m* M which  has  ~ (B) = B=. Then  we have  the  

fo l lowing r e s u l t  due to  Gray  (see  [4]). 

1.2 Theorem.  G i v e n  a c o n t a c t  s t r u c t u r e  B, a n y  

o t h e r  c o n t a c t  s t r u c t u r e  B ,  c l o s e  e n o u g h  t o  B 

c o n j u ~ T a t e  t o  i t .  

~ s  

2. M e t r i c s  a d a p t e d  to  c o n t a c t  s t r u c t u r e s .  A c o n t a c t  form to 

is a 1 - f o r m  on M which  is nowhere  ze ro  and has  t h e  c o n t a c t  bundle  B 

for  i t s  null s p a c e .  In a t h r e e - m a n i f o l d  a n o n - z e r o  1 - fo rm to is a 

c o n t a c t  form f o r  t h e  c o n t a c t  s t r u c t u r e  B = Null co ff and only i f  

toAdw=0 a t  e v e r y  point .  The  c o n t a c t  s t r u c t u r e  B d e t e r m i n e s  t he  

c o n t a c t  form up to  a s c a l a r  muIt iple .  The cho i ce  of  a c o n t a c t  form to 

a lso  d e t e r m i n e s  a v e c t o r  f i e ld  V in t h e  fo l lowing  way.  

2.1 [,emma. T h e r e  e x i s t s  a u n i q u e  v e c t o r  f i e l d  

V s u c h  t h a t  t~{V) = 1 a n d  dtofV,W} = 0 f o r  a l l  W e T M .  

Proof .  Choose  V 0 wi th  co{V 0) = 1. S ince  dtoAco ~ 0, t h e  

form dto is  n o n - s i n g u l a r  on B. T h e r e f o r e  t h e r e  e x i s t s  a unique  V l e B  

wi th  

d~fVl ,W)  = dco(V0,W) 

fo r  a l l  W e B .  Le t  V = V0-V 1. Then  w(V) = to(V 0) - co(V 1) = 1, 

and dcoW,W) = 0 f o r  all  WeB.  S ince  V is t r a n s v e r s e  to  B and 

dco{V,V) = 0, we have  dco(V,W) = 0 for  al l  W e T M .  

Loca l ly  any  two  n o n - z e r o  v e c t o r  f i e l d s  a r e  c o n j u g a t e  by a 

d i f feomorphism.  However ,  th i s  f a i l s  g loba l ly ,  s i nce  a v e c t o r  f i e ld  may 

have  c losed  o rb i t s  whi le  a n e a r b y  v e c t o r  f i e ld  does  not .  I t  is a 

c l a s s i c a l  r e s u l t  t h a t  l oca l ly  any two  c o n t a c t  forms a r e  c o n j u g a t e  by a 
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diffeomorphism. But globally two nearby con tac t  forms may not be 

conjugate,  since the  vec to r  f ie lds  they  determine may not be. 

A choice of a Riemannian metr ic  on a con tac t  manifold 

determines  a choice of the  c o n t a c t  form t~ up to sign by the 

condition tha t  co have length 1. Let  = denote  the Hodge s ta r  

opera tor .  We make the  following defini t ion.  

2.2 Definition. A Riemannian metric on a contact 

three-manifold is said to be adapted to the contact form co if co is 

of length one and satisfies the structural equation 

{3) dt~ = 2 =w. 

Such metrics have nice properties with respect to the contact 

structure. For example, we have the following results. 

2.3 Lemma. I f  t h e  m e t r i c  i s  a d a p t e d  t o  t h e  

f o r m  to, t h e n  t h e  v e c t o r  f i e l d  V d e t e r m i n e d  by  to i s  

t h e  u n i t  v e c t o r  f i e l d  p e r p e n d i c u l a r  t o  B. 

Proof. Let  V be the unit vec to r  f ie ld perpendicular  to B. Then 

to(V) = 1, and for  all vec to r s  W in B we have dto(V,W)=2=to(V,W)=0. 

Hence V is the  vec to r  field d e t e ~ i n e d  by the con tac t  form to. 

2.4 bemma. I f  t h e  m e t r i c  i s  a d a p t e d  t o  t h e  

c o n t a c t  f o r m  ~, t h e n  t h e  a r e a  f o r m  on  B i s  g i v e n  b y  
1 

~i dto. 

Proof. The a rea  form on B is =~. 

A CR s t ruc tu r e  on a mainfold is a con tac t  s t ruc tu re  toge the r  

with a complex structure on the contact bundle B; that is, an 

involution J:B--*B with j2 = -I where I is the identity. If M has 

dimension 3 then B has dimension 2, and a complex structure on B is 

equivalent to a conformal structure; that is knowing how to rotate by 

90 °. Hence, a Riemannian metric on a contact three-manifold also 

produces a CR structure. CR structures have been extensively studied 
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since they arise naturally on the boundaries of complex manifolds. 

The following observation will be basic to our study. 

2.5 T h o o ~ m .  L e t  M be  an o r i e n t e d  t h r e e - m a n i f o l d  

w i t h  c o n t a c t  s t r u c t u r e  B. F o r  e v e r y  c h o i c e  o f  

c o n t a c t  f o r m  w a n d  a CR s t r u c t u r e  J t h e r e  e x i s t s  a 

u n i q u e  R i e m a n n ~ a n  m e t r i c  g a d a p t e d  t o  t h e  c o n t a c t  

f o r m  w a n d  i n d u c i n g  t h e  CR s t r u c t u r e  J. 

Proof. The form ¢o determines the unit vector field V 

perpendicular to B. The metric on B is determined by the conformal 

structure J and the volume form ,o~IB = 1 dwIB ' 

3. Structural equations. We beg:m with a review of the 

structural equations of Riemannian geometry. Let 

w a':l <~ a, ~,< dimM, be an orthonorm al basis of :l-forms on a 

Riemannian manifold M. Then there exists a unique anti-symmetric 

matrix of l-forms ~u~ such that the structural equations 

(4) dwa + ~aB A w~ = 0. 

hold on M. The forms ~ a ~  describe the Levi-Civita connection of 

the metric in the moving frame w a. We can also view the co a 

as intrinsically defined l-forms on the principal bundle of orthonormal 

bases. Then the ~aB are also intrinsically defined as 1-forms on this 

principal bundle, and the collection {c0 a, ~a~} forms an 

orthonormal basis of l-forms in the induced metric on the principal 

bundle. The curvature tensor R a ~v 5 is defined by the 

structural equation 

(5) dea~eavAev~s+Ra~vswvAws,l<a,~,v,~<dimM, 

where the summation convention applies. 

In three-dimensions it is natural to replace a pair of indices in 

an anti-symmetric tensor by the third index. Thus we will write ~12 
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= W3 and R1212 = K33, etc. Here K a $  are the components of the 

Einstein tensor 

{6) Ka~ = ~ } ~ o e  - RaB' 

which has the property that,  for any unit vector  V, K{V,V) is the 

Riemannian sectional curvature of the plane V ±. The structural 

equations then take the following form. 

3.1 Structural equations in three ~mensions. 

{7} 

and 

d~ 1 = WzA~3 - W3A~2, 

dw 2 = w3Awl - ~lAto3 , 

dw 3 = WlAW2 - ~2Aw1, 

d~ 1 = ~2A~o3+K11~o2ALo3+K12Lo3A~o1+K13~o1A~02 , 

{8) d~o 2 = ~3A~1+K21~2Aw3+K22~3Aw1+K23~o1Aw2 , 

= W A~ +K Lo A~o +K w A~ +K ~ Aw ,K K d~3 1 2 31 2 3 32 3 1 33 1 2 a~  = ~a" 

If  the metric is adapted to the contact  from w, we choose 

the frames such that  w 3 = to. As a consequence K33 is the sectional 

curvature  of  the plane V ± and ~ (K11+K22) is the Ricci curvature  in 

the direction V. The Webster curvature  is defined by 

(9} W = (K11+K22+2K33+4) 

and has remarkable properties. 

We proceed to illustrate these equations with three examples 

which are very relevant to our discussion, the sphere S 3, the unit 

tangent  bundle of a compact orientable surface of  genus > 1, and the 
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3.2 Example .  

( 1 0 )  

in R 4. 

(11) 
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The sphere S 3 is defined by the equation 

x2+y2+z2+w 2 = 1 

D i f f e r e n t i a t i n g  we  g e t  

~0  = xdx + y dy + z dz + w dw = 0. 

A specific choice of an orthonormal basis in the induced metric is 

e I 

w 2 

~3 

0 2 )  

= x dy - y dx + z dw - w dz, 

= x d z  - z d x  + y d w  - w d y ,  

= x dw - w dx + y dz - z dy.  

The  r e a d e r  can  v e r i f y  t h a t  i f  <dx,dx> = 1, <dx,dy> = 0, e t c . ,  t hen  

<Wl,Wl > = 1, <~1,w2 > = 0, e t c . ,  and t h a t  <¢~0,w0 > = 1, <w0,Wl> 

= 0. e tc .  Tak ing  e x t e r i o r  d e r i v a t i v e  we have  

(13) dw I = 2w2A~ 3, 

and h e n c e  m th i s  bas i s  

d ~  2 = 2w3Aw 1, d ~  3 = 2 ~ l A ~  2, 

(14) ~Pl = w1' ~'2 = w2' ¢P3 = t°3" 

which  makes  

(15) K l l  = 1, 

and  t h e  o t h e r  e n t r i e s  a r e  zero.  

K22 = 1, K33 = 1. 

The  W e b s t e r  c u r v a t u r e  W = 1. 

3.3 Example .  The  uni t  t a n g e n t  bundle  of  a c o m p a c t  

o r i e n t a b l e  s u r f a c e  o f  genus  ;~1. 
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Let N be a compact orientable surface of genus g. If N is 

equipped with a Riemannian metric, its orthonormal coframe 0 I, 02, 

and the connection form 012 satisfy the structural equations 

(16) dO 1 = 012A02, dO 2 = 01A012, d012 = -KO1AO 2, 

where K is the Gaussian curvature.  Suppose gg l .  We can choose 

the metric such that  

(17) 
P 

K - c - ~ +I , when g-0, 

t -I , when g>l . 

The unit tangent bundle TIN of N, as a three-dimensional manifold, 

has the metric 

(18) 

Putting 

(19) 

we find 

(20} 

and 

(21) 

1 2 ~" (e I + 022 + 012). 

Wl = ~ el' WZ = T e2, w3 = -  ~ ¢e12, 

d~ 1 = 2¢w2Aw 3, dw 2 = 2c~3A~01, dw 3 = 2WlAW 2, 

It follows that 

(22} 

~1 = Wl' ~2 = w2' ~3 = (2¢-1)~3" 

Kll = K22 = I, K33 = 4¢-3, 

all other Kcl$'s being zero. By (9) we get 

W ~ c. 
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This includes the example in ~3.2 when g = 0, for the unit tangent 

bundle of S 2 is the real projective space RP 3, which is covered by S 3, 

and our calculation is local. On the other hand, TIN, for g > I, has 

a contact structure and an adapted Riemannian metric with W = -I. 

matrix 

(23) 

3.4. Example. The Heisenberg group. 

We can make C 2 into a Lie group by identifying (z,w) with the 

The subgroup given by the variety 

(24) 

is the Heisenberg 

translations 

group 

~ + w + W = O  

H 3. The group acts on itself by the 

{25) 

Z --.# Z + 8, 

w ' - ' *  w - K z +  b. 

which leave invariant the complex forms 

{26) dz and dw + f dz. 

Hence an invariant metric is given by 

{27) ds 2= i !2+ Idw 

Introduce the real coordinates 

+ f d 12. 

{28) z = x + iy w = u + iv. 

Then the va r ie ty  (24) is 
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x 2 + y2 + 2 u = 0 

and differentiat ion gives 

(30) du + x dx + y dy = 0. 

Then an orthonormal basis of 1-forms in the metric above is given by 

(31) Wl = dx, =2=dY, to3=dv + x dy - y dx, 

and we compute 

(32) I d w l i O ,  dw2=O,  d w 3 = 2 ~ i A w  2,  

~ I  = I '  ~ 2 = ~ 2  " ~3=-w3 ' 
K11 I , K22=I, K 3 3 = - 3 ,  

and the other entries are zero. By (9) we have W=0. All these 

examples give metrics adapted to a contact  form w=w 3, since in an 

orthonormal basis =w 3 = wlAw 2. 

In general, given a metric adapted to a contact  form ~, we 

shall res t r ic t  our at tention to orthonorma] bases of 1-forms Wl' w2' 

~3 with w3=co. Considering the dual basis of vectors,  we only need to 

choose a unit vector  in B. These form a principal circle bundle, and 

all of our structural  equations will live naturally on this circle bundle. 

I t  turns out to be advantageous to compare the general situation to 

tha t  on the Heisenberg group. Therefore,  we introduce the forms 

q/l' ¢/2' ¢3 and the matrix L l l ,  L12 ..... L33 defined by 

(33) 
~i=#i+~i " ~2=~2+~2 • ~3=#3-~3 , 

KI I=LI i +I , K22=L22 +I , K33=L33-3, 

K I 2 = L 1 2 ,  K I 3 = L I 3 ,  K 2 3 = L 2 3 .  

Thus the ~ and L all v~ni~h on the Heisenberg group. 

compute the f o U o ~ .  

We then 
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3.5. Structure equations for an adapted metric. They are: 

(34) 
d ~  1 = ¢ 2 A ~ 3 - ~ 3 A w 2 ,  

dw 2 = @ 3 A W l - C l A W  3 , 

d ~  3 = 2 ~ 1 A ~ 2 ,  

and 

(35) 
{ ~ l A w 2  - W2A~I  = o ,  

¢ I A ~ I  + ~ 2 A w 2  = o ,  

and 

(36) 
d e  1 

d e  2 

de 3 

= @ 2 A @ 3 + L l l W 2 A w 3 + L 1 2 w 3 A ~ I + L 1 3 W l A W 2  , 

= ¢ 3 A ¢ l + L 2 1 w 2 A ~ 3 + L 2 2 ~ 3 A ~ I + L 2 3 w 1 A w 2  , 

= ~ l A ¢ 2 + L 3 1 ~ 2 A ~ 3 + L 3 2 ~ 3 A ~ l + L 3 3 w I A ~ 2  . 

Proof .  The equat ion  dw 3 = 2WlAW 2 comes from the  

condit ion dw = 2.~0 t h a t  the  metr ic  is adap ted  to the  c o n t a c t  form 

t~. Then the  cor responding  s t ruc tu r a l  equa t ion  yields ~lAW2 - 

¢2A~1  = 0. Using ddw 3 = 0 we compute  ¢ 1 A w l  + ¢,2Aw2 = 

0 also. 

3.6. Corollary. We can find functions a and b on the 

principal circle bundle so that 

(37) 
@I = aWl+bW2' 
~2 = bWl-a~2" 

Proof .  This fol lows a lgebra ica l ly  f rom the equa t ions  (35). 

I t  is even more conven ien t  to wri te  these  equat ions  in complex 

form. We make the  fol lowing subs t i tu t ions .  
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3.7. Complex substitutions. 

On account of the complex structure in B it is convenient to 

use the complex notation. We shall set: 

(38) 

Q = w l + i ~  2 ,  W = W 3 ,  

t = @ 1 + i ~ 2  , ~ = @3'  
Z = a + i b ,  

l +L22 ) q . 1 p - ~ (LII , ~ (LII-L22), r = L 
s = q+ir, 

1 
z - ~ (LI3+iL23) , 
t=L 

33' 
l _a2b2 w = ~ ( t  ), 

12' 

where W is the Webster curvature, to be verified below. Note that 

= L Q. Thus D and ~ give a basis for the l-forms on M, while z 

and @ define the connection. 

(39) 

and 

3.8 Complex structur~ ~uations. 

dO = i(@AO-zQA~), 

(4O) 
{ d@ = i[2wQA~+(zO-iQ)A~], 

dz ~ i(2Z@+zO-sw) mod O, 

p + l ~ l  2 = O. 

Proof. This is a direct computation. Note that the real 

functions p,W and the complex functions z,s give the curvature of the 

metric. 

The equation p+[ z [2 = 0 has the important consequence that we 

can compute the Webster curvature W from the KaB. The result is 

the expression for W in (9). 
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The following notation will be useful. If f is a function on a 

Riemannian manifold with frame ~a' then 

(41) df = Daf • w a, 

where Daf  is the der ivat ive of f in the direct ion of the dual vec to r  

field V a. I f  f is a function on the principal bundle then we can still 

define D a f  as the der ivat ive in the direction of the horizontal lifting 

of V a. In this case we will have 

(42) df _= D a f - ~  a rood ~a~"  

I f  the  function f represen ts  a tensor  then D a f  are  i ts  covar iant  

der ivat ives ,  and the ex t ra  terms in ~ a B  depend on what  kind of  

tensor  is represented.  In the example if T is a covar ian t  1 - tensor  

and 

(43) f = T(Vv), 

then, 

(44) df = Daf-~o a + T(V$) ~ $ v '  

while if T is a covariant  2 - tensor  and 

(45) f = T(V v, Vs),  

then 

{46) df = D a f - •  a + T(V~, VS) W~.  + T(Vv, V~) ~ B ~ '  

and so on. In the  complex notat ion we wri te  

{471 df = a ¢ . O  + ~ f - O  ÷ Dvf .  W 
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as the definition of the differential operators ~f, ~f, and Dvf 

usual 

As 

(48) 

~f = ~ (Dlf  - iD2f), 

~f - ~ (Dlf  + iD2f ) ,  

Dvf " D3f , 

reflecting the transition from real to complex notation. If f is a 

function on the principal circle bundle coming from a symmetric 

k-tensor on B then 

(49) df = ~f-t~ + ~f-Q + Dvf - ~o + ikfq. 

For example, the function z represents a trace-free symmetric 2-form 

on B, and the structural equation for L tells us 

3.9. [,emma. 

(50) ~L = iz and DvZ = -is. 

4. Change of basis. We start with the simplest change of 

basis, namely rotation through an angle 0. We take 0 to be a 

function on M and study what happens on the principal circle bundle. 

The new basis ~, w[, w~ is given by ~=~3=~ and 

(51) 

w~ = cos.8 Wl-sin, ew 2, 

~ = sin.e Wl+COS.e co 2 

or in complex terms ~= = ~ and 

(52) Q* = e iO O. 

Then from the structural equations we immediately fred that 
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4.1.  Lemma. 

(53) 
¢= = ¢ + dO, 

z" = z e 2i~. 

Now a function or tensor on the principal circle bundle comes from 

one on M by the pull-back if and only if it is invariant under rotation 

by @. Thus we see that the curvature form de = = d¢~ is invariant 

and hence lives on M. The form OAO is also invariant, so W = 

W = is invariant and W is a function on M. This W is the scalar 

introduced by Webster (see [11]}. Likewise [z [2 is invariant curvature 

and hence a function on M. The function z defines a tensor z O 2 
s 

which is invariant. Hence its real and imaginary parts 

(54} 

2 2 
a{~l-W 2) + 2b ca)-] t~ 2 , 

- 2 °  

define trace-free symmetric bilinear forms on B {they differ by 

rotation}. This form is called the torsion tensor by Webster (see [11]}; 

it is analogous to the second fundamental form for a surface. 

We now consider more interesting changes of basis. First we 

change the CR structure while leaving the contact form w fixed. In 

order to keep the metric adapted to the contact form we must leave 

WlA~ 2 invariant. This gives a new basis 

(55) 

w~ = Au)I+B~2, 
,~  = C¢~I+DW 2, 
w~ = t~ 3 

with AD-BC = I. An infinitesimal change of basis is given by the 

tangent to a path at t = 0. Thus an infinitesimal change of the basis 

which changes CR structure but leaves the contact form invariant and 

keeps the metric adapted is given by 



~i = gWl+hC~ 2, 

~2 = kwl+lw2' 

w3=0 
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with g+l = O. Since the  ro ta t ions  are  t r ivial  we may as well t ake  

h=k. This gives 

(56) 

J 

~ 1  = gc° l+h~2 '  

~ 2  = h ~ l - g ~ 2 '  

to3 = 0. 

In complex notation if f = g+ih then 

{57) 
S 

f~ = fQ and ~o = O. 

and L 

For  fu tu re  use we compute  the  infini tesimal change  ¢ in ¢ 
J 

in z f rom the  s t ruc tu ra l  equa t ions  {39t, i40}. We find tha t  f 

transforms as a 2-tensor 

(58) df = Eft. O+~f .  ~+Dvf .  u~+2if¢ 

and that 

4.2. Lemma. 

( 59 )  

r 

z = -i Dvf, 

J 

= i(Df-CY-~f-Q) - {zf+~f)w 

using the fact that we know 4~AQ and ¢ is real. 

On the other hand we may wish to fix the CR structure and 

change the contact form while keeping the metric adapted. In this 

case let ¢~ = f2~ 3 where f is a positive real function. Excluding 

rotation we find that to keep the metric adapted we need 
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(60) 
w~ = f- ~l-D2f- uJ 3, 

~ = f.w2+Dlf.w 3, 

uJ~ = f2u>3, 

In complex  n o t a t i o n  

(61) 
O" = fO + 2i ~ f ' w ,  

~ ,  = f 2 ~ .  

For  an i n f i n i t e s ima l  v a r i a t i o n  we  d i f f e r e n t i a t e  to  o b t a i n  

{62) 

/ / / 

0 = f 0+2i  ~ f  -~, 

/ / 

w = 2f w .  

Hence  c h a n g e s  o f  m e t r i c  f ix ing t h e  CR s t r u c t u r e  a r e  given by a 

p o t e n t i a l  f unc t ion  f, much the  same way  as  c h a n g e s  of  me t r i c  f ix ing a 

conformaJ s t r u c t u r e .  The  main d i f f e r e n c e  is t h a t  t he  d e r i v a t i v e s  of  f 

e n t e r  t h e  fo rmula  f o r  the  new basis .  

As a c o n s e q u e n c e  of ddf  = 0 we have  

(63) D~f - ~Df + iDvf = 0. 

We also define the sub-Laplace operator 

(64) l::If = 2(~)B'f+BDf} = (DIDlf  + DBD2f). 

Then a straightforward computation substituting in the structural 

equations yields 

(4.3. L,emma.) 



(65) 

4.3. 
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z* = z - 2 " ~ ' -  6 2 

Differentiating the first we get  

dq* - dqt-2i l ~  oAH rood co, 

which shows the remarkable relation given by 

4.4 [,emma. 

(66) f3W* = fin - Eft. 

4.5. Corollary. In an infinitesimal variation 

/ '  s s 

(67) W = - o f  - 2 f W. 

5. Energies. 

(68) 

induced by the metric. 

may form. The first is 

Let ~ be the measure on M 

U = WlhW2hw 3 = ~ rlhHhw 

Here are two interesting energies which we 

which is analogous to the energy 

(70) E = f R 
J M 

in the Yamabe problem. The second is 

=I W~t, (69) EW M 
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(71) Ez = f M  Izl2 /~' 

which is a kind of Dirichtet energy. 

In this section we shall study the crit ical points of these 

energies. 

First we observe that  for  computational reasons it is easier to 

in tegra te  over the principal circle  bundle P. The measure there  is 

(72) r : ~IAWZA~3A¢3 : ½ QAQA~A¢. 

If f is a function on the base M then 

jr f v = 2K ,[M f U, (73) P 

so nothing is lost. 

Next we observe that  we can in tegra te  by parts. 

5.1. Lemma. For any f on P 

{74) ~p Of" ~ = 0 and ~ p D V f - v  = 0. 

Proof. The f irs t  follows from 

~ p d(fQA~A~} = 0 

and the second follows from 

~p d{fOA~q~} = O, 

since dQ~O rood ~, ~ and dw~O rood Q, ~ and d#~O rood Q. ~, 

5.2. T h e o r e L  T h e  e m e r o ~  E W i s  c r i t i c a l  o v e r  a ~ t  

c o n t a c t  ] o r m s  w i t h  a ] i x e d  CR s t r u c t u r e  a n d  ] i x e d  

v o t u m e  i 1  a~d  o ~ t y  i ]  W i s  c o n s t a n t .  I t  i s  c r i t i c a t  
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o v e r  a l l  CR s t r u c t u r e s  w i t h  a ] i x e d  c o n t a c t  1 a r m  i 1  

a n d  o n l y  ~ f  L = O. 

S 

Proof. We compute the infinitesimal variation E W . Fixing the 

CR s t ruc tu re  and varying the potent ia l  f of  the con tac t  form with w s 

= f2w gives ~ = 4f ~ and 

E W = {-Elf + 2f W) v = 2 f W y, 
P 

since o integrates away. The volume is fixed when ~ if" v = 0. 

Thus, F_~ = 0 precisely when W is constant. 

Fixing the contact form and varying the CR structure we use 

the following. 

5.3 Lemma. 

(75) ~ = ~ Ipd¢AwA¢. 

Proof.  We use the s t ruc tura l  equat ion to see  

dv~A~ = 2iWOAQA~a 

and in tegra te  by par ts  to ge t  the  result .  Then we have 

E W = A~A¢ + dCA~A¢ 

] 

(using ta = 0), and this gives 

F. w " _ _ . ~ p i  ~ ,/, "AD~SA~,. 

Then using Lemma 4.2 we get  

" I (Lf+~f) v. EW = - ½  p 

so that the CR structure is critical for fLxed w precisely when z=O. 
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Next we cons ider  the  energy  E L . 

5.4. Theorem.  T h e  e n e r g y  E z i s  c r i t i c a l  o v e r  

a l l  CR s t r u c t u r e s  w i t h  f i x e d  c o n t a c t  f o r m  i f  a n d  

o n l y  i f  DV~ = o, w h i c h  i s  e q u i v a l e n t  t o  s = O, o r  K l l  = 

K22 a n d  K12 = 0. T h e  e n e r g y  E L i s  c r i t i c a l  o v e r  a l l  

c o n t a c t  f o r m s  w i t h  f i x e d  CR s t r u c t u r e  a n d  f i x e d  

v o l u m e  i f  and  o n l y  i f  

(76) 2i(~z - ~z-) + 3p = c ons t a n t .  

Proof.  The energy  E L is given by 

_-f  Ez p 

so its f i r s t  va r i a t ion  is 

E z = (L ~ + L 2 )p + z y . 
P 

When w is fixed, ~ = 0 and p = 0. By Lemma 4.2 we have the 
P 

resu l t  tha t  ff C/ = f ~ then L = - iDvf ,  and this  gives 

5.5. Lemma. 

- f E~ = 2 Im {Dv~ ~ .  
P 

Since f is any rea l  f u n c t i o n  on M, we see  E z = 0 when DVL - 0. 

Then  s = 0 by Lemma 3.9 and K l l  = K22 and K12 = 0 by s u b s t i t u t i o n  

{38). 

This condi t ion  says tha t ,  a t  each  poin t  of M, the  s ec t i ona l  

c u r v a t u r e  of all  p lanes  pe rpend icu la r  to  the  c o n t a c t  p lane  B are  equal .  

If, on the  o the r  hand, we fix the  CR s t r u c t u r e  and va ry  the  

c o n t a c t  form by a po ten t i a l  f, we have from Lemma 4.3 
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2. Z ' =  ~: - 2  - 6  

Taking an infinitesimal var ia t ion 

" 2 ~ "  " " L = - . ~ = 3 f  ~' 

Then the variation in E z is 

" f " II E z = (-2(~ a~f + ~f'} + 3 L 2 f'} ~, 
P 

from which we see that E z = 0 precisely when 

2( a, + 3 l , j  2 

is constant. Since ~z = iz by Lemma 3.9, and I z 12+p = 0, this gives 

the equation {76). 

6. Changing Webster Scalar Curvature. The problem of 

fixing the CR structure and changing the Webster scalar curvature is 

precisely analogous to the Yamabe problem of fixing the conformal 

structure and changing the scalar curvature, except the problem is 

subelliptic, and the estimates and constants for the 3-dimensional CR 

case look like the 4-dimensional coP, formal case. The first result is 

the following. 

6.1. Theo~m. Let M be a compact orientable 

three-manifoZd with fixed CR structure. Then we can 

c h a n g e  t h e  c o n t a c t  ] o r m  so  t h a t  t h e  W e b s t e r  s c a l a r  

c u r ~ a t u r e  W o1 t h e  a d a p t e d  R i e m a n n i a n  m e t r i c  i s  

e i t h e r  p o s i t i v e  o r  z e r o  o r  ~ e g a t i v e  e v e r y w h e r e .  

Proof. We have f3W" = fW - Elf from [,emma 4.4. We take 

f to be the eigenfunction of W-Q with lowest eigenvalue k I. By 

the strict maximum principle for subelliptic equations (see Bony [1]) we 

conclude that f is strictly positive. Since Wf - of = X1f we have 
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f2W* = k 1. Hence W* always has the same sign as X]. 

Next we show that  in the negative curvature case we can make 

W whatever  we want, in particular, a negative constant.  

6.2. Theorem. L e t  M b e  a c o m p a c t  o r i e n t a b l e  

t h r e e - m a n i Y o l d  w i t h  a l i x e d  CR s t r u c t u r e ,  l I  s o m e  

c o n t a c t  f o r m  h a s  n e g a t i v e  W e b s t e r  s c a l a r  c u r v a t u r e ,  

t h e n  e v e r y  n e g a t i v e  f u n c t i o n  W<0 i s  t h e  W e b s t e r  

s c a l a r  c u r v a t u r e  o f  o n e  a n d  o n l y  o n e  c o n t a c t  f o r m  ~. 

Proof. Let C be the space of all contac t  forms and let Y be 

the space of functions. We define the operator P by 

P:C --=* Y, P(w) = W. 

Let Y- be the space of negative functions and let C- be the space of 

contact forms with negative Webster curvature. Then 

(77) P:C- -'* Y- 

is also defined. We claim the P in (77) is a global dfffeomorphism. 

This follows from the following observations. 

a) C- is not empty. 

b) P is locally invertible. 

c) 

compact). 

P is proper (the inverse image of a compact set is 

d) if- is simply connected. 

We then argue that (a) allows us to start inverting somewhere, 

(b) allows us to continue the inverse along paths, (c) says that the 

inverse doesn't stop until we run out of Y-, and (d) tells us that the 

inverse is independent of the path and hence unique. 
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Before we s tar t  the proof we remark on a few technical 

details. There are two possible approaches to the proof. One is to 

work with C °o functions and quote the Nash-Moser  theorem (see [5] for 

an exposition) using the ideas in [6] to handle the subelliptic 

estimates. The other is to work with the Folland-Stein spaces S~ 

{see [3]) which measure k derivatives in the direction of the contac t  

structure in L p norm. We can take ¢~¢8k÷ 2 p and W¢S p 

provided pk>8 so that WeC ° by the appropriate Sobolev inclusion. 

The easiest case analytically is to take p = 2, which necessitates 

k~>5. 

We proceed with the proof. Observation {a} follows from the 

hypothesis. To see {b) we compute the derivative of P, and apply the 

inverse function theorem. 

In fact, from Corollary 4.5 we write 

I S I 

f + 2CNf = -W , 

by putting dashes on the original metric. The operator C] + 2~/ has 

zero null space by the maximum principle, since W < 0. Since it is 

self-adjoint, it must also be onto and hence invertible. This proves 

that DP is invertible when ~" < 0, and so P is locally invertible on all 

of C-. 

To see assertion {c) that  P is proper, we apply the maximum 

prineipie to the equation 

Where f is a maximum Clf~<0, and where f is a minimum ~¢~0. 

Since W and W are both negative we get the estimate 

1 1 

1 1 (78) /W)min ~< f min ~< f max ~< /W) max 

Notice that the estimate fails ff W and ~N are positive. Having 

control of the maximum and minimum of f, it is easy to control the 
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higher der iva t ives  using the equation and the subelliptic Garding's  

inequali ty 

(79) Ilflls~¢+ 2 ~< C {llC-2flls[ + ilfllLp). 

In the C °o case  this shows P is proper. For given any compact  se t  of  

M, we have uniform bounds on Wma x and Wmi n and all iIWII~p. 
~k 

This gives bounds on fmax and fmin and all I l f l l s~  ¢ for  all f in the 

preimage, so the preimage is compact  since Coo is a Montel space.  

To work in the Banach space  Sk p we also need the following 

observat ion.  Suppose we have a sequence of con tac t  forms to n with 

W n --* W < 0 in S p. The previous es t imates  give bounds on ~n in 

Sk+  2 , p  which implies convergence of a subsequence  in S p. Let  
2 -  

ta n - - ,  G, and wri te  w n = fnCa. The maximum principle es t imate  

shows fn --* 1 in C °.  Then using the equation we get  the  es t imate  

(80) I l f n - l t i s ~ + 2  .< C IIW n - ~ q l t s [ ;  

.__, P this shows w n & i n  Sk+ 2, and proves P is proper.  

The asser t ion (d} that  ~ -  is simpb" connected follows by 

shrinking along s t ra ight  line paths to W = - I .  This completes  the 

proof of the theorem. 

7. ]~inimimng Torsion. We consider finally the problem of 

minimizing the energy 

(81) E z P 

represent ing  the L 2 norm of the torsion by the hea t  equation with the 

con tac t  form ~ fixed. From Lemma 5.5 we have the resul t  tha t  if we 
J 

take  a path of  O's depending on t with O = fO then 

E z ' =  2 lm J 'p  f ' D v L  )J. 

Following the gradient  flow of E z we let  f = i I~ . z .  This gives 
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hea t  equation for  E z. Since DVL = - is by Lemma 3.9 we get  the 

following results .  

7.1. Heat Equation Formulas. 

J 

o = i D r , - 5 ,  

= - 2  s 2 ~ ,  (82) E z p 

2 
z = DvL. 

These equations show tha t  if the solution exis ts  for  all t ime then the 

energy E z dec reases  and the curva ture  s ~ 0. The equation 
2 z =Dv z is a highly degenera te  parabol ic  equation,  since the r ight  

hand" side involves only the second de r iva t ive  in the  one direct ion V. 

Never theless ,  it  is not a bad equation,  s ince the  maximum principle 

applies.  This shows tha t  the maximum absolu te  value of z 

dec reases .  The equation is in f ac t  just  the ordinary heat  equation 

r e s t r i c t ed  to each orbit  in the  flow of V. Physical ly  we can imagine 

the manifold P to be made of a bundle of wires insulated from each 

other,  with the heat  flowing only along the wires.  When the orbi ts  of 

V are closed, the analysis  should Be fa i r ly  s t ra igh t forward .  When the 

orbi ts  of V are dense, things are  much more complicated,  and probably 

lead to small divisor problems. 

A regular  fol ia t ion is one where each lea f  is compact  and the 

space  of leaves is Hausdorff.  In this  case  we always have a Se i f e r t  

fol iat ion,  one where each leaf  has a neighborhood which is a f ini te  

quot ient  of a bundle. In th ree  dimensions the Se i fe r t  fo l ia ted  

manifolds are  wel l -unders tood  by the topologis t s ,  and provide many of 

the  nice examples. Wc conjec ture  the  following resul t .  

7.2. Conjecture .  Let M b e  a compact  th ree -mani fo ld  with a 

f ixed con tac t  form Lo whose vec to r  f ie ld V induces a Self  err  fol iat ion.  

There  there  exists  a CR s t ruc tu re  on M such tha t  the assoc ia ted  

metr ic  has s = 0, i.e., the sec t ional  cu rva tu re  of all planes a t  a given 

point perpendicular  to the con tac t  bundle B = Null ¢a are equal. The 
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metric is obtained as the limit of the heat equation flow as t --* **. 
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APPENDIX 

by 

Alan Weinstein 

THREE-DIMENSIONAL CONTACT MANIFOLDS 

WITH VANISHING TORSION TENSOR 

In a lecture on some of the material in the preceding paper, 

Professor  Chern raised the question of determining those 3-manifolds 

admitting a contac t  s t ructure  and adpated Riemnnnian metric for which 

the torsion invariant c2=a2+b 2 is identically zero. (See ~3. A 

variational characterization of such structures is given in Theorem 

5.2.) The purpose of this note is to show that the class of manifolds 

in question consists of certain Seifert fiber manifolds over orientable 

surfaces, and that the first real Betti number b]{M) of each such 

manifold M is even. These results are not new; see our closing 

remarks. 

By a simple computation, it may be seen that the matrix 

b 1 b - a  (see Corollary 3.5) represents  the Lie derivative of the 

ihduced inetric on the contact  bundle B with respect  to the contact  

vector field V. We thus have: 

A.]. [..emma. T h e  i n v a r i a n t  c 2 i s  i d e n t i c a l l y  

z e r o  i ]  a n d  o n l y  i ]  V i s  a k i l l i n g  v e c t o r  ] i e l d .  

o t h e r  w o r d s ,  M i s  a " k - c o n t a c t  m a n i f o l d " ;  s e e  [I]3 

(In 

We would like the flow generated by V to be periodic. If  this 

is not the case, we can make it so by changing the structures in the 

following way. Let G be the closure, in the automorphism group of M 

with its contact and metric structures, of the l-parameter group 

generated by V. G must be a torus, so in its Lie algebra we can find 

Killing vector fields V' arbitrarily close to V and having periodic flow. 

Let • be the ]-form which snnihilates the subbundle B' perpendicular 
I 

to V' and which satisfies w {V') - 1. For V' sufficiently close to V, 
I 

w will be so close to the original contact form ~ that it is itself a 
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contact form. Since the flow of V' leaves the metric invariant, it 

leaves the invariant the form to , from which it follows that V' is the 
P 

contact vector field associated with ~o . 

Having made the changes described in the previous paragraph, 

we may revert to our original notation, dropping primes, and assume 

that the flow of V is periodic. A rescaling of • will even permit us 

to assume that the least period of V is 1. {Note that, by Gray's 

theorem [2], we could actually assume that the new contact structure 

equals the one which was originally given.) 

Suppose for the moment that the action of S ] = IR/Z 

generated by V is free. Then M is a principal S 1 bundle over the 

surface M/S 1. The form w is a connection on this bundle; since 

is a contact form, the corresponding curvature form on M/S I is 

nowhere vanishing. Thus M/S 1 is an orientable surface, and the 

Chern class of the flbration M --* M/S I is non-zero. By the 

classification of surfaces, bl(M/SI) is even; by the Gysin s e q u e n c e ,  

= bI{M/SI) and is therefore even as well. b1(M) 

We are left to consider the case where the action of S I, 

although locally free, is not free. The procedure which we will follow 

is that of [8]. Let r~s I be the {finite) subgroup generated by the 

isotropy groups of all the elements of M. Then M is a branched 

cover of M/r, and M/r is a principal bundle over M/S I with fiber 

the circle S1/r. The branched covering map M --, M/r induces 

isomorphisms on real cohomology, so it suffices to show that b1(M/r) 

is even. To see this, we consider the fibration 

s1/r--.M/r--,M/S 1. The quotient spaces M/r and M/S I are 

V-manifolds in the sense of [4], and we have a fibre bundle in that 

category. The base M/S I is actually a topological surface which is 

orientable since it carries a nownere-zero 2-form on the complement 

of its singular points. Now the contact form may once again be 

considered as a connection on our V-fibration, and so, just as in the 

preceding paragraph, we may conclude that b1(M/r) is even. 

Remarks. A K-contact manifold is locally a 1-dimensional 

bundle over an almost-K~hler manifold. When the base is Kahler, the 

contact manifold is called Sasakian. Using harmonic forms, Tachibana 
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[5] has shown that the first Betti number of a compact Sasakian 

manifold is even. On the other hand, since every almost complex 

structure on a surface is integrable, every 3-dimensional K-contact 

mainfold is Sasakian, and hence our result follows from Tachibana's 

theorem. In higher dimensions, compact symplectic manifolds with odd 

Betti numbers in even dimension are known to exist [3] [7], and circle 

bundles over them will carry K-contact structures, while having odd 

Betti numbers in even dimension. 

The paper [6] contains a study of which Self err fiber manifolds 

over surfaces actually admit sl-invariant contact structures. 
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