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0. Introduction It was proved by R. Lutz and J. Martinet
[8] that every compact orientable three-dimensional manifold M has a
contact structure. The latter can be given by a one-form w, the
contact form, such that wAdw never vanishes; w is defined up to a
non-zero factor. A Riemannian metric on M is said to be adapted to
the contact form w if: 1) w has the length 1; and 2) dw=2,w,s
being the Hodge operator. The Webster curvature W, defined below in
[9], is a linear combination of the sectional curvature of the plane w
and the Ricci curvature in the direction perpendicular to w.

Adapted Riemannian metrics have interesting properties. The
main result of the paper is the theorem:

Every contact structure on a compact orientable
three~dimensional manifold has a contact form and an
adapted Riemannian metric whose Webster curvature is
either a constant £ 0 or is everywhere strictily
positive.

The problem is analogous to Yamabe's problem on the conformal
transformation of Riemannian manifolds Most recentiy, R. Schoen bas
proved Yamabe's conjecture in all cases, including that of positive
scalar curvature {9]. It is thus an interesting question whether in the
second case of our theorem the Webster curvature can be made a

positive constant.
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After our theorem was proved, we learned that a similar
theorem on CR-manifolds of any odd dimension has been proved by
Jerison and Lee. [7] As a result. our curvature was identified with
the Webster curvature. We feel that our viewpaint is sufficiently
different from Jerison-Lee and that the three-dimensional case has so
many special features to merit a separate treatment.

In an appendix, Alan Weinstein gives a topological implication
of the wvanishing of the second fundamental form in (54). For an

interesting account of three-dimensional contact manifelds, ¢f. [2]

1. Contact Structures. Let M be a manifold and B a
subbundle of the tangent bundle TM. There is a naturally defined

anti-symmetric bilinear form A on B with values in the quotient bundle
TM/B

(1) A: B XB— TM/B

defined by the Lie bracket;

(2) AV,W) = [V,W] mod B.

It is easy to verify that the value of A(V,W) at a pecint peM
depends only on the values of V and W at p. The bundle B defines a
foliation if and omly if it satisfies the Frobenius integrability condition
A = 0. Conversely, a contact structure on M is a subbundle B of the
tangent bundle of codimension 1 such that A is non-singular at each
point peM. This can only occur when the dimension of M is odd.

It is an interesting problem to find some geometric structure
which can be put on every three-manifold, since this would be helpful
in studying its topology. Along these lines we have the following
remarkable theorem of Lutz and Martinent {see [8], [10].

1.1 Thecrem. Every compact orientadle

three-manifold possesses a contact structure.
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There are many different contact structures possible, since the
set of B with A # 0 is open. Even on 83 there are contact
structures for which the bundles B, and B, are topologically distinct.
Nevertheless the notion of a contact structure is rather flabby, in the
following sense. We say B is conjugate to By if there is a
diffeomorphism w:M — M which has ¥ (B} = Bs. Then we have the
following result due to Gray (see [4]).

1.2 Theorem. Given a contact structure B, any
other ctontact structure By clocse enough to B i

conjugate to it.

2. Metrics adapted to contact structures. A contact form w
is a 1-form on M which is nowhere zero and has the contact bundle B
for its null space. In a three-manifold & non-zero l-form w is a
contact form for the contact structure B = Null w if and only if
wAdwz0 at every point. The contact structure B determines the
contact form up to a scalar multiple. The choice of a contact form w

also determines a vector field V in the following way.

2.1 Lemma. There exists a4 unique vector field
V such that w{V}) = 1 and dw(VW) =0 for all WeTM.

Proof. Choose VQ with w(VG) = 1. Since dwAw # 0, the
form dw is non-singular on B. Therefore there exists a unigue VleB
with

dwlVy W) = dw(V(.W)

for all WeB. Let V = Vy-V,. Then wl(V) = wlVy) - wlVy) = 1,
and dw(VW} = 0 for all WeB. Since V is transverse to B and
dw(V,V) = 0, we have dw{V,W) = 0 for all WeTM.

Locally any two non-zerc vector fields are conjugate by a
diffeomorphism. However, this fails globally, since a vector field may
have closed orbits while a nearby vector field does not. It is a

classical result that locally any two contact forms are conjugate by a



282

diffeomorphism. But globally two nearby contact forms may not be
conjugate, since the vector fields they determine may not be.

A choice of a Riemannian metric on a contact manifold
determines a choice of the contact form w up to sign by the
condition that w have length 1. Let 4 denote the Hodge star

operator. We make the following definition.

2.2 Definition. A Riemannian metric on a contact
three-manifold is said to be adapted to the contact form w if w is

of length one and satisfies the structural equation
{3} dw = 2 .

Such metrics have nice properties with respect to the contact

structure. For example, we have the following results.

2.3 Lemma. 1f the metric {s adapted to the
form w, then the vector field V determined by w 1S
the unit vector field perpendicultar to B.

Proof. Let V be the unit vector field perpendicular to B. Then
w(V) = 1, and for all vectors W in B we have dw(V,W)=2,uw(V,W)=0.

Hence V is the vector field determined by the contact form w.

2.4 Lemma. I1f the metric {s adapted to the
contact form w, then the area form on B is given by

'%' dw.

Proof. The area form on B is sw.

A CR structure on a mainfold is a contact structure together
with a complex structure on the contact bundle B; that is, an
involution J:B—B with J% = -1 where I is the identity. If M has
dimension 3 then B has dimension 2, and a complex structure on B is
equivalent to a conformal structure; that is knowing how to rotate by
90°. Hence, a Riemannian metric on & contact three-manifold also

produces a CR structure. CR structures have been extensively studied
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since they arise naturally on the boundaries of complex manifolds.

The following observation will be basic te our study.

2.5 Theorem. Let M be an oriented three-manifold
with contact structure B. For every choice of
contact form w and a CR structure J there exists a
unique Riemannian metric g adapted to the contact
form w and inducing the CR structure J.

Proof. The form w determines the unit vector field V
perpendicular to B. The metric on B is determined by the conformal

structure J and the volume form ,w|B = -é- dw{B.

3. Structural equations. We begin with a review of the
structural equations of Riemannian geometry. Let
w,.18a,85dimM, be an orthonormal basis of 1-forms on a
Riemannian manifold M. Then there exists a unique anti-symmetric

matrix of 1-forms Pan such that the structural equations
(4) dwa+waﬁAwﬁ=0'

hold on M. The forms ¥, 8 describe the Levi-Civita connection of
the metric in the moving frame w,. We can also view the w,
as intrinsically defined 1-forms on the principal bundle of orthonormal
bases. Then the ¥, are also intrinsically defined as 1-forms on this
principal bundle, and the collection (w, ¥, forms an
orthonormal basis of 1-forms in the induced metric on the principal

bundle. The curvature tensor R defined by the

agvrs S
structural equation

{5} d§935=—-¢a*;\¢7 3+Ra£,(5m,(/\w5,lga, B,v,8<dimM,
where the summation convention applies.
In three-dimensions it is natural to replace a pair of indices in

an anti-symmetric tensor by the third index. Thus we will write Y12
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i 2 and R1212 = K33, etc. Here Ku‘ are the components of the

Einstein tensor

1
(6) Kes = 7 Regp - Ryp
which has the property that, for any unit vector V, K{(V,V)} is the
Riemannian sectional curvature of the plane vi, The structural
equations then take the following form.

3.1 Structural equations in three dimensions.

dul = WzAGS - ¢3Aw2v
(7) dwz = ‘P3/\wl - ‘Pl/\wa,
dw3 = Wl/\wz - 502/\101.
and
@) dvy = 93AP Ky wpAugtK pezhn Ry Avy,

If the metric is adapted to the contact from w, we choose
the frames such that wy = w As a consequence K33 is the sectional
curvature of the plane v1 and -%' (Knﬂ(zz) is the Ricci curvature in
the direction V. The Webster curvature is defined by
(9) W = § (K +Ky,+2Kgq+d)
and has remarkable properties.

We proceed to illustrate these equations with three examples

which are very relevant to our discussion, the sphere S3, the unit

tangent bundie of a8 compact orientable surface of genus > 1, and the
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Heisenberg group H3.

3.2 Example. The sphere S3 is defined by the equation
(10) xe+y2ezlaw? = 1
in RY. Differentiating we get

{11) w0=xdx+yciy+zdz+wdw=0‘

A specific choice of an orthonormal basis in the induced metric is

w1=xdy—ydx+zdw~wdz,
(12) w2=xdz—zdx+ydw-wdy,
w3=xdw—wdx+ydz~zdy.

The reader can verify that if <dx,dx> = 1, <dx,dy> = 0, etc., then
wpwy> = 1 <wpwy> = 0, etc., and that <wg.wg> = 1, <wgwy>
= 0, etc. Taking exterior derivative we have

(13) dwl = ZuZ/\w3, dmz = Zws/\wl, dw3 = Zwll\uz,

and hence in this basis

which makes

{15} Kll = 1, K22 = 1, K33 = 1,

and the other entries are zero. The Webster curvature W = 1.

3.3 Example. The unit tangent bundle of a compact

orientable surface of genus #1.
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Let N be a compact orientable surface of genus g. If N is
equipped with a Riemannian metric, its orthonormal coframe 91, 92,

and the connection form 912 satisfy the structural equations

where K is the Gaussian curvature. Suppose gzl. We can choose

the metric such that

(17) K=¢={ *!, when g=0,
-1, when g>Ii.

The unit tangent bundle TIN of N, as a three-~dimensional manifold,

has the metric

1 2 2 2

(18) T (91 +6; + 912).
Putting

R | -1 - 1
(18) wy =7 6p wy T 7 6 w3 = -7 €6y,
we find
and
It follows that
{221 Kll = KZZ =1, K33 = 4¢-3,

all other Kaﬁ's being zero. By (9) we get

W = €.
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This includes the example in $3.2 when g = 0, for the unit tangent
bundle of S2 is the real projective space RPS. which is covered by 83,
and our calculation is local. On the other hand, TlN, for g > 1, has
-1.

a contact structure and an adapted Riemannian metric with W

3.4. Example. The Heisenberg group.
We can make Cz into a Lie group by identifying (z,w) with the

matrix

1 0
(23) [ 1
z

N

—-Q0
e

The subgroup given by the variety
(24) zZ+w+w=20

is the Heisenberg group H3. The group acts on itself by the

translations
z— z+ a,
(25)
w — w-az + b,
which leave invariant the complex forms
{26) dz and dw + 7 dz.
Hence an invariant metric is given by
27) ds? = |&z|? + faw + 7 az|2
Introduce the real coordinates

(28) 2= x + iy w = u + iv.

Then the variety (24) is
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{29) x2+y2+2\1=0

and differentiation gives

(30) du + x dx + y dy = 0.

Then an orthonormal basis of 1-forms in the metric above is given by
{31) wy = dx, m2=dy, m3=dv + x dy - y dx,

and we compute

dw;=0, dw,=0, dw,*2w,Aw,,
(32) V’l=ul ’ wzngr W3""w3.
Kyp=1, Kyo=1, Kgy,=-3,

and the other entries are zero. By {9) we have W=0. All these
examples give metrics adapted to a contact form WwSwa, since in an
orthonormal basis swq = wyAw,.

In generai, given a metric adapted to a contact form w, we
shall restrict our attention to orthonormal bases of 1-forms Wy, Wy,
wg with wyEw. Considering the dual basis of vectors, we only need to
choose a unit vector in B. These form a principal circle bundle, and
all of our structural equations will live naturally on this circle bundle.
It turns out to be advantageous to compare the general situation to
that on the Heisenberg group. Therefore, we introduce the forms

Vi ¥ ¥3 and the matrix Lll' le,.‘..L33 defined by

Pi=d tw . FrF¥, e, PaEygtwg,
33) Kyp=hypg¥l, Kpp=lya+l, Kyg=Ly,-3,

Kyoa=Ljyas Kia=li3»  Ky3=L,q

Thus the ¢ and L all vanish on the Heisenberg group. We then
compute the following.



289

3.5. Structure equations for an adapted metric. They are:

dwl = ¢2AM3-\&'3Aw25
{34) dwz = ¢3Awl-¢1Aw3,
dw3 = 2w1/\u2,

and

ViAwy = ¥phey = 0,
{35) ¥iAw, + yrAw, = 0,
and

dy ;= oA+l wyAwstl e Aw;+l e Aw, ,
(36)  q d¥y = YA YLy 0y AWt 03AL FLy 3w Awg
dyq = gAY+ Ly wAwgtl g wgAe; +lgaw Awy -

Proof. The equation dw3 = 2w1/\w2 comes from the
condition dw = 2.w that the metric is adapted to the contact form
w. Then the corresponding structural equation yields ‘I’IA“’Z -

sbzl\ul = Q. Using ddw3 = (0 we compute ¢1/\w1 + sﬁz/\wz =
0 also.

3.6. Corollary. We can find functions a and b on the

principal circle bundle so that

¥ = aw,+bw,,
(37) 1 i 2
¥y = buw;-aw,-

Proof. This follows algebraically from the equations {35).
It is even more convenient to write these equations in complex

form. We make the following substitutions.
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3.7. Complex substitutions.
On account of the complex structure in B it is convenient to

use the complex notation. We shall set:

= w1+iw2. W om wa,
= ¢1+i¢2, ¢ = ¢3’

a+ib,

1 1

=7 (Ly*lyy)s a = 5 (Lyy-Lyy), v = Ly,
= q+ir,

1 .
=3 (Lyz+il,4),

(38) |

Ladi I B - B B ]
L3

L3gs
(t’az'bz) »

LN
#

1
- %

where W is the Webster curvature, to be verified below. Note that ¥
= ¢0. Thus O and w give a basis for the 1-forms on M, while ¢

and ¢ define the connection.

3.8 Complex structural equations.

(39) a0 = 1(¢§n~45Au).
dw = 10AO;

and

d¢ = i[2WQAQ+(z0-20)Aw],

{40) d: = i(2¢y+zi-sw) mod 0,
"2 = 0,

Proof. This is a direct computation. Note that the real
functions p,W and the complex functions 2,8 give the curvature of the
metric.

The equation p+‘ ¥ lz = {} has the important consequence that we
can compute the Webster curvature W from the K, The result is

the expression for W in (9).
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The following notation will be useful. If f is a function on a

Riemannian manifold with frame W then
{41) df =D f - w

where Daf is the derivative of f in the direction of the dual vector
field Va. If f is a function on the principal bundle then we can still
define Daf as the derivative in the direction of the horizontal lifting

of V,- In this case we will have
{42) df = Dﬂf-m(I mod Pag

If the function f represents a tensor then Dcf are its covariant
derivatives, and the extra terms in Pas depend on what kind of

tensor is represented. In the example if T is a covariant 1-tensor

and

(43) f= T(VY),

then,

(44) df = Dﬁf'm(I + T(VB} gy

while if T is a covariant 2~tensor and

(45) f =TV, Vg
then

and so on. In the complex notation we write

“n df = Bf-a+ Bf-0+ Dfrw
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as the definition of the differential operators Bf, af, and va. As

usual

(48} Bf =

reflecting the transition from real to complex notation. If f is a
function on the principal circle bundle coming from a symmetric

k-tensor on B then
(49) df = Bf+0+ 3f-0+ DS + v+ ikfy.

For example, the function ¢ represents a trace-free symmetric 2-form

on B, and the structural equation for ¢ tells us

39. Lemma.
(50) 8. = iz and D ¢ = -is.

4. Change of basis. We start with the simplest change of
basis, namely rotation through an angle 6. We take 6 to be a

function on M and study what happens on the principal circle bundle.

The new basis wl. wg, wg is given by mgzmszw and

i

wt cos.0 wl—sin.ewz,
(51)

w3

[}

sin. @ m1+cos.9 wy
or in complex terms w* = w and
52) o = el o

Then from the structural equations we immediately find that
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4.1. Lemma.

5‘" §£' + dey

{53)
(= ¢ 48

Now a function or tensor on the principal circle bundle comes from
one on M by the pull-back if and only if it is invariant under rotation
by 6. Thus we see that the curvature form d¢* = dy is invariant
and hence lives on M. The form 0OAQ is also invariant, so W =
W* is invariant and W is a function on M. This W is the scalar
curvature introduced by Webster (see [11]}. Likewise '4 12 is invariant
and hence a function on M. The function ¢ defines a temsor 02

which is invariant. Hence its real and imaginary parts

a(w%—w%) + 2b wiwy,
(54)

define trace-free symmetric bilinear forms on B (they differ by
rotation). This form is called the torsion tensor by Webster (see [11]);
it is analogous to the second fundamental form for a surface.

We now consider more interesting changes of basis. First we
change the CR structure while leaving the contact form w fixed. In
order to keep the metric adapted to the contact form we must leave

“’lA“’Z invariant. This gives a new basis

wy = Aw1+Bw2,
(55) w’z' = Cw1+Dw2,
wg = wg

with AD-BC = 1. An infinitesimal change of basis is given by the
tangent to a path at t = 0. Thus an infinitesimal change of the basis
which changes CR structure but leaves the contact form invariant and

keeps the metric adapted is given by
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w1, = gw1+hw2,

WZ/ = kml*IWZy

wg = 0
with g+l = 0. Since the rotations are trivial we may as well take
h=k. This gives

U.)}/ = gwl*hmz,
{56} “2’ = hwl-—gmz,

WB = O.

In complex notation if f = g+ih then
(57) 0 =foand 0 =0

For future use we compute the infinitesimal change t/// in ¢
and ¢ ‘ in ¢ from the structural equations {39}, {40}. We find that {

transforms as a 2-tensor
(58) df = Bf» 0+3f - O¥D £+ wH2ify
and that

4.2. Lemma.

¢ ‘= -1 va,
{59

¢ = ief-0-3f-0) - ((f+iflw

using the fact that we know yAQ and ¢ is real

On the other hand we may wish to fix the CR structure and
change the contact form while keeping the metric adapted. In this
case let w} = f2w3 where f is a positive real function. Excluding

rotation we find that to keep the metric adapted we need
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u’; = f‘wI—sz-w3,
(60) w; = f'w2+D1f'w3.
wg = f2w3,

In complex notation

0 = fO + 2i df+w,
(61)

fzw.
For an infinitesimal variation we differentiate to obtain

0
{62)

Hence changes of

fl o+2i 5’fl-w,

s
w.

2f

metric fixing the CR structure are given by a

potential function f, much the same way as changes of metric fixing a
conformal structure. The main difference is that the derivatives of f
enter the formuia for the new basis.

As a consequence of ddf = 0 we have

(63} Bdf - dOf + iDyf = 0.

We also define the sub-Laplace operator
{64)

af = 2(38f+38f) = (DD4f + D,Dyf).

Then a

equations yields

straightforward computation substituting in the structural

(4.3. Lemma)
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4.3. Lemma.
y* =
(2= 02228 _ g [Qfﬁ]

Differentiating the first we get

(65)

[
<
o+
[
Lo
e,
*
0
i
"

jo 3]
PR ]
!
e,
o =3
+
o
oy

"
[S——

dy* = dy-2i B 0AD mod o,
which shows the remarkable relation given by
4.4 Lemma.
(66) w= = fw - of.

4.5, Corollary. In an infinitesimal variation

67) W= -2f W
5. Energies. let it be the measure on M
(68) 4 = wjAw,Awg = 3 0ADAW

induced by the metric. Here are two interesting energies which we

may form. The first is

(69) By = f e

which is analogous to the energy
(70) E=j R u
M

in the Yamabe problem. The second is
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(71) E, = j 2w
=y, 1l
which is a kind of Dirichlet energy.
In this section we shall study the critical points of these
energies.

First we observe that for computational reasons it is easier to

integrate over the principal circle bundle P. The measure there is
(72) ¥ = wjAwgAugAdy = F DADAWAY.
If f is a function on the base M then

(73) jp fy=2r '[Mf “,

so nothing is lost.

Next we observe that we can integrate by parts.
5.1. Lemma. For any f on P

(74) fpaf-y = 0 and jpnvf-y = 0.

Proof. The first follows from

il
(=]

J’ dEDAWAY)
P
and the second follows from

0,

u

jp dEQAQAY)

since d0=0 mod 0. w and dw=0 mod 0O, 0 and d¢=0 mod Q, 0,

Ww.

5.2. Theorem. The energy Bw is critical over all
contact forms with a fixed CR structure and fixed
volume {f and only if W is constant. It is critical
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over all CR structures with a fixed contact form 1 f

and only if ¢ = 0.
/’
Proof. We compute the infinitesimal variation Ew . Fixing the
CR structure and varying the potential f of the contact form with w*
= £2, gives y = 4fIJJ and
’ r'd 4 rd
Ey =_[ (-of * + 2f W)»=sz W oy,
P
since O integrates away. The volume is fixed when If' vy = 0.
Thus, Ev; = {0 precisely when W is constant.
Fixing the contact form and varying the CR structure we use

the following.

5.3 Lemma.

(75) Ew = % J'Pd««/\wm,

Proof. We use the structural equation to see
dyAw = 2iWOAQAwW
and integrate by parts to get the result. Then we have
By =% fpdw " Aoy + dyhory
(using w C = 0), and this gives
By =3[ v AoAdAv.
Then using Lemma 4.2 we get

4

1 -
= - {L£+71) v,
Bw ijtt)v

so that the CR structure is critical for fixed w precisely when ¢=0.
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Next we consider the energy Ez'

5.4. Theorem. The energy Et is critical over
all CR structures with fixed contact form if and
only if sz = o, which i{s equivalent to s =0, or K11 =
Kzz and K12 = 0. The energy E‘ is critical over all
contact forms with fixed CR structure and fixed

volume {f and only ¢f

(76) 2i(dz - &) + 3p = constant.

Proof. The energy E‘ is given by

£, = [l el >

so its first variation is
Y £ - _/ 2 4
Eé =I(t I+ ¢ z}v+l:! v .
P
. . ’
When w is fixed, w

= § and vl = . By Lemma 4.2 we have the
result that if O’ = f Q then ¢ C = —»iva, and this gives

5.5. Lemma.

E, =2ImIPfDV.4 v.

Since f is any real function on M, we see E‘ = 0 when sz = 0.
Then s = 0 by Lemma 3.9 and K]l = KZZ and KIZ = { by substitution
{38).
This condition says that, at each point of M, the sectional
curvature of all planes perpendicular to the contact plane B are equal.
If, on the other hand, we fix the CR structure and vary the

contact form by a potential f, we have from Lemma 4.3
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z‘=4-2§—§i-6{§{f—]z.

Taking an infinitesimal variation

Then the variation in Ez is

B, = [, -2t 00"+ 7231 + 3| |2 £,

from which we see that E‘ T = 0 precisely when
200 + 837 - 3| |?

is constant. Since ©¢ = iz by Lemma 3.9, and ll 'zﬂ) = (), this gives
the equation (76).

6. Changing Webster Scalar Curvature. The problem of
fixing the CR structure and changing the Webster scalar curvature is
precisely analogous to the Yamabe problem of fixing the conformal
structure and changing the scalar curvature, except the problem is
subelliptic, and the estimates and constants for the 3-dimensional CR
case look like the 4-dimensional conformal case. The first result is

the following.

6.1. Theorem. Let M be a compact orientable
three-mani fold with fixed CR structure. Then we can
change the contact form so that the Webster scalar
curvature W of the adapted Riemannian metric is

efther positive or zero or negative everywhere.

Proof. We have fOW*® = fW - Of from Lemma 4.4. We take
f to be the eigenfunction of W-O with lowest eigenvalue X\y. By
the strict maximum principle for subelliptic equations (see Bony [1}} we
conclude that f is strictly positive. Since Wf - Of = le we have
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fz‘W‘ = )‘l' Hence W* salways has the same sign as )‘I‘
Next we show that in the negative curvature case we can make

W whatever we want, in particular, 8 negative constant.

6.2. Theorem. Let M be a compact orientabdle
three-mani fold with a fixed CR structure. 1f some
contact form has negative Webster scalar curvature,
then every negative function W<Q {s the Webster

scatlar curvature of one and only one contact form w.

Proof. Let C be the space of all contact forms and let 7 be
the space of functions. We define the operator P by

P.C = 7, Plw}=W.

Let 77 be the space of negative functions and let C” be the space of

contact forms with negative Webster curvature. Then
(77) P:.CT ~ TJ7

is also defined. We claim the P in ({77} is a global diffeomorphism.

This follows from the foliowing observations.
a}l C™ is not empty.

b} P is locally invertible.

cl P is proper {the inverse image of a compact set is
compact).
d} J~ is simply connected.

We then argue that (a) allows us to start inverting somewhere,
(b} allows us to continue the inverse along paths, {c) says that the
inverse doesn’t stop until we run out of ¥, and {(d} tells us that the

inverse is independent of the path and hence wunique.
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Before we start the proof we remark on a few technical
details. There are two possible approaches to the proof. One is to
work with C” functions and quote the Nash-Moser theorem {(see [5] for
an exposition) using the ideas in [6] to handle the subelliptic
estimates. The other is to work with the Folland-Stein spaces SE

{see [3]) which measure k derivatives in the direction of the contact

structure in LP norm. We can take weSP ., and Wesp
provided pk>8 so that WeC® by the appropriate Sobolev inclusion.
The easiest case analytically is to take p = 2, which necessitates
k>5.

We proceed with the proof. Observation (a} follows from the
hypothesis. To see (b) we compute the derivative of P, and apply the
inverse function theorem.

In fact, from Corollary 4.5 we write

by putting dashes on the original metric. The operator O + 2W has
zero null space by the maximum principle, since W < 0. Since it is
self-adjoint, it must also be onto and hence invertible. This proves
that DP is invertible when W < 0, and so P is locally invertible on all
of C™.

To see assertion (c) that P is proper, we apply the maximum

principie to the equation

Where f is a maximum 0f<0, and where f is & minimum Of20.

Since W and W are both negative we get the estimate

1

1
<t . <f < [(VV/W) max}-f.

(78) [(W/W)min] min max
Notice that the estimate fails if W and W are positive.  Having

control of the maximum and minimum of f, it is easy to control the
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higher derivatives using the equation and the subelliptic Garding’'s

inequality

{(79) Wfilep < C (HOfH + HEN ).
Sk+2 Sl‘: Lp)

In the C™ case this shows P is proper. For given any compact set of
< n and all “w“SE'
This gives bounds on fmax and fmin and all “f“SE for all f in the

M, we have uniform bounds on Wma and wmi

preimage, so the preimage is compact since C” is a Montel space.
To work in the Banach space SE we also need the following
observation. Suppose we have a sequence of contact forms wy with

Wn — W < 0 in SE. The previous estimates give bounds on w_ in

n
Si‘: +2 which implies convergence of a subsequence in Slpc Let
w, — w, and write w, = fi&. The maximum principle estimate

shows fn — 1 in C®. Then using the equation we get the estimate
(80) if_-lilep € C W, - Wiigp:
DTSk n Sk

this shows w, - @ in SE+2, and proves P is proper.
The assertion (d) that I~ is simply connected follows by
shrinking along straight line paths to W = -1. This completes the

proof of the theorem.

7. Minimizing Torsion. We consider finally the problem of

minimizing the energy

81) B, = fp{;jz v

representing the Lz norm of the torsion by the heat equation with the
contact form w fixed. From Lemma 5.5 we have the result that if we
take a path of Q's depending on t with O’ = f0O then

E, =2in jP f Dye ».

Following the gradient flow of E . Ve jet f = i sz. This gives
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heat equation for E‘. Since sz = - is by Lemma 3.9 we get the

following results.

7.1. Heat Equation Formulas.

0 =i sz-(—),
(82) E = 'prlslz »,

¢ = Ds,z.

These equations show that if the solution exists for all time then the
energy E, decreases and the curvature s — 0. The equation

Y ’=D\2,z is a highly degenerate parabolic equation, since the right
hand side involves only the second derivative in the one direction V.
Nevertheless, it is not a bad equation, since the maximum principle
applies. This shows that the maximum absolute wvalue of ¢
decreases. The equation is in fact just the ordinary heat equation
restricted to each orbit in the flow of V. Physically we can imagine
the manifold P to be made of a bundle of wires insulated from each
other, with the heat flowing only along the wires. When the orbits of
V are closed, the analysis should be fairly straightforward. When the
orbits of V are dense, things are much more complicated, and probably
lead to small divisor problems.

A regular foliation is one where each leaf is compact and the
space of leaves is Hausdorff. In this case we always have a Seifert
foliation, one where each leaf has a neighborhood which is a finite
quotient of a bundle. In three dimensions the Seifert foliated
manifolds are well-understood by the topologists, and provide many of

the nice examples. We conjecture the following result.

7.2. Conjecture. Let M be a compact three-manifold with a
fixed contact form w whose vector field V induces a Seifert foliation.
There there exists a CR structure on M such that the associated
metric has s = 0, i.e., the sectional curvature of all planes at a given

point perpendicular to the contact bundle B = Null w are equal. The
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metric is obtained as the limit of the heat equation flow as t — o,

{2}

(4]

(5]

{7

(8]

(9]

(10]

[11]
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APPENDIX

by

Alan Weinstein

THREE-DIMENSIONAL CONTACT MANIFOLDS
WITH VANISHING TORSION TENSOR

In & lecture on some of the material in the preceding paper,
Professor Chern raised the question of determining those 3-manifolds
admitting a contact structure and adpated Riemannian metric for which
the torsion invariant c2=aZ+bZ is identically zero. (See §3. A
variational characterization of such structures is given in Theorem
5.2.) The purpose of this note is to show that the class of manifolds
in question consists of certain Seifert fiber manifolds over orientable
surfaces, and that the first real Betti number b;(M) of each such
manifold M is even. These results are not new; see our closing

remarks.

By a simple computation, it may be seen that the matrix

g _: (see Corollary 3.5) represents the Lie derivative of the

induced metric on the contact bundle B with respect to the contact
vector field V. We thus have:

2 is identically

Al. Lemma. The invariaat c
zero {f and only 1f V is a Killing vector field. (In

other words, M is a "K~contact mani fold";, see [1].)

We would like the flow generated by V to be periodic. If this
is not the case, we can make it so by changing the structures in the
following way. Let G be the closure, in the automorphism group of M
with its contact and metric structures, of the 1l-parameter group
generated by V. G must be a torus, so in its Lie algebra we can find
Killing vector fields V' arbitrarily close to V and having periodic flow.
Let w be the 1-form which annihilates the subbundle B’ perpendicular
to V' and which satisfies wl (V') = 1. For V' sufficiently close to V,

4
w will be so close to the original contact form w that it is itself a
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contact form. Since the flow of V' leaves the metric invariant, it
leaves the invariant the form w’, from which it follows that V' is the
contact vector field associated with w

Having made the changes described in the previous paragraph,
we may revert to our original notation, dropping primes, and assume
that the flow of V is periodic. A rescaling of w will even permit us
to assume that the least period of V is 1. (Note that, by Gray's
theorem (2], we could actually assume that the new contact structure
equals the one which was originally given.}

Suppose for the moment that the action of sl = rs2
generated by V is free. Then M is a principal 8! bundle over the
surface M/S!. The form w is a connection on this bundle; since w
is a contact form, the corresponding curvature form on M/S1 is
nowhere vanishing.  Thus M/S! is an orientable surface, and the
Chern class of the fibration M — M/S! is non-zero. By the
classification of surfaces, bl(M/Sl) is even; by the Gysin sequence,
by(M) = b (M/S) and is therefore even as well.

We are left to consider the case where the action of s!,
although locally free, is not free. The procedure which we will follow
is that of [8]. Let I‘gS1 be the (finite) subgroup generated by the
isotropy groups of all the elements of M. Then M is a branched
cover of M/I', and M/I is a principal bundle over M/’S1 with fiber
the circle sl/r. The branched covering map M — M/I induces
isomorphisms on real cohomology, so it suffices to show that by(M/T)
is even. To  see this, we consider the  fibration
Sl/r—-‘M/F—-'M/SI. The quotient spaces M/T" and M/S1 are
V-manifolds in the sense of [4], and we have a fibre bundle in that
category. The base M;”S1 is actually a topological surface which is
orientable since it carries a nowhere-zero 2-form on the complement
of its singular points. Now the contact form may once again be
considered as a connection on our V-fibration, and so, just as in the

preceding paragraph, we may conclude that bl(M/r) is even.

Remarks. A K-contact manifold is locally a 1-dimensional
bundle over an almost-Kahler manifold. When the base is Kahler, the

contact manifold is called Sasakian. Using harmonic forms, Tachibana
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[5] has shown that the first Betti number of & compact Sasakian
manifold is even. On the other hand, since every almost complex
structure on a surface is integrable, every 3-dimensional K-contact
mainfold is Sasakian, and hence our result foliows from Tachibana's
theorem. In higher dimensions, compact symplectic manifolds with odd
Betti numbers in even dimension are known to exist [3] [7], and circle
bundies over them will carry K-contact structures, while having odd
Betti numbers in even dimension.

The paper [6] contains a study of which Seifert fiber manifolds
over surfaces actually admit Sl-invariant contact structures.
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