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%1. The Holonomy of Riemannian Manifolds 

In this section, all objects are assumed smooth unless stated 

otherwise, M will denote a connected, simply connected n-manifold and 

g will denote a Riemannian metric on M. If ~: [0,i] ~ M is a path 

in M, then the Levi-Civita connection of g induces a well-defined 

parallel translation along ~, p : T (o)M ~ T (1)M which is an iso- 

merry of vector spaces. For every x ~ M, we let H x denote the set 

of all P where ~ ranges over all paths with ~(0) = ~(i) = x. It 

is well-known, see [i], that the simple connectivity of M implies 

that H x is a connected, closed Lie subgroup of SO(TxM), the group 

of oriented isometries of TxM with itself. Moreover P (H (0)) = 

H (i) for any path ~. It follows that by choosing an isometry 

i: T M = ~n, we can identify H with a subgroup H c SO(n). The 
x x 

conjugacy class of H in O(n) is independent of the choice of x 

or i. By abuse of language we speak of H as the holonomy of g. 

The holonomy group is a measure of the curvature of g. For 

n 2 
example, if H preserves an orthogonal decomposition ~n = ~nl • ~ , 

n. 

then g = gl + g2 locally where gi is a local metric on ~ ~. It 

follows that, in order to determine which subgroups of SO(n) can be 

holonomy groups of Riemannian metrics, it suffices to determine the 

subgroups H c SO(n) which act irreducibly on ~n and are holonomy 

groups of Riemannian metrics. By examining the Bianchi identities and 

making extensive use of representation theory, Berger [2] proved the 

following classification theorem. 
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Theorem (Berqer): Let (Mn,g) be a connected, simply connected 

Riemannian n-manifold and suppose that its holonomy group H c SO(n) 

acts irreducibly on ~n. Then either (M,g) is locally symmetric or 

else H is one of the following subgroups of SO(n) 

(i) SO(n) 

(ii) U(m) if n = 2m > 2 

(iii) SU(m) if n = 2m > 2 

(iv) Sp(1)Sp(m) if n = 4m > 4 

(v) Sp(m) if n = 4m > 4 

(vi) G 2 if n = ? 

(vii) Spin(?) if n = 8 

(viii) Spin (9) if n = 16 

After noting that the above list is exactly the list of subgroups 

of SO(n) which act transitively on S n-I c ~n, Simons [3] gave a 

direct proof that the holonomy of an irreducible non-symmetric metric 

on M n acts transitively on S n-l. 

It is natural to ask which of the possibilities on Berger's list 

actually do occur. It is easy to show that the "generic" metric on 

M n has holonomy SO(n). If n = 2m, a matric with holonomy a sub- 

group of U(m) is, of course, a Kahler metric. Such a metric is 

given in local coordinates on £m in the form 

gf = ( ~2f/~zi a~J)dz i o di~ 

where f is a smooth function on c m satisfying the condition that 

its complex hessian Hf = (~2f/~zi ~zJ) be positive definite. For a 

"generic" f with Hf > O, the metric gf will have holonomy U(m). 

Every metric on M 2m with holonomy H c SU(m) can be put in the 

above form locally where f satisfies the complex Monge-Ampere equa- 

tion det(Hf) = I. Again, the "generic" solution of this equation 



271 

yields a metric whose holonomy is exactly SU(m). Since Sp(m) c_ 

SU(2m), we ca even construct metrics whose holonomy is Sp(m) on 

M 4m (m > I) locally by selecting a linear map j: c2m ~ £2m satis- 

fying j2 = -I and j = tj and considering the gf where f 

satisfies the system of equations Hf J Hf = J. Even though this is 

an overdetermined system of equations for f, enough solutions can be 

found to exhibit local metrics with holonomy exactly Sp(m). A simi- 

lar construction with complex contact structures on £2m+i allows one 

to exhibit metrics locally on ~4m with holonomy Sp(1) Sp(m). It 

must be emphasized that it is the encoding of holonomy properties into 

the Cauchy-Riemann equations (which are completely understood locally) 

that allows the construction of metrics in cases (ii)-(v) to be re- 

duced to a managable partial differential equations problem. 

There remain the "exceptional" cases (vi)-(viii). In a surpris- 

ing paper, Alekseevski [4] showed that any metric on M 16 with holo- 

nomy Spin(9) was necessarily locally symmetric. Thus, case (viii) 

can be removed from Berger's list. It is worth remarking that cases 

(vi) and (vii) do not occur as symmetric spaces [6]. This raises the 

possibility that these two cases do not occur at all. As of this 

writing, no examples of cases (vi) or (vii) are known. Nevertheless, 

there is extensive literature on the properties of these elusive 

metrics. See [7], [8], and [9] and the bibliographies contained 

therein. 

In this lecture, we shall outline a proof of the existence of 

local metrics in cases (vi) and (vii). The details, which involve an 

analysis of a differential system to be constructed below will be pub- 

lished elsewhere. For the appropriate concepts from differential sys- 

II 

tems and Cartan-Kahler theory, the reader may consult [i0]. 

%2. Linear Algebra, H-structure, and Differential System ~ 

Our strategy will be to describe a set of differential equations 

whose solutions will represent metrics on M n with the desired holo- 
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nomy. We begin by giving a somewhat non-standard description of G 2.  

Let 1 2 ,  . .., 7 be an oriented orthonormal coframing of ~7 

We define the 3-form 

= 1 2 3  + 1 4 5  + 1 6 7  + 2 4 6  _ 2 5 7  _ 3 5 6  _ 3 4 7  

where iJk is an abbreviation for wiA~JA~k. 

Proposition I: G 2 = (A • GL(7) IA*(P) = ~} where G 2 is the 14- 

dimensional simple Lie group of compact type. 

We will not prove Proposition 1 here. It is interesting to note 

that a dimension count shows that the orbit of ~ in A3(~ 7) under 

GL(7) is open. (In fact, there are exactly two open GL(7) orbits 

in A3(~?). The stabilizer of a form ~ in the other open orbit is 

the simple Lie group of non-compact type of dimension 14.) The form 

was discovered by Chevalley [5]. Bonan [7] showed that 

G 
2 

A = span{l,P,*F,*l = (i/7)~ /x *~} 

G 2 
where A c A(~ 7) is the subring of G2-invariant exterior forms. 

If V is a seven dimensional vector space, we will say that 

a • A3(V *) is positive if there exists a linear isomorphism 

3 * L: V ~ ~7 so that a = L*(~). The set A+(V ) c A3(V *) of positive 

forms is clearly an open subset of A3(V*). If a • n3(M 7) we say 

that a is positive iff alx is positive for all x • M 7. We let 

E c A3(T~M) denote the open submanifold of positive 3-forms. 

~: E ~ M is a smooth fiber bundle with fibers isomorphic to 

GL(7)/G 2. The sections of E are the positive forms on M and are 

also obviously in I-i correspondence with the set of G 2 reductions 

of the tangent bundle of M, i.e., G2-structures on Mo Since 
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G 2 ~ SO(7), it follows that each G2-structure on M induces a 

canonical underlying orientation and Riemannlan metric. 

On the other hand, if (M7,g) is an oriented Riemannian manifold 

with holonomy G2, it is easy to see that there is a unique parallel 

positive 3-form ~ on M whose underlying orientation and metric 
g 

are the given ones. 

Proposition 2: Let ~ be a positive 3-form on M, and let ~a be 

the dual 4-form with respect to the underlying metric and orientation. 

Then a is parallel with respect to the underlying metric's Levi- 

Civita connection iff d~ = d*~ = O. 

Proposition 2 is due to Gray [8] in the context of vector cross pro- 

ducts. It follows from this that every positive 3-form ~ which 

satisfies the system of partial differential equations da = d*~ = 0 

has an underlying metric whose holonomy is a subgroup of G 2 and 

conversely every metric whose holonomy is a subgroup of G 2 arises 

from such an ~. 

The conditions d~ = d~ = 0 form a quasi-linear first order 

system for the 35 (= dim A3(V~)) unknown coefficients of ~. The + 

system is quasi-linear because coefficients of *a are algebraic 

functions of the coefficients of a. A priori, this appears to be 56 

(= dim(A4(~ 7) • A5(~7)) equations for the 35 unknowns. However, 

there is a (miraculous) identity 

(~d/3) A /3 + (*d*/3) /k */3 = 0 

valid for any positive /3 where the ~ is the Hodge star of the 

underlying S0(7) structure. It can be shown that the remaining 49 = 

56 - 7 equations are independent. 

This overdetermined system is invariant under the diffeomorphism 

group of M and hence cannot be elliptic. However, it can be shown 



274 

that it is transversely elliptic, i.e., elliptic when restricted to a 

action of Dill(M) on n~(M). local slice of the 

Our first main result is 

Theorem I: The system da = d*a = 0 for a • R3 +(M) is involutive 

with Caftan characters (Sl,S 2 ..... s?) = (0,0,1,4,10,13,7). In 

particular, the "generic" solution has the property that its under- 

lying metric has holonomy exactly G 2. 

We remark that Theorem I is essentially a calculation. One 

describes the appropriate differential system with independence con- 

dition on E c n3(T*M) and calculates both the integral elements and 

the Cartan characters to arrive at the result. Note that this system 

is real analytic in local coordinates. The transversality property 

actually implies that any solution is real analytic in some coordinate 

system anyway, so the application of Cartan-Kahler theory is vindi- 

cated. Details will appear elsewhere. 

We now turn to the analogous case 

~7 and augment the given coframing of 

the 4-form on ~8 

H = Spin(7). Write ~8 = ~I $ 

~7 by an O. We then define 

0 
~ = ~ A Io + ~ = * ~  

w h e r e  ~ = * ~  e A 4 ( ~ 7 ) .  

Proposition 3: Spin(?) = {A • GL(8)IA (~) = qb} where Spin(Y) c_ 

SO(8) is isomorphic to the universal cover of SO(7). 

Proposition 3 is not difficult to prove assuming Proposition i. 

The form ~ was discovered by Bonan [7] who showed that 

A spin(7) = {i,~ = *~,'i = (I/14)@ 2} 
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where A Spin(g) c A(~ 8) is the subring of Spin(g)-invariant exterior 

forms on R 8. The GL(8)-orbit of ~ e A4(~ 8) is not open but is, of 

course, a smooth submanifold of A4(~ 8). We shall say that an a e 

A4(V ~) is admissible if there exists a linear isomorphism L: V 
~8 

so that a = L*(4~). If a e 24(M8), we shall say that a is admis- 

sible if alx is admissible for all x e M 8. We let F c_ M4(T~M) 

denote the submanifold of admissible 4-forms. ~: F ~ M 8 is a smooth 

fiber bundle with fibers isomorphic to GL(8)/Spin(Y). Clearly the 

space of sections of F, i.e. the space of admissible 4-forms on M, 

is in i-I correspondence with the space of Spln(g)-structures on M. 

Since Spin(?) c SO(8), we see that each admissible a on M canoni- 

cally induces an orientation and metric on M. 

On the other hand, if (M8,g) is an oriented Riemannian manifold 

with holonomy Spin(7), it is easy to see that there is a unique 

parallel admissible 4-form a on M whose underlying orientation 
g 

and metric are the given ones. 

Proposition 4: Let a be an admissible 4-form on M. Then a is 

parallel with respect to the Levi-Civita connection of the underly- 

ing metric iff da = 0. 

Proposition 4 is actually more elementary than the corresponding 

Proposition 2, but seems to have been overlooked. It follows from 

this that every admissible 4-form a which satisfies da = 0 has an 

underlying metric whose holonomy is a subgroup of Spin(g) and con- 

versely every metric whose holonomy is a subgroup of Spin(?) arises 

from such an ~. 

Since F is not an open subset of a vector bundle over M, the 

condition da = 0 is only a quasi-linear first order system of 56 

(= dim A5(~7)) equations for the 43 (= dim(GL(8)/Spin(7)) unknown 

coefficents of the section a: M ~ F. It can be shown that these 56 
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equations are algebraically independent. Again, this over-determined 

system is invariant under the diffeomorphism group of M and can be 

shown to be transversely elliptic. 

The analogue of Theorem I for Spin(7) is 

Theorem 2: The system da = 0 for sections a: M ~ F is involutive 

with Cartan characters (sl,s 2 ..... Ss) = (0,0,0,I,4,10,20,8). In 

particular, the "generic" solution has the property that its underly- 

ing metric has holonomy exactly Spin(7). 

Theorem 2 is also a calculation with the appropriate differential 

system with independence condition on F c A4(T~M). Details will 

appear elsewhere. 

~3. Closing Remarks 

The methods of %2 only yield the weakest positive result. Name- 

ly, that there exist local metrics on ~7 and ~8 which are not 

locally symmetric and have holonomy equal to G 2 and Spin(7) re- 

spectively. This at least shows that Berger's list cannot be shorten- 

ed any further. Of course, in many respects this is quite unsatis- 

factory. 

In the first place, we do not know a single example of such a 

metric in either case. The search for such metrics is led by Gray [8] 

but has so far proved fruitless. 

In the second place, we do not know if there exists a complete 

metric even on ~7 or ~8 with holonomy G 2 or Spin(7). This 

problem reminds us, in some respects, of the conjecture that a com- 

plete Kahler metric on £m which has holonomy a subgroup of SU(m) 

is actually flat [II]. 

Finally, we do not know if there exists a compact example of 

either kind. Nevertheless, the descriptions of such metrics afforded 

by Theorems I and 2 allow one to prove a good number of theorems about 
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possible examples. In a forthcoming joint work by the author and 

Reese Harvey it is shown that a compact (MT,g) with holonomy G 2 

must be orientable, spin, and have finite fundamental group. The 

first Pontriagin class of M 7 must be non-zero and the deformation 

theory of the solutions of da = d~a = 0 is unobstructed, the dimen- 

sion of the local moduli space being b 3 > 0 where b 3 is the third 

Betti number of M. Similar results are obtained for 8-manifolds with 

holonomy Spin(7). The difficulty of explicitly writing down such a 

metric can be appreciated by contemplating the fact that no explicit 

example of a Calabi-Yau metric on a K-3 surface is known as of this 

writing. 
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