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This is mainly a report on recent and rather recent work of the author 

and others on Riemannian manifolds of nonpositive sectional curvature. 

The names of the other people involved are M. Brin, K. Burns, P. Eber- 

lein and R. Spatzier. 

Denote by M n a complete connected smooth Riemannian manifold, by 

K M the sectional curvature of M and by d the distance on M induced 

by the Riemannian metric. We always assume K M ~ 0 , that is, KM(O) ~ 0 

for every tangent plane 0 of M. 

One of the significant consequences of the assumption K M ~ 0 is as 

follows. Let ¥I and T 2 be unit speed geodesics in the universal co- 

vering space M of M such that TI(0) = Y2(0) . Then for t,s ~ 0 

d2(T1(t), T2(s)) ~ t 2 + s 2 - 2ts • cos(~1(0), ~2(0)) 

with equality if and only if TII [0,t] and T21 [0,s] belong to the 

boundary of a totally geodesic and flat triangle. It follows that the ex- 

ponential map exp: T M > M is a diffeomorphism for each p 6M. In 
P 

particular, M is a K(z,1) ; the homotopy type of M is determined by 

F = ~I(M) . As we will see below, there are also strong relations bet- 

ween the structure of F and the geometry of M. 

One of the principal aims in the study of nonpositively curved mani- 

folds is to specify the circumstances under which assertions about nega- 

tively curved manifolds become false - if they become false - under the 

weaker assumption of nonpositive sectional curvature. For example, a 

theorem of Milnor [Mi] asserts that F has exponential growth if M is 

compact and negatively curved. As for the weaker assumption K M ~ 0, 

Avez [Av] showed that F has exponential growth if and only if M is 
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not flat. 

In general, one expects some kind of flatness in M if some proper- 

ty of negatively curved manifolds is not shared by M . Hence it is only 

natural to try to measure the flatness of M . In the case of locally 

symmetric spaces, the rank is such a measure. The question arises, whether 

such a notion can be introduced in a meaningful way for general manifolds 

of nonpositive sectional curvature. This is indeed the content of Problem 

65 in Yau's list [Y]. We state this problem in a slightly modified form 

and in two parts. 

a) DEFINE THE RANK OF M AND SHOW THAT F CONTAINS A FREE 

ABELIAN SUBGROUP OF RANK k IF M IS COMPACT OF RANK k . 

Note that in the case M is compact and locally symmetric, the (usual) 

rank of M is given by the maximal number k such that r contains a 

free abelian subgroup of rank k . See also Theorem 1 below. 

b) SHOW THAT F CONTAINS A FREE ABELIAN SUBGROUP OF RANK 2 

IF M HAS A 2-FLAT. 

Here a k-flat is defined to be a totally geodesic and isometrically im- 

mersed Euclidean space of dimension k . 

As in the case of locally symmetric spaces, the rank of M should 

be an integer between I and n = dim (M) . Further properties of this 

notion, which one expects, are as follows. 

PI) IF M IS LOCALLY SYMMETRIC, THEN THE RANK OF M SHOULD CO- 

INCIDE WITH ITS USUAL RANK. 

P2) FLAT MANIFOLDS OF DIMENSION n SHOULD HAVE RANK n. NEGATI- 

VELY CURVED MANIFOLDS SHOULD HAVE RANK ONE. 

Vice versa, manifolds of rank one should resemble negatively curved mani- 

folds. 

P3) THE RANK OF M SHOULD BE EQUAL TO THE RANK OF M . THE RANK 

OF A RIEMANNIAN PRODUCT M I × M 2 SHOULD BE THE SUM OF THE 

RANKS OF M I AND M 2 . 

Note that M 1 × M 2 still has nonpositive sectional curvature. If M I and 

M 2 are compact, then M 1 × M 2 does not carry a metric of negative sec- 

tional curvature, see Theorem I below. 

Of course, there may be different satisfactory solutions to problem 

a). One candidate for the rank of M , and maybe the most obvious one, 



is the following: 
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Rank (M) = max { k I M contains a k-flat } . 

At this point it is only conjectural that this notion of rank solves 

problem a) ° Also note that with this definition of rank, problem b) is 

part of problem a) . With respect to Rank (M) , the following results are 

known. 

Theorem I (Gromoll-Wolf [GW], Lawson-Yau [LY]) . If M n is compact, then 

every abelian subgroup of F is free abelian of rank at most n . If F 

contains a free abelian subgroup of rank k , then M contains a totally 

geodesic and isometrically immersed flat k-torus. 

This result is the extension of the theorem of Preissmann [Pr] which sta- 

tes that every abelian subgroup of F is infinite cyclic if M is com- 

pact and negatively curved. Theorem I implies that 

Rank (M) ~ max { k I F contains a free abelian subgroup of rank k } 

if M is compact. Problem a) now consists in showing that equality holds. 

We say that M satisfies the visibility axiom if any two distinct 

points in the ideal boundary of M can be joined by a geodesic [E0]. For 

example, compact negatively curved manifolds satisfy the visibility axiom. 

Theorem 2 (Eberlein [El]). If M is compact, then M satisfies the 

visibility axiom if and only if M does not contain a 2-flat, that is, 

Rank (M) = I. 

Thus problem b) can be reformulated as saying that M satisfies the vi- 

sibility axiom if and only if every abelian subgroup of F is infinite 

cyclic. 
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We now discuss a different notion of rank which was introduced in 

[BBE]. We need some definitions. Denote by SM the unit tangent bundle 

of M . For v6SM , let Yv be the geodesic which has v as initial 

velocity vector. Along ¥v consider the space JP(v) of all parallel 

Jacobi fields. Note that by the assumption K M & 0 , a parallel field X 

along Yv ' which is linearily independent of ~v ' is such a parallel 

Jacobi field if and only if KM(~v(t) AX(t)) = 0 for all t . Now set 

rank (v) = dim (JP(v)) and 

rank (M) = min { rank (v) I v 6 SM } . 

Note that rank (M) = I if M has a point p such that the sectional 

curvatures of all tangent planes at p are negative. In particular, 

rank (M) = 1 if M is a compact surface of negative Euler characteristic. 

The above definition of rank was motivated by the results in the 

papers [BI], [B2], and [BB] which deal primarily with geodesic flows on 

manifolds of rank one. (Formally, the general assumption in [BI] and 

[B2] is that M has a geodesic which does not bound a flat half plane, 

but in view of Theorem 4 below this is equivalent to rank (M) = 1.) The 

geodesic flow gt operates on SM, and by definition gt(v) = ~v(t) 

The geodesic flow leaves invariant the Liouville measure of SM. 

We now state some of the properties of manifolds of rank one. 

Theorem 3. Suppose rank (M) I. 

i) [BB] If M is compact, then gt is ergodic. 

ii) [BI] If M has finite volume, then gt has a dense orbit. 

iii) (Eberlein [B2]) If M has finite volume, then tangent vectors 

to closed geodesics are dense in SM. 

Part i) of this theorem generalizes, at the same time, the celebrated 

theorem of Anosov that the geodesic flow on a compact negatively curved 

manifold is ergodic [An] and the result of Pesin that the geodesic flow 

on a compact surface of negative Euler characteristic is ergodic [Pe]. 

The proof of part i) makes essential use of the results of Pesin [Pe] and 

of the results in [BI]. 
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As for manifolds of higher rank, the following result is one of the 

basic ingredients in all the further developments. 

Theorem 4 [BBE]. 

then 

If the volume of M is finite or if M is analytic, 

rank (M) = max { k I each geodesic of M is contained in a 

k-flat }. 

In particular, rank (M) £ Rank (M) . There are examples where this in- 

equality is strict, see the introduction of [BBE]. In an earlier version 

of Theorem 4, Burns proved that each geodesic in M bounds a flat half 

plane if rank (M) ~ 2 , see [Bu] 

The counterpart to Theorem 3 in the higher rank case is as follows. 

Theorem 5. 
2 

bound -a . 

i) 

ii) 

iil) 

Suppose that rank (M) = k a 2 and that K M has a lower 

t 
[BBE] If M has finite volume, then g is not ergodic. 

[BBS] If M has finite volume, then gt has k-1 inde- 

pendent differentiable first integrals on an open, dense, 

and gt-invariant subset of SM. 

[BBS] If M is compact, then tangent vectors to totally ge- 

odesic and isometrically immersed flat k-tori are dense 

in SM. 

It follows from iii) that F contains free abelian subgroups of rank 

k if rank (M) = k . In particular, problem a) is solved with this no- 

tion of rank. 

There are some immediate questions related to the assumptions in 

Theorems 3 and 5. Namely, is it possible to delete the assumption that 

K has a lower bound in Theorem 5 and the assumption that M is compact 

in part i) of Theorem 3? I believe that the answer is yes in both cases. 

That the compactness assumption can be deleted in part iii) of Theorem 5 

is a consequence of the following result. 
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Theorem 6 [B3, BS]. Suppose that rank (M) ~ 2 , K has a lower bound 
2 M 

-a and M has finite volume. If M is irreducible, then M is a lo- 

cally symmetric space of noncompact type. 

Actually, Burns-Spatzier [BS] need the stronger assumption that M is 

compact. Under the further assumptions M compact and dim (M) ~ 4, The- 

orem 6 was proved earlier by the author in joint work with Heintze [BH]. 

All these proofs are along completely different lines, up to the fact 

that they are based on the results in [BBE] and [BBS]. 

The use of Theorem 6 lies in the fact that, for many purposes, it 

will be sufficient to prove a given assertion in the rank one case and 

the symmetric space case separately in order to get a conclusion in the 

general case. Using this device and results of Prasad-Raghunathan [PR], 

the author in collaboration with Eberlein defined algebraically a number 

rank (r) , the rank of the fundamental group r of M , and showed that 

rank (r) = rank (M) . Using various other previous results of Eberlein 

and a recent result of Schroeder one obtaines the following conclusion. 

Theorem 7 [BE]. Suppose that K M ~ -a 2 and M has finite volume. Then 

M is an irreducible locally symmetric space of noncompact type of rank 

k ~ 2 if and only if the following three conditions are satisfied: 

i) F does not contain a normal abelian subgroup (except {e} ) 

ii) no finite index subgroup of r is a product 

iii) rank (r) = k . 

Here a Riemannian manifold N is called irreducible if no finite covering 

of N is a RJemannian product. Theorem 7 can be used to extend the rigi- 

dity results of Mostow [Mo] and Margulis [Ma]. Namely, using their results 

and Theorem 7 we obtain: 

2 
Theorem 8. Suppose that K M ~ -a and M has finite volume. Suppose 

M* is an irreducible locally symmetric space of noncompact type and high- 

er rank with finite volume. If the fundamental groups of M and M* are 

isomorphic, then M and M* are isometric up to normalizing constants. 

Under the stronger assumption that M is compact, Theorem 8 was proved 

earlier by Gromov [GS] and, in a special case, by Eberlein [E2]. 
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