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§i. The Theorems 

In recent years mathematicians have learnt a great deal from 

physicists and in particular from the work of Edward Witten. In a 

recent preprint [3], Vafa and Witten have proved some striking results 

about the eigenvalues of the Dirac operator, and this talk will present 

their results. I shall concentrate entirely on the mathematical parts 

of their preprint leaving aside the physical interpretation which is 

their main motivation. 

The mathematical context is the following. 

Riemannian spin manifold M of dimension d, 

Dirac operator of M acting on the spin bundle 

We fix a compact 

and denote by D the 

S. In addition if 

we are given a hermitian vector bundle V with a connection A we 

can define the extended Dirac operator: 

D A : S 8 V + S ~ V. 

In terms of an orthonormal basis e of tangent vectors D A is given 
d 3 

locally by E e~V~, where V~ is the covariant derivative in the 
j=l 

3 3 3 

e.-direction and e. acts on spinors by Clifford multiplication. In 
3 3 

particular D A depends on A only in the O-order term, i.e. if 

B is a second connection on V, then D A - D B is a multiplication 

operator not involving derivatives. 

The operator D A is self-adjoint and has discrete eigenvalues 

lj, both positive and negative, which we will suppose indexed by 

increasing absolute value so that 

l~ll ~ i~21 ~ .... 

The questions which Vafa and Witten address themselves to concern 
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the way in which the ~ depend on A (and V) : the metric on M 
3 

is assumed fixed throughout. More precisely they are interested in 

getting uniform upper bounds. The simplest and most basic of their 

results is 

THEOREM I. There is constant C (__depending on M but not on V o__rr 

A), such that I lll _< c. 

More generally there is a uniform estimate for the n-th eigen- 

value: 

THEOREM 2. There is a constant C' 

A o__rr n) such that Ilnl s C'n I/d. 

(depend_ ing qn M but not on V, 

Remarks. i) The asymptotic formula i 
n 

n 1/d is a very general 

result for eigenvalues of elliptic operators, but Theorem 2 is much 

more precise. 

2) Theorem 1 does not hold for the Laplace operator A A of V. To 

see this just consider d = 2 and V to be a line-bundle of constant 

curvature F : then I 1 = IF] ~ ~ with the Chern class of V. This 

emphasizes that the uniformity in Theorems 1 and 2 is with respect to 

the continuous parameter A and also with respect to the discrete 

parameters describing the topological type of V. 

3) The inequalities in Theorems 1 and 2 go in the opposite direction 

to the Kato inequalities for eigenvalues of Laplace type operators. 

This had, in principle, been conjectured by physicists on the grounds 

of Fermion-Boson duality. 

For odd-dimensional manifolds there are even stronger results, 

namely: 

THEOREM i*. If d is odd, there exists a constant C, so that every 

interval of length C, contains an eigenvalue of D A. 
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THEOREM 2*. If d is odd, there exists a constant C~ so that everj 

interval of lengt~ C~n I/d contains n eigenvalues. 

Note that Theorems i* and 2* are definitely false in even 

dimensions. To see this recall that, when d is even, S decomposes 

as S + ~ S- and D A is of the form 

I 
0 A 

(i.i) D A : 

2 = DA + + DA, and the non-zero eigenvalues of the two so that D A D A @ D A 

+ and + factors DAD A D A DA coincide. If V has large positive 

curvature then typically DAD~ will have a zero-eigenvalue of large 

while D~D~ will be a 'large' positive operator. Hence multiplicity 

2 will have a large gap between its O-eigenvalue and its first non- D A 

zero eigenvalue. Moreover this gap tends to infinity with the size 

of the curvature of V. When d = 2 and V is a line-bundle of 

constant curvature it is just the first Chern class of V which 

determines the size of the first gap. 

§2. The even proof 

Although the theorems we have just stated appear purely analytical 

results, involving upper bounds on eigenvalues, it is a r~arkable 

feature of the work of Vafa and Witten that the proofs are essentially 

topological. To understand how this comes about I will consider 

first the case when the dimension d is even. Then, as observed at 

the end of §i, the spinors decompose and D A takes the form given in 

(i.i). In particular a O-eigenvalue of D A arises whenever either 

+ DA has a non-trivial nullspace N A or D A or + NA respectively. 

+ is defined as Next recall that the index of D A 
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+ = dim + - dim NA index D A N A 

+ forces D to have a so that a non-zero value for index D A A 

+ is a purely topological O-eigenvalue. On the other hand index D A 

invariant, given by an explicit formula [i] involving characteristic 

cohomology classes of V and M. Hence, whenever the index, 

computed topologically, is non-zero we have a O-eigenvalue for D A 

(for all connections A on the given bundle V) and so trivially 

Theorem 1 holds. 

For d even Theorem 1 therefore has significant content only for 

those bundles V for which the index formula gives zero. To treat 

these the key idea is now the following. Suppose we can find a 

connection A on V so that 
o 

(i) D A has a O-eigenvalue. 
o 

(ii) IIDA- DA II ~ C 
o 

then it will follow that the smallest eigenvalue of D A does not 

exceed C. Now we cannot actually find such a connection on V 

itself but we can find one on some multiple NV = V ~ C N of V, and 

this will do equally well since the only effect of taking multiple 

copies of D A is to increase the multiplicity of each eigenvalue. 

We now proceed as follows. First choose a bundle W' so that 

the index of D + on S + ~ V ~ W' is non-zero. From the index 

+ 
formula (and the assumption that the index of D on S ® V is 

zero) it is enough to take W' to be the pull-back to }4 of a 

generating bundle on S 2d (i.e. with C2d : (d - I)!) by a map 

M ÷ S 2d of degree i: this makes the index equal to dim V. Thus 

for any connection B' on W' (which combines with A to give a 

+ has a non-zero connection say A' on V ® W') the operator DA~ 

index. Hence DA, has a zero-eigenvalue. 
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Next choose an orthogonal complement W" 

so that 

(2.1) W' @ W" --- M × C N 

and fix a connection B" on W" 

connection A" on V ~ W"). 

to W', i.e. a bundle 

(defining, together with A, a 

The operator 

DA,~A,, = DA, ~ DA,, 

still of course has a zero-eigenvalue (since DA, 

other hand A = A' @ A" is a connection on 
o 

V ~ (W' ~ W") = V ~ C N = NV 

and so can be compared with the connection NA 

the isomorphism (2.1)). 

we find 

has). On the 

(once we have fixed 

Comparing the corresponding Dirac operators 

(2.2) D A - DNA = B 
o 

where B is the matrix valued 1-form which describes the connection 

B' ~ B" in the trivialization given by (2.1). Since B is quite 

independent of V and A we get a uniform constant C = [IBII and 

this completes the proof of Theorem 1 in the even case. 

Note that the simple formula (2.2), which is essential for the 

proof, depends on the fact that the highest order part of D A is 

independent of A. 

To prove Theorem 2 (for even d) we proceed in a similar manner 

but this time we pull back the bundle W' (and its complement W") 

from S d by using maps of degree n. The index formula then shows 

+ has index n dim V. Theorem 2 then follows easily if one that DA, 

can show that the constants C : lIB11 grow like n I/d. When M is 

a torus T and n = r d (with r an integer) this follows by using 
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the covering map T d ÷ T d given by x + rx : 

(with matrix values) it picks up a factor r. 

applies this construction to a small box in M 

n follows by interpolation. 

since B is a 1-form 

For general M one 

and the case of general 

§3. The odd proof 

If we replace M by M x S I, where S 1 is the circle, the 

eigenvalues lj of m A get replaced by ±/15 + m 2 where m runs 
] 

over the integers. The smallest eigenvalues are therefore the same 

on M and on M × S I. This means that theorem 1 for d even, when 

applied to M × S I, immediately yields Theorem 1 for d odd. A 

similar but more careful count of eigenvalues shows that Theorem 2 for 

d even also implies Theorem 2 for d odd. 

Notice also that conversely, if we first establish Theorems 1 and 

2 for d odd, they then follow for d even. In fact for d odd we 

want to establish directly the much stronger results given by Theorems 

i* and 2*. The reason why the odd case yields stronger results is 

roughly the following. In §2, for d even, we used the index theorem, 

together with a deformation argument relating a connection A to 

another connection A o. In the odd case the analogue of the index 

theorem is itself concerned with 1-parameter families, as we shall now 

recall. 

Suppose that D t is a periodic one-parameter family of self- 

adjoint elliptic operators, with the parameter t ~ S I. The eigen- 

values 1 are now functions of t and when t goes once round the 
3 

circle the 1 have, as a set, to return to their original position. 

However I. need not return to I : we may get a shift, e.g. i. 
3 3 J 

might return to lj+ n for some integer n. This integer n is called 

the spectral flow of the family and it is a topological invariant of 
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the family. It represents the number of negative eigenvalues which 

have become positive (less the number of positive eigenvalues which 

have become negative). 

The spectral flow, like the index, is given by an explicit 

topological formula [23. Moreover, for the first order differential 

operators (e.g. Dirac operators) this formula is actually related to 

an index formula as follows. If D t is the family, defined on a 

manifold M, consider the single operator 

= - -  + D t St 

defined on M × S 1. Note that 

* : _ ~__ + D t ~t 

so that ~ is not self-adjoint. Then one has [2] 

(3.1) spectral flow of {D % = index of ~. t J 

As an illustrative example consider the case when M is also a circle 

with angular variable x and take 

D t = -i ~ + t. 

The eigenvalues are n + t with n integral and so, as t increases 

from 0 to i, we get a spectral flow of precisely one. The 

periodicity of D t is expressed by the conjugation property: 

-ix ix 
Dt+ 1 = e D t e 

The operator ~ acts naturally on the functions f(x,t) such that 

(3.2) f(x + l,t) = f(x,t) 

f(x,t + l) = e -ix f(x,t). 

In fact these equations describe sections of a certain line-bundle 
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on the torus S 1 × S 1. 

Functions satisfying (3.2) have a Fourier series expansion 

(3.3) f(x,t) = Zf (t)e ±nx 
n 

where fn(t + i) = fn+l(t). 

Solving the equation ~f = 0 leads to the relations 

and so 

fn(t) + (n + t)fn(t ) = 0 

2 
fn(t) = C n ex~ (n+t) } 

2 

In view of the conditions (3.3) C is independent of n. Thus 
n 

has a one-dimensional null-space spanned by the theta function 

f ( x , t )  = e x p  ~ e x p ( i n z  - n / 2 )  

where z = x - it. A similar calculation shows that ~f = 0 has 

no L2-solution, so that index ~: 1 which checks with the spectral 

flow. 

After this digression about spectral flow we return to consider 

the Dirac operators D A on a manifold M of odd dimension d. Let 

S d ÷ U(N) be a generator of ~d(U(N)), where we take N in the 

d+l S d stable range, i.e. N > -~--, and now compose with a map M + of 

degree one to give a map F : M ÷ U(N). Consider F as a multi- 

plication operator on the bundle S @ NV = S ® V ~ C N, on which the 

Dirac operator DNA is defined. Since the matrix parts of F and 

DNA act on different factors in the tensor product they commute, and 

so 

[DNA,F ]= X 

is independent of A. This multiplication operator X acts 



essentially on S ~ C N 

locally given by 

X = Ze F -1 $F. 
1 1 
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(trivially extended to S ~ V @ C N) , and is 

In particular Ilxll : c is a uniform constant independent of V and A. 

Consider now the linear family of connections 

A t = (l - t)h + t F(A) 

joining A to its gauge transform F(A). The corresponding family 

of Dirac operators is 

(3.4) D t = D A + tX. 

By construction D o = D A and D 1 : F-IDA F is unitarily equivalent 

to D o . Thus we have a periodic family of self-adjoint operators with 

a spectral flow. Moreover the general formula for the spectral flow 

(e.g. via the index formula on M x S I) shows that in our case, 

because of the construction of F, we have spectral flow equal to one. 

It follows that, for some value of t, the operator D t has a zero- 

eigenvalue. Hence as before (3.4) shows that the smallest eigenvalue 

of D A does not exceed C. 

The use of spectral flow to prove Theorem 1 for odd d is so far 

quite similar to the use of the index to prove Theorem 1 for even d. 

However, spectral flow has the advantage that 0 is not a disting- 

uished point of the spectrum, i.e. the spectral flow of a family is 

unchanged by adding a constant. Replacing 0 by some other value 

and repeating our argument then shows that there is an eigenvalue 

of D A within C of B, and this is the content of Theorem I*. 

Theorem 2* follows by extending the argument using maps 

F : M ÷ U(N) of higher degree, on the same lines as Theorem 2 was 

proved in the even case. 
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Finally it is worth pointing out that the upper bounds on the 

eigenvalues of Dirac operators given by those methods are fairly 

sharp. In fact Vafa and Witten actually determine the best bound 

when M is a flat torus. For this they use the index theorem for 

multi-parameter families of elliptic operators - not just the spectral 

flow of a one-parameter family. 
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