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To put this survey in the proper perspective, let me first make 

some rather general remarks. To study complex manifolds or in general 

complex spaces, one works with holomorphic objects like holomorphic 

maps, holomorphic functions, holomorphic vector bundles and their 

holomorphic sections. One has to construct such objects. For 

example, to prove that a complex manifold is biholomorphic to £n one 

tries to produce n suitable holomorphic functions. To prove that a 

complex manifold is biholomorphic to Pn' one tries to produce n+l good 

holomorphic sections of a suitable holomorphic line bundle. To prove 

that two complex manifolds are biholomorphic, one tries to produce a 

biholomorphic map. How does one produce such holomorphic objects? So 

far we have mainly the following methods: 

(i) The method of constructing harmonic objects first and then getting 

holomorphic objects from them. An example is the use of the Dirichlet 

principle to construct harmonic functions on open Riemann surfaces and 

then obtaining holomorphic functions from them. Examples of the 

construction of harmonic objects are the results of Eel ls-Sampson [i0] 

and Sacns-Uhlenbeck [40] on the existence of harmonic maps. However, 

unlike the one-dimensional case, in the higher-dimensional case the 

gap between a harmonic object and a holomorphic object is very wide 

and, except for some special cases, is impossible to bridge. 

(2) The method of using the vanishing theorem of Kodaira to construct 

holomorphic sections of high powers of positive line bundles [24]. 

(3) Grauert's bumping technique to construct holomorphic functions on 

strongly pseudoconvex domains [13]. 
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(4) The method of using L 2 estimates of ~ to construct holomorphic 

functions on strongly pseudoconvex domains (Morrey [30], Andreotti- 

Vesentini [i], Kohn [25], H~rmander [20]). 

These methods produce holomorphic objects from scratch so to 

speak. There are also other methods like the use of Theorems A and B 

of Cartan-Serre to construct holomorphic objects, but one has to have 

a Stein manifold (i.e. a complex submanifold of £n) or a Stein space to 

apply Theorems A and B and on such manifolds previously existing 

global holomorphic functions are essential for the construction. 

Let me briefly explain the notions of positive line bundles and 

strongly pseudoconvex domains and how they are related. A holomorphic 

line bundle with a Hermitian metric along its fibers is said to be 

positive if the curvature form associated to the Hermitian metric is a 

positive-definite quadratic form. A relatively compact domain with 

smooth boundary in a complex manifold is said to be strongly 

pseudoconvex if it is defined near its boundary by r < 0 for some 

smooth function r with nonzero gradient such that the complex Hessian 

of r as a Hermitian form is positive-definite. If L is a Hermitian 

ho]omorphic line bundle over a compact complex manifold, then the 

set ~ of all vectors of the dual bundle L* of L whose lengths are less 

than 1 is a strongly pseudoconvex domain in L* if and only if L is 

positive. Grauert [14] observed that a holomorphic function on 

gives rise to holomorphic sections of powers of L because its k th 

coefficient in the power series expansion along the fiber~ of L* is a 

section of the k th power of L. So producing holomorphic sections of 

powers of a positive line bundle is a special case of producing 

holomorphic functions of a strongly pseudoconvex domain. 

In the above methods of producing holomorphic objects some 

positive-definite quadratic form is used, be it the curvature form in 

the case of a positive line bundle or the complex Hessian of the 

defining function in the case of a strongly pseudoconvex domain. In 

the method of using harmonic objects to construct holomorphic objects 

no positive-definite quadratic form is used. However, in the higher- 

dimensional case there is a wide gap between harmonic and holomorphic 

objects and methods known up to now [45, 46, 47, 51, 52] to bridge the 

gap require positive-definiteness of a certain quadratic form coming 
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from the curvature tensor. This survey talk discusses the situation 

when the quadratic forms used in producing holomorphic objects are 

only positive semidefinite instead of strictly positive-definite. In 

certain cases we may even allow certain benign negativity. One may 

wonder why one should bother to study the semidefinite case. There 

are a number of reasons. Let me give two here. One is that some 

situations are naturally semidefinite, like the seminegativity of the 

sectional curvature for a bounded symmetric domain. Another is that 

when limits of holomorphic objects are used in proofs (like in the 

continuity method), the limit of strictly positive definite objects 

can only be assumed first to be semidefinite though in the final 

result it may turn out to be strictly positive definite. The 

semidefinite case is by far much more complicated than the definite 

case. 

In this talk we will survey some recent results concerning 

vanishing theorems for the semidefinite case and their applications. 

More specifically we will discuss the following three topics: 

(i) The construction of holomorphic sections for line bundles with 

curvature form not strictly positive or even with bengin negativity 

somewhere. An application is a proof of the Grauert-Riemenschneider 

conjecture characterizing Moishezon manifolds by semipositive line 

bundles [49, 50]. 

(ii) The strong rigidity of compact K~hler manifolds with seminegative 

curvature, in particular the results of Jost-Yau [22] and Mok [29] on 

the strong rigidity of irreducible compact quotients of polydiscs. 

(iii) Sube] liptic estimates of Kohn's school [26, 6] and their 

applications to vanishing theorems for semipositive bundles. 

I. Producing_ Sections for Semipositive Bundles 

We want to discuss how one can produce holomorphic sections for 

a Hermitian line bundle whose curvature form is only semipositive or 

may even be negative somewhere. The original motivation for this kind 

of study is to prove the so-cal led Grauert-Riemenschneider 
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conjecture[15, p.277]. Kodaira[24] characterized projective algebraic 

manifolds by the existence of a Hermitian holomorphic line bundle 

whose curvature form is positive definite. The conjecture of Grauert- 

Riemenschneider attempts to generalize Kodaira's result to the case of 

Moishezon manifolds. A Moishzon manifold is a compact complex manifold 

with the property that the transcendence degree of its meromorphic 

function field equals its complex dimension. Moishezon showed [28] 

that such manifolds are precisely those which can be transformed into 

a projective algebraic manifold by proper modification. The concept of 

a Moishezon space is similarly defined. 

The conjecture of Grauert-Riemenschneider asserts that a compact 

complex space is Moishezon if there exists on it a torsion-free 

coherent analytic sheaf of rank one with a Hermitian metric whose 

curvature form is positive definite on an open dense subset. Here a 

Hermitian metric for a sheaf is defined by going to the linear space 

associated to the sheaf and the curvature form is defined only on the 

set of points where the sheaf is locally free and the space is 

regular. The difficulty with the proof of the conjecture is how to 

prove the following special case. 

Conjecture of Grauert-Riemenschneider. Let M be a compact complex 

laanifold which admits a Hermitian holomorphic line bundle L whose 

curvature form is positive definite on an open dense subset G of M. 

Then M is Moishezon. 

Since the conjecture of Grauert-Riemenschneider was introduced, 

a number of other characterizations of Moishezon spaces have been 

obtained [38,57,53,12,35] which circumvent the difficulty of proving 

the Grauert-Riemenschneider conjecture by stating the 

characterizations in such a way that a proof can be obtained by using 

blow-ups, Kodaira's vanishing and embedding theorems, or L 2 estimates 

of ~ for complete K~hler manifolds. If the manifold M is assumed to 

be K~hler, then Riemenschneider [39] observed that Kodaira's original 

proof of his vanishing and embedding theorems together with the 

identity theorem for solutions of second-order elliptic partial 

differential equations [2] already yields right away the conjecture of 

Grauert-Riemenschneider. If the set of points where the curvature form 

of L is not positive definite is of complex dimension zero [38] or one 
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[44] or if some additional assumptions are imposed on the eigenvalues 

of the curvature form of L [47] , the conjecture of Grauert- 

Riemenschneider can rather easily be proved. Recently Peternell [33] 

used degenerate K~hler metrics to obtain some partial results about 

the Grauert-Riemenschneider conjecture. However, all the above results 

fail to deal with the fundamental question of how to produce in 

general holomorphic sections for a line bundle not strictly positive 

definite. 

Recently a new method of obtaining holomorphic sections for 

nonstrictly positive line bundles was introduced [49]. There it was 

used to give a proof of the conjecture of Grauert-Riemenschneider in 

the special case where M-G is of measure zero in M. It was later 

refined to give a proof of the general case and a stronger version of 

the conjecture of Grauert-Riemenschneider [50]. The method imitates 

the familiar technique in analytic number theory of using the Schwarz 

lemma to prove the identical vanishing of a function by estimating its 

order and making it vanish to high order at a sufficient number of 

points. Such a technique applied to the holomorphic sections of a 

holomorphic line bundle was used by Serre [41] and also iater by 

Siegel [43] to obtain an alternative proof of Thimm's theorem [54] 

that the transcendence degree of the meromorphic function field of a 

compact complex manifold cannot exceed its complex dimension. In 

[49, 50] the technique was applied to harmonic forms with coefficients 

in a holomorphic line bundle and its use was coupled with the theorem 

of Hirzebruch-Riemann-Roch [19, 3]. 

We give a more precise brief description of the method of 

[49,50]. To make the description easier to understand, we first impose 

the condition that M-G is of measure zero in M. By the theorem of 

Hirzebruch-Riemann-Roch (which for the case of a general compact 

complex manifold is a consequence of the index theorem of Atiyah- 

Singer [3]), ~=o(-l)q dim Hq(M,L k) h ckn for some positive cortstant 

c when k is sufficiently large, where n is the complex dimension of M. 

To prove that L k admits enough holomorphic sections to give 

sufficiently many meromorphic functions to make M Moishezon, it 

suffices to show that dim H0(M,L k) > ckn/2 for k sufficiently 

large. Thus the problem is reduced to proving that for any given 

positive number ~ and for q ~ 1 one has dim Hq(M, L k) ~ ~k n for 
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k sufficiently large. Give M a Hermitian metric and represent elements 

of Hq(M,L k) by Lk-valued harmonic forms. By using the L 2 estimates of 

T one obtains a linear map from the space of harmonic forms to the 

space of cocycles. Take a lattice of points with distances k -I/2 apart 

in a small neighborhood W of M-G. Then one uses the usual technique of 

Bochner-Kodaira for the case of a compact Hermitian (not necessarily 

K~hler) manifold [16, p.429, (7.14)] and uses the Schwarz lemma to 

show that any cocycle coming from a harmonic form via the linear map 

and vanishing at all the lattice points to an appropriate fixed order 

must vanish identically, otherwise its norm is so small that the ~- 

closed form constructed frora it by using a partition of unity would 

have a norm smaller than that of the harmonic form in its cohomology 

class, contradicting the minimality of the norm of a harmonic form in 

its cohomology class. It follows that dim Hq(M,L k) is dominated by 

a fixed constant times the number of lattice points (which is 

comparable to the volume of W times kn), otherwise there is a nonzero 

combination of cocycles coming from a basis of harmonic forms via the 

linear map and having the required vanishing orders. Since M-G is of 

measure zero in M, we can make the volume of W as small as we please 

and therefore can choose E smaller than any prescribed positive 

number after making k sufficiently large. The reason why such a 

lattice of points is chosen is that the pointwise square norm of a 

local holomorphic section of L k is of the form IfI2e -k% , where f is 

holormorphic function and ~ is a plurisubharmonic function 

corresponding to the Hermitian metric of L. The factor e -k# is an 

obstacle to applying the Schwarz lemma. To overcome this obstacle, one 

chooses a local trivialization of L so that ¢ as well as de vanishes 

at a point. The on the ball of radius k -I/2 centered at that point, 

e -k# is bounded below from zero and from above by constants 

independent of k. The reason why one uses cocycles instead of dealing 

directly with harmonic forms is that the Schwarz lemma is a 

consequence of the log plurisubharmonic property of the absolute value 

of holomorphic functions and there is no corresponding Schwarz lemma 

for harmonic forms. 

The method outlined above can be refined in the following way so 

that it works in the general case where G is only assumed to be 

nonempty. Let R be the set of points of M where the smallest 

eigenvalue of the curvature form ~ of L does not exceed some 
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positive number k . For every point 0 in R one can choose a 

coordinate polydisc D with coordinates Zl,...,z n centered at O and can 

choose a global trivialization of L over D such that for some constant 

C > 0 

n 

I $(Pi ) - $(P2) I <_ C ( x Izi(Pi) - zi(P 2) I 2 + ~ Izi(Pi) - zi(P212) 
i:2 

for PI' P2 in D. Moreover, both C and the polyradius of D can be 

chosen to be the same for all points O of R. Cover R by a finite 

number of such coordinate polydiscs so that for some constant m 

depending only on n no more than m of them intersect. Then one 

chooses the lattice points so that they are (kk) -I/2 apart along the 

z I direction but are k -I/2 apart alon 9 the directions of z2,...,z n. 

Now the total number of lattice points is no more than a constant 

times k k n times the volume of R. By choosing ~ sufficiently small, 

we conclude that for any given positive number ~ and for q > i one 

has dim Hq(M,L k) < ~k n and therefore dim H0(M,L k) is no less than 

ck n for some positive number c when k is sufficiently large. Thus we 

have the following theorem [49, 50]. 

Theorem 1. Let M be a compact complex manifold and L be a 

Hermitian holomorphic line bundle over M whose curvature form is 

everzwher 9 semipositive and is strictl Z positive at some point. Then M 

is a Moishezon manifold. 

By the result of Grauert-Riemenschneider, one has as a corol lary 

the vanishing of Hq(M,LK M) for q >I, where K M is the canonical line 

bundle of M. 

In conjunction with the characterization of Moishezon manifolds, 

I would like to mention the recent result of Peternell [34] that a 3- 

dimensional Moishezon manifold is projective algebraic if in it no 

positive integral linear combination of irreducible curves is 

homologous to zero. Together with Hironaka's example [18 andl7, 

p.443] of a 3-dimensional non-projective-algebraic Moishezon manifold 

Peternell's result gives us the complete picture of the difference 

between projective-algebraic threefolds and Moishezon threefolds. 

The noncompact analog of Theorem 1 is the following conjecture 
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which is still open. 

Conjecture. Let fl be a relatively compact open subset of a complex 

manifold such that its boundary is weakly pseudoconvex at every point 

and is strictly pseudoconvex at some point P. Then there exists a 

holomorphic function on ~ going to infinity along some sequence in fl 

approaching P. 

Theorem 1 corresponds to the case where 

vectors in the dual bundle of L with length < i. 

is the set of 

The method used in the proof of Theorem 1 can be further refined 

to yield results about the existence of holomorphic sections for line 

bundles whose curvature form is allowed to be negative somewhere [50]. 

An example of such results is the following. 

Theorem 2__ t F__o~ ~yery positive integer n there exists a constant C n 

de__2mgnding onl Z on n with the following ~r_~o~r_~ty.- Let M be a compact 

K~hler manifold of complex dimension n and L be a Hermitian line 

bundle over M. Let G be an o~_n subset of M and a, b ~[ positive 

numbers such that the curvature form of L admits a as a lower bound 

at ever Z point of G and admits -b as a lower bound at ever Z point of 

M-G. Assume that 

C n (i + log+(b/a)) n (b2/a)n(volume of M-G) < Cl(L)n 

where Cl(L) is the first Chern class of L. Then dim H0(M, L k) is > 

Cl(L)n kn/2(n !) for k sufficientl~ large. 

When the metric of the manifold is Hermitian instead of K~hler, 

there is a corresponding theorem with the constant C n depending on the 

torsion of the Hermitian metric. The inequality in the assumption of 

Theorem 2 is not natural. There should be better and more natural 

formulations of this kind of results. 

We describe below the refinement needed to get a proof of 

Theorem 2. The method described above can readily yield Theorem 2 if 

we allow the constant C n to depend on M, but then Theorem 2 would be 

far less interesting. The reason why the above method can only yield a 
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C n depending on M is that in constructing a correspondence from the 

space of harmonic forms to the space of cocycles, besides solving the 

equations, one has to use a partition of unity and the constants 

obtained in the process depend very heavily on the manifold M. To 

solve this problem, we make use of the estimate of the (0,1)-covariant 

derivative of the harmonic form from the Bochner-Kodaira formula. We 

locally solve with estimates the inhomogeneous Y equations with 

of the coefficients of harmonic form on one side so that the 

differences between the coefficients of the harmonic form and the 

solutions are holomorphic and then apply the Schwarz lemma to the 

differences. This way we avoid passing from the Dolbeault cohomology 

to the Cech cohomology and can make the constant C n independent of M. 

If. Strong Rigidity of Seminegatively Curved Compact K~dller Manifolds 

A compact K~hler manifold is said to be stronq~ Z rigid if any 

other K~hler manifold homotopic to it is biholomorphic or 

antibiholomorphic to it. Strong rigidity can be regarded as the 

complex analog of Mostow's strong rigidity [31]. Compact K~hler 

manifolds M with curvature tensor negative in a suitable sense are 

known to be strongly rigid [45, 46, 47]. The way to obtain the strong 

rigidity of M is to consider a harmonic map f to M from the compact 

K~ller manifold N homotopic to M "which is a homotopy equivalence. The 

existence of such a harmonic map is guaranteed by the result of Eells- 

Sampson[10] because of the nonpositivity of the sectional curvature of 

M. As a section of the tensor product of the bundle of (0,1)-forms of 

N and the pullback under f of the (l,0)-tangent bundle of M, ~f is 

harmonic. By using the technique of Bochner-Kodaira we conclude that 

either ~f or Yf vanishes because of the curvature condition of M. 

The reason why we can only conclude the vanishing of either ~f or 

~f is that the curvature term from the Bochner-Kodaira formula is 

homogeneous of degree two in ~f and of degree two in ~f because 

it comes from pulling back of the curvature tensor of M under f. 

Actually the Bochner-Kodaira technique is applied to the image of Yf 

under the complexified version of the Hodge star operator. In other 

words we are applying the Bochner-Kodaira technique to the dual of the 

bundle. That is the reason why the curvature tensor of M has to be 

assumed negative instead of positive and also that is the reason why 

the Ricci tensor of N does not enter the picture. The most general 
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formulation of this kind of results on strong rigidity is the 

following theorem [47]. 

Theorem 3. A compact K~hler manifold M of complex dimension n ~[ 

stronq! ~ rigid if there exists a positive number p less than n with 

the following ~roBerties: (i) The bundle of (l,0)-forms on M is 

positive semidefinite in the sense of Nakano [32] and the bundle of 

(p,0)-forms on M !~ positive definite i__nn th___~e sense 2~ ~a__~k~2 [32]. 

(ii) At an[ point of M the complex tangent space of M does not contain 

two nontrivial orthogonal subspaces with combined dimension exceeding 

p such that the bisectional curvature of M in the direction of two 

vectors one from each subspace vanishes. 

As a corollary any compact quotient of an irreducible bounded 

symmetric domain of complex dimension at least twc is stronglg rigid, 

because we have the following table giving the complex dimension and 

the smallest p satisfying the assumptions of Theorem 3 for each 

bounded symmetric domain. 

Type Complex Dimension Smallest p 

Ira, n mn (m-L) (n-1)+l 

II n n(n-l)/2 (n-2) (n-3)/2 +i 

III n n(n+l)/2 n(n-l)/2 +i 

IV n n 2 

V 16 6 

VI 27 ii 

The values of the smallest p for the two exceptional domains 

were computed by Zhong [58]. 

This method also yields the ho ] omorphicity or 

antiholomrorphicity of any harmonic map from a compact K~hler manifold 

into M whose rank over ]]9 is>2p +I at some point [47]. 

This method can be regarded as an application of the quasilinear 

version of Kodaira's vanishing theorem. Though strict negativity of 

the curvature tensor is not needed for this method, this method should 

be considered as corresponding to the strictly definite case rather 
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than the semidefinite case of the vanishing theorem, because through 

the use of the complexified Hodge star operator the vanishing required 

is in codimension one rather than in dimension one. 

The only case of compact quotients of bounded symmetric domains 

which are expected to enjoy the property of strong rigidity as 

suggested by Mostow's result [31] and which are not covered by the 

results of [47] is the case of an irreducible compact quotient of a 

polydisc of complex dimension at least two. This remaining case 

corresponds to the semidefinite case of the vanishing theorem. Jost- 

Yau [21] first considered this remaining case and obtained some 

partial results. Recently Jost-Yau [22] and Mok [29] completely solved 

this case. We would like to sketch a slightly more streamlined version 

of the proof in [29]. First we make some general observations about 

the application of the Bochner-Kodaira technique to the case of a 

compact quotient of a polydisc and discuss a simple but rather 

surprising theorem about the existence of holomorphic maps from 

compact K~hler manifolds into compact hyperbolic Riemann surfaces. 

Let f be a harmonic map from a compact K~hler manifold M to a 

compact quotient Q of a polydisc D n of complex dimension n. The 

following conclusions are immediate from the Bochner-Kodaira 

technique. 

(i) f is pluriharmonic in the sense that the restriction of f to any 

local complex curve in M is harmonic. 

(ii) ~fi ^ ~ f--~ is zero for 1 <__i <__n, where fi is the i th component 

of f when it is expressed in terms of local coordinates along the n 

component discs. 

From conclusion (ii) above it follows that the pullback f*T~ '0 ~ 

under f of the (l,0)-tangent bundle T I'0 of Q can be endowed with the 

structure of a holomorphic vector bundle in the following way. A local 

section is defined to be holomorphic if its covariant derivative in 

the (0,i) direction is identically zero. This can be done because (ii) 

implies that the (0,i) covariant exterior differentiation composed 

with itself is identically zero, which is the integrability condition 

for such a holomorphic vector bundle structure. The same argument can 
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be applied to the Dullback f*T 0'I under f of the (0,1)-tangent bundle Q 
T~'lof Q to give it a holomorphic vector bundle structure. Moreover, 

if every element of the fundamental group of Q maps each individual 

component disc of D n to itelf, then each of these two holomorphic 

vector bundles are the direct sum of the n holomorphic line bundles 

which are the pullbacks of the line subbundles of the tangent bundle of 

Q defined by the directions of the individual component discs. In such 

a case let L i be the line subbundles of f*T I'0Q and L i' be the line 

subbundles of f*T~ ' t  

Because of conclusion (i) ~f is a holomorphic section of 

f,T~,0 × ~i and 3f is a holomorphic section of f*T$'l × ~I, where ~i 

is the bundle of holomorphic 1-forms on M. Assume that every element 

of the fundamental group of Q maps each individual component disc of 

D n to itself. Then for each fixed 1 <i< n, 

(iii) ~fi is a holomorphic section of L i O ~ and afi is a 

holomorphic section of ~ O ~. 

For any local holomorphic section s i of the dual bundle of L i, 

si ~fz is a (local) holomorphic 1-form on M whose exterior 

derivative equals its product with some 1-form. By the theorem of 

Frobenius, near points where ~fi does not vanish we have a 

holomorphic family of local complex submanifolds of complex 

codimension one whose tangent spaces annihilate afi. Such a 

holomorphic foliation of codimension one defined by the kernel of 

af z exists also at points where afz can be divided by a local 

holomorphic function to give a nowhere zero holomorphic local section 

of L i O ~- If in addition the rank of df i is two over ~ at the 

points under consideration, because of (ii) the local leaves of the 

holomorphic foliation agree with the fibers of the locally defined map 
--w- 

fi. The same consideration can be applied to ~fz. Also because of 

(ii) the holomorphic foliation defined by the kernel of ~fl agrees 

with the holomorphic foliation of ~fl at points where both ~fi and 

~fl can be divided by local holomorphic functions to give nowhere zero 

holomorphic local sections of L i ~ ~ and L[~ ~ respectively. These 

rather straightforward discussions lead us immediately to the 

following theorem [48]. 
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Theorem 4. Let M be a compact K~hler manifold and R be a compact 

hyperbolic Riemann surface such that there exists a continuous map f 

from M t_~o R which is nonzero on the second homology. Then there exists 

a holomor~hi~ ma_~ g from M into a compac~ h~perbolic Riemann 

surface S and a harrnonic ma[ h from S ~o R such that hog is homotopi[ 

to f. 

The Riemann surface S is constructed from the holomorphic 

foliation described above in the following way. By the result of 

Eells-Sampson we can assume without loss of generality that f is 

harmonic and therefore real-analytic. Let Z be the complex subvariety 

of complex codimension h 2 in M consisting of all points where either 

or ~f cannot be divided by any local holomorphic function to give a 

nowhere zero holomorphic local section of the tensor product of ~ 

with the pullback under f of the (I,0) or (0,i) tangent bundle of R. 

Let V be the set of points of M where the rank of df over ~ is < 

2. On M-Z we have a holomorphic foliation described above with the 

property that whenever a leaf of the foliation has a point in common 

with M-V, the leaf agrees with the real-codimension-two branch of the 

fiber of f passing through that point and therefore can be extended to 

a complex-analytic subvariety of codimension one in M. Because of the 

K~hler metric of M, by using Bishop's theorem [4] on the limit of 

subvarieties of bounded volume and by passing to limit, we conclude 

that every leaf of the holomorphic foliation can be extended to a 

complex-analytic subvariety of codimension one in M. Since Z is of 

complex codimension > 2 in M, by using the theorem of Remmert-Stein on 

extending subvarieties [37] we conclude that M is covered by the 

holomorphic family of subvarieties consisting of the extensions of the 

leaves of the holomorphic foliation. The Rieraann surface S is now 

obtained as the nonsingular model of the quotient of M whose points 

are the branches of the extensions of the leaves of the holomorphic 

foliation. 

The rather surprising aspect of Theorem 4 is that from the 

existence of a continuous map from a compact K~hler manifold to a 

compact hyperbolic Riemann surface nonzero on the second homology we 

can conclude the existence of a nontrivial holomorphic map from the 

K~hler manifold to a compact hyperbolic Riemann surface. In particular 

by going'to the respective universal covers we obtain a nontrivial 
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bounded holomorphic function on the univeral cover of the K~hler 

manifold. So far there is no known general method of constructing 

bounded holomorphic functions on complex manifolds which are expected 

to admit a large number of bounded holomorphic functions, such as the 

universal cover of compact K~hler manifolds of negative curvature. 

Here to conclude the existence of a nontrivial bounded holomorphic 

function we do not use any curvature property of the compact K~hler 

manifold. Instead the existence of a continuous map to a compact 

hyperbolic Riemann surface is used. Since until now there is no 

general way of constructing nontrivial bounded holomorphic functions, 

this could only mean that the existence of the kind of continuous map 

we want is rather rare and if such a continuous map exists, its 

existence would be rather difficult to establish. Even for negatively 

curved compact K~hler manifolds in general we do not expect such 

continuous maps to exist. As a matter of fact, for compact quotients 

of a ball of complex dimension at least two the only known examples so 

far that admit nontrivial holomorphic maps into any compact hyperbolic 

Riemann surface are the ones constructed by Livn~ [27] by taking 

branched covers of certain elliptic surfaces. It is not known whether 

in other dimensions there are similar examples of maps between compact 

quotients of balls of different dimensions besides the obvious ones. 

Problem. Suppose 1 < m < n are integers. Let M and N be respectively 

compact quotients of the balls of complex dimensions m and n. 

(a) Is it true that there exists no surjective holomorphic map from N 

to M? 

(b) Is it true that every holomorphic embedding of M in N must have a 

totally geodesic image? 

Yau conjectured that Problem (b) should be a consequence of 

uniquenss results for proper holomorphic maps between balls of 

different dimensions. For n ~ 3 Webster [56] showed that the only 

proper holomorphic maps from the n-ball to the (n+l)-ball C 3 up to the 

boundary are the obvious ones. Faran [ii] showed that, up to 

automorphisms of the two balls, there are only four proper holomorphic 

maps from the 2-bal 1 to the 3-bal 1 C 3 up to the boundary 

Unfortunately until now there are no general results about proper 

holomorphic maps between balls of different dimensions without any 

known boundary regularity. In our case the proper map, though without 
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any known boundary regularity, has the additional property that it 

comes from maps between compact quotients. Hopefully this additional 

property may be used instead of boundary regularity. 

We now introduce the theorem on the strong rigidity of 

irreducible compact quotients of polydiscs and sketch its proof. 

Theorem 5 (Jost-Yau [22] and Mok [29]). Suppose Q is an irreducible 

colnp_act ~u~tient of an n-disc D n with n h 2, M is a compact K~hler 

manifold, and f is a harmonic ma~ from M t__oo Q which is a homotopy 

equivalence. Let M be the universal cover of M and F: M + D n with 

components (F 1 ..... F n) be induced b~ F. Then for each 1 ~ i ! n, F i i__{s 

either holomorphic o_[r antiholomorphic. 

Here an irreducible quotient means one that cannot be decomposed 

as a product of two lower-dimensional quotients of polydiscs. For the 

proof of this theorem, by replacing both M and Q by finite covers, we 

can assume without loss of generality that the fundamental group of Q 

is a product of n groups GI,...,Gn, each of which is a (nondiscrete) 

subgroup of the automorphism group of the 1-dimensional disc D. We 

regard aF i and aF i as holomorphic sections of the holomorphic 

vector bundles on M described above (rather as (l,0)-forms on M). A 

consequence of the irreducibility of Q is that for each 1 ! i ! n 

every orbit of G i is dense in D. We have to show that for every 1 < i<n 

either aF i or ~ F 1 vanishes identical ly on M. Without loss of 

generality we assume that the assertion fails for i = 1 and try to get 

a contradiction. Since f is a homotopy equivalence, the length of 

8F 1 and the length of a F-l-cannot agree at every point. Without loss 

of generality we can assume that the length of aF 1 is greater than 

the length of a F 1 at some point. By (ii) and (iii) we can write 

~F 1 = g aF --f so that local ly g is the product of a nowhere zero smooth 

function and a meromorphic function. Thus the pole-set V of g is a 

complex-analytic hypersurface in M if it is nonempty. The pole-set V 

cannot be empty, otherwise by considering the Laplacian of the log of 

the absolute value h of g we get a contradiction at a maximum point of 

h. Since f is a homotopy equivalence, the real rank of f on the 

regular points of V must be precisely 2n - 2, otherwise the homology 

class represented by V would be mapped to zero by f. Let p:M + M be 

the projection of the universal cover and q:D n + D be the projection 
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onto the first component. Because of the holomorphic foliation 

discussed above the function hop on M must be constant along the 

components of the fibers of FI: M ÷ D. The proper closed subset 

F(p-I(v)) of D n contains an entire fiber of q whenever it contains 

one of its points. It follows that q(F(p-I(v))) is a proper closed 

subset of D which is invariant under the group G I. This contradicts 

the density of every orbit of G 1 in D. 

Mok [29] also showed that for any harmonic map from a compact 

K~hler manifold to an irreducible compact quotient of the n-disc 

(n h 2) with real rank 2n somewhere, each of the n components of the 

map between the universal covers induced by it is either holomorphic 

or antiholomorphic. 

Ill. Vanishing Theorems Obtained b~ Subelliptic Estimates 

So far all the vanishing theorems for bundles with curvature 

conditons make use of the pointwise property of the curvature form. 

The recent theory of subel liptic multipliers developed by Kohn, 

Catlin, and others [26, 5, 6] makes it possible to get vanishing thoerems 

based on the local property of the curvature form when the curvature 

form is semidefinite. Kohn developed his theory to deal with the 

question of boundary regularity for solutions of the ~ equation in 

the case of a weakly pseudoconvex boundary. 

Let ~ be an open subset of £n whose boundary is smooth and 

weakly pseudoconvex at a boundary point x 0. Let 1 ~q ~n be an integer. 

We say that a subelliptic estimate holds for (0,q)-forms at x 0 if 

there exists a neighborhood U of x 0 and constants ~ > 0 and C > 0 

such that 

Ir~fl 2 < c l l l ~ t l  2 + IIY%ll 2 ,  11~tl21 
C 

for all smooth (0,q)-form ~ on U{~[ with compact support belonging to 

the domain of ~*, where II II means the L 2 norm and II II~ means the 

Sobolev E-norm. In order to obtain subelliptic estimates Kohn intro- 

duced the concept of a subelliptic multiplier. A smooth function f on 

U is said to be a subelliptic multiplier if there exist positive ¢ 
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and C so that 

I I f ~ l 12  < ct l t~-~t l2  + 11-#'9112 + 11~112) 
E 

for all 9 . The subelliptic multipliers form an ideal lq. Let cij 

(l! i,j ~n-l) be the Levi form of the boundary of ~ near x in terms of 

an orthonormal frame field of (i,0) vectors tangential to the boundary 

of ~ . The starting point of Kohn's theory is the following results 

concerning the ideal lq of subelliptic multipliers. For notational 

simplicity we describe the case q = 1 and the general case is similar. 

(i) A smooth function r with nonzero gradient whose zero-set is the 

boundary of ~ belongs to I I. 

(ii) The determinant of the matrix (cij)l <i,j <__n_l belongs to I I. 

(iii) Whenever fl,...,fk belong to If, the determinant formed in the 

following way belongs to I I. The i th column consists of the components 

of ~fi in terms of the frame field of (I,0) vectors tangential to 

the boundary of ~ The other n-l-k columns are any n-l-k columns of 

the matrix (cij)l <i,j <n-l" 

(iv) I 1 equals to its real radical in the sense that if f belongs to 

I 1 and g is a smooth function with Igl m £ Ifl for some positive 

integer m, then g also belongs to I I. 

Kohn [26] showed that if the boundary of ~ is real-analytic 

near x 0 and contains no local complex-analytic subvariety of complex 

dimension q, then the constant function 1 belongs to the ideal Iq of 

subelliptic multipliers and as a consequence a subelliptic estimate 

for (0,q)-forms holds at x 0. (Diederich-Fornaess [9] contributed to 

the formulation of the assumptions in Kohn's result.) Recently Catlin 

[5,6] carried out the investigation for the case of smooth boundary 

and showed that a subelliptic estimate for (0,1)-forms holds at x 0 if 

and only if the boundary of ~ is of finite type at x 0 in the sense 

of D'Angelo [7,8]. (Similar statements hold for subelliptic estimates 

for (0,q)-forms.l D'Angelo's definition of finite type is as follows. 

The boundary of ~ is of type < t at x 0 if for every holomorphic map 

h = (hl,...,h n) from the open 1-dimensional disc D to ~n with h(0) = 
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x 0 the vanishing order of roh at 0 does not exceed t times the 

minimum of the vanishing orders of hl,...,h n at 0. At every point x of 

the boundary of ~ let t(x) be the smallest number such that the 

boundary of £ at x is of type ~ t(x). D'Angelo showed that t(x) in 

general is not upper semicontinuous, but satisfies t(x) ~t(x0)n-i/2n-2 

fo~ x near x 0 . The order E in the subelliptic estimate at x 0 

is expected to be the reciprocal of the maximum of t(x) for x near x 0. 

Catlin's result showed that ¢ cannot be bigger than the expected 

number but he can so far only show that subelliptic estimates hold for 
2 

an ¢ of the order of t(x 0) raised to the power -t(x0)n 

We now study how the subelliptic estimates can be used to get 

vanishing theorems. We follow Grauert's approach to vanishing theorems 

[14]. A number of vanishing theorems can be formulated from the method 

of subelliptic estiraates. Some of them can readily be derived by 

other means. We illustrate here by an example of such vanishing 

theorems. Let M be a compact complex manifold and L be a Hermitian 

holomorphic line bundle over M whose curvature form is semipositive. 

Let V be a holomorphic vector bundle over M. Let p:L* + M be the 

dual bundle of L. Let ~ be the open subset of L* consisting of all 

vectors of L* of length < i. If subelliptic estimates for (0,q)-forms 

hold for the boundary of ~ at every one of its points, then one 

concludes that Hq(£,p*V) is finite-dimensional by representing the 

cohomology by harmonic forms. It follows that Hq(M,V ®L k) vanishes 

for k sufficiently large, because the k th coefficient in the power 

series expansion in the fiber coordinate of L* of a local holomorphic 

function defined near a point in the zero-section of L* is a local 

section of L k. 

When the Hermitian metric of L is real-analytic, by Kohn's 

result subelliptic estimates for (0,q)-forms hold if the boundary of 

contains no local q-dimensional complex-analytic subvariety. If there 

is such a subvariety, its projection under p is a local q-dimensional 

subvariety W with the property that with respect to some local 

trivialization of L the Hermitian metric of L is represented by a 

function which is constant on W. If we give M a Hermitian metric, then 

all covariant derivatives of the curvature form of L along the 

directions of W must vanish. Hence we have the following theorem. 
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Theorem 6. Let M be a compact com[lex manifold with a Hermitian 

metric, L a holomorphic line bundle over M with a real-analytic 

Hermitian metric, and V a holomorphic yector bundle over M. Let 0 be 

the curvature form of L. Let q be a positive integer. Sup~gse 0 

i~s positive semidefinite and suppose at ever Z point x 2~ M the 

following is true. If E is a q-dimensional comple ~ linear subspace 

of the s~ace all (l,0)-vectors at x such that the restriction o__ff 0 

t_oo E ×E is zero (where E is the complex conjugate of E), then for some 

positive integer m the m th covariant derivative of 0 evaluated at 

some m+2 vectors from E and E is not zero. Then Hq(M,V OL k) = 0 for k 

sufficientl~ large. 

By using Catlin's result [6] for weakly pseudoconvex smooth 

boundary, one can drop the real-analytic assumption on the Hermitian 

metric of L. This kind of result tells us that in the case of a 

semipositive line bundle we can still get vanishing of the cohomology 

if the derivatives of the curvature form satisfy certain nondegeneracy 

conditions. Similar theorems can be formulated for holomorphic vector 

bundles and noncompact pseudoconvex manifolds. When q = i, Theorem 5 

can be proved by using the method of producing holomorphic sections 

for semipositive line bundles described above and Grauert's criterion 

of ampleness [14, p.347, Lemma] to show that the line bundle L must be 

ample. Though for lack of known examples there is no application yet 

for the kind of vanishing theorems derived from subelliptic estimates, 

hopefully in the future this approach may turn out to be fruitful. 

We would like to remark that on compact projective algebraic 

manifolds there is another kind of vanishing theorems motivated by 

Seshadri's criterion of ampleness [42, p.549] and obtained by 

Ramanujam [36] , Kawamata [23] , and Viehweg [55] for line bundles 

satisfying conditions weaker than ampleness. An example of such a kind 

of vanishing theorems is the following. If L is a holomorphic line 

bundle over a compact projective algebraic manifold M of complex 

dimension n such that Cl(L)n > 0 and Cl(LIC) > 0 for every complex- 

C in M, then Hq(M,LkK M) = 0 for q > i, where analytic Cl(-) curve 

denotes the first Chern class and K M denotes the canonical line bundle 

of M. The assumptions involved are weaker than local curvature 

conditions. However, such results apply only to the projective 

algebraic case. 
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