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F o r  the purposes of this lecture, "representation theory" means 

representation theory of Lie groups, and more specifically, of semisimple 

Lie groups. I am interpreting my assignment to give a survey rather 

loosely: while I shall touch upon various major advances in the subject, 

I am concentrating on a single development. Both order and emphasis of 

my presentation are motivated by expository considerations, and do not 

reflect my view of the relative importance of various topics. 

Initially G shall denote a locally compact topological group which 

is unimodular -- i.e., left and right Haar measure coincide -- and H C G 

a closed unimodular subgroup. The quotient space G/H then carries a G- 

invariant measure, so G acts unitarily on the Hilbert space L2(G/H). 

In essence, the fundamental problem of harmonic analysis is to decompose 

L2(G/H) into a direct "sum" of irreducibles. The quotation marks allude 

to the fact that the decomposition typically involves the continuous ana- 

logue of a sum, namely a direct integral, as happens already for non- 

compact Abelian groups. If G is of type I -- loosely speaking, if the 

unitary representations of G behave reasonably -- the abstract Plan- 

cherel theorem [12] asserts the existence of such a decomposition. This 

existence theorem raises as many questions as it answers: to make the 

decomposition useful, one wants to know it explicitly and, most impor- 

tantly, one wants to understand the structure of the irreducible sum- 

mands. In principle, any irreducible unitary representation of G can 

occur as a constituent of L2(G/H), for some H C G. The Plancherel 

problem thus leads naturally to the study of the irreducible unitary 

representations. 

To what extent these problems can be solved depends on one's know- 

ledge of the structure of the group G and on the nature of the subgroup 

H. Lie groups, p-adic groups, and algebraic groups over finite fields 

constitute the most interesting and best understood large classes of 
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groups. Although the formal similarities are both striking and instruc- 

tive, the technical aspects of the representation theory for these three 

classes diverge -- hence the limitation to the case of Lie groups. 

5emisimple groups play a distinguished role among all Lie groups, 

since they come up frequently in physical, geometric, and number-theore- 

tic problems. The special emphasis on semisimple groups can also be 

justified on other grounds: one of the aims of Mackey's theory of induced 

representations is to reduce the harmonic analysis on general Lie groups 

to that on semisimple groups; recently Duflo [13] has worked out the re- 

duction step quite concretely, at least for algebraic groups of type I. 

From the point of view of harmonic analysis, irreducible unitary 

representations are the main objects of interest. Nevertheless, there 

are important reasons for being less restrictive: non-unitary represen- 

tations not only occur naturally in their own right, for example as 

solution spaces of linear differential equations invariant under the 

action of a semisimple group, but they arise even in the context of uni- 

tary representations -- a hint of this phenomenon will become visible 

below. Once one leaves the class of unitary representations, one should 

not insist on irreducibility; various known constructions produce irre- 

ducible representations not directly, but as quotients or subspaces of 

certain larger representations. 

After these preliminaries, I let G denote a semisimple Lie group, 

connected, with finite center, and K a maximal compact subgroup of G. 

The choice of K does not matter, since any two maximal compact sub- 

groups are conjugate. By a representation of G, I shall mean a conti- 

nuous representation on a complete, locally convex Hausdorff space, of 

finite length - every chain of closed, G-invariant subspaces breaks 

off after finitely many steps - and "admissible" in the sense of Harish- 

Chandra: any irreducible K-module occurs only finitely often when the 

representation is restricted to K. This latter assumption is automati- 

cally satisfied by unitary representations, and consequently G is of 

type I [19]. No examples are known of Banach representations, of finite 

length, which fail to be admissible. 

To study finite dimesional representations of G, one routinely 

passes to the associated infinitesimal representations of the Lie alge- 

bra. Infinite dimensional representations are generally not differen- 

tiable in the naive sense, so the notion of infinitesimal representation 

requires some care. A vector v in the representation space Vw of a 

representation ~ is said to be K-finite if its K-translates span a 

finite dimensional subspace. By definition, v e V~ is a differentiable 
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vector if the assignment g --+ ~(g)v maps G into V~ in a C" fashion. 

Differentiable and K-finite vectors can be constructed readily, by aver- 

aging the translates of arbitrary vectors against compactly supported C ® 

or K-finite functions [17]. One may conclude that the K-finite vectors 

make up a dense subspace V C Vw , which consist entirely of differenti- 

able vectors - at this point the standing assumption of admissibility 

plays a crucial role. In particular, the complexified Lie algebra g of 

G acts on V by differentiation. The subgroup K also acts, by trans- 

lation, but G does not. Partly for trivial reasons, and partly as con- 

sequence of the original hypotheses on the representation ~, the g- and 

K-module V satisfies the following conditions: 

a) as K-module, V is a direct sum of finite dimensional 
irreducibles, each occuring only finitely often; 

(I) b) the actions of g and K are compatible; 

c) V is finitely generated over the universal enveloping 
algebra U(g). 

Here b) simply means that the g-action, restricted to the complexified 

Lie algebra k of K, coincides with the derivative of the K-action. 

This definition of the infinitesimal representation, which was introduced 

by Harish-Chandra [19], has the very desirable feature of associating 

algebraically irreducible g-modules to topologically irreducible repre- 

sentations of G; by contrast, g acts in a highly reducible fashion on 

the spaces of all differentiable or analytic vectors of an infinite di- 

mensional representation ~. 

A simultaneous g- and K-module V with the properties (la-c) is 

called a Harish-Chandra module. All Harish-Chandra modules can be lifted 

to representations of G [10,41], not uniquely, but the range of pos- 

sible topologies is now well-understood [45,54]. If V arises from an 

irreducible unitary representation ~, it inherits an inner product which 

makes the action of g skew-hermitian. An irreducible Harish-Chandra 

module admits at most one such inner product, up to a positive factor; if 

it does, the completion becomes the representation space of a unitary 

representation of G [19,39]. In other words, there is a one-to-one 

correspondence between irreducible unitary representations of G and 

Harish-Chandra modules which carry an inner product of the appropriate 

type. The problem of describing the irreducible unitary representations 

thus separates naturally into two sub-problems: the description of all 

irreducible Harish-Chandra modules, and secondly, the determination of 

those which are "unitarizable'. Of the two, the latter seems conside- 

rably more difficult, and has not yet been solved, except in special 

cases -- more on this below. 
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The irreducible Harish-Chandra modules of a general semisimple Lie 

group were classified by Langlands [33] and Vogan [48]; one of the ingre- 

dients of Langlands' classification is due to Knapp-Zuckerman [31]. To 

describe the classification in geometric terms, I introduce the flag 

variety of g, 

(2) X = set of Borel subalgebras of q 

It is a complex projective variety and a homogeneous space for the com- 

plex Lie group 

(3) G C = identity component of Aut(g) . 

In the case of the prototypical example G = 51(n,R), X can be identi- 

fied with the variety of all "flags" in C n, i.e. chains of subspaces 

0 C V 1 C V 2 C . .. C V n = C n, with dim V k = k : every Hotel subalgebra of 

the complexified Lie algebra g = sl(n,C) stabilizes a unique flag 

(Vn}. The group G acts on the flag variety via the adjoin% homomor- 

phism. There are finitely many G-orbits -- for G = 51(n,R), for 

example, these are characterized by the position of flags relative to the 

real structure R n C C n. Now let D C X be a G-orbit, and L --+ D a 

homogeneous line bundle - a line bundle with a G-action compatible 

with that on the base D. A cohomological construction, which I shall 

describe next, if only in rough outline, associates a family of Harish- 

Chandra modules to the pair (D,L). 

At one extreme, if G contains a compact Car%an subgroup I, and if 

D is an open orbit, the homogeneous line bundles over D are paramet- 

rized by a lattice. As an open subset of X , D has the structure of 

complex manifold. Every homogeneous line bundle L --~ D can be turned 

into a holomorphic line bundle, so that G acts as a group of holomor- 

phic bundle maps. Thus G acts also on the sheaf cohomology groups of 

L. The differentiated action of the Lie algebra g turns 

(4) H*(D,O(L))(K ) = { ~ e H~(D,O(L)) J ~ is K-finite } , 

into Harish-Chandra modules. Whenever the line bundle L is negative in 

the appropriate sense -- for example, if L extends to a line bundle over 

the projective variety X whose inverse is ample -- the cohomology ap- 

pears in only one degree and is irreducible: 

HP(D,O(L)) = 0 if p ~ s , 
(5) 

HS(D,O(L))(K) is a non-zero, irreducible Barish-Chandca module 

[43]; here s denotes the largest dimension of compact subvarieties of 

lequivalently, a torus which is a maximal Abelian subgroup. 
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D. These modules can be mapped (g,K)-equivariantly into L2(G) HC'(G), 

and are consequently unitarizable. The unitary structure is visible also 

in terms of the geometric realization: the L2-cohomology of L injects 

into the Dolbeault cohomology, its image is dense, has a natural Hilbert 

space structure, and contains all K-finite cohomology classes [3,44]. 

The resulting unitary representations make up the discrete series, which 

was originally constructed by Harish-Chandra via character theory [21]. 

The opposite extreme, of a totally real G-orbit D C X, occurs only 

when g contains Borel subalgebras defined over R, as is the case for 

G = Sl(n,R). In this situation D is necessarily compact, and the coho- 

mological construction collapses to that of the single Harish-Chandra 

module 

(6) C'(D,L)(K ) = space of K-finite, C" sections of L • 

The module (5) need not be irreducible, but it has a unique irreducible 

quotient, provided L satisfies a suitable negativity condition. Harish- 

Chandra modules of this type are induced from a Borel subgroup of G ; 

they belong to the principal series. 

The construction for a general G-orbit D combines elements of 

"complex induction , as in (4), and ordinary induction, as in (6). It 

can be viewed as a cohomological form of geometric quantization. There 

is completely parallel, algebraic version of the construction, due to 

Zuckerman, which offers certain technical advantages. It is this version 

that has been studied and used extensively [49]. Subject to certain 

hypotheses on the pair (L,D) , Zuckerman's "derived functor construc- 

tion" -- equivalently, the geometric construction -- produces cohomology 

in only one degree, a Harish-Chandra module that arises also by induction 

from a discrete series module of a subgroup of G. Under more stringent 

assumptions, the Harish-Chandra module corresponding to (L,D) has a 

unique irreducible quotient [38]. Every irreducible Harish-Chandra mo- 

dule can be realized as such a quotient in a distinguished manner -- 

this, in effect, is Langlands' classification [33]. The problem of 

understanding the irreducible Harish-Chandra modules does not end here, 

however. The irreducible quotient may be all of the original module, or 

may be much smaller. In principle, the Kazhdan-Lusztig conjectures for 

Harish-Chandra modules, proved by Vogan [51] in the generic case, provide 

this type of information, but not as explicitly or concretely as one 

might wish. 

I now turn to a different, more recent construction of Harish- 

Chandra modules, that of Beilinson-Bernstein [6]; similar ideas, in the 

context of Verma modules, can be found also in the work of Brylinski and 
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Kashiwara [9]. 5ome preliminary remarks are necessary. The flag variety 

X may be thought of as a quotient GC/B; here B is a particular Borel 

subgroup of G C, i.e~ the normalizer of a Borel subalgebra b C g. The 

differentials of the algebraic characters of B constitute a lattice A. 

Each x ¢ A -- or more precisely, the corresponding character e x of B 

-- associates a Gc-homogeneous, holomorphic line bundle Lx --~ X to the 

principal bundle B --~ G C --+ X. Its cohomology groups are finite dimen- 

sional Gc-modules, which are described by the 8orel-Weil-Bott theorem 

[8]. In particular, 

H*(X,O(Lx)) vanishes except in one degree p = p(x) , 
(7) 

HP(x,O(Lx)) is irreducible • 

The center Z(g) of the universal enveloping algebra U(q) acts on the 

cohomology by scalars (Schur's lemma! ), so 

(8) I x = annihilator of B*(X,O(LI)) in Z(g) 

is a maximal ideal in Z(g). As a result of its construction, the line 

bundle L x carries an algebraic structure, and it makes sense to define 

D x = sheaf of linear differential operators, with 
(9) 

algebraic coefficients, acting on the sections of L x ; 

the notion of sheaf is taken with respect to the Zariski topology, as 

befits the algebraic setting. To picture D x, one should note that it 

is locally isomorphic to the sheaf of scalar differential operators on 

X. The Lie algebra g operates on sections of L x by infinitesimal 

translation. This operation extends to a homomorphism from U(g) into 

FD, ( = algebra of global sections of D x ), which in turn drops to an 

isomorphism 

(10) 

[6]. 

tion. 

FDx s Ox =def O(g)/IxU(g) 

This is the point of departure of the Beilinson-Bernstein construc- 

The passage from U(g) to the sheaf D x has a counterpart on the 

level of U(g)-modules: a pair of functors between 

(Ii) M(U x) = category of Dx-modules 

-- equivalently, the category of U(g)-modules on which the center Z(g) 

acts as it does on the cohomology groups (7) - and 

(12) M(D x) = category of quasi-coherent sheaves of Dx-modules • 

Quasi-coherence means simply that the sheaves admit local presentations 

in terms of generators and relations, though not necessarily finite pre- 

sentations. In one direction, the global section functor 
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(13) F : M(D x) --+ M U x) 

maps sheaves of Dx-modules to modules over FD x s U x, Extension of 

scalars from the algebra of global sections U x to the stalks of D x 

determines a functor in the opposite directlon, 

A : M(U x ) ) M(D x ) , 
(14) 

AV = D,@ U V ; 
% 

the sheaves AV are quasi-coherent because every V e M(U x) can be 

described by generators and relations. 

Those parameters x e A which correspond to ample line bundles L x 

span an open cone C C R@zA . One calls x dominant if it lies in the 

closure of C, dominant nonsingular if x lies in C itself. The 

inverse of the canonical bundle is ample, and is therefore indexed by a 

particular dominant nonsingular quantity, customarily denoted by 2p. 

With these conventions it possible to state the following remarkable ana- 

logue of Cartan's theorems A and B: 

(15) Theorem (Beilinson-Bernstein [6]) A) The global sections of any 

quasi-coherent sheaf of D~-modules generate its stalks, provided x + p 

is dominant and nonsingular. B) If ~ + p is dominant, the sheaf coho- 

mology groups HP(X,V) vanish, for every V e M(D z) and p > 0. 

As a direct consequence, Beilinson-Bernstein deduce: 

(16) Corollary In the situation of a dominant nonsingular x + p , the 

functor F defines an equivalence of categories M(Ux) ~ M(D x) , with 

inverse A. 

Perhaps surprisingly, the equivalence of categories implies properties of 

general Ux-modules that were previously unknown. The most fruitful ap- 

plications, however, occur in the context of certain smaller categories, 

in particular the category O of Bernstein-Gelfand-Gelfand [7] and the 

category of Harish-Chandra modules. 

Irreducible modules in either of these categories are annihilated by 

maximal ideals in Z(g), but not every maximal ideal is of the form (8), 

with x e A . According to Harish-Chandra [20], the correspondence 

z --+ I x extends naturally to a sur]ective map from the vector space 

C@zA onto the set of all maximal ideals; any two of the ideals Ix, I~, 

for x, ~ e C@zA , coincide precisely when x + p and ~ + p belong to 

the same orbit of the Weyl group W -- a finite group which acts line- 
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arly on C@2A . I want to emphasize one consequence of Harish-Chandra's 

description of the maximal ideal space: 

every maximal ideal in Z(g) can be realized as I x , with 
(17) 

x ~ C@zA having the property that Re(x + p) is dominant. 

Although the bundle L, ceases to exist as soon as the parameter x 

leaves the lattice A , there are "phantom line bundles" attached to all 

x e C@ZA , locally defined line bundles to which the action of g on X 

lifts. The construction (9) of the sheaf of algebras D x continues to 

make sense in this wider setting, as do the isomorpism (I0), the catego- 

ries M(Dx), M(Ux), and the functors F, A Most importantly, theorem 

(15) and its corollary remain valid [6], with one minor adjustment: the 

phrase "x + p is dominant" should be replaced by "Re(x + p) is 

dominant'. Different values of x may correspond to identical maximal 

ideals I x and quotients U x = U(g)/I x , but an appropriate choice of x 

will bring any such quotient within the scope of part B of the theorem -- 

this follows from (17). The same x makes part A and the corollary 

apply at least generically, for parameters outside a finite number of 

hyperplanes. The equivalence of categories breaks down in the remaining, 

singular cases only because certain sheaves fail to have global sections. 

The maximal compact subgroup K C G possesses a complexification, a 

complex algebraic group K C , defined over R , which contains K as the 

group of real points. If V ~ M(U x) is a Harish-Chandra module, the K- 

action induces an algebraic Kc-action on the sheaf AV . The differen- 

tial of this action agrees with the multiplication action of k, viewed 

as Lie subalgebra of FD x s U x -- in short, K C and k act compatibly. 

For the purpose of the preceeding discussion, the finiteness condition 

(la) in the definition of Harish-Chandra module becomes irrelevant. It 

is necessary only that K act locally finitely, i.e. the K-translates 

of any v e V must span a finite dimensional subspace. The passage from 

locally finite K-actions on Ux-modules to algebraic Kc-actions on 

sheaves of Dx-modules can be reversed; in other words, both F and 

restrict to functors between 

M(Ux,K) = category of Ux-modules with a compatible, 

locally finite K-action , and 
(18) 

M(D,,K C) = category of sheaves of quasi-coherent D,-modules 

with a compatible, algebraic Kc-action 

Whenever x + p is nonsingular and Re(x + p) is dominant, the equi- 

valence of categories (16) identifies these two subcategories, 
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(19) F : M(D~,K c) ~ M(Ux,K) • 

A theorem of Harish-Chandra asserts, in effect, that finitely generated 

modules in the category M(Ux,K) satisfy the finiteness condition (la) 

[19], hence 

the irreducible objects in the categories M(Ux,K) , x e CSzA , 
(20) 

exhaust the class of irreducible Harish-Cbandra modules 

In particular, the identification (19) relates irreducible Harish-Chandra 

modules to irreducible sheaves V e M(Dx,Kc). 

Geometric considerations suggest how to find such sheaves. The 

support of any V e M(Dx,K C) is invariant under the translation action 

of K C on X , via the adjoint homomorphism. If V is irreducible, the 

support must be an irreducible variety -- necessarily the closure of an 

orbit, since 

(21) K C acts on X with finitely many orbits 

[36]. Now let Y C X be a Kc-orbit, Y its closure. The operation of 

pushforward yields irreducible sheaves with support in Y , as I shall 

explain next. 

Ordinarily the D-module pushforward of a sheaf exists only as an 

object of the derived category. In the situation at hand it can be des- 

cribed quite explicitely. The analogy with the C" case is instructive. 

Linear differential operators on a C" manifold M cannot be applied 

naturally to the C ~ functions on a closed submanifold N C M . How- 

ever, after the choice of a smooth measure, functions in C'(N) may be 

viewed as distributions on M , and the sheaf of differential operators 

D M -- here in the C ® sense - does act on these. The D-module push- 

forward of the sheaf of smooth measures on N is the sheaf generated by 

that action; in other words, the sheaf of distributions on M , with 

support in N , which are smooth along N . Formally, measures and dis- 

tributions must be treated as sections not of the trivial bundle, but the 

top exterior power of the cotangent bundle. For this reason the pushfor- 

ward from N to M involves a twist by the quotient of the two deter- 

minant bundles, i.e., a twist by the top exterior power of the conormal 

bundle. The preceeding discussion can be expressed in terms of local co- 

ordinates, and then makes sense equally in the algebraic setting. 

Back to the Kc-orbit Y C X ! Under an appropriate integrality 

condition on the parameter x , the "phantom line bundle" corresponding 

to , extends to the orbit as a true Kc-equivariant line bundle, pos- 

sibly in several different ways. I let Ly, x denote a particular such 

extension, tensored by the top exterior power of the normal bundle. Its 
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sheaf of sections Oy(Ly, x) is a module for a twisted sheaf of differen- 

tial operators Dy, x on Y . The complement of the boundary ~Y in X 

contains Y as a smooth, closed subvariety. Because of the shift built 

into the definition, the D-module pushforward of Oy(Ly, x) from Y to 

X - aY is a sheaf of modules over the sheaf D x , restricted to X - ~Y. 

It becomes a sheaf of Dx-modules over all of X when pushed forward 

once more -- naively, simply as a sheaf -- from the open subset X - ~Y 

to X . The resulting sheaf, which I denote by Vy, x , belongs to the 

category M(Dx,Kc) , since K C operates at each step of its construction. 

A basic result of Kashiwara, on sheaves of D-modules supported by smooth 

subvarieties, implies 

a) the sheaf of Dx-modules Vy, ~ has a finite composition 

series and contains a unique irreducible subsheaf ; 
(22) 

b) every irreducible sheaf in the category M(Dx, K C) arises in 

this manner, for some Kc-orbit Y and line bundle Ly, x 

Under the hypotheses of the equivalence of categories, this statement 

translates immediately into a classification of the irreducible Harish- 

Chandra modules which are annihilated by the maximal ideal I x C Z(g) : 

FVy, x has a unique irreducible submodule; the assignment 

of that module to the datum of the orbit Y and line bundle 
(23) 

Ly, x establishes a bi3ection between such pairs ( Y, Ly, x) 

and irreducible Harish-Chandra modules in M(Ux, K) 

When x + p is singular, the situation becomes more complicated, as it 

does also from the point of view of the Langlands classification. Irre- 

ducible Harish-Chandra modules in M(Ux, K) can still be realized as sub- 

modules of some VVy, x , but not always as an only irreducible submodule, 

nor in a unique manner. 

The reducibility or irreduciblity of Vy, x , in the category of 

sheaves of Dx-modules , is a local phenomenon. All stalks at points of 

the complement of ? vanish, and a small calculation shows those over 

points of Y to be automatically irreducible. If a non-trivial quotient 

of Vy, x exists, it also belongs to the category M(Dx,K C) and has sup- 

port in the boundary. In particular, the sheaf Vy, x cannot possibly 

reduce unless there is a non-empty boundary: subject to the usual posi- 

tivity condition on x , 

the Harish-Chandra modules FVy, x associated 
(24) 

to closed Kc-orbits are irreducible 

Non-trivial quotients of Vy, x do exist whenever the line bundle Ly, x 

extends, g-equivariantly, across some Kc-orbit in ~Y . Matsuki [37] 
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and Springer [47] have worked out the closure relations between K c- 

orbits; their results make it possible to interpret this geometric irre- 

ducibility criterion quite explicitely. 

The proof of the original Kazhdan-Lusztig conjectures was the first 

triumph of D-modules in representation theory. Irreducible modules in 

the category 0 arise from orbits of a Borel subgroup B C G C , via the 

same process of pushforward, taking sections, and passing to the unique 

irreducible submodule. Kazhdan and Lusztig [29] had already related 

their conjectured composition multiplicities for Verma modules to the 

intersection cohomology of closures of 8-orbits, i.e., of Schubert varie- 

ties. Both Brylinski-Kashiwara [9] and Beilinson-Bernstein [6] saw the 

connection with the theory of D-modules; they independently established 

the conjectures, by relating the intersection cohomology to the composi- 

tion multiplicities of the appropriate sheaves. This second step carries 

over, essentially unchanged, to the setting of Harish-Chandra modules. 

The paper [35] of Lusztig and Vogan contains the analogue of the first 

ingredient, namely the combinatorics of the intersection cohomology of 

closures of Kc-orbits. Vogan [51], finally, deduces multiplicity for- 

mulas for the Langlands classification, which he had conjectured earlier 

[50]. I should point out that the original Kazhdan-Lusztig conjectures 

cover only Ux-modules with x e A, as does the known version for Harish- 

Chandra modules; Vogan's conjectures, by contrast, apply to the general 

case. 

At first glance, the Beilinson-Bernstein construction appears far 

removed from the construction of Harish-Chandra modules in terms of line 

bundles on G-orbits. The former leads quickly to geometric reducibility 

criteria, as we just saw, and opens a path towards the Kazhdan-Lusztig 

conjectures for Harish-Chandra modules. It also has points of contact 

with Vogan's classification via K-types [48]; indeed, it probably im- 

plies the results of [48]. The G-orbit construction, on the other hand, 

is closely tied to Langlands" classification, which in turn relates it to 

certain analytic invariants of Harish-Chandra modules: the asymptotic 

behavior of matrix coefficients, for example, and the global character 

[I0, II,24]. Since the two constructions complement each other, the pos- 

sible connections between them merit attention. 

Results of Matsuki [36], on orbits in flag varieties, provide an 

important clue. For each G-orbit D C X , there exists a unique K C- 

orbit Y , such that K acts transitively on the intersection DDY ; 

conversely every Kc-orbit intersects a unique G-orbit in this manner, 

The correspondence D ÷--~ Y reverses the relative sizes of orbits, as 

measured by their dimensions -- I shall therefore call D "dual" to the 
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orbit Y. Once the parameter x has been fixed, the duality D ~--+ Y 

extends to the line bundles which enter the two constructions: a homo- 

geneous line bundle L --+ D is dual to Ly, x --+ Y if the tensor product 

L@Ly, Z restricts to a trivial K-homogeneous vector bundle over DDY . 

It is instructive to examine the special case of SI(2, R) , or equi- 

valently, its conjugate SU(I, I). The diagonal matrices in G = 5U(I,I) 

constitute a maximal compact subgroup K ~ U(1). Both G and K C ~ C* 

act on the flag variety X ~ CP 1 s C U {-} , as groups of M6bius trans- 

formations. The duality relates the three Kc-orbits {0}, {®}, C ~, 

in the given order, to the G-orbits A ( = unit disc), 6" ( = complement 

of the closure of A ), 5 I. A homogeneous line bundle over A is deter- 

mined by a character of the isotropy subgroup at 0 , i.e. a character 

e X of K. Dually, a Kc-homogeneous line bundle over the one-point 

space (0) has a single fibre, on which K c acts by an algebraic cha- 

racter e x. The differentials X, x may be viewed as linear functions 

on k s C , whose values on Z C C are integral multiples of 2~i ; here 

the duality reduces to I ÷--+ x = -X . The situation for the orbits A', 

(-}, is entirely analogous. At points z e 51 , the isotropy subgroup 

G z C G has two connected components. Its characters are parametrized by 

pairs ( I , ~ ) , consisting of a complex number 1 and a character 

of the center {±i} C G , which meets both connected components of G z. 

The corresponding G-equivariant line bundle over S 1 extends holomor- 

phically at least to the Kc-orbit C ~ , as does the dual, or inverse 

line bundle. If the line bundle is to extend even across {0} or {-} , 

the pair ( X , ~ ) must lift to a character of the complexification of 

G z -- this happens precisely when X/2~i is integral and ~ trivial or 

non-trivial, depending on the parity of X/2~i. 

To a Kc-homogeneous line bundle Lx--~ (0} , the Beilinson-Bernstein 

construction assigns the Harish-Chandra module of "holomorpbic distribu- 

tions" supported at 0 , with values in the bundle L z -- in other words, 

the U(g)-submodule generated by "evaluation at 0" in the algebraic dual 

of the stalk O{0}(L~®T ~) ; the formal duality between functions and dif- 

ferentials accounts for the appearance of the cotangent bundle T~. By 

its very definition, this module is dual, in the sense of Barish-Chandra 

modules, to H0(A,O(L~@T~))(K) , the module associated to the G-orbit 

and the line bundle L~@T~. For non-negative values of the integral 

parameter x/2Ti , the resulting Ha~ish-Chandra modules are irreducible 

and belong to the discrete series. They become reducible if z/2Ti < -i ; 

in this situation the equivalence of categories (19) no longer applies. 

The preceeding discussion carries over, word-for-word, to the pair of 

orbits {-}, A'. As for the orbits 51 and C ~, the two constructions 
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start with the choice of a G-homogeneous line bundle LA, ~ --+ 5 I. Its 

extension to C ~, which I denote by the same symbol, comes equipped with 

an action of g and an algebraic structure. 5ince C ~ is open in X , 

the pushforward construction attaches the space of algebraic sections 

HO(c~,O(Lx, ~)) to the datum of the Kc-orbit C ~ and line bundle LX, ~ 

Integration over 51 pairs this Harish-Chandra module nondegenerately 

with C®(SI,L*x, ~@T~) (K) • the module corresponding to the G-orbit S 1 and 

line bundle L'X, ~@T~. The hypothesis of the equivalence of categories 

translates into the inequality Re k > -I . On the Beilinson-Bernstein 

side, this implies the existence of a unique irreducible submodule: the 

entire module generically, when Lk, ~ cannot be continued across 0 

and - , otherwise the finite dimensional submodule consisting of sec- 

tions regular at the two punctures. The realization of the dual module 

C'(51, LI, ~@T~)(K) exhibits both Harish-Chandra modules as members of the 

principal series. 

One phenomenon that does not show up in the case of G = SU(I,I) 

is the occurence of higher cohomology. For general groups, without any 

positivity assumption on the parameter x , the sheaves Vy, x can have 

non-zero cohomology groups above degree zero, but these are still Harish- 

Chandra modules. Zuckerman's derived functor construction also produces 

a family of Harish-Chandra modules IP(D,L) , for each G-orbit D and 

G-equivariant line bundle L --+ D , indexed by an integer p 2 0 . The 

example of 5U(1,1) suggest a duality between the two constructions, and 

indeed this is the case. I fix pairs of data (Y, Vy, x), (D,L), which 

are dual in the sense described above, and define s = dimR(YnD) - dimcY , 

d = dim C X. Then 

there exists a natural, nondegenerate pairing between 

(25) the Harish-Chandra modules HP(Y, Vy,,) and Is-P(D,L®AdT~) , 

for all p ~ Z , with no restriction on x (Hecht-Milidit-Schmid-Wolf 

[23]). In both constructions homogeneous vector bundles can be substi- 

tuted for line bundles. The duality carries over to this wider setting, 

and then becomes compatible with the coboundary operators. Earlier, 

partial results in the direction of (25) appear in Vogan's proof of the 

Kazhdan-Lusztig conjectures for Harish-Chandra modules [51]; there Vogan 

identifies certain Beilinson-Bernstein modules with induced modules, by 

explicit calculation. 

The duality does not directly relate the 8eilinson-Bernstein classi- 

fication to that of Langlands: in the language of geometric guantization, 

the latter uses partially real polarizations, whereas the former works 

with arbitrary, mixed polarizations. This problem can be dealt with on 
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the level of Euler characteristics, and the known vanishing theorems for 

the two constructions are sufficiently complementary to permit a compari- 

son after all. In particular, it is possible to carry techniques and 

results back and forth between the two constEuctions [233. 

By definition, the discrete series is the family of irreducible uni- 

tary representations which occur discretely in L2(G). It was remarked 

earlier that G has a non-empty discrete series if it contains a compact 

Caftan subgroup; these representations then correspond to open G-orbits, 

and their unitary structures are related to the geometric realization. 

Open G-orbits are dual to closed Kc-orbits, so the observation (24) 

"explains" the irreducibility statement (5). The discrete series lies at 

one extreme of the various non-degenerate series of irreducible unitary 

representations -- the other series consist of representations unitarily 

induced from discrete series representations of proper subgroups. These 

are precisely the representations which occur in the decomposition of 

L2(G) [22]. Roughly speaking, they are parametrized by hermitian line 

bundles over G-orbits. Here, too, the inner products have geometric 

meaning [56]. As for the rest of the unitary dual, the picture remains 

murky, though substantial progress has been made during the past few 

years. I shall limit myself to some brief remarks, since more detailed 

summaries can be found in the articles [30,52] of Knapp-Speh and Vogan. 

A unitarizable Harish-Chandra module V is necessarily conjugate 

isomorphic to its own dual, a property which translates readily into a 

condition on the Harish-Chandra character, or on the position of V in 

the Langlands classification. If the condition holds, V admits a non- 

trivial g-invariant hermitian form -- only one, up to scalar multiple, 

provided V is irreducible. The real difficulty lies in deciding whether 

the hermitian form has a definite sign. For a one parameter family V t 

of irreducible Harish-Chandra modules of this type, the form stays defi- 

nite if it is definite anywhere: not until the family reduces at some 

t = t o can the hermitian form become indefinite; even the composition 

factors at the first reduction point are unitarizable. In the case of 

SI(2, R), such deformation techniques generate the complementary series 

and the trivial representation -- in other words, all of the unitary 

dual outside the discrete series and the unitary principal series [5]. 

Examples of Knapp and 5pet [30] suggest that the analogous phenemenon for 

general groups can become quite complicated. 

Neither induction nor deformation techniques account for isolated 

points in the unitary dual. Typically isolated unitary representations 

do exist, beyond those of the discrete series, but with certain formal 

similarities to the discrete series. Zuckerman's derived functor con- 
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struction, and the Beilinson-Bernstein construction as well, extends to 

orbits in generalized flag vartieties, i.e., quotients Gc/P by parabo- 

lic subgroups P C G C. The G-invariant hermitian line bundles over an 

open G-orbit D C Gc/P are parametrized by the character group of the 

center of the isotropy subgroup G z C G at some reference point z e D. 

Whenever that center is compact, the derived functor construction pro- 

duces a discrete family of irreducible Harish-Chandra modules. According 

to a conjecture of Zuckerman, which was recently proved by Vogan [53], 

these modules are unitarizable. Vogan actually proves more; in geometric 

language, the cohomology of G-invariant vector bundles, modeled on irre- 

ducible unitary representations of the isotropy group G z , vanishes in 

all but one degree and can be made unitary, again under an appropriate 

negativity assumption on the bundles. The proof consists of an algebraic 

reduction to the case of the non-degenerate series: Vogan introduces a 

notion of signature for g-invariant hermitian forms on Harish-Chandra 

modules, formal sums of irreducible characters of K with integral coef- 

ficients; he then calculates these signatures for the derived functor 

modules, in terms of the K-multiplicities of induced modules. Because 

of the origin of Zuckerman's conjecture, one might hope for a geometric 

proof. Earlier attempts in this direction were only marginally success- 

ful, but give a hint of a possible strategy [42]. 

A complete description of the unitary dual exists for groups of low 

dimension, for groups of real rank one [4,27,32], and the family 50(n,2) 

[i]. Vogan has just announced a classification also for the special 

linear groups over R , C , H -- a big step, since there is no bound on 

real rank. In effect, the methods of unitary induction, degeneration, 

and Vogan's proof of the Zuckerman conjecture generate all irreducible 

unitary representations of the special linear groups. One feature that 

makes these groups more tractable is a hereditary property of their para- 

bolic subgroups: all simple factors of the Levi component are again of 

type S1 n. In the general case, conjectures of Arthur [2] and Vogan [52] 

predict the unitarity of certain highly singular representations. There 

are also results about particular types of unitary representations [14, 

15,28], but a definite common pattern has yet to emerge~ 

I close my lecture by returning to its starting point, the decompo- 

sition of L2(G/H). The solution of this problem for H = {e) -- the 

explicit Plancherel formula [22] - was aim and crowning achievement of 

Harish-Chandra's work on real groups. A discussion of his proof would 

lead too far afield. However, I should mention a recent elementary', 

though not simple, argument of Herb and Wolf [26]. It is based on Herb's 

formulas for the discrete series characters [25], and emulates Harish- 



150 

Chandra's original proof in the case of SI(2, R), by integration by parts 

[18]. 

The decomposition problem has been studied systematically for two 

classes of subgroups H , besides the identity group: arithmetically de- 

fined subgroups, and symmetric subgroups, i.e. groups of fixed points of 

involutive automorphisms. The symmetric case contains the case of the 

trivial group, since G can be identified with GxG/diagonal Oshima 

and Matsuki [403, building on a remarkable idea of Flensted-Jensen [16], 

have determined the discrete summands of L2(G/H) , for any symmetric 

H C G ; these representations are parametrized by homogeneous line bun- 

dles ove~ certain orbits in generalized flag varieties. Oshima has also 

described a notion of induction in the context of symmetric quotients. 

Presumably L2(G/H) is made up of representations which are induced in 

this sense, from discrete summands belonging to smaller quotients, but 

the explicit decomposition remains to be worked out. The case of arith- 

metically defined subgroups is the most interesting from many points of 

view, and the most difficult. Again the discrete summands constitute the 

"atoms" of the theory, as was shown by Langlands [34] -- the Eisenstein 

integral takes the place of induction. There is an extensive literature 

on the discrete spectrum, too extensive to be summarized here, yet a full 

understanding does not seem within reach. 
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