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INTRODUCTION 

According to D. Ruelle [18] "... the main problem of equilibrium 

statistical mechanics is to understand the nature of phases and phase 

transitions ...". A remarkable observation of B. Derrida, L. De Seze 

and C. Itzykson [4] has put these problems of theoretical physics in- 

to a new perspective: For a very particular model (the hierarchical 

q-state Potts model on a hierarchical lattice) they indicated that 

the Julia set of the corresponding renormalization group transforma- 

tion is the zero set of the partition function in the classical theo- 

ry of C° N. Yang and T. D. Lee [22]. The Yang-Lee theory describes a 

physical phase as a domain of analyticity for the free energy, viewed 

as a function of complex temperature. The boundaries of these domains 

are given by the zeroes of the partition function. Carrying on these 

ideas we show a connection with a discovery of B. Mandelbrot [13]. 

More precisely, in a discussion of the morphology of the above zero 

sets we discover a structure which is related to the Mandelbrot set 

(see [15])attached to the one-parameter family ~ 9 z ~ z 2 + c , c 6 

a fixed constant. For this we exploit recent results of D. Sullivan 

[21] which classify the stable regions of rational maps on 5 = { U {~}. 

Though the physical meaning of the hierarchical Potts model is cer- 

tainly very questionable it seems that the classical (see G. Julia [12] 

and P. Fatou [8]) and recent (see A. Douady and J. Hubbard [5,6,7], 

D. Sullivan [21], M. Herman [11]) theory of complex dynamical systems 

may produce a major step towards a deeper understanding of the nature 

of phase transitions. Besides the hierarchical Potts model we have 

analyzed I- and 2-dimensional Ising models with and without an exter- 

nal magnetic field and have found that the theory of Julia sets and 
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their typical fractal properties play a very significant role in the in- 

teraction between the Yang-Lee theory and the renormalization group 

approach. None of these and the findings in [15] would have been possi- 

ble without the aid of extensive computer graphical studies and experi- 

ments. 

PRELIMINARIES AND NOTATION 

The hierarchical Potts model is associated with a very particular 

and physically unrealistic lattice construction which we introduce 

schematically in fig. I. 

k = I 

<> 
k = 2 k = 3 

Figure I. The diamond hierarchical lattice with 

n = n(k) = 4 + 2(4 k-1 -4)/3 atoms (dotts) 

bonds (line segments) for k > I 

and 4 k-1 

For this particular lattice and nearest neighbor coupling an explicit 

form of the renormalization group transformation is known and that is 

why it is valuable here. On each lattice site i we assume a spin with 

q 6 ~ possible states 

The partition function 

over all configurations 

(]. = I 
1 

Zk(T) 

I*o-i q • 

is the sum of Boltzmann factors extended 
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{o : {I ..... n} ~ {I ..... q}} , n = # of lattice points, 

(I) Zk(T) = Z exp (- I o k--~ E(°)) ' 

where E(o) is the potential energy of the configuration o . 

Assuming that the interaction of different lattice sites is restricted 

to nearest neighbors only, i.e. only across a bond indicated by a line 

segment in figure 1, the energy across such a bond for a fixed confi- 

guration a is: 

(2) I - U , if O. = 0 
E(i,j) = l j 

0 , else. 

Hence, 

(3) E(o) : ~ E(i,j) 
bonds 

For convenience we introduce new variables 

(4) x = exp(U/kB.T ) 

so that Zn(X) becomes a polynomial in x with integer coefficients. 

The coupling constant U is characteristic for the material, U > O 

for ferromagnetic, and U < O for antiferromagnetic coupling. From 

Z k one derives the free energy per atom 

kBT 
- in Z k , n = n(k) (5) fn n 

Thus, zeroes of Z k correspond to logarithmic singularities of fn 

and are reasonable candidates for phase transitions. Note, however, 

that Zk(X) # O for any finite lattice with n = n(k) points and for 

all x > O , which is the physically meaningful temperature range. 

THE YANG-LEE MODEL OF PHASE TRANSITIONS 

In essence the idea of C. N. Yang and T. D. Lee ~, which had a 

substantial impact on the forthcoming attempts to solve phase transi- 

tion problems, is as follows: 
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Let 

(6) N k = {x 6 • , Z k (x) = 0] , 

i.e. one embeds the partition function in a complex temperature plane. 

To make boundary effects negligable one has to pass to the thermodyna- 

mic limit, i.e. one lets n ~ ~ It is not obvious, of course, that 

such a limit makes sense and exists. If, however, the potential energy 

E admits an appropriate growth condition and the range of the inter- 

action is sufficiently small, which is trivially satisfied in our case, 

then (see [18]) the limit exists and we denote by N the zero-set 

of the partition function Z in the thermodynamic limit. Now Yang 

and Lee postulated that N would distinguish a unique point Xc> O, 

(7) 

so that T 
c I 

(see fig. 2). 

N 0~ = {x c oa + } , 

x c : exp(U/kB.Tc) , is the phase transition point 

<<!iii!iii!iiTiiiiiiTi?Cii 
:i:!iiii!!i{iiii!!iiii[i!iiiiii!.!.i:!:!:i:{:"Lgneti c 

. :i!iiii!!iiiiii!!iiiiii!iiiii!i!iiiii!iiiiii e . . . .  

Xo iiii!ii!iiiiiii!ii!iiiiiii!ii!i!ii!iiiiiii  iiiiiii 
~ ~ : t i ! ! i  ii!iii![iiiiitiii!ii!iiii!ii!iii!i!li :ti:!iiii[! :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

Figure 2. Note that T = ~ corresponds to x = I 

Thus to find and characterize T it remains to find x and inter- 
c c 

p r e t e  N i n  t h e  n e i g h b o r h o o d  o f  x c F o r  e x a m p l e  t h e  c r i t i c a l  i n -  

d e x  a , which characterizes the singularity of the specific heat, 

(8) C ~ I T- T c I -~ 

can be obtained from the density of the zeroes in the thermodynamic 

limit near x (see [9]). 
c 
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THE RENORMALIZATION GROUP APPROACH 

In general the partition function Z k is not only a function of 

temperature x but also of other variables like for example an ex- 

ternal magnetic field H . In essence the idea of the renormalization 

group approach is to relate 

Zk_ I with Z k , i.e. 

(9) I Zk(X,H,...) = Zk_I(X,H .... ) • ~(x,H .... ) 

(x,H .... ) = R(x,H .... ) 

Thus, up to a trivial factor ~ the partition function of step k is 

obtained by that of step k-1 modulo an appropriate adaption of the 

variables (x,H, ...). This determines a map R , the renormalization 

transformation. 

In our specific hierarchial q-states Potts model Z k is only a 

function of x , the temperature variable. However, Z k depends on 

the material constant q . An elementary calculation shows that 

(see [4], [I~) 

(10) 

Zk(X ) = Zk_ I (x) • <D(x) , 

R(x) = x = ( x2+q-lh 2 \2x+q-2/ 
Z I (X) = q(x+q-1) 

2.4 k-2 
~0(x) = (2x+q-2) 

k~ 2 

Thus, the renormalization transformation is a rational map of degree 4. 

Actually, as we let q vary in C we obtain a l-parameter family 

R = R For any q we have that q 

(11) 

Rq(1) = 1 and R' (1)q = O 

Rq(~) = ~ and R' (~)q = O , 

i.e. I and ~ are superstable attractors. Their basins of attraction 

are defined by (~ = ~ U {~}) 
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(12) 

Aq(1) = {x 6 ~ : Rn(x) ~ 1 as n ~ ~} 
q 

Aq(~) = {x 6 ~ : Rn(x) ~ ~ as n ~ ~} i 

q 

As a consequence of the classical theory of G. Julia [12] and P. Fatou 

[8] on the interation of rational functions in { we have that 

(13) ~Aq(1) = Jq = 3Aq(~) 

is the Julia set of R q 

JULIA SETS AND PHASE TRANSITIONS 

We are now in a position to discuss the Yang-Lee model in terms of 

the renormalization approach from the point of view of the theory of 

Julia sets. We begin by listing a few interesting conjectures and 

problems: 

CONJECTURE 1.1. 

N = Jq , i .e. 

Aq(1) (resp. Aq(~)) corresponds to the non- 

magnetic (resp. magnetic) phase. 

To discuss this crucial conjecture the following immediate observation 

from (10) is of importance: 

Note that Zk_1(Rq(X)) q(x) 
= /~(x) 

therefore 

for some q(x) and 

k-1 
(14) Nk = {x 6 ~ : Rq (x) = I - q} 

Moreover, the free energy in the thermodynamic limit f 

satisfies the functional equation (15) as a consequence 

of (5) and (10): 

l f (x) =-~-f (Rq(X)) + g (x )  , w i t h  

(I 5) Ii n 
g(x) : (2x+q-2) 
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PROBLEM 1.2. 

(a) In what sense is N k ~ N as k ~ ~ ? 

(b) For which q 6 ~ is N = J ? 
q 

(c) For which q E • does R admit further 
q 

attractors, other than I and ~ ? 

If R admits a further attractor other than I and ~ then its cor- 
q 

responding basin of attraction may characterize a third magnetic phase 

such as for example the antiferromagnetic phase. 

In view of (14) and (15) conjecture (1.1) means that the 

singularities of f~ , the phase transitions points, are 

given by points from Jq , and this is intimately related 

to an understanding of the forward and backward orbit 

(16) Rq(1-q)}i E Z 

for q 6 ~ . Thus, the question which remains is: Is 

(1-q) EJq or in which component of ~ ~ Jq is it? 

THE CLASSIFICATION OF STABLE REGIONS 

This leads us directly into one of the most celebrated recent re- 

sults in the theory of complex dynamical systems: The classification 

of stable regions of D. Sullivan [14,21]. Let f be an analytic endo- 

morphism of ~ . A point x 6 ~ is stable for f if on some neigh- 

borhood of x the family of iterates f,f2,f3, ... is an equicon- 

tinuous family of mappings of that neighborhood into ~ . Note that 

when x is not stable, i.e unstable, for any neighborhood the union 

of images of iterates must cover ~ except for two points at most. 

The set of unstable points for f is the Julia set J of f . It is 

the closure of the expanding periodic points. The open set of stable 

points ~J consists of countably many connected components, the 

stable regions of f , which are transformed among themselves by f . 

The following three theorems of D. Sullivan [21] and P. Fatou [8] are 

crucial for conjecture 1.1 and problem 1.2 . Let f be a rational 

mapping with d = deg(f) > 2 
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THEOREM 1.3. (Sullivan) 

Each stable region is eventually cyclic. 

(For any component C c ~ ~ J there is n 6 ~ such 

that D = fn(c) is cyclic, i.e. fk(D) = D for some 

k 6~ .) 

THEOREM 1 . 4. (Sullivan) 

The cycles of stable regions D are classified into five types: 

(a) An attractive basin D arises from an attractive periodic cycle 

¥ with non zero derivative of modulus less than one, 

¥ = {z,f(z) ..... fn-1(z) } , fn(z)=z , O < I (fn)' (z) I < I , 

and D consists of components of 

U {y : lira distance (fn(y) fn(x))=O } 
x6¥ n-~o 

containing points of ¥ . 

(b) A parabolic basin D arises from a non-hyperbolic periodic cycle 

¥ with derivative a root of unity, 

¥ = {z,f(z) ..... fn-1(z)} , fn(z)=z , ((fn)' (z))m=1 , 

¥ is contained in the boundary of D , and each compact in D 

converges to ¥ under forward iteration of f . 

(c) A superattractive basin D is defined just like an attractive ba- 

sin but now (fn), (z) = O . 

(d) A Siegel disk D is a stable region which is cyclic and on which 

the appropriate power of f is analytically conjugate to an irra- 

tional ratotion of the standard unit disk. 

(C.L. Siegel [I~ proved these occur near a non-hyperbolic fixed 

point if the argument ~ of its derivative satisfies the follo- 

wing diophantine condition: there exists c > 0 and ~ > 2 such 

that 

i a- P/q I ~ c / q~ 

for all relatively prime integers p and q .) 

(e) A Herma~ ring D is a stable region similar to a Siegel disk. 

Now we have a periodic cycle of annuli and a power of f which 

restricted to any of these annuli is analytically equivalent to an 
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irrational rotation of the standard annulus. 

(For appropriate 8 and a M. Herman [10] found such regions for 

the map : 

eie ( x-a ) 2 
x i ~ ) 

x I -~x 

The fate of critical points {c : f' (c) = O} is crucial in connec- 

tion with theorem (1.4). 

THEOREM 1.5. (Fatou) 

(a) If D is an attractive or parabolic basin then D contains 

at least one critical point of f . 

(b) If D is a Siegel disk or Herman ring then ~D is contained 

in the e-limit sets of critical points. 

Thus f can have only finitely many cyclic stable regions. But it 

is still an open problem whether 2d-2 (d > 2 the degree of f) is 

a sharp upper bound. Another open problem is whether a Siegel disk al- 

ways has a critical point on its boundary. M. Herman [11] in a re- 

markable paper proved this conjecture recently for f(z) = z 2 + I . 

Note that theorem 1.5 and theorem 1.4 provide an excellent basis for 

computer experiments. For the detection and characterization of all 

cyclic stable regions of a map f one simply has to follow the forward 

orbits of all critical points. The following example illustrates the 

strength of these results: 

x-2 >2 
EXAMPLE 1.6. f(x) = ~ , J = 

The critical points are: 2,O . Observe that 2 ~ O ~ co ~ 1 ~ I 

and f' (I) = - 4 Thus C ~ J = ~ , because none of the cases 

(a), (b) in theorem 1.5 is possible. 
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THE CRITICAL POINTS OF THE RENORMALIZATION MAP R AND A 
q 

MORPHOLOGY OF N 

Our map 

Rq(X) = < x2+q-1 ) 22x+q-2 

has the six critical points: 

I , ~ , 1-q , ± ~ , (2-q)/2 . 

Since I and ~ are attractive fixed points and since (2-q)/2 ~ ~ , 

± V 1-q ~ O it suffices to examine the orbits of 1-q and O only. 

We do this in the spirit of B. Mandelbrot'shistorymakingexperiment: 

Let 

R n ~} A I :: {q6{ : q(1-q) ~ I , n 

(17) A := {q6{ : Rn(1-q) ~ ~ , n ~ ~} 
q 

M R := • ~ (A I u A ) 

Figures 3,4 and 5 show A I , A and M R . Figure 6 shows a blow up of 

a detail of figure 5. Surprisingly it displays a structure which looks 

like a copy of the original Mandelbrot set [13]. I.e. it is exactly si- 

milar to the bifurcation set of the quadratic family x~x2+c , c6~ 

It is obvious that any q such that lql >> I is in A , thus A I 

and M R are bounded. Experimentally it turned out that the fate of 

the two crucial orbits of (l-q) and 0 were related, i.e. whenever 

(18) 

R n(1-q) ~ I then R n(O) ~ ~ , as n ~ 
q q 

Rn(1-q) ~ ~ then Rn(O) ~ I , as n ~ 
q q 

Indeed, this is an immediate consequence of the commutative diagram 

(19) 

R 

q I ~q 

S o S 
q q 
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2.5 

-2.5 

L 

8 

-I 

Figure 5. M R in black 

] .70 

I .54 

0.2 

Figure 6. Detail in M R 

0.36 



D e t a i l  of M R (see  f i g u r e  6) in  b lack  surrounded  by A I in  y e l l o w  and 

A~ in  g reen .  

The Mandelbrot  s e t  M in  b lack  t o g e t h e r  w i t h  i t s  e l e c t r o s t a t i c  po ten-  

t i a l  g i v e n  by t h e  Douady-Hubbard conformal  homeomorphism ~'.D -~ ~'-M. 
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I .70 

I .54 

I .70 

0.2 0.36 

Ato in black 

1.54 

0.2 

Figure 6. (continued) Detail of M R 

0.36 

A I and M R in black 
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where 

(20) 

This means that 

x+q-1 
~q(X) ........ x_ I 

and 

Sq(X) = x2+q-1 

x2-1 

(21) 
with (x+ i)2 

Dq(X) = x-1 

o 2 (x) D 2 (x) Rq(X) = (~q Sq o ~q) = , 

Thus, Mq exchanges the hot phase (x=1) with the cold phase 

(x=~) and the two crucial critical orbits of (l-q) and O . 

Figures 3-6 are explained and described in greater detail in [15]. 

In particular problem 1.2 (c) is answered. Roughly speaking the main 

body of M R and each of its buds as well as the main body of the 

detail in figure 6 and each of its buds identify parameters q for 

which there is a periodic attractor. Their basins of attraction estab- 

lish a third magnetic phase and the boundary of these basins, which 

is the Julia set of R , being also the boundary of A (I) and 
q q 

A (~) , is a candidate for a formal locus of phase transitions. Note, 
q 

however, that even though N may be given by Jq , the Julia set 

of Rq , its points may not be singularities of the free energy f in 

the thermodynamic limit. This seems to contradict (5), but note that 

in the thermodynamic limit the free energy may simply allow an analytic 

continuation. 

In summary our experiments leed to the following interesting conjec- 

tures: 

CONJECTURE 1.7. 

(I) M R is connected. 

(2) The subset of M R shown in figure 6 is homeomorphic 

(quasi conformally) to the Mandelbrot set M , where 
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(3) N = J 
q 

fn (0) / , ~ , M = {c6~ : c 

fc(X) = x 2 + c . 

for any q6(~ ~ Mq) U Mq 

as n ~ ~} 

Note that according to [5] the Mandelbrot set M is connected. 

Actually, Douady and Hubbard showed that • ~ M and ~ ~ D , 

D = {x6~ : Ixl < I} , are homeomorphic subject to a conformal mapping. 

Sullivan [21] gave an alternative proof which may apply also to our 

case. To indicate the idea we briefly survey another remarkable result 

of J. Curry, L. Garnett and D. Sullivan [3]: 

NEWTON'S METHOD AND THE MANDELBROT SET 

Consider the one-parameter family of rational maps 

(22) 

gl(x) = x - pl(x)/p~(x) , 

x 3 pX(x) = + (l-1)x - I . 

where 

Note that Newton's method for any cubic is equivalent by a linear 

change of variables to at least one of the gl 's. The 4 critical 

points of gl are the 3 roots of pl and the distinguished point 0 , 

which in view of theorem 1.5 is the only non-trivial critical point. 

The black regions in the complex X-plane in figures 7, 8 and 9 were 

determined by the condition of the forward orbit of 0 converging to 

the root I of pl(x) . Let 

(23) Mg {16~ : g~(O) /, root of Pl ' as n ~ ~} 

Then Sullivan [21] argues that the components in ~ ~ M correspond to 
g 

quasi-conformal conjugacy classes which are analytically just punctu- 

red disks. Hence, M is connected. The subset of M shown in fi- 
g g 

gure 9 is actually homeomorphic to the Mandelbrot set M , as A. Dou- 

ady and J. H. Hubbard show in [6] . Arguments similar to those in 
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2.0 

-2.0 

-2.25 
1 . 7 5  

Figure 7. {l 6 ~ : g~(O) ~ I , n ~ ~} = black 
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2.0 

1.4 

-0.20 0.4 

Figure 8. (a) Detail of figure 7. 

/ 

? i i 

, D  

t 9  

(b) {I 6 C : g (O) i-, - ~ - n ~ ~} 

U{l 6 C : g~(O) ~ root of Pl ' n ~ co} 
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Figure 9. (a) Detail of figure 8a. 

(b) The Mandelbrot-like set in 

{~ E C : g~(O) 7 ~ root of Pl n f 
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[6] and [21] should suffice to establish conjecture 1.7 (I), (2). 

We add in passing that figure 9 gives some insight into a completely 

different set of questions: Given a polynomial, describe the set of 

initial values in ~ for which Newton's method converges towards a 

root. It is known, that for a polynomial with real coefficients and 

real roots this set is ~ except for a set of Lebesgue measure zero 

(see [1,20]). Now figure 9 teaches us that this remarkable result does 

not extend to { , because for any l in the Mandelbrot-like set (see 

figure 9) Newton's method allows a periodic attractor with an open ba- 

sin of attraction. 

Conjecture 1.7(3) is meant to contribute to problem 1.2 (a) and (b). 

Note that if one knew that 

(24) ~R 2 hyp (M R ) , ( : hyperbolic part of M R ) 

o 

i.e. for any q E M R the orbit of (l-q) converges towards a periodic 

attractor of Rq , then conjecture 1.7 (3) could be established from 

classical theory. Note, however, that an identity corresponding to 

(24) is not even known for the much more fundamental Mandelbrot set M. 

On the other hand it is known that if M were locally connected then 
o 

M = hyp (M) (see [7]). For a good visual impression of the difficul- 

ties with regard to the last questions we refer to the pictures and 

experiments in [16] . 

SOME JULIA SETS FOR R 
q 

Finally we discuss some Julia sets of R for the physically mea- 
q 

ningful choices q = 2,3,4; see figure 10. Firstly, one shows that 

2 C A I , 3 6 A 1 , 4 E A 

Furthermore, for q = 4 one has that A*(1) = Aq(1) and 
q 

A~(~) = Aq(~) , where A* denotes the immediate basin of attraction, 

i.e. the component which contains the attractor. Hence, it follows from 

[2] that the Julia set J q , q = 4 , is a Jordan curve, which, due 

to the symmetry with respect to conjugation, must intersect ~+ in a 

unique point x c , the ferromagnetic transition point. 



e:
 

0 C
~ 

~Q
 0 

.,'
a 0 I-

'- 
M

 

0 0 ~Q
 

! 

I 

II
 

° L¢
I 

U
~ 

I 

-I
 I 

L
~ 

il 

C~
 

o 



L 

I 

II
 

0 0 

i 

II
 

0 ~
D
 



I 

I 

It 0 0 

I 

II 



133 

Remarkably, also the Julia sets for q < 4 in figure 10 distinguish 

a unique phase transition on ~+ 

Acknowledgement: The color plates were obtained by D. Saupe and the 

authors on an AED 767 while figures 3-10 were obtained by H.W. Ramke 

and the authors on a laser printer. All pictures were produced in our 

"Graphiklabor Dynamische Systeme - Universit~t Bremen". 
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