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The purpose of this note is to give a simple introduction to the 

notion of infinitesimal variation of Hodge structure. This is an 

object first defined and used in [i] (though the underlying ideas had 

been in the air for a while) and more recently the subject of an excel- 

lent monograph by Peters and Steenbrink [2]. Unfortunately, this 

theory, which in fact should make life easier for mathematicians trying 

to apply Hodge theory to geometry, gives at first the impression of 

being complicated and technical. It is my hope here to avoid this 

impression by presenting the basic ideas of the theory in as simple a 

fashion as possible. 

We begin by recalling the basic set-up of Hodge theory. The goal 

of this theory is to associate to an m-dimensional complex manifold X 

(for simplicity we will take X a submanifold of ~N) a linear-alge- 

braic invariant, as follows. To begin with, we can for each n assoei- 
th 

ate to X its n-- topological cohomology group modulo torsion 

H~ = Hn(X,~)/~ors , or its complexification the n th deRham cohomology 

group H{ = H~ ® C = HD Rn (X) . We can also associate the cup product in 

cohomo!ogy; or rather, since we are only dealing with one group at a 

time, the bilinear pairing 

Q : HZZ × HZ~ --> ZZ 

defined by 

wm_n 

X 

where w is the restriction to X of the generator of H2(~N,~) 

Of course, these are invariants of the underlying differentiable mani- 

fold of X , and do not reflect its complex structure. What does 

determine the complex structure of X is the decomposition of the com- 

plexified tangent spaces to X into holomorphic and anti-holomorphic 

parts; or, equivalently, the decomposition of the space An(x) of 

differential forms of degree n on X by type: 

An(x) = AP,q 
p+q=n 



52 

Naturally, this data is too cumbersome to carry around, but here 

we are in luck: by the Hodge theorem, this decomposition descends to 

the level of cohomology. Precisely, if we let H p'q = HP,q(x) c H~R(X ) 

be the subspace of classes representable by forms of type (p,q) , we 

get a decomposition 

H~R(X)w = HC = ~ HP'q 
p+q=n 

satisfying the obvious relations 

and 

HP,q = Hq,P 

Q(HP'q,H p''q') : 0 unless p+p' : q+q' = n . 

The package of data introduced so far -- a lattice H~ with integral 

bilinear form Q and decomposition H~ ® ~ = @H p'q satisfying these 

relations -- we call a Hodge structure of weight n associated to X . 

It is an object that is on one hand essentially finite, and that on the 

other hand we may hope will reflect the geometry of X . 

Now, whenever we associate to a geometric object a (presumably 

simpler) invariant, two questions arise: to what extent does the 

invariant actually determine the original object; and to what extent 

can we read off directly from the invariant answers to naive questions 

about the geometry of the object. In the present circumstances, the 

first question translates into the Torelli problem, which asks when the 

members of a given family of varieties (e.g., curves of genus g , 

hypersurfaces of degree d in ~n) are determined by their Hodge 

structures; or the "generic" or "birational" Torelli problem, which 

asks when this is true for a general member of the family. The Torelli 

problem has been answered in a number of cases (e.g., for curves of 

genus g it was proved classically by Torelli; and the generic Torelli 

for hypersurfaces was proved recently by Donagi) ; it remains very much 

an open question in general. 

The most famous example of a question in Hodge theory along the 

lines of the second sort above is of course the Hodge conjecture. It 

is not hard to see that if y c X is an analytic subvariety of codim- 

ension k , its fundamental class must lie in the subspace 

H k,k c H2k(x,~) The Hodge conjecture asks whether the converse is 

Hk, k true: that is, whether a class y ~ n H~ is necessarily a 

rational linear combination of classes of subvarieties. 

The simplest case of Hodge theory is its application to curves, 

and here by any standards it is successful. To the Hodge structure 
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(H~,Q,H I'0 • H 0'I) of a curve we associate the projection A of H~ 

to H 0'I (traditionally represented by the period matrix: we choose 

a basis for H~ normalized with respect to Q and write out the 

(0,1)-components of these vectors in a g×2g matrix ~) and then the 

complex torus H0'I/A = J(C) , called the Jacobian of C . This in 

turn gives rise to a host of subvarieties of J(C) and theta-functions 

that reflect and elucidate the geometry of C . 

For higher-dimensional varieties, the application of Hodge theory 

has been less successful, for which there are perhaps two reasons. The 

first of these is the apparent absence of any reasonably natural geo- 

metric and/or analytic object associated to a Hodge structure in gene- 

ral. Looking at the case of curves, one sees that it is exactly 

through the geometry of the Jacobian, and the analysis of the theta- 

function, that Hodge theory is useful. Unfortunately, no analogous 

objects have been found in general. 

The second factor is simply this: that only in a very few cases 

can one ever hope to determine explicitly the Hodge structure of a 

given variety. To be specific, consider the case of a smooth hypersur- 

face X c ~n+l given by a homogeneous polynomial F(Z) = 0 of degree 

d . By the Lefschetz theorem, all the cohomology of X below the 

middle dimension (and hence above it as well) is at most one-dimen- 

sional, so we focus on Hn(x) We can immediately identify one of 

the Hodge groups: Hn'0(X) , the space of holomorphic n-forms on X , 

may be realized as Poincare residues of (n+l)-forms on ~n+l with 

poles along X ; explicitly, 

Q , _/Zl~ ./Zn+~ zn+l~ 
G(z 0 ..... ^ok V0/ 0 • } 

= Res " "  F(Z 0,. .],Zn) . . . . . . . . . . .  / 
/ 

G(Z0, . . . . . .  ,Zn+l)d(~--@)A..^d(~)A. ^d( Zntl~\'-~G/.Z On 

~Z~i ( Z 0 , .... Zn+ 1 ) 

for G(Z) a homogeneous polynomial of degree d-n-i . Thus 

Hn, 0 = Sd_n_ 1 

where S is the graded ring C[Z0,...,Zn+I] . Similarly, the other 

Hodge groups of X may be realized as residues of forms on ~n+l 

with higher-order poles on X (actually, we get in this way just the 

primitive cohomology H n pr(X) , which here means the classes orthogonal 

to ~) . We obtain an identification 
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Hn-k ,k 
pr (X) = (S/J) (k+l)d-n-i 

where j c S is the Jacobian ideal of X , that is, the homogeneous 

ideal generated by the partial derivatives of X . 

We have thus found the vector space decomposition H n pr(X) = 

Hn-k'k(x) The problem is, it is impossible in general to identify 
pr 

in these terms the lattice H~ of integral classes. Indeed, this has 

been done only in the presence of a large automorphism group acting on 

X , e.g., for Fermat hypersurfaces. Thus, for example, if one is given 

a particular hypersurface of even dimension n = 2k , it is impossible 

to determine in general Hk'k(x) n Hn(X,~) , or when two such X have 

the same Hedge structure. Simply put, we cannot find the lattice; but 

without the lattice we have no invariants. 

One solution of this difficulty appears at first to be moving in 

the wrong direction, toward increased difficulty. One considers not 

just a variety X , but a family of varieties {Xb}bc B parametrized 

by a variety B , of which X = X 0 is a member; we assume 0 ~ B is 

a smooth point. Locally around X 0 , then, we can identify the lat- 

tices Hn(Xb,~)/tors with a single lattice H~ and the vector spa- 

ces Hn(Xb,~) with H~ correspondingly. We then consider the spaces 

Hn-k'k(Xb ) -- or the associated 

k 
F k = ~ Hn-~,~(~) __ 

~=0 

as variable subspaces of H C The basic facts then are: 

i) The map ~k from B (or a neighborhood of 0 e B) to the 

Grassmannian sending b to Fk(Xb ) c H~ is holomorphic; and 

ii) In terms of the identification of the tangent space to the 

Grassmannian at A c H with Hom(A,H/A) , the image under 6 k = d~ k 

of any tangent vector to B at 0 carries F k into Fk+i/Fk . We 

thus arrive at a collection of maps 

~k : T0B --> H°m(Hn-k'k(x)'Hn-k-l'k+l(x)) By equality of mixed par- 

tials, they satisfy the relations 

(*) 6k+l(V) O~k(W) = ~k+!(w)O6k(V) V v,w c T 

and since the spaces Fk(X b) satisfy the relation Q(Fk,Fn_k_ I) H 0 

for all b , we have 
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(**) 
Q(@k(V) (e) ,~) +Q(e,@n_k_l(V) (B)) = 0 

~ e • Hn-k'k(x) , 8 • Hk+l'n-k-l(x) , v • T 

We now define an infinitesimal variation of Hodge structure (IVHS) 

to be just this collection of data: that is, a quintuple 

(H~,Q,HP'q,T,6q) in which (H~,Q,H p'q) is a Hodge structure, T a 

vector space, and 

6 : T--> Hom(HP'q,H p-l'q+l) 
q 

maps satisfying (*) and (**) above. By what we have just said, to 

every member X = X 0 of a family of varieties {X b} we have associa- 

ted such an object. 

Two key observations here are the following: 

i) The infinitesimal variation of Hodge structure associated to 

a family is in general computable; or at least as computable as the 

Hodge structures associated to the members. For example, going back 

to our example of hypersurfaces, if we let X c pn+l be smooth with 

equation F(Z) = 0 , the tangent space at X to the family of hyper- 

surfaces of degree d up to projective isomorphism is just the space 

S d of homogeneous polynomials of degree d , modulo the Jacobian 

ideal. (A variation of X in ~n+l is given by F+sG for 

G E Sd/{F ; if G = EaijXi~ ~-~. this corresponds to first order to the 

] tA 
motion of X along the 1-parameter group e of automorphisms of 

~n+l). Thus T = (S/J) d ; and the maps 

@k : (S/J) d --> Hom((S/J) (k+l) d-n-l' (S/J) (k+2)d-n-1) 

turn out to be nothing but polynomial multiplication. 

It should be noted here that this in itself has some nice conse- 

quences: for example, while we are as indicated earlier unable to 
H 2k ~n+l 

determine Hk,k(X) n (X,~) for any given hypersurface in , 

n = 2k , the fact that for d a n+l the map 

(S/J) d x (S/J)kd_n_ 1 --> (S/J) (k+l)d-n-i 

is surjective immediately implies that for general X , 

Hk'k(x) nH2k(x,~) = 0 , and so Hk'k(x) n H2~(X,~)- = ~ Thus on a 
pr 

general hypersurface every algebraic subvariety is homologous to a 
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rational multiple of a complete intersection. In particular in case 

n = 2 this yields the famous 

Theorem (Noether; Lefschetz) : a surface S c ~3 of degree d ~ 4 , 

having general moduli, contains no curves other than complete inter- 

sections S n T with other surfaces. 

2) The second key point is this: that even without the lattice 

H~ , a__nn infinitesimal variation of Hodge structure will in general 

possess non-trivial invaziants, and will give rise to geometric ob- 

jects. These of course come from the maps $k which, being trilinear 

objects, have lots of accessible invariants (e.g. their associated 

determinantal varieties). 

To illustrate the use of this, consider the generic Torelli theo- 

rem for hypersurfaces. The application of IVHS to this problem is 

based on the following trick: for any map f : X --> Y of varieties, 

the condition that f is birational onto its image, i.e. that 

for general p ~ X , ~ q c X : q ~ p , f(q) = f(p) 

is in fact equivalent to the a priori weaker statement 

for general p c X , ~ q c X : 

q ~ p , f(q) = f(p) and Im(f,)q = Im(f,)p 

In our present circumstances, this equivalence means that 

A general hypersurface of degree d in ~n+l is 

determined by its Hodge structure 

<~> 

A general hypersurface of degree d in ~n+l is 

determined by its infinitesimal variation of Hodge 

structure. 

Thus, to prove the generic Torelli theorem for hypersurfaces, 

Donagi shows that from the data of the vector spaces 

(S/J) (k+l)d-n-i ' (S/J) d 

and the multiplication maps 

6k_ 1 : (S/J) d x (S/J)kd_n_l --> (S/J) (k+l)d-n-i 
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Q : (S/J) (k+l]d-n-i × (S/J) (n-k+!)d-n-i --> (S/J) (n+2)d-n-i 

one can reconstruct the entire ring S/J , and from this the hypersur- 

face X . This suffices to establish the theorem; again, it should be 

observed that at no point in the argument is the lattice H~ 

mentioned. 

Donagi's argument is a beautiful one, but this is not the place 

to reproduce it. Let me instead conclude by giving a similar and 

easier example of the use of IVHS: to prove the generic Torelli 

theorem for curves of genus g ~ 5 . 

Of course, the Torelli theorem has been proved many times over, 

in as strong a form as one could wish. One common characteristic of 

the proofs, however, is that they all make essential use of the geom- 

etry of the Jacobian and its subvarieties. A natural question if one 

is studying higher-dimensional Torelli theorems is: does there exist 

a proof of the Torelli for curves that avoids the use of the Jacobian? 

The answer to this is unknown to me; however, using IVHS we can give a 

very short proof of the generic Torelli in genus g ~ 5 as follows. 

The tangent space, at a curve C , to the family of all curves is 

dual to the space H0(C,K 2) of quadratic differentials on C . The 

IVHS associated to C in this family thus consists of the Hedge 

structure of C , together with a map 

: H0(C,K 2) --> Hom(HI'0,H 0'I) . 

Here the relation (*) above is trivial; while the relation (**) says 

that in terms of the identification of H 0'I with (HI'0) * given by 

Q , the image of ~ lies in the subspace 

Sym2(Hl '0 )  * c Hom(H 1 ' 0 ,  (HI '0 )  *) , i . e .  

H 0 * * : (C,K 2) --> Sym2(H0(C,K) 

The transpose of ~ is now easy to identify: it is the map 

t 6 : Sym2H0(C,K) --> H0 (C,K 2 ) 

that simply takes a quadratic polynomial P(~l,...,~g) in the ho!o- 

morphic differentials on C and evaluates it as a quadratic differen- 

tial on C . In particular, the kernel of t0 is just the vector 

space of quadratic polynomials vanishing on the image of the canonical 

curve C c ~H0(C,K) * = ~g-i ; since it is well known that a general 



58 

canonical curve of genus g a 5 is the intersection of the quadrics 

containing it, we can recover the curve C . Explicitly, in terms of 

the infinitesimal variation of Hodge structure (H~,Q,H I'0 @H0'I,T,S) 

associated to C , we have 

C ]P{Z ( H 0'I H 0'I H I'0 = : Q(Z,I(Z)) = 0 for all I : --> 

such that trace(~.o@(v)) = 0 for all v e T } 

and this suffices to establish generic Torelli. 
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