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This is the introduction to a series of papers in which we shall extend 

the calculus of differential forms and the de Rham homology of currents 

beyond their customary framework of manifolds, in order to deal with 

spaces of a more elaborate nature, such as, 

a) the space of leaves of a foliation, 

b) the dual space of a finitely generated non-abelian discrete group 

(or Lie group), 

c) the orbit space of the action of a discrete group (or Lie group) on 

a manifold. 

What such spaces have in common is to be, in general, badly behaved as 

point sets, so that the usual tools of measure theory, topology and 

differential geometry lose their pertinence. These spaces are much 

better understood by means of a canonically associated algebra which 

is the group convolution algebra in case b). When the space V is an 

ordinary manifold, the associated algebra is commutative. It is an 

algebra of complex-valued functions on V, endowed with the pointwise 

operations of sum and product. 

A smooth manifold V can be considered from different points of view 

such as 

~) Measure theory (i.e. V appears as a measure space with a fixed 

measure class), 



8) Topolog~ (i.e. V appears as a locally compact space), 

T) Differential geometry (i.e. V appears as a smooth manifold). 

Each of these structures on V is fully specified by the corresponding 

algebra of functions, namely: 

~) The commutative von Neumann algebra L~(V] of classes of essentially 

bounded measurable functions on V, 

8) The C*- algebra C0(V) of continuous functions on V which vanish 

at infinity, 

y) The algebra C~(V) of smooth functions with compact support. 
C 

It has long been known to operator algebraists that measure theory and 

topology extend far beyond their usual framework to: 

A) Th__e theory of weights and yon Neumann algebras. 

B) C*- algebras, K theory an d index theory. 

Let us briefly discuss these two fields, 

A) The theory of weights and yon Neumann algebras. 

To an ordinary measure space (X,~) correspond the von Neumann algebra 

L (X,~) and the weight ~ : 

~(f) : SX fd~ Vf 6 L~(x,~) + 

Any pair (M,~) of a commutative yon Neumann algebra M and weight 

is obtained in this way from a measure space (X,~). Thus the place 

of ordinary measure theory in the theory of weights on von Neumann 

algebras is similar to that of commutative algebras among arbitrary ones. 

This is why A) is often called non-commutative measure theory. 

Non-cO~autative measure theory has many features which are trivial in 

the commutative case. For instance to each weight ~ on avon Neumann 

~C Aut M algebra M corresponds canonically a one-parameter group ot 



of automorphisms of M, its modular automorphism group. When M is 

~(x) = x, Vx 6 M, and for any weight ~ on M. commutative, one has a t 

We refer to [13] for a survey of non-commutative measure theory. 

B) C*-algebras, K theory and index theory_u. 

Gel'fand's theorem implies that the category of commutative C*-algebras 

and *-homomorphisms is dual to the category of locally compact spaces 

and proper continuous maps. 

Non-commutative C~algebra~ have first been used as a tool to construct 

von Neumann algebras and weights, exactly as in ordinary measure theory, 

where the Riesz representation theorem [38], Theorem 2.14, enables to 

construct a measure from a positive linear form on continuous functions. 

In this use of C*-algebras the main tool is positivity. The fine topo- 

logical features of the "space" under consideration do not show up. 

These fine features came intoplay thanks to Atiyah's topological K-theory 

[2]. First the proof of the periodicity theorem of R. Bott shows that 

its natural set up is non-commutative Banach algebras (cf. [46]). Two 

functors K0,K I (with values in the category of abelian groups) are de- 

fined and any short exact sequence of Banach algebras gives rise to an 

hexagonal exact sequence of K groups. For A = C0(X) , the commutative 

C*-algebra associated to a locally compact space X, Kj(A) is (in a 

natural manner) isomorphic to KJ(x) , the K theory with compact sup- 

ports of X. Since (cf. [41]) for a commutative Banach algebra B, Kj(B) 

depends only upon the Gel'fand spectrum of B, it is really the C*-alge- 

bra case which is most relevant. 

Secondly, Brown, Douglas and Fillmore have classified (cf. [8]) short 

exact sequences of C*-algebras of the form: 

0÷ K+A÷ C(X) ÷ 0 

where K is the C*-algebra of compact operators in Hilbert space, and 

X is a compact space. They have shown how to construct a group from 

such extensions. When X is a finite dimensional compact metric space, 

this group is naturally isomorphic to KI (X) , the Steenrod K homology 

of X , cf. [19],[24]. 



Since the original classification problem of extensions did arise as 

an internal question in operator and C*-algebra theory, the work of 

Brown, Douglas and Fillmore made it clear that K theory is an in- 

dispensable tool even for studying C*-algebras per se. This fact was 

further emphasized by the role of K theory in the classification of 

C*-algebras which are inductive limits of finite dimensional ones 

(cf. [7] [22] [21]),and in the work of Cuntz and Krieger on C*- 

algebras associated to topological Markov chains [18]. 

Finally the work of the Russian school, of Miscenko and Kasparov in 

particular, ([30] [26] [27] [28]), on the Novikov conjecture, has shown 

that the K theory of non-commutative C*-algebras plays a crucial role 

in the solution of classical problems in the theory of non-simply-con- 

nected manifolds. For such a space X , a basic homotopy invariant is 

the F-equivariant signature q of its universal covering X, where 

r = z1(X) is the fundamental group of X. This invariant ~ lies in 

the K group, K0(C*(F)), of the group C*- algebra C*(F). 

The K theory of C*-algebras, the extension theory of Brown, Douglas 

and Fillmore and the Ell theory of Atiyah ([I]) are all special cases 

of Kasparov's bivariant functor KK(A,B) . Given two 2/2 graded 

C*-algebras A and B, KK(A,B) is an abelian group whose elements are 

homotopy classes of Kasparov A-B bimodules (cf. [26] [27]). 

After this quick overview of measure theory and topology in the non- 

commutative framework, let us be more specific about the algebras 

associated to the "spaces" occuring in a) b) c) above. 

a) Let V be a smooth manifold, F a smooth foliation of V. The 

measure theory of the leaf space "V/F" is described by the yon Neumann 

algebra of the foliation (cf.[I0][11][12]). The topology of the leaf 

space is described by the C*-algebra C*(V,F) of the foliation 

(cf. [11] [12] [43]). 

b) Let F be a discrete group. The measure theory of the (reduced) 
A 

dual space F is described by the yon Neumann algebra I(F) of opera- 

tors in the Hilbert space i2(r) which are invariant under right trans- 

lations. This von Neumann algebra is the weak closure of the group ring 

• F acting in £2(r) by left translations. 



The topology of the (reduced) dual space 

algebra c*(r), the norm closure of {F 
r ~2 

operators in (F). 

A 
r is described by the C*- 

in the algebra of bounded 

b') For a Lie group G the discussion is the same, with C ~c(G) 

of ~F. 

instead 

c) Let F be a discrete group acting on a manifold W. The measure 

theory of the "orbit space" W/F is described by the yon Neumann 

algebra crossed product L~(W) ~ F (cf. [33]). 

The situation is summarized in the following table: 

Space V V/F 

Measure v.N.algebra 
theory L~(V) of (V,F) 

Topology C0(V) C*(V,F) 

A A 
F G W/F 

}< (F) ~ (G) L(W) ~ F 

Cr(F) C*(G)r C0(W) ~ F 

It is a general principle (cf. [3] [14] [4]) that for families of 

elliptic operators (Dy)y6y parametrized by a "space" Y such as those 

occuring above, the index of the family is an element of K0(A) , the 

K group of the C*-algebra associated to Y. For instance the F-equivari- 

ant signature of the universal covering X of a compact oriented mani- 

fold is the F-equivariant index of the elliptic signature operator on 

X. We are in case b) and 0 6 K0(C~(F)) . The obvious problem £hen is to 

compute K(A) for the C*-algebras of the above spaces, and then the 

index of families of elliptic operators. 

After the breakthrough of Pimsner and Voiculescu ([34]) in the computa- 

tion of K groups of crossed products, and under the influence of the 

Kasparov bivariant theory, the general program of computation of the 

K groups of the above spaces (i.e. of the associated C*-algebras) has 

undergone rapid progress in the last years ([12] [43] [31] [32] [45] [44]). 

So far, each new result confirms the validity of the general conjecture 

formulated in [4]. In order to state it briefly, we shall deal only with 

case c) above. We also assume that F is discrete and torsion free , 

cf. [4] for the general case. By a familar construction of algebraic 

topology a space such as W/F, the orbit space of a discrete group action, 



can be realized asa simplicialcomplex, up to homotopy. One lets F act freely 

and properly on a contractible space EF, and forms the homotopy 

quotient W AF EF which is a meaningful space even when the quotient 

topological space W/F is pathological. In case b) (F acting on 

W = {pt)) this yields the classifying space BF. In case a), see [12] 

for the analoguous construction. In [4] (using [12] and [14]) a map 

is defined from the twisted K homology K*,T(W ×F EF) to the K 

group of the C*-algebra C0(W)~F. The conjecture is that this map 

is always an ismorphfsm. 

~:K,, ~ (W ~.EF) ÷ K, (C O (W) ~ F) 

At this point it would be tempting to advocate that the space w ×FEF 

gives a sufficiently good description of the topology of W/F and 

that we can dispense with C* algebras. However, it is already clear 

in the simplest examples that the C*-algebra A = C0(W) ~ F is a 

finer description of the "topological space" of orbits. For instance, 

with W = S I and F = Z , the actions given by two irrational rotations 

R01,R 9 yield isomorphic C*-algebras if and only if 01 = ±0 ([34] 

[35]) 2 and Morita equivalent C*-algebras iff 8 I and 82 belong to 

the same orbit of the action of PSL(2,~) on PI (~)[36]. On the contrary, 

the homotopy quotient is independent of e (and is homotopic to the 

two torus) . 

Moreover, as we already mentioned, an important role of a "space" such 

as Y = W/F is to parametrize a family of elliptic operators, (Dy) y6y. 

Such a family has both a topological index Indt(D) , which belongs to 

the twisted K homology group K,(WI F EF), and an analytic index 

Inda(m) = ~(Indt(m)), which belongs to K,(C0(W) ~ F) (cf. [4] [16]). 

But it is a priori only through Inda(D) that the analytic properties 

of the family (Dy)y6y are reflected. For instance, if each Dy is the 

Dirac operator on a Spin Riemannian manifold M of strictly positive 
Y 

scalar curvature, one has Ind (D) = 0 (cf. [37][16]), but the equality a 
Indt(D) = 0 follows only if one knows that the map ~ is injective 

(cf. [4][37][16]). The problem of injectivity of b is an important 

reason for developing the analogue of de Rham homology for the above 

"spaces". Any closed de Rham current C on a manifold V yields a 



map @C from K*(V) to 

ec(e) = <C,che> Ve £ K*(V) 

where ch:K*(V) + H*(V,]R ) is the usual Chern character. 

Now , any "closed de Rham current" C on the orbit space W/F should 

yield a map ~C from K.(C0(W) ~ F) to {. The rational injectivity 

of ~ would then follow from the existence, for each ~ 6 H*(W×E EF) , 

of a "closed current" C(~) making the following diagram commutative, 

K.,T(W ×I,EI') .......... ~ K.((C0(W) n V) 

]ch. I <0C(~) 

H.(Wx F El', ~) ~ 

Here we assume that W is ~-equivariantly oriented so that the dual 

Chern character ch.:K., T ÷ H. is well defined (See [16]). Also, we 

view ~6 H*(W×F EF,~) as a linear map from H.(W ×F EF,~) to ~. 

This leads us to the subject to our series of papers which is; 

I. The construction of de Rham homology for the aboye__spaces I 

2. Its applications to K theory and index theory__ t. 

The construction of the theory of currents, closed currents, and of the 

maps ~C for the above "spaces", requires two quite different steps. 

The first is purel~ algebraic: 

One starts with an algebra A over C, which plays the role of C~(V), 

and one develops the analogue of de Rham homology, the pairing with the 

algebraic K theory groups K0(A), KI (A), and algebraic tools to per- 

form the computations. This step yields a contravariant functor H~ 

from non commutative algebras to graded modules over the polynomial ring 

{~(u) with a generator ~ of degree 2. In the definition of this functor 

the finite cyclic groups play a crucial role, and this is why H* is 

called cyclic cohomology_m Note that it is a contravariant functor for al- 

gebras and hence a covariant one for"spaces". It is the subject of part II 

under the title, 
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De Rham homology and non-commutative algebra 

The second step involves analysis: 

The non-commutative algebra A is now a dense subalgebra of a C*- 

algebra A and the problem is, given a closed current C on A as 

above satisfying a suitable continuity condition relative to A, to 

extend ~c:K0(A) ÷ { to a map from K0(A) to ~. In the simplest 

situation, which will be the only one treated in parts I and II, the 

algebra A cA is stable under holomorphio functional calculus (cf. 

Appendix 3 of part I) and the above problem is trivial to handle since 

the inclusion A cA induces an isomorphism K0(A)~ K0(A) . However, 

even to treat the fundamental class of W/F, where r is a discrete 

group acting by orientation preserving diffeomorphisms on W, a more 

elaborate method is required and will be discussed in part V (cf. [16]). 

In the context of actions of discrete groups we shall construct C(~) 

and ~C(~) for any cohomology class ~ 6 H*(W ×F EF,~) in the subring 

R generated by the following classes: 

a) Chern classes of r-equivariant (non unitary) bundles on W. 

b) r-invariant differential forms on W. 

c) Gel'fand Fuchs classes. 

As applications of our construction we get (in the above context): 

~) If x 6K,,~(W x r EF) and <ch,x,~> ~ 0 for some ~ in the above 

ring R then Z(x) ~ 0. 

In fact we shall further improve this result by varying W; it will 

then apply also to the case W = {pt}, i.e. to the usual Novikov con- 

jecture. All this will be discussed in part V, but see [16] for a pre- 

view. 

8) For any ~ 6 R and any family of elliptic operators para- (Dy)y£y 

metrized by Y = w/r , one has the index theorem. 

~c(Inda(D)) = <ch,Indt(D),~> 
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When Y is an ordinary manifold, this is the cohomological form of 

the Atiyah Singer index theorem for families ([3]). 

It is important to note that, in all cases, the right hand side is 

computable by a standard recipe of algebraic topology from the symbol 

of D. The left hand side carries the analytic information such as 

vanishing, homotopy invariance,... 

All these results will be extended to the case of foliations (i.e. 

when Y is the leaf space of a foliation) in part VI. 

As a third application of our analogue of de Rham homology for the 

above spaces we shall obtain index formulae for transversally elliptic 

operators; that is elliptic operators on the above "spaces" Y. In part 

IV we shall work out the pseudo-differential calculus for crossed pro- 

ducts of a C*-algebra by a Lie group, (cf. [15]), thus yielding many 

non-trivial examples of elliptic operators on spaces of the above type. 

Let A be the C*-algebra associated to Y, any such elliptic operator 

on Y yields a finitely summable Fredholm module over the dense sub- 

algebra A of smooth elements of A. 

In part I we show how to construct canonically from such a Fredholm 

module a closed current on the dense subalgebra A. The title of part I, 

the Chern character in K homology is motivated by the specialization 

of the above construction to the case when Y is an ordinary manifold. 

Then the K homology K,(V) is entirely described by elliptic opera- 

tors on V ([6] [14]) and the association of a closed current provides 

us with a map, 

K, (V) ÷ H, (V,~) 

which is exactly the dual Chern character ch,. 

The explicit computation of this map ch, will be treated in part III 

as an introduction to the asymptotic methods of computations of cyclic 

cocycles which will be used again in part IV. As a corollary we shall, 

in part IV give completely explicit formulae for indices of finite 

difference, differential operators on the real line. 
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If D is an elliptic operator on a "space" Y and C is the closed 

current C = ch,D (constructed in part I), the map ~c:K,(A) ÷ 

makes sense and one has, 

~c(X) = <x,[D]> : Index D x V x 6 K,(A) 

where the right hand side means the index of D with coefficients in 

x, or equivalently the value of the pairing between K homology and 

K cohomology. The integrality of this value, Index D x6~, is a basic 

result which will be already used in a very efficient way in part I, 

to control K.(A) . 

The aim of part I is to show that the construction of the Chern character 

ch, in K homology dictates the basic definitions and operations - 

such as the suspension map S - in cyclic cohomology. It is motivated 

by the previous work of Helton and Howe [23], Carey and Pincus [9] and 

Douglas and Voiculescu [20]. 

There is another, equally important, natural route to cyclic cohomology. 

It was taken by Loday and Quillen ([29]) and by Tsigan ([42]). Since 

the latter work is independent from ours, cyclic cohomology was dis- 

covered from two quite different points of view. 

There is also a strong relation with the work of I. Segal [39] on 

quantized differential forms, which will be discussed in part IV and 

with the work of M. Karoubi on secondary characteristic classes [25], 

which is discussed in part II, Theorem 33. 

Our results and in particular the spectral sequence of part II were 

announced in the conference on operator algebras held in Oberwolfach 

in September 1981 ([17]). 

Besides parts I and II, which will soon appear in the IHES Publications, 

our set of papers will contain: 

I. 

II. 

III. 

IV. 

The Chern character in K homology. 

De Rham homology and non commutative algebra. 

Smooth manifolds, Alexander Spanier cohomology and index theory. 

Pseudodifferential calculus for C* dynamical systems, index 
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V° 

VI. 

VII. 

theorem for crossed products and the pseudo torus. 

Discrete groups and actions on smooth manifolds. 

Foliations and transversally elliptic operators. 

Lie groups. 
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