A NOTE ON AN INVARIANT OF FINTUSHEL AND STERN

```
Walter D. Neumann and Don Zagier'
    University of Maryland
    College Park, MD 20742
```

Let $\alpha_{1}, \ldots, \alpha_{n}$ be pairwise prime integers with $\alpha_{i}>1$ for each i. Let $\Sigma=\Sigma\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be the Seifert fibered homology 3-sphere with singular fibers of orders $\alpha_{1}, \ldots,{ }_{n}$. By [N-R] (see also [N1], [N2]), Σ has a unique orientation making it the link of a complex surface singularity $\left(V\left(\alpha_{1}, \ldots, \alpha_{n}\right), p\right)$; we give Σ this orientation. This is also the unique orientation for which \sum bounds a plumbed 4 -manifold with negative definite intersection form. A minimal such plumbing (i.e. admitting no (-l)-blow down) is unique. It is given by the following plumbing diagram (which is also the minimal good resolution diagram for the above singularity):

$$
b \geq 1, \quad b_{i j} \geq 2
$$

with weights determined by

$$
\begin{aligned}
& {\left[b_{i l}, \ldots, b_{i r_{i}}\right]=\frac{\alpha_{i}}{\beta_{i}},} \\
& b=\frac{1}{\alpha}+\sum_{i=1}^{n} \frac{\beta_{i}}{\alpha_{i}}
\end{aligned}
$$

where $\left[b_{1}, \ldots, b_{r}\right]$ denotes the continued fraction

$$
\begin{aligned}
{\left[b_{1}, \ldots, b_{r}\right]=} & 1 \\
& \cdot b_{1}-\frac{1}{b_{2}-} \\
& \quad-\frac{1}{b_{r}}
\end{aligned}
$$

and

$$
\alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{n^{\prime}}
$$

[^0]and the β_{i} are determined by:
$$
0<\beta_{i}<\alpha_{i}, \beta_{i} \frac{\alpha}{\alpha_{i}} \equiv-1 \quad\left(\bmod \alpha_{i}\right)
$$

Fintushel and stern have defined an invariant

$$
R=R\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\frac{2}{\alpha}-3+n+\sum_{i=1}^{n} \frac{2}{\alpha_{i}} \sum_{k=1}^{\alpha_{i}^{-1}} \cot \left(\frac{\pi \alpha k}{\alpha_{i}^{2}}\right) \cot \left(\frac{\pi k}{\alpha_{i}}\right) \sin ^{2}\left(\frac{\pi k}{\alpha_{i}}\right)
$$

and shown that if $R>0$ then Σ cannot bound a $\mathbb{Z} / 2$-acyclic 4manifold ([F-S]; the invariant arises as the index of a certain differential operator).

Proposition. $R=2 b-3$ with R and b as above.

Since b is a positive integer, the result of Fintushel and Stern can thus be reformulated:

Theorem. If $\Sigma\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ bounds a $\mathbb{Z} / 2$-acyclic manifold then the "central curve" of the corresponding resolution diagram has selfintersection $-b=-1$.

Lemma. If a and b are coprime integers with $a>1$ then

$$
\frac{1}{a} \sum_{k=1}^{a-1} \cot \left(\frac{\pi k b}{a}\right) \cot \left(\frac{\pi k}{a}\right) \sin ^{2}\left(\frac{\pi k}{a}\right)=\frac{b^{*}}{a}-\frac{1}{2}
$$

where $0<b^{*}<a$ and $b b^{*} \equiv-1(\bmod a)$.
Proof. If $\zeta=e^{2 \pi i \alpha}$ then

$$
\cot \pi \alpha=i \frac{\zeta+1}{\zeta-1}, \sin ^{2} \pi \alpha=-\frac{1}{4} \zeta^{-1}(\zeta-1)^{2}
$$

Thus the sum in question is

$$
\begin{gathered}
\frac{1}{4 a} \sum_{\substack{\zeta^{a}=1 \\
\zeta \neq 1}}^{\sum} \zeta^{\zeta^{b}-1} \frac{\zeta^{b}+1}{\zeta-1} \zeta^{-1}(\zeta-1)^{2} \\
=\frac{1}{4 a} \sum_{\substack{\zeta^{a}=1 \\
\zeta \neq 1}}\left(\frac{\zeta-1}{\zeta^{b}-1}\right)\left(\zeta^{b}+1\right)\left(1+\zeta^{-1}\right)
\end{gathered}
$$

$$
=\frac{1}{4 a} \sum_{\substack{\eta^{a}=1 \\ n \neq 1}}\left(\frac{n^{\gamma}-1}{n-1}\right)(n+1)\left(1+n^{-\gamma}\right),
$$

where we have substituted $\zeta=\eta^{\gamma}$, by $\equiv 1(\bmod a), 0<\gamma<a \quad$ (so $\left.\gamma=a-b^{*}\right)$,

$$
=\frac{1}{4 a} \sum_{\substack{\eta^{a}=1 \\ \eta \neq 1}}\left(1+\eta+\ldots+\eta^{\gamma-1}\right)\left(1+\eta+\eta^{-\gamma}+\eta^{1-\gamma}\right)
$$

$$
=\frac{1}{4 a}\left[\sum_{\eta^{a}=1}\left(1+\eta+\ldots+\eta^{\gamma-1}\right)\left(1+\eta+\eta^{-\gamma}+\eta^{1-\gamma}\right)-4 \gamma\right]
$$

$$
=\frac{1}{4 a}[a(1+1)-4 \gamma]=\frac{b^{*}}{a}-\frac{1}{2}
$$

since

$$
\sum_{\eta^{a}=1} n^{j}= \begin{cases}a, & a \mid j \\ 0, & a \nmid j\end{cases}
$$

Applying this lemma to the invariant R, we see

$$
\begin{aligned}
R & =\frac{2}{\alpha}-3+n+2 \sum_{i=1}^{n}\left(\frac{\beta_{i}}{\alpha_{i}}-\frac{1}{2}\right) \\
& =2\left(\frac{1}{\alpha}+\sum_{i=1}^{n} \frac{\beta_{i}}{\alpha_{i}}\right)-3=2 b-3,
\end{aligned}
$$

as claimed.

If M is a 3-dimensional homology sphere which bounds a 4manifold X with definite intersection form B and if M also bounds a \mathbb{Z}-acyclic 4 -manifold, then by a result of S. Donaldson [D] the form B must be diagonalizable over z^{2}. Some more recent work of Donaldson which he described at the Special Year indicated that one may be able to replace "z-acyclic" by "z/2-acyclic" in this statement. Thus the above theorem, possibly with $\mathbb{Z} / 2$-acyclic weakened to \mathbb{Z}-acyclic, would be a consequence of Donaldson's work if the answer to the following question is "yes".

Question. If the intersection form for the plumbing described above is diagonalizable over \mathbb{Z}, must b equal 1 ?

For $n=3$, or $n=4$ and $b \neq 3$, the answer is "yes", but our proof is clearly not the "right" proof, being too tedious to be worth giving here. More generally one might ask if a negative definite unimodular form over \mathbb{Z} represented by an integrally weighted tree with no weight -1 is necessarily non-diagonalizable. We know no counterexample, although large diagonal summands can exist. For example $\sum(6 k-1,6 k+1,6 k+2)$ has resolution diagram

and the intersection form is equivalent to $E_{8} \oplus(3 k-1)\langle-1\rangle$. Similar periodicities abound, the most basic being that $\Sigma(p, q, r+k p q)$ has resolution diagram containing the resolution diagram for $\Sigma(p, q, r)$ and its intersection form is equivalent to the form for $\Sigma(p, q, r)$ plus k diagonal -l's.

REFERENCES

[D] Simon Donaldson, An application of gauge theory to 4-dimensional topology, J. Diff. Geom. 18 (1983) 279-315.
[F-S] Ronald Fintushel and Ronald J. Stern, "Pseudofree orbifolds", Ann. Math. (to appear).
[Nl] Walter D. Neumann, Brieskorn complete intersections and automorphic forms, Inv. Math. 42 (1977), 285-293.
[N2] Walter D. Neumann, A calculus for plumbing applied to links of complex surface singularities and degenerating complex curves, Transactions A.M.S. 268 (1981) 299-344.
[N-R] Walter D. Neumann and Frank Raymond, Seifert manifolds plumbing, μ-invariant and orientation reversing maps, Proc. Alg. and Geom. Topology (Santa Barbara 1977), Lecture Notes in Mathematics vol. 644 (Springer-Verlag, Berlin and New York, 1978) 297-318.

[^0]: ${ }^{\dagger}$ Both authors partially supported by the NSF and the Max-PlanckInstitut for Mathematics in Bonn.

