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Introduction 

For over a hundred years it has been known that there exist identities 

expressing the coefficients of certain modular forms as finite sums involving 

class numbers of imaginary quadratic fields; these identities, the so-called 

"class number relations," arose classically in the theory of complex multipli- 

cation but have reappeared since in several other contexts, e.g. in the Eichler- 

Selberg formula for the traces of Hecke operators and in the calculation of 

intersection numbers of curves on Hilbert modular surfaces [8]. Recently 

Cohen [~ , using Shimura's theory of modular forms of half-integral weight, 

constructed modular forms whose Fourier coefficients are given by finite sums 

similar to those occurring in the class number relations, but with the class num- 

bers replaced by values of Dirichlet L-series (or equivalently, of zeta functions 

of quadratic numbe~ fields) at integral arguments. In this paper we construct 

modular forms whose Fourier coefficients are given by infinite sums of zeta 

functions of quadratic fields, now at an arbitrary complex argument. The 

result includes both the classical class number relations and the modular forms 

constructed by Cohen, and further provides an expression for the latter as 

linear combinations of Hecke eigenfunctions f(z), the coefficients being certain 

values of the associated Rankin zeta functions ~ a(n)2 (where fiT(n) = 
S 

n=l n 

a(n)f ). From this we obtain formulas for the values of the Rankin zeta function 

at integral values within the critical strip, a typical identity being 

T(n)  2 2 420 29 ~(9)  (l)  
n=l n 20 245 20! ~ ~(18)  ( A , ~  , 

where ~(s) is the Riemann zeta function, A(z) = ~ T(n) e 2~inz the 

n=| 

discriminant function, and (A,A) the Petersson product of A with itself. As 

another corollary of the main identity we obtain a new proof of a recent result 

of Shimura [21] on the holomorphy of the Rankin zeta function. Finally,by combin- 
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ing the method developed in this paper with the results of [2 4 we obtain 

applications to the Doi-Naganuma lifting from modular forms of Nebentypus to 

Hilbert modular forms in two variables and also to the mapping in the other di- 

rection which was constructed in [~ in terms of the intersection numbers of 

modular curves on Hilbert modular surfaces. In particular, we give partial re- 

suits in ~he direction of the conjecture made in [8] that these 

two maps are adjoint to one another with respect to the Petersson scalar product. 

In § | we describe the main result of the paper, namely the construction of 

a modular form whose Fourier coefficients are infinite linear combinations of 

zeta functions of quadratic fields (with Legendre functions as coefficients) 

and whose Petersson product with an arbitrary Hecke eigenform is the correspond- 

ing Rankin zeta function. We also show how this can be used to obtain identities 

for special values of the Rankin zeta function like the one cited above and discuss 

the relationship between these identities and other known or conjectured 

results on the values at integral arguments of Dirichlet series associated to 

cusp forms. In § 2 we reduce the proof of the main result to the evaluation 

of an integral involving kernel functions for Hecke operators. This integral 

is calculated in § 3, while § 4 contains the properties of zeta-functions and 

Legendre functions which are needed to deduce identities like (1) above. In 

§ 5 we describe an alternate method for proving such identities by expressing 

the product of a theta series and an Eisenstein series of half-integral weight 

as an infinite linear combination of Poincar& series. The applications to 

Hilbert modular forms are contained in § 6. 

Note: The identities expressing ~a(n)2n -5 for special integral values 

of s in terms of (f,f) and values of the Riemann zeta function have been 

discovered independently by Jacob Sturm (Thesis, Princeton 1977). 
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§ 1 Identities for the Rankin zeta function 

We use the following notation: 

H = {z = x + iyly > O} 

on H, 

jk(7,z) = (cz + d) -k 

(flk~l(z) = 

the upper half-plane, dV = dx dy 
2 

Y 

ab 
(Y= (c d ) ~ SL2(R)' k e 2, z 6 H), 

jk(y,z) f(yz) (f any function on H). 

the invariant metric 

Throughout §§ | - 4 we restrict ourselves to modular forms for the full 

modular group F = SL2(Z)/{±|} ; the results could be generalized to arbitrary 

congruence subgroupS, but this would involve considerable technical complication 

and no essentially new ideas. We denote by 

the space of cusp forms of weight k on F, 

scalar product 

(f,g) = ~ f(z) ~ yk dV 
F\H 

and by {fi}bgiidim Sk the basis of S k 

eigenforms, with 

k an even integer >2, by S k 

equipped with the Petersson 

(f, g £ Sk), 

consisting of normalized Hecke 

fi(z ) = ~_~ ai(n ) qn, ai(1) = I, fi IT(n) = ai(n) fi 
n-I 

(where as usual 2~iz) 
q = e . For each normalized Hecke eigenform f ( z )  =~a(n) qn 

we set 

- -s -I - 2 -s.-I 
(2) Df(s) = ~ (I - U~ P-S)-I(I - Up ~pP ) (I - Up P ) 

P 

where the product is over all primes and Up, ~p are defined by 

k-I 
Up + ~p ffi a(p), C*p ~p " P 

(Re(s) > k) ,  

(by Deligne's theorem, previously the Ramanujan-Petersson conjecture, the numbers 

Up and Ep are complex conjugates). The function Dr(S) is related to the 

Rankin zeta function by 



109 Za-5 

(3) Df(s) = ~ (2s-2k+2) 
~'(s-k+ I ) 

a(n)  2 
s n=l n 

and hence, by the results of Rankin [17], has a meromorphic continuation to 

the entire complex plane, satisfies the functional equation 

/s-k+2x ffi D ; ( 2 k - l - s ) ,  (4) D; ( s )  = 2-sw -3 s /2  £(S) £~=--~--=)Df(s) 

and is related to the norm of f in the Petersson metric by 

= ( k - l ) !  
(5) ( f , f )  22k_ 1 wk+l Df(k) .  

For the statement of the main identity we will also need a certain zeta 

function, defined as follows. Let A be any discriminant, i.e. A E Z and 

A E O or I (mod 4). We consider binary quadratic forms 

¢(u ,v )  = au 2 + b u v  + cv 2 (a ,  b,  c E ~) 

with discriminant I¢I = b 2 - 4ac - A. The group F operates on the set of 

such forms by Yo¢(u,v) = ¢(au + cv, bu + dv) (y= (a b) e r) the number of 
c d 

equivalence classes being finite if d ~ O. We define 

>2 ) '  (6) ~(S,A) = . ,  I (Re(s)  > ]), 
I mod£ (m,n)~Z2/Aut(~) ¢(m,n) s 
¢{- A ¢(m,n)>  o 

where the first sum is over all F-equivalence classes of forms ~ of discriminant 

A and the second over inequivalent pairs of integers with respect to the group 

of units Aut(~) = {yEFI7~ = ¢} of the form. If A is the discriminant of 

a (real or imaginary) quadratic field K, then ~(s,A) coincides with the 

Dedekind zeta function ~K(S) (the first sum corresponds to the ideal classes of 

K, the second to the ideals in a given class, with ¢(m,n) - N(Z~)), while 

~(s,&) for A = I and A = O is equal to ~(s) 2 and to ~(s) ~(2s-l), 

respectively. If A = Df 2, with D equal either to I or to the discriminant 

of a quadratic field and f a natural number, then ~(s, A) differs from 

~(s,D) only by a finite Dirichlet series. Thus in all cases ~(s,A) is 
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divisible by the Riemann zeta function, i.e. 

(7) ~(S,A) = ~ ( s )  L(s ,A)  

where L(s,A) is an entire function of 

which case L(s,&) has a simple pole at 

and residue I otherwise). 

s (unless A is a perfect square, in 

l 
s = I with residue ~ if A = 0 

Finally, for real numbers 

1 
< Re(s) < k we define 

Ik(A,t;s) = ~ S 
0 -o0 

(8) 

A and t satisfying A < t 2 and s C ~ with 

k+s-2 
Y dx dy 

(x 2 + y2 + ity - ¼A) k 

k+s-2 , 

r ( k )  0 (y2 + i t y  - ~ ) 
dy , 

where the second integral converges absolutely for I - k < Re(s) < k (unless 

A = O, in which case we need ½ < Re(s) < k) and can be expressed in terms of 

the associated Legendre function pk-l t (~) (see § 4). We can now formulate the 
S-| 

main result. 

Theorem l: 

(9) 

where L(s, A) 

Let k > 2 be an even integer. For m = 1,2,... and s £ ¢ set 

k(t 2 - 4m,t;s) + ~(t 2 - 4m, -t;s) L(s,t 2 - 4m) 
t=-co 

"[_l)k/2 r(k+s-l) ~(2s) u k-s-I if m u 2 
22s+k-3 s-l = , u > O, + ~ ~ r(k) 

0 if m is not a perfect square, 

and Ik(A,t;s) are defined by equations (6), (7) and (8). Then 

i) The series (9) converges absolutely and uni.forml ~ for 2-k< Re(s)< k-l; 

ii) The function 

~, 2~imz 
(IO) ~s(Z) = Cm(S) e (z E H, 2-k<Re(s)< k - l) 

m=l 

is a cusp form of weisht k for the full modular sroup; 

iIi) Let f ~ S k be a normalized Hecke eigenform. Then the Petersson product 
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of ~ and f is given by 
s 

(11) (Os,f) . Ck r(s+k-I)  Df(s+k-l) 
(4~) s+k- I 

whet e Df(s) is defined by (2) and 

(_|)k12 
(12) Ck 2 k-3 (k-l) 

We must say a few words concerning assertion i). If t 2 - 4m is a perfect 

square, then L(s, t 2 - 4m) has a pole at s = l, as mentioned above. However, 

for t 2 - 4m ~ 0 the coefficient [& (t 2 - 4m, t; s) + Ik(t2 - 4m, -t; s~ 

has a simple zero at s = I (or any other odd integral value between O and k), 

as we will show in § 4, so the expression [~(t 2 - 4m, t; s) + ~(t 2 - 4m, -t; s)] 

L(s, t 2 - 4m) makes sense even at s - l, and the sum of these numbers as t 

runs from -~ to ~ is absolutely convergent. Similarly, if m is a square 

l 
then the second member of (9) has a simple pole at s = ~, but in this case the 

terms t = ±2~m in the first sum involve the function 

~ s  r(s-½) r(k-s) t ls-  k 
413) Ik(O;t ;s)  + Ik(O,- t ; s )  = 2~(-I) k/2 cos -~- r(k) r(½) ] 

which also has a simple pole at s = ½, and the two poles cancel; then i) 

states that the sum of the other terms of the series (9) is finite. Thus the 

expression defining Cm(S) is holomorphic in the region 2-k < Re(s) < k-l. 

From equation (ll) we deduce that Df(s+k-l) is also holomorphic in this region. 

On the other hand, the Euler product defining Dr(S) is absolutely convergent 

for Re(s) > k, so Dr(S) is certainly holomorphic in this half-plane and, by 

the functional equation, also in the half-plane Re(s) < k-l. Theorem I therefore 

implies the following result, which was proved by Shimura [21] in |975 by a different 

method. 

Corollary | (Shimura): The function Df(s) defined by (2) has a holomorphic 

continuation to the whole complex plane. 
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(14) 

or to 

Secondly, we observe that statement iii) of Theorem I characterizes the 

cusp form ~s' since the space S k is complete with respect to the Petersson 

metric. Indeed, since the eigenfunctions f. form an orthogonal basis of Sk, 
l 

equation (ll) is equivalent to 

dims k 

~s(Z ) . Ck r(s+k-l) ~ 1 Df(s+k-1) fi(z) 
(4~) s+k-I = (fi'fi) i 

(15) 
dim Sk" ai(m) Df(s+k-1) . 

Cm(S ) = Ck r(s+k-1) > ~ i 
(4~) s+k-I i-I 

In particular, if we take s = I and use formula (5), we find 

dim S k 

(16) Cm(1) = ~ C k i ~ l  ai(m)' 

On the other hand, the Fourier coefficients 

at the same time their eigenvalues for the 

ai(m) of the functions f. 
I 

m th Hecke operator T(m), so 

d•, sk , ai(m) = Tr(T(m), Sk). 
i=l 

are 

Thus Theorem 1 includes as a special case a formula for the trace of T(m). To see 

that this agrees with the well-known formula of Selberg and Eichler, we must inves- 

tigate the various terms of (9) for s = I. If t 2 - 4m is negative, then (as 

we will show in § 4) 

- mk-I [~(t2_4m, t;l) + Ik(t2-4m,t;l)] c k l  

(17)  

! ~ ( t ,m) ,  = -4 Pk,I 

where 

(18) 

a n d  

(19) 

k - 2  ! 
Pk~l  ( t i m )  ~ c o e f f i c i e n t  o f  x i n  2 I - tx+mx 

k - I  - k - I  =P  - p  (p + ~ = t, p~ =m) 

L(!,t2-4m) = ~(4m-t2) -~H(4m-t 2), 
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where (with the same notation as in (6)1 

( 2 o 1  

(This equals 

and -n/f 2 

H ( n )  = 
mod F Aut(~) (n > O). 

i~i=-n 

2~. h',(-n/f2) , where the sum ranges over f > O such that f21n 
w(-n/f 2) 

is congruent to O or l modulo 4 and h(A), w(A) denote the 

class number and number of units, respectively, of the order in ~(~) of dis- 

criminant A.) If t 2 - 4m > O, then the coefficient ~(t2-4m, t;s) + 

~(t2-4m,-t;s) vanishes at s = I, as mentioned above, so the contribution of (9) 

is 0 unless L(s,t2-4m) has a pole at s = I, i.e. unless t2-4m is a perfect 

square. In this case, we will show that 

lim - m k-| S÷ l Ck I [Ik(t2-4m, t;s) + ~(t2-4mrt;s)] L(s,t2-4m) 

( 2 1 )  

= 4 =u, u>O). 

Notice that there are only finitely many t with t2-4m a perfect square, and 

that they are in l:l correspondence with the positive divisors of m: 

t 2 - 4m = u 2 <==~ m = dd', d, d' = Ii ill 
+ 

U 

2 

Therefore the series (9) for s = | becomes a finite sum and we obtain 

Corollary 2 (Eichler, Selberg): 

, 2  Tr(T(m), Sk) = - ~ teZ 

t2<4m 

t 
k - I  
i iT  

+ 

o 

where Pk,l(t,m) and H(4m-t 2) 

For k > 2 an even integer~ m > 1 

I ~ min(d,d, )k-I Pk, l(t,m) H(4m-t 2) - 

dd'~m 
d,d'>O 

k-2 u 2 
u if m= , u> O, 

if m is not a perfect square, 

are defined by equations (18) and (20). 

It is perhaps worth remarking that we could have obtained the trace formula 

by specializing Theorem | to s = 0 instead of s = I. At s = O, the c~- 

efficient [Ik(t2-4m,t;s) + Ik(t2-4m~t;s)~ does not vanish for any t, but 



Z a - l O  114 

L(t2-4m,O) is zero whenever t2-4m is positive and not a square, so again we 

get a finite sum. 

If we specialize Theorem 1 to s = r (or s = 1 - r), where r is an odd 

integer between I and k - l, then again the terms with t2-4m> O vanish 

(including those for which t2-4m is a perfect square, if r > |), and the series 

defining Cm(S ) reduces to a finite sum. In this case we recover the modular 

forms constructed by Cohen ~]. We recall his result. 

For r ~ I, r odd, Cohen defines an arithmetical function H(r, N) which 

generalizes the class number function H(N) = H(I, N) introduced above. The 

function H(r, N) is defined as ~(I - 2r) if N = O and as a simple rational 
o o  

multiple of ~-r Z (~_NN) n-r if N > O, N E O or 3 (mod 4). It is related 
n=| 

to the function L(s,A) defined above by 

I 

(22) H(r, N) = (-l)(r-l)/2 (r-l)! N r-~ L(r,-N) (r ~ I odd, N ~ O) 
2r-I r 

or, even more simply, by 

(23) H(r, N) = L(! - r, -N) ( r  ~ I o d d ,  N £ Z ) .  

Then :  

Theorem (Cohen ~3], Theorem 6.2): Let 3.< r~< k - l, r odd, k even, and set 

( 2 )  ~,__ 2Z imz 
(24) Ck,r(Z) = m=O t6. Z Pk,r(t,m) H(r,4m-t 2) e (Z 6. H), 

t2~< 4m 

where Pk,r(t,m) is the polTnomial defined by 

(25) Pk,r(t,m) = coefficient of x k-r-I in 1 
(1 - t x  + rex2) r 

(Gegenbauer polynomial). Then Ck, r is a modular form of we.i~ht 

modular group. If r < k - l, it is a cusp form. 

We shall show in § 4 that, for r = |,3,5,...,k-|, 

k for the full 
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(26) 

- mk-I [ik(tZ-4m, t;r ) + Ik(t2-4m,-t;r)] Ckl 

I (_ ~)(r+l)/2 (4m_t2)r-~z F(k-r) F(r) 
r(k-~) 

0 

Pk,r(t,m) if t 2 < 4m, 

if t 2 ~ 4m. 

Together with (22), this shows that the series ~r(Z) 

multiple of the function (24) if 3 $ r ~ k - 3. For 

edge of the strip in which the series (9) is absolutely convergent. 

show in § 4 that 

~+1 k 
lim Cm(S) (-|) ~ H(k-l,4m-t 2) 

s'+k-I 2 k-! (k- | ) !  t 2 ~ 4m 

(27) 

(where Ok_l(m) = 

defined by (|O) is a 

r = k - l we are on the 

We will 

2~ rCk-~)r(~) ~(2k-2) (m) 
- k--"T " r(k) ~(k) Ok-I 

~.d k-I as usual), so that in this ease the cusp form 
dLm 

~k_l(Z) - lim ~ (z) is a linear combination of Cohen's function Ck,k_ I and 
s÷k-I s 

the Eisenstein series of weight k. Thus Cohen's theorem is a consequence of 

statement ii) of Theorem I, while statement iii) implies the following result: 

Theorem 2: Let r, k be integers with 3 ~ r ~ k - |, r od ~, k even. The 

Petersson product of the modular form Ck, r defined by (24) with an arbitrary 

Hecke ei~enform f C S k is given by 

(r+k-2)!(k-2)l ! Df(r+k-I), (28) (f" Ck,r) = - (k-r-I)!  4r+k-2 2r+k- I  

where Dr(s) is the function defined by (2). 

Since the Fourier coefficients of Ck, r are rational numbers, Ck, r is a 

linear combination of eigenforms with algebraic coefficients, and we deduce : 

Corollary: Let f be a Hecke eigenform in Sk. The values of Df(s)/~ 2s-k+! 

for s = k, k ÷ 2, k + 4,..., 2k - 2 are al~ebraic multiples of (f, f). 

(The case s = k is a consequence of equation (5) rather than (28).) By virtue 

of the functional equation (4), the numbers Df(s)/~s(f,f) (s - |,3,5,...,k - |) 
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are also algebraic. 

Example: For k ffi 12, the only normalized eigenform in S k 

function 

A(Z) ffi q I t (I  - q n ) 2 4  = ~ T(n)  qn.  
n=l  n=l  

is the discriminant 

The number r in Theorem 2 must be 3, 5, 7, 9 or II. By computing 

Fourier coefficients of Cohen's functions Ck, r we find 

180 
C l 2 , 3  = - 7 A, C t 2 , 5  = - 210A , C12,7  ffi - l120A , 

the first few 

where 

C12,9 = - 20736A , C12,11 .. - 

65520 ~ qn 
El2  = I + 69---"~ Ol I (n)  

n=l  

77683 7 x I01 
12x23 El2 23 x 691 A 

is the normalized Eisenstein series. Thus 

from (28) we get five identities like (I), namely 

•L• 4 s 2 s - l l  ~ ( s  - 11) (A,A) (29)  T(n)2 a 
n =  I n s s ~T" ~ ~ ( 2 s  - 22) 

(s  ffi 14, 16, 18, 20,  22) 

with 

1 I 2 7 7  7 × II  
a14 = 1, a16 = 6 '  a18 = ~ "  a20 = 2--4~' a22 ffi 31786 ffi 2 × 23 x 691 " 

The numerical values of the series on the left-hand side of (291, calculated 

by taking 250 terms of the series, are 

1 .06544 ,  1 .0109865184 ,  1 .00239992152 ,  1 .00056976587 ,  1 .00013948615 .  

Substituting any of these values (except the first, where the series converges 

too slowly to give 12-digit accuracy) into (29) we obtain the numerical value 

( A , A )  = 1.O35 362 056 79 x i 0  - 6  

for (the square of) the norm of A in the Petersson metric. The previously 

published valued 1.O35 290 481 79 x IO -6 (Lehmer [12]), obtained by integrating 

iA(z)i2 ylO numerically, is false in the 5 th decimal place. 

Finally, we make a few general remarks about values of Dirichlet series 
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attached to modular forms. The series Df(s) can be thought of as the 

"symmetric square" of the Mellin transform 

(30) Lf(s) ffi ~ a(n) n-S ]'--[ (| - ~pp-S)-l(l - - -s -I = CtpP ) (Re(s)>> O) 
n=l  p 

o f  f ,  w h i c h  i s  an  e n t i r e  f u n c t i o n  o f  s wi~h  t h e  f u n c t i o n a l  e q u a t i o n  

(31) L;(s) ffi (271") -s r(s) Lf(s) = (-I) k/2 Lf(k-s), 

By the theorem of Eichler-Shimura-Manin on periods of cusp forms (cf. Chapter V 

of [,,]), the ratios L~(,): L~(3):...: ~(~-,) and ~;(2): ~(4):...: L~(~-2) 

are algebraic (and in fact belong to the number field generated by the Fourier 

coefficients of f) For f ffi 4, for example, there are real numbers w and • + 

~_ with 

192 L~(3)  = L~(9)  - 16 L~(5)  ffi L2(7 )  ffi 8 L ~ ( I )  ffi L ~ ( I I )  ffi ~ -  ~+,  I - ~  ~ + '  ~ ~+ '  

(32)  

L2(~ ) . ~To). 38~ ~, L~(,). ~(8) - ~0 ~_, ~2(~). 32 ~_ 

where by calculating the values of LA(IO) and L(II) (which are the most 

rapidly convergent of the series) numerically we find 

~+ ffi 2 . 1 4 4  606 670 68 × 10 - 2  , ~_ = h . 8 2 7  748 001 × 10 - 5  

On the other hand, Rankin ([18], Theorem 4) showed that for any normalized eigenform 

k 
f q S k and any even integer q with ~ + 2 .< q ~< k - 4 one has 

~ )q/2 2k-3 B B 
(33) Lf(q)Lf(k-l) = (-I __~ k-q (f,Eq Ek_ q) 

q k-q 

where E i is the normalized Eisenstein series and the B i are Bernoulli numbers, 

% is an algebraic multiple so the product of the two independent periods of Lf 

of (f, f). For f = A, for example, (33) says 

L~(||) L~(8) 7680 
ffi 691 (A,A) 

or, using (321, that 

~+ ~_ = (A,A). 
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We can therefore restate the Corollary to Theorem 2 as saying that the values 

of Df(s) for s = 1,3,5,...,k-l, k, k+2,...,2k-2 are of the form 

n 
(algebraic number). 0J 0J w , + -- 

while ~he result of Eichler-Shimura-Manin says that the values of Lf(s) for 

n n 
s = I)2 .... )k-I are of the form (alg.).0~+n or (alg.).~0_~ . Both statements 

= ~-~ n -s is any fit into a general philosophy of Deligne that, if L(s) z__~c n 

"motivated" Dirichlet series (i.e. one arising from a natural mathematical object 

such as a number field, a Galois representation, an algebraic variety, or a 

modular form) and satisfies a functional equation of the form 

L~'(s) = y(s) L(S) = w L~(C-s) 

with some r-factor y(s), then the value of L(s) at any integral value of s 

for which neither s nor C-s is a pole of y(s) should be given by a "closed 

formula" L(s) = A.w, where A is algebraic and ~ is a "period" about which 

something nice can be said (for instance, the twisted functions Lx(S) ffi 

~,CnX(n) should have values AX.~ with the same period ~, the n-S and 

algebraic numbers A should have nice p-adic properties as X varies). Now the 
X 

series Lf(s) and Df(s) are just the first two cases of the Dirichlet series 

m 
Lm'f(s) = ~ ~0= (I - ~pi ~ip p-S)- '  (Re(s)>> O) 

attached to the symmetric powers of the representation associated to f, and 

these functions are conjectured [19] to be holomorphic and to satisfy the functional 

equations 

L~m,f (s) = Ym(S) Lm, f (s) = -+ L:,f ( (k-l)m+{-s), 

r-] 
I (2~) -rs ~ r(s-j(k-l)) if m = 2r-l, 

j=o 

Ym(S) = -s/2 ~/s [r(k-l)l~ ~1~ - L ~ J  ] Y2r-| (S) i f  m = 2r. 

In a letter to the author (February 1976), Serre suggested that, in accordance 

with the above philosophy, the values of Lm,f(s) may be given by a formula 
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Lm,f(s ) b n of the type = (alg.). a ~_ , probably with a+b=m, possibly with 

la-bl~< I , for those integral values of s for which Ym(S) and ym((k-1)m+1-s) 

are finite. For f=A and m=3 or 4 this would mean that there are identities 

2 n 2 2 n 
L3,A(S)= A~±m ~ (s=18,19,20,21,22), Lh,A(S)= A~+~_~ (s=2h,26,28,30,32) 

with A 6 ~ , ng~. (We have given only those values of s for which the 

Dirichlet series converge absolutely.) However, the numerical computation of 

the values in question (done by G.K6ckritz and R.Schillo on the IBM 370/168 

at Bonn University, using 32-digit accuracy and over 1000 terms of the Euler 

products) did not lead to any simple values of A and n satisfying these 

formulas. At the Corvallis conference (July 1977), Deligne gave a revised and 

sharper conjecture for the values of Lm,f(s) : if f is an eigenform with ratio- 

nal Fourier coefficients (i.e. k=12,16,18,20,22 or 26), then one should have 

r(r+1) r(r-1) 
L 2 r _ l , f ( s )  = (rat .) . (2w) r s - r ~ ( k - 1 )  C 7 C z 

i rs_r~(k_1) r(r+1) 
(rat.).(2~) (C+C_) 2 

L2r,f(s) = (r+1)s_r~(k_1) r(r+1) 

(rat.).(2~) (C+C_) 2 

where C+ and C_ are real numbers depending on f 

k=12, f= A, and m=1 or 2, for instance, we have 

but not on 

(r-1<k_-~sl ~r,(-1)s=±1), 

(r-1<k-~14r, s odd), 

S (r<~-~T~r+l, s even), 

r or s. For 

s (2w)-SF(s)L1 ,A(S) 

6 i/2x3×5 C 
+ 

7 i/2 2 7 c 

8 i/23, 3 c 
+ 

9 1/2x32 C 

1 0  2/52 C 
+ 

1t 2.325/691 C 

= 2 3x5 ~ , C = 25/3x5 e+. where C+ < _ _ 

0+~0.046 346 380 811 850 816 182 4, 

C C 
+ -- 

12 

16 

18 

20 

22 

(2w)-2s+11F(s)L2,A(s) 

i /2  c c 
+ - 

I/2~7 C+C 

1/253 C C 
+ -- 

i/2% 3%5 c c 
+ - 

I/2×5 2 7 2 c c 
+ - 

7/2 2 23×691 C C 
+ - 

The computer calculation gives 

C ~ 0.045 751 608 975 539 581 74, 

= 211(A,A)~ 0.002 120 421 h92 335 249 248 968 328 831 h38 
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and suggests overwhelmingly the following identities (in accordance with 

Deligne)s general conjecture) 

s (2w)-2s+11F(s)L3,A(s) 

18 22/5 c3c + -- 

19 3/7 C C 3 
÷ - 

2O I/5 c~c_ 

21 5/72 C C 3 + - 

22 2×3/5×23 C~C_ 

for m=3 and 4 : 

24 

26 

28 

30 

32 

(2~)-3s+33F(11)-Ir(s)r(s-11)Lh,A(s) 

25~32 C3C 3 
+ - 

25~ 3x5 C3C 3 + - 

22x23~691/72 C3C 3 + - 

23653 C3C 3 + - 

2~3x34891/7 C3C 3 + - 

§ 2. An integral representation for the coefficients Cm(S ) 

In proving Theorem I, we will reverse the order of the statements i) - iii). 

For s ~ C with Re(s) > I the numbers Df(s+k-l) are finite (since the series 

in (3) is absolutely convergent in the half-plane Re(s) > k) and so there 

exists a unique cusp form ~ s £ Sk satisfying 

(34) (¢s' f) = Ck F(s+k-1) 
(4n)s+k_ l Df(s+k-l) 

for all eigenforms f C Sk, namely the function given by the right-hand side of 

equation (14). We define ~m(S) (m = 1,2 ..... ) as the m th Fourier coefficient 

of ~ (= the expression on the right-hand side of (15)) and must show that s 

C~m(S) = em(S). To do this, we will write ~m(S) as an integral involving a 

certain kernel function ~m which was first introduced by Petersson. 

We recall the definition of the kernel function. As in § |, we fix an even 

integer k > 2 which will be omitted from the notations. For m = 1,2,... set 

(35) ~m(z,z, ) = ~ I (z, z'~ H). 
a,b,e,dEZ (ezz'+dz'+az+b)k 
ad-bc=m 

The series converges absolutely and therefore defines a function holomorphic in 

both variables, and one can see easily that it transforms like a modular form of 
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weight k with respect to the action of r 

also checks easily that ~ is a cusp form. 
m 

on each variable separately. One 

Proposition l (Petersson [16]): The function Ckl m k-l ~m(Z, -z') (C k as in 

equation (3)) is the kernel function for the m th Hecke operator with respect to 

the Petersson metric, i.e. 

(36) Ck ! mk-I I f(z) ~m(Z, _-~r~ yk dV = (flT(m))(z') (V f e S k, z' ~ H). 
F\H 

Equivalently, ~m(Z,Z') has the followin$ representation as a linear combination 

of Hecke eigenforms: 

dim S k a.(m) 

(37) mk-I ~m (z,z') = C k Zi=1 ~ l  fi(z ) fi(z,). 

Proof: The equivalence of (36) and (37) is immediate from the fact that the 

eigenforms fi form an orthogonal basis of S k. Also, it is easily seen that 

k-! ~m(Z,Z ) is obtained from ~l(Z,Z') by applying the Hecke operator T(m) m i 

with respect to (say) the first variable, so it suffices to prove (36) for m = I. 

We can write (35) for m = l in the form 

~l(Z,Z, ) = ~, 1 (cz+d)-k. 
ad-bc=l (z, + az+b~k 

cz+d } 

For fixed c, d 6 ~ with (c,d) = I, the pairs of integers 

are all of the form 

solution. Thus 

a ° + nc, bo + nd (n 6 ~), where ao, bo 

~l(Z,z') = 
c,d ~ g --(cz+d) k 
(c,d)=1 

Using the identity 

(38) ~ (T + n) -k  = (2~i)k 
n=- ~ (k-l)! 

a, b with ad-bc = 1 

is any fixed 

h a z +b -k. 1 ( z '  + o o +n) 
cz+d 

n=-~ 

co 

y k- 1 2n i r [  
r e 

r=! 
(T C H), 

we find oo 

(2~i)k Y 
(39) o31(z,z') = 2 (k-l)' ' 

• r= 1 

2wirz ' 
rk-| GrfZ)._ e 
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where Gr(z) is the Poincar& series 
a z+b 

2~ir o o 

- -  e (r = 1,2 ..... z ~ H) 
1 I cz+d 

(40) Gr(Z) = ~ c,d~ (cz+d) k 

(c,d)=l 

(with ao, b ° again representing any integers with aod - boC = l; in a more 

~, jk(y,z) e 2~irYz invariant notation = , where the sum~nation is over Gr(Z) ¥ F 

l n 
representatives for the right cosets of roo = {-+ (0 1 ) I n E ~} in r). But, as 

is well known (see, for example [6], p. 37), G r is a cusp form of weight k 

and satisfies 

(k-2)! a(r) for f(z) = ~, a(n) qn C S k 
(41) (f'Gr) = (4Wr) k-I n=l 

(this is proved in the same way as Rankin's identity below). Equation (36) for 

m = I follows immediately from equation (39) and (4;). (For a different proof 

of Proposition l, not using Poincar~ series, see [25] .) 

The other main ingredient for the proof of Theorem I is Rankin's integral 

representation of the function (3), namely 

oo 

r(s+k-l) La(n}L 2 If(z) l 2 E(z,s)y dV 
# (42) ~(2s) s+k-! 

(4~) s+k-I n=| n F\H 

(valid for any cusp form f(z) =E a(n) qn 6 S k and s C ¢ with Re(s) > l), 

where E(z,s) is the Epstein zeta-function 
! \ , 

I s > 1 
(43) E(z,s) = ~ y 

m,nem~ imz+nl 2s 

(here L denotes a sum over non-zero pairs of integers). 

case of a more general identity, namely that 

(44) 

(z = x+iy ~ H, S 6 ¢, Re(s) > l) 

This is a special 

f ;I h(z) E(z,s) dV = ~(2S) h(x+iy) yS-2 dx dy 
r\H O O 

for any F-invariant function h on the upper half-plane for which the integrals 

in question converge absolutely. To see this, we write each pair of integers 
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m, n in (43) as re, rd with r > I and (c,d) = I and note that there is a 

2 : I correspondence between the pairs c, d and the right eosets of F 

in F, so 

E(z,s) = E r=l c,d62~ r2Slcz+dI2S ~(2s) y6LkF 

(c,d)=l 

Also, if F is a fundamental domain for the action of F on H, then 

is a fundamental domain for the action of F~. Hence 

J h(z) E(z,s) dV = ~(2s) S ~ Im(yz)S h(yz) dV 
r\H F ver~r  

= ~(2s) ~ ; Im(z)S h(z) dV 
ver~ r yF /- 

= ~(2s) J h(z) Ira(z) s dV, 
F\H 
co 

and (44) follows by choosing the fundamental domain {z ~ H IO ~< x < l} 

action of Foo . Equation (44) says that J h(z) E(z,s) dV 
FXH 

the Mellin transform ho(Y ) yS-2 dy of the"constant term" 
0 

Fourier expansion 

h(z) 
2zinx 

= hn(Y) e 

Im(yz) s. 

U 
yer~\ r 

of the function h (which is F- invariant and hence periodic). 

now follows by taking for h the F-invariant function 

h(z) 

yF 

for the 

is ~(2s) times 

ho(Y) in the 

Equation (42) 

= yklf(z) i2 = yk ~ ~ a(n)a(m)e2~ri(n-m)Xe -2~(n+m)y 

m=] n=| 

with ho(Y ) = yk~. I a(n) 12 e-4~ny 

If f is a Heeke eigenform, then the series in (42) is related to Df(s) 

by equation (3) (note that a(n) is real in this case, so a(n) 2 = la(n)]2). 

Therefore (42) permits us to deduce the meromorphy of Df(s) and the two formulas 

(4) and (5) from the corresponding properties of E(z,s), namely that E(z,s) 

extends meromorphically to the whole s-plane with a simple pole of residue 2 
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(independent of z!) 

functional equation 

(45) 

at s = | as its only singularity and satisfies the 

E~(z,s) = -s r(s) E(z,S) = E~(Z,I-s). 

Putting together equations (37), (3) and (42), we obtain the integral 

representation 

(46) ~(s) C'~m(S) =mk-| F~H ~m(Z'-E) E(z,s) yk dV (m = |,2 ..... s 6 C) 

for the function C~m(S) defined by the right-hand side of (|5). In the next para- 

graph we will compute the integral on the right-hand side of (46), =hereby com- 

pleting the proof of Theorem ]. 

§ 3. Calculation of / ~m(Z,-E) E(z,s) yk dv 
F\H 

The computation of the integral in equation (46) will be carried out by a 

method similar to that used in [25] for the simpler integral 

~m(Z,_~) yk dV 
F\H 

(which, by virtue of Proposition ! above, equals Ckm-k+] times the trace of the 

Hecke operator T(m) on Sk). The extra factor E(z,s) in the integrand will 

actually simplify both the formal calculation and the treatment of convergence, 

which was handled incorrectly in [25] (see Correction following this paper). 

The definition of ~m(Z,Z'), equation (35), involves a sum over all matrices 

of determinant m. We split up this sum according to the value of the trace of 

the matrix and observe that there is a I : ] correspondence between matrices of 

2 
and determinant m and binary quadratic forms of discriminant t - 4m, trace t 

given by 

C  (uv) . cu2÷ (da)uv by2 
(½(t-b)~ - c ) 

~(u,v) = au 2 +buv + cv 2 e-~ % a T(t+b) 
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Therefore 

(47 )  

k ,yk 
Y ~m(Z,-~) f f i  ,, 

t= -~ a,b,c,d6~ (clzl 2 + d~ - az - b) k 

t 

J 

ad-bc--m 
a+dffit 

ffi ~ ~ R~(z,t), 
t ~-°~ i+l  -4m 

waere the inner sum is over all quadratic forms ~ of discriminant t2-4m 

and where we have written 

k 
7 (z  = x + i y  6 H, t 6 ~ )  

(48 )  R ~ ( z , t )  ( a j z l  2 + bx  + c - i t y )  k 

for a form ~, ~(u,v) - au 2 + buy + cv 2. The sum (47) converges absolutely for 

all z ~H, and we have 

P r o p o s i t i o n  2: F o r  s ~  ~ w i t h  s # I an~d 2 - k < R e ( s )  < k - 1, 

t=-~o r \ H  ] O[ = t 2 - 4 m  

we have 

By virtue of this proposition, which we will prove at the end of the section, 

we may substitute (47) into (46) and interchange the order of summation and 

integration to obtain 

tffi -°° F\ll J~j=t2-4m 

Theorem I is then a consequence of the following result, which is of interest in 

its own right. 

Theorem 3: Let k be an even in=e~er > 2, A a discriminant (i.e. A ~ ~, 

A E O or I (mod 4)), t a real number with t 2 > A. For each binary quadratic 

form ~ of discriminant A let R~(t,z) (z 6 H) be the function defined by (48). 

Then for s E( with s # I, I - k < Re(s) < k, 
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(49) 

i Iz v 
= ~(s,~) {~(A,t;s) + ~(A,-t;s)} 

I (_l)k/2 F(s+k-l)C(s)C(2s) itl-s-k+l if A = O, 
(2~) s-! F(k) 

0 if A # O, 

where ~(s,A) and Ik(A,t;s ) are given b~ (6) and (8), respectively. 

Proof: We observe first that 

Ry~(z,t) = R~(tYz,t) (Yfi F , ty = transpose of Y ), 

so that the (absolutely convergent) series i= ~ R(z,t) defines a function 

in the upper half-plane which is invariant under r . Moreover, this function is 

O(y |-k) as y = Im(z) ÷ ~ , as we will show in the proof of Proposition 2 below, 

while E(z,s) = O(y max(~I-~) for y ~ ~ (O = Re(s)). Hence the integral on 

the left hand side of (49) makes sense and is holomorphic (for s # l) in the 

range specified. On the other hand, ~(s, ~ also has a holomorphic continuation 

for all s # I and the integral defining Ik(A,t;s) converges for l-k < O < k 

I 
(unless A = O, in which case the integral has a pole at s = ~ compensating 

the pole coming from ~(2s) in the expression on the right-hand side of (49)). 

It therefore suffices to prove (49) under the assumption l < @ < k and then 

extend the result to I - k < o < k by analytic continuation. 

Suppose, then, that 

left-hand side of (49) is 
I 

s (50) 
r\H IOt=A m,neZ 

Re(s) > I. Written out in full, the expression on the 

s 

Y dV. 
R~(z,t) imz+nl2S 

The action of F on z ~H permutes the terms of this sum, transforming the 

form ~ and the pair ±(m,n) ~(~ - {(O,O)}) / {±I} in such a way that ¢(n,-m) 

remains invariant. In particular, the sum of the terms with ~(n,-m) > O in the 
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integrand of (50) 

pairs (~, (m,n)) with 

moment, we have 

I'\H 

Making =he substitution 

2 an -bnm + c 2 > O), 

is r-invariant. Also, the group F acts freely on the set of 

~(n,-m) > O. Therefore, ignoring convergence for the 

s 

R#(z,t) Y dV 
l~I" ~ m,n Im~+nl 2s 

~(n,-m)>O 

¢ +_(m,n) H 
~(n,-m)>0 
mod F 

1 
nz - ~bn + cm 

1 
-mz + an - xbm 

we find 

S 

R¢(z,t) Y dV. 
Imz+nl 2s 

( which maps H to H if 

s I k+s yk ~ dV 1 y dV . . . . . . . . . .  = 

H (alzl2+bx+c-ity) k imz+nl 2s (an2-bnm+em2) s H (Izl2-~&-ity) k 

so that the right-hand side of (5]) is equal to ~(s,A) ~(A,t;s). Since the 

sum defining ~(s,A) and the integral defining Ik(A,t;s) converge absolutely for 

| < Re(s) < k, it follows ~ posteriori that the expression on the left-hand side 

of (51) was absolutely convergent in this range. The terms with ~(n,-m) < 0 

can be treated in a similar manner (or simply by observing that R_¢(z,t) = 

R~(z,-t)) and contribute ~(s,A) Ik(A,-t;s ). 

Finally, we must treat the terms in (50) with ~(n,-m) = O. They occur only 

if ~ is a perfect square. These terms are not absolutely convergent in (50) (if 

we replace each R~(z,t) by its absolute value, then the sum in the integrand 

converges for each z but the integral diverges). We argue as in the proof of 

equation (44). First, by removing the greatest common divisor of m and n, we 

can write (50) as ~(2s) times the corresponding sum with the extra condition 

(m,n) ~ I. Since any relatively prime pair of integers (m,n) is F-equivalent 

to the pair (O,|) by an element of r which is well-defined up to left multi- 

plication by an element of F~, the terms of (50) with ~(n,-m) = 0 give 
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C(2s) R (z,t) yS dV 

¢(I ,o):o 

I k y s 

~(2s) £~ ~'H a ,b , c  6 Z  (a [z i2+bx+c- i ty )  k y dV 
b2-4ac=A 
a=O 

(52) = ~(2s) . l s+k-2 
O O b2=A o= (bx-ity+c) k y dx dy. 

The sum over c can be evaluated using (38) and equals 

(2hi) k ~ k-I 2wir(±bx + ilt[y) 
(k-l)! r e 

r= 1 

if -+t > O (note that t 2 > A and A is a square, so t # O). If & # O, 

then this expression involves only terms e 2~inx with n # O, so the integral 

(52) is identically zero. For A = O, the expression (52) becomes 

{(2s)  (k-(2'rfi)kl) ! 0 0 r=l rk-  le-2~r i t I yys÷k-2dx dy = (2~i)k(k- 1 ) ! ~(2s)~(s) (2~r(s+k-ll t l )s+k-I ) 

This completes the proof of Theorem 3. 

Proof of Proposition 2: 

{z I lzt > ,, jxl.< {} • 
O = Re(s) it will suffice to show that 

2 / j  
t : - "  I -'~ l C~!=t -4m 

for C < k - I. 

We choose for F k H the standard fundamental domain 

Since E(z,s) = O(y O + yl-o) as y = Im(z) ÷ ~ , where 

yO-2 dx dy < 0% 

Also, the above proof shows that the integral occurring in (53) 

is finite for each fixed value of t (even in the larger range O < k), so we 

can ignore the finitely many values of t for which t2-4m is a perfect square. 

If t2-4m is not a square, then 
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(54) 

i¢ i=t2_4 m ~ ( z , t )  = 

a=| a 

2 Re 2_ 4 -4m (a I z I 2+bx+c-ity) k 

b(mod 2a) 
b2=t2-4m (mod 4a) 

~, t2_4 m -k _r b 22i a ) 
itx+~? +n) +y - 

n =- oo 

But it is easily shown that 

[(x+n) 2 . L2] -k = O(L 1-2k) 

uniformly for x 6 ~ and L £ ¢ with Re(L) bounded away from O. We apply this 

with L 2 2 t2-4m it.2 m " y - ity (y - ~a ) +--~ . Since m is fixed and a > I, 
4a 2 a 

t + ~, y* ~ in the sum (54), we can write 

~, t2-4m] b 2 (x + "~ + n) 2 + y - a 
n ~ -  o o  

-k - it -2k+l * 

Also, the number of solutions b(mod 2a) of the congruence b 2 =_ t 2 - 4m 

is O(a e) as a ÷ ~ for any e > O. Therefore (54) gives the estimate 

1¢1" -4m 

where the constant implied by O( ) depends on m and k but not on y 

. -e -k+l+e. 
This expression is O(y l-k) in the range y >~ t and 0ty t ) for 

as one checks by splitting up the sum according as a ~< t/y or a > t/y. 

R (z,t)yO-2dxdy =OItl-k+e ; 

' I~t 

(mod 4a) 

or t. 

t > y, 

Hence 

yO-2+Edy + ;  y-k+O-ldy) 

t 

= O ( t ° - k ) ,  

so the sum (53) converges for k - o > I. 
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§ 4. Properties of the functions ~(s,A) and Ik(A,t;s) 

In order to deduce from Theorem ! the various corollaries discussed in § i, 

in particular the trace formula and the formula for the Petersson product of an 

eigenform with the modular forms constructed by Cohen, we will need various 

properties of the functions ~(s,A) and Ik(A,t;s) defined by Equations (6) 

and (8). We begin with the zeta-function. 

Proposition 3: Let ~(s, A) 

s £ ~, Re(s) > I. Then 

i) ~(s,A) = ~(2s) ~ n(a) 
S a=l a 

be the zeta-function defined by (6), where A 6 ~, 

, where n(a) is the number of solutions b (mod 2a) 

of the consruence b 2 ~ A (mod 4a). 

ii) ~(s,A) has a meromorphic continuation to the . whole complex plane and, if 

# O, satisfies the functional equation 

y(s,A) ~(s,A) = y(l-s,A) ~(]-s,A), where 

Y(s,A) I 
(2~) -s IAi s/2 r(s) if_ A < 0 

-s s/2 ~)2 
A r( if A > O 

iii) ~(S,A) can be expressed in terms of standard Dirichlet series as follows: 

I 
" O if A- 2 or 3 (rood 4) 

g(s,A) = g(s) g(2s-l) i_[f A = 0 

~(S)LD(S) ~(d)di f (-D)d-SO'd J-zs" (f)o i_ff A- O or l (mod4),A#O, 

where if A - O or I (mod 4), A # O we have written A = Df 2 with f 6 iN, 
co 

D the discriminant of @(~J~), (D) the Kronecker symbol, LD(S ) = (D) n-S 

the associated L-series, and ow(m) = d~m d ~) (m ~ ~), ~) 6 ~). In parti- 

d>O 

cular, the function L(s,A) defined by (7) is entire except for a simple pole 

(of residue _I if A = O and l if A # O) if A is a square. 
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iv) For A <O, the values of L(s,A) a__~_t s = I and s = O are ~iven by 

L ( I , A )  = w T[ 

where H(n) is the class numb e.r .defined by equation (20). More ~enera_{l[, if 

r is a pos.itive odd inteser then L(r,A) and L(I-r,A) are given by 

equations (22) and (23), where H(r,N) is the function defined in E3]. 

Proof: i) This identity is equivalent to the main theorem of the theory of 

binary quadratic forms (cf. [I 4, Satz 203~ according to which n(a) is the 

number of SL2(~) - inequivalent primitive representations of a by binary 

quadratic forms of discriminant A. We can prove it directly by arguing as for the 

proof of (44) or (52): Let # denote the set of binary quadratic forms of dis- 

eriminant A and X = (Z 2 - {(O,O)})/ {±I}. For # £ ~ and ±(m,n) ~ X 

set ~ • x ffi ~(n,-m). Then r acts on ¢ x X preserving the pairing ~ ' x 

and we can write (6) as 

~(s,A) ffi ~ >' (¢.x) -s = ~ i (¢ • x) -s 
¢~/F x6X/F~ (¢,x)6 (~xX)/F 

x ~ x/I" C g ¢ / r x  

where r~, rx denote the isotropy groups of ~ and x in r. The orbits of 

under r are in l:l correspondence with the natural numbers, since t(m,n) is 

F-equivalent to 

±(O,r) is F. 

;(S,A) 

±(O,r) (r = g.c.d of m and n), and the isotropy group of 

Hence 

r=l ¢e¢Ir® ¢(r,o) s 

~(2s) ~, ~ a -s 
a=] b(mod 2a) 

b 2 -A (rood 4a) 

ii) This follows from iii) and the functional equations of ~(s) and LD(S). 

However, we can also deduce it from Theorem 3 together with the easily-proved funct- 
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ional equations of E(z,s) (equation (45)) and Ik~,t;s) (Proposition 4, iii~, 

so that Theorem 3 gives as a corollary new proofs for the functional equations of 

the zeta functions of both real and imaginary quadratic fields. 

iii) This can be deduced without difficulty from i).The details are given in [8], 

Prop. 2, pp. 69 - 7] (our n(a) is denoted there by r~(f,a), where A = Dr2). 

iv) From iii) and the Dirichlet class-number formula we get 

L(I,A) = LD(]) ~ ~(d) (D~) d-| (~_|(f/d) 

~ Cdif f 

ffi 211" h(D) e (I- (D 
w(D) e l f  p) p-l)  

= 27 ~ h(De 2) Ir H(jA I). 

el f  w(De 2) 

(e=cd) 

The general case follows similarly from ii) and iii) and the formula given by 

Cohen in [~, c), p. 273. 

Proposition 4: Let A,t be real numbers with A < t 2. Then 

i) The first integral in (8) converges absolutely for s ~ ¢ with 

k > Re(s) > l 
l-k i ! a<O 

0 if A>O 

I/2 if A = 0 

and is then equal to the second integral. 

ii) For A # O, the second integral in (8) converges for s q ¢ with 

I - k < Re(s) < k. The function ~(A,t;s) which it defines has a mero- 

morphic continuation to all s whose only singularities are simple poles at 

S = k, k + I, k + 2,.., and s - -k + I, - k, - k - I, .... , 

and which satisfies the functional equati0n 
! 

S-- 

lk(  t,s) - 2 

1 
S-- 

If ~S ! 2 ] - c o t . r  i A> o. 

if A<O, 



133 

Za-29 

iii) For A = O, ± t > 0 one has 

+iT 
~ ( O , t ; s )  = e_~--(s-k) 

r(~) r(s-}) r(k-s) 
r(k) 

ltl-k÷s 

iv) Fo__Kr A <0 an___d 0 <r < k, one has 

Ik(b,t;l-r) + Ik(A,-t;l-r)J = 

k-r-] 

< _ ¼ ~  ~ F(k-r)F(r)F(k) Pk,r( f'---~/t2-A~ 

where Pk,r is the polynomial defined b~ (25). 

V) For A > 0 

2 I k ( A ' t ; O )  = i s ign  ( t )  I k ( A , t ; 1 )  = (71)k/2w 1 
k-I (i t l  +,4)k-~ 

k+s-2 Proof: i) The integrand y (I z{ 2 + ity - 1A)-k (z = x + iy 6 H) has no 

poles in the upper half-plane H but grows on the boundary of H like 

Iz]-k+~-2 as z ÷ira 

k+~-2 
y as y ÷ 0 

Iz - a] 0-2 as z * a if A = 4a 2 > 0 

k+O-2 (x2+y)-k y as z * 0 if A t 0 

where o= Re(s). The assertions about the convergence follow. The equality of 

the two integrals in (8)~granted the convergence, is a consequence of the identity 

(551 
r (})  ' 

(x2+a) -~ dx F(~) a~-V (a e c - (-~,o], Re(v) > ½). 

ii) 

(56) 

Set 

oo k+s-2 
= x dx 

Ik's(Z) 0 (x2+2xz+l) k-I/2 
(l-k < Re(s) < k, z ~ C - (-o% -l]) ; 

P (z) ("associated Legendre this is related to the standard Legendre function ~v 

function Of the first kind") by 
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k-l 
2l-k F ( ½ )  - -  

Ik,s(Z) = r(k-l+s) r(k-s) (z2-1) 2 ~l:k(s ) (z E C-(-~,+I] 
r (k-~) 

cf. [5], 3.7 (33), p. 160). For A < 0 the substitution y = ~ v x in (8) 

gives 

s-k 

(57) ik(A,t;s) = (_~ !AI)2 F(k-~)F(~)F(k) ~,s ( i~> 

For A > 0 we can also express Ik(A,t;s ) in terms of ~,s(Z). Indeed, since 

t 2 > d > 0 we have t # O. If t is positive, then the poles of the integrand 

in the second integral of (8) lie on the negative real axis, and by shifting the 

1 
path of integration to the positive imaginary axis and substituting y = ~¢~-x 

we obtain 

s-k iw (s-k) 
(iA) (58a) Ik (A, t ; s) 1 2 2 r (k-~) r(-~)r(k) 

Similarly, if t < 0 

s-k " 

(58b) Ik(A,t;s)= (/A)2 ~(s-k)F(k-½)F(-~)e F(k) ~,s( tJ!~ Iv~- (A > O, t < O). 

The assertions about ~(A,t;s) ( A # O) now follow at once from the corresponding 

properties of Ik,s(Z) : the function Ik,s(Z) satisfies the functional equation 

Ik,s(Z) = Ik,l_s(Z) (as one sees by making the substitution x ~+ x -I in (56)) and 

has a meromorphic continuation to the whole s-plane whose only singularities are 

simple poles of residue -An(Z ) and +~n(Z) at s = k + n and s = l - k - n~ 

n ~ O, where ~n(Z) is the polynomial of degree n defined by the asymptotic 

expansion 

1 
-k+7 y, 

(l + 2xz + x 2) ~ d (z) x n (x+ 0). 
n=O n 

iii) For A = O, the same argument as for A > O gives 

(sign t) .i~(s-k)/2 F(k-½) r(½) i xS-3/2dx ~k(O,t;s) = e 
r(k) J0 (x+Itl) k-½ 

which is equivalent to the formula given. 
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iv) We have to prove that 

<t_~_4~)k- ' i k-r-, y 1 k-r-I 
2 • i k'3/2 dy ffi (-[) F(~)F(r)F(k-r)F(k_~) Pk,r (t' t24--"-~A~ 

k-r- ] 
This follows by comparing the coefficients of u 

identity 

f • f (y +lyt--~+21y~) dy = ¼____~A 

-~ r(r+~) 

in the two sides of the 

~+tu+ u2 ) -r, 

which in turn can be proved by taking 

t2-A (l + tu + t2 
a = 4 4Au2),Z ~ = 

in (55) and making the substitution x 

! 
r+~ 

= y+1(~+ ). 

v) These formulas (which are equivalent to one another by virtue of (58) and 

the functional equation Ik,s(Z ) = ~,i_s(Z)) follow from the identities 

dy = 4 y- 21it 

2 i 0 (y2+ity-~A) 3/2 t2-A /y +ity-~A 

¢o 

.... ~dy = 4 ~ity+~ i = 2i sign <t> 

2 . l i O (y2+itY_¼A)3/2 t2-A ~y-~A O /A-+ I= i 

by differentiating k - 2 times with respect to t. This completes the proof 

of Proposition 4. 

We can now prove the various assertions made in § ! about special values of 

the series c (s) defined in (9). Consider first s = I. The contribution of 
m 

the (finitely many) terms in (9) with t 2 < 4m can be calculated from equations 

(17) and (19), which are special cases of Prop. 4, iv), and Prop. 3, iii), 

respectively. The contribution of the (finitely many) terms with t 2 - 4m a 

non-zero square is given by (2|), which is a consequence of Prop. 3, iii) and Prop. 

4, ii) and v). The contribution of the two terms with t 2 - 4m = 0 when m is 
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a square can be calculated from equation (13) (which follows from Prop. 4, iii)) 

and the equation L(s, O) = ~(2s-l) (Prop. 3, iii)}. Finally, the (infinitely 

many) terms with t 2 - 4m a positive non-square in (9) give O for s = I 

because L(|, t 2 - 4m) is finite and Ik(t2-4m,t;l) + Ik(t2-4m,-t;l) vanishes 

(by virtue of the functional equation, Prop.4,ii)). Putting all of this into the 

formula for cm(1) we obtain from (16) the Eichler-Selberg trace formula. 

For s = r ~ {3,5,7,..., k - 3} the calculation is even easier, since the 

terms in (9) with t 2 - 4m = u 2 > O now give no contribution (the factor 

Ik(t2-4m,t;s) + ~(t2-4m,-t;s) is again O because of the functional equation, but 

L(s, t2-4m) is now finite). From equations (9), (22) (= Prop. 3, iv)) and (26) 

(which is a consequence of ii) and iv) of Prop. 4) we obtain 

r,%l r-___il 2r_l ~r 

Cm(r ) = Ck .(_~) 2 F(k-r)r(r)F(k_l) (-I) 2 F(r) t 2< 4m Pk'r(t'm) H(r'4m-t2) 

-1) (k+r-2) ! ~r+luk-r- 1 
2k-Z(k-1)! (Zr-I)! ~(I-2r) 

+ 
0 

1 F(k-r) wr ~ H(r,4m_t2) 
= -4- Ck r(k-t) t2<4m Pk,r (t'm) 

2 
if m=u 

if m # square 

or (with the notations of (IO) and (24)) 

r(k-r) ~r 
@r (z) = -~ Ck r(k-1) Ck,r (z) (r = 3,5,.,,,,k-3) 

This together with Theorem I shows that Ck, r is a cusp form of weight k whose 

Petersson product with an arbitrary Hecke eigenform f is given by (28), 

For s = r = k - | the same calculation shows that the value of the series 

(9) is given by equation (59), but the function (IO) is no longer a modular form 

since we have left the region of convergence. On the other hand, it follows from 

ii) and iii) of Theorem I that the function 
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~k_l(Z) = lim ~s(Z) 
s~k-I 

is a cusp form of weight k satisfying 

(60) (~k-l' f) = Ck r(2k-2) Df(2k-2) 
(4w) 2k-2 

th for each Hecke eigenform f 6 S k. We want to show that the m Fourier coeffi- 

cient ~m(k-l) of #k-l is given by equation (27). Each term of the series (9) 

is continuous at s = k-l, and each term with Itl > 2~ has the limit O 

as s ÷ k - I. Therefore 

( 6 1 )  ~m(k-l)  = c ( k - l ) + l i m ( m  k-I [ I k ( t 2 - 4 m , t ; k - I - ¢ ) + I k ( t 2 - 4 m , - t ; k - l - ¢ )  ] 
- ~o\ 1t1>2¢~ 

~L(k-l-e,t2-4m)) . 

By (59) the first term on the right is equal to the first term on the right-hand 

side of (27). From (58) we find 

Ik(t2-4m, t ; k - l - ¢  ) + I k ( t 2 - 4 m , - t ; k - l - ¢ )  

2cos, , ,2 

- 2 7  r (k-})r (½) 
r(k) Ik,k-I (I) 

r (k-kgr (~) ? ! t [  
r(k) Ik,k-l-E ~t2~_4m , /  

c t - l -E( l+O(¢)  + O ( t - l ) ) ,  

with I 
x2k-3dx y I x 

Ik,k_ I (I) = = u 2k-3 du = 2k-2 (u = ~l)" 
O (x2+2x+l) k O 

Also L(t2-4m,k-l-¢) = L(t2-4m, k-l) + O(e), with both terms uniformly bounded 

in t. Therefore the second term in (61) equals 

(62) - W r(k-v)r(@) k-! tim ¢ i~¢ L(k_ I t2_4m 
k-1 r(k) ~-,0 ttl>2~m ' 

On the other  hand, Prop. 3 ) i )  g ives  
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L(k-l,t2-4m) - 
K,,(2k-2) 
~(k-I ) a=l ak,] ~{b (mod 2a) I b 2 E t2-4m (mod 4a)} 

~(,2k-2) / $  i 
~(k-l) a=l ak_l 4~[d (rood a) I d(t-d) E m (rood a)}, 

t-b 
where in the last line we have set d = ~ . The condition d(t-d) - m (mod a) 

depeads only on the residue class of t (mod a), and for a fixed residue class 

t (rood a) one has 
O 

e+O j tj>2/mm ti+¢ a e+ O a 

t-t (mod a) 
O 

so (621 equals 

(63) 2/[ F (k-2i)F (½1 ~ (2k-2) k-I I p(a) 
- k - ' l  P ( k )  ~ ( k - I )  m k' ' 

a = 1 a 

where 0 (a) ffi ~t{d,d' (mod a) [dd' E m (mod a)}. The function a ~+ 0(a) is 

multiplicative and for a prime power a ffi pV is given by 0(p ~) ffi (p-l)p 9-I 

if p + m and by 

0(P 9) ffi ~(~+J) p~ - ~pg-I if O K 9 ~ 

( +I) (pV - pg-l) if ~ > 

in general, where p~ is the largest power of p dividing m. Hence 

k = ---f + +. .1 (I + + 3_p_i=/~ 
• 2k +'' 

a=l a pTm p p p~Im p p 
~>~ 

(~+I)p~+1 _ (~l)p ~ 
+ (~+l)k + '" ") 

P 

p l-p l-k p~/Ilm + p +'" "+ 
~>. I 

,4 
p~k 

= ~ ( k - I , , )  O l _ k ( m ) ,  

and substituting this into (63) we obtain the second term in equation (271. There- 

fore 
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(64) 

where 
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= ~ ~m(k-I)e 2~rimz = (-l)k/2+lTr 
m=l 2k_l(k_l)! Ck,k_ l(z) 

- (-l)k/2 (21r) 1-k 
k-1 r(k-})r(}) ;(2k-2) Ek(Z) 

is the normalized Eisenstein series of weight k (the formula 

Ck,k_l(Z) is defined by (24) and 

(-I)k/2~2~)k i 2~imz 
Ek(Z) = I + F(k)~(k) m=l Ok_l(m) e 

H(k-l,0) = 

~(3-2k) implies that the constant term on the right-hand side of (64) is zero). 

Equations (60) and (64) and the fact that E k is orthogonal to all cusp forms 

imply that equation (28) holds even in the case r = k - I, when Ck, r is 

not a cusp form. 

Finally, we should say something about the case k = 2. Up to now we have 

excluded this case because it presents the most awkward convergence questions 

and because there are no cusp forms of weight 2 on SL2(~) anyway. However, the 

case k = 2 is also important, both for the generalization of Theorems 1 and 2 

to congruence subgroups and for the applications to Hilbert modular forms given in 

§ 6. For k > 2 the interesting range of values for s was I < Re(s) < k - I, 

and the two extreme values s = I and s = k - I created extra terms (and 

extra difficulties) as given by formulas (21) and (27). For k = 2, the only 

interesting value is s = I, and one has all of the convergence difficulties 

which occured previously for s = I and for s = k - I, and some new diffi- 

culties due to the fact that the series expression (35) for the kernel function 

~m(Z,Z') is no longer absolutely convergent, so that at first sight the whole 

method of proof appears to break down. To get around this, one must define 

as lim ~ where 
m ~ m,E' 

(- 1)k/2+l~r k 
2k_l(k_l)t [Ck,k_l(Z)- ;(3-2k) Ek(Z)] , 
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') ~ (czz'+dz'+az+b) -k Iczz'+dz'+az+bl -E 
~m,E (z,z = ad-bc=m 

("llecke's trick"). As in Appendix 2 of [24], one can show that ~m is a cusp 

form of weight 2 with the properties given by Proposition I (of course for SL2(Z) 

this simply means 0J ffi O). Then one carries out the whole calculation of 
m 

§§ 2 - 4 with ~m,~ instead of ~m' taking in Theorem I a value of s with 

! < Re(s) < l + E, and at the end lets g tend to O. I omit the calculation, 

which is awful. The result is as simple as one could hope: for k ffi 2 and 

s ffi | the m th Fourier coefficient C~m(l) of =he cusp form ~l defined by (34) 

is given by the sum of the expression previously obtained for k > 2, s = l 

(i.e. for the trace formula) and of the extra contribution previously obtained 

for k > 2, s = k - ! (second term of (27)), i.e. 

~ ( I )  ffi ~ t t (4m- t  2) + m i n ( d , d ' )  - 2o l (m)  
2 2 " 

t ~<4m d d ' , ~  
d,d'>O 

Since ~l(Z) is a cusp form of weight 2 on SL2(Z ) all coefficients must be 

zero and we obtain the class number relation 

2 ~ H(4m-t2)= K 
t ~<4m dd'=m 

d>0 

max (d,d') 

due to Hurwitz [9]. If, however F' C F is a congruence subgroup for which 

there are cusp forms of weight 2, then we obtain an expression 

for the trace of the Recke operator T(m) on S2(F'). 
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§ 5. The series £n k-l-s G 2(z) and the convolution of L-series 
n 

associated to modular forms 

Let s be a complex number with Re(s) > I and ~ the unique cusp form 
s 

in  S k s a t i s f y i n g  (34) for  a l l  normalized Hecke e i g e n f o ~  f E S k. Our 

starting point for the calculation of the Fourier coefficients of ~ in §§ 2 - 3 
s 

was the i d e n t i t y  (3) express ing  Df(s) in terms of the Rankin ze t a - func t ion  

a(n)2n -s (where f ~ ~a(n) qn). But Df(s) also satisfies the identity 
n=! 

Df(s) ~ ~(2s-2k+2) ~ a(n2)n - s ,  
n=! 

as is well-known and easily verified using the multiplicative properties of the 

a(n). Thus the equation defining ~s is equivalent to 

r (s+k-|) ~, a(n2)n -s-k+ | 
(65) (~s, f) = C k ~(2s) 

(4z) s+k-| n=! 

and since this equation is linear in the coefficients a(n), it must hold for 

all cusp forms f = ~a(n) qn ~ Sk ' not just for eigenforms. Equation (65) 

determines ~s uniquely, and by comparing it with equation (41) we obtain the 

identity 

(66) ~ (z) - C k F(s+k-l) ~(2s) ~ ~ n k-|-s (z) 
s (4w) s F(k-1) n=! Gn2 

expressing 
S 

as an infinite linear combination of Poincar~ series. 

It is now natural to ask whether one can obtain a proof of Theorem ! (which 

states that ~ = ~ for Re(s) < k - l, where ~ is defined by (9) and 
S S S 

(|0)) by combining (66) with known facts about Poincar~ series. Two methods 

suggest themselves: 

I. One can substitute into (66) the formula for the m th Fourier coefficient 

grm of Gr(Z), namely 
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grm 
k-l L 47 /~-~) 

= 6rm + 21T(-l)k/2(m/r)T Hc(r'm) Jk-| (-¢" 
¢=| 

(where 6 
rm 

is the Kronecker delta, Jk-I a Bessel function, and 

l Ya 2~i(ra+md)/c 
Hc(r,m) = - c e 

a,d (mod c) 
adl l  (mod c) 

a Kloosterman sum), and try to show directly that the sum equals Cm(S). I 

do not know whether this can be done, but it is amusing to note that the term 

6rm in the formula for grm produces in (66) exactly the extra contribution to 

Cm(S) occurring in (9) when m is a square. 

One can substitute into (66) the defining equation (40) of the Poincar& 2~ 

series and interchange the order of summation to obtain 

F(s+k- l )  ~(2s) , j k ( y , z )  n k - l - se2g in2~z  
"~'s(Z) = Ck (4~) s r ( k - l )  yc%,,r n=l 

(67) 

(this is certainly legitimate for Re(s) > 2, since the double series is ab- 

solutely convergent in that region). Again, I have not been able to deduce from 

this that ~ = # in general. But if 
S S 

teger, then the series ~nk-l-Se 2zin2z 

a derivative of the theta-series 

O(z) = ~. e 2~in2z" 

n=| 

k - | - s is a non-negative even in- 

occurring in (67) is (up to a factor) 

and therefore transforms nicely under the action of the modular group, and in this 

case it i__ss possible to deduce from (67) the expression for Cm(S) as a finite 

sum of values of zeta-functions, thus obtaining a different (and conceptually 

simpler) proof of Theorem 2 and of the identities for special values of Dr(S) 

discussed in § I. To present the idea as clearly as possible, we begin with 

the special case s = k - I. 

For r = k - l, the modular form (24) figuring in Theorem 2 is given by 
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(r >i 1) is defined by 
r 

~r(Z) = Z R(r,N) qN (q = e2~iz) 
N=O 

= (O~(k_l)[ U4, 

Za-39 

and U 4 is the operator which sends ~a(n) qn to ~a(4n) qn  In [3], 

proved that ~ is a modular form of weight r + _I namely 
r 2 ' 

l 

(69) ~(r(Z) = ~(l-2r) L r+-2 (z) + (l-i)(4z) 2 E~4+$ 

where 

m(41 (z) 
2 i (e a b)~ro~\ro(4) ( e z + d ) r + | i 2 - -  

Cohen 

is the Eisenstein series of weight r + ~ on ro(4) (for conventions concerning 

modular forms of half-integral weight, see [20]). It follows that "~k_l(z) O(z) 

th 
is a modular form of weight k on ro(4) having the property that its m 

Fourier coefficient is 0 for all m E 2 (mod 4), and since one easily shows 

(directly or using results in [13]), that U 4 maps all forms on to(4) with 

this property to forms on the full modular group, one obtains Ck,k_ I ~ Mk(SL2(Z)). 

We want to show how (67) implies that the cusp form Ck,k_ 1 - ~(3-2k) E k is a 

multiple of ~k-]" 

Equation (67) for s = k - I can be written 

where 

- 1 

~k-l(Z)  ffi Ck (4~) k-1 r (k - l )  Ycr~r 

2 k-~ r(k) YE r~r 

= ~ (3-2k) gk(z) - jk(y,z)O(yz . 

Z k-I r(k) y~rjro(h ) 

Tr 4 : Mk(ro(4)) ÷ Mk(SL2(~)) is the map defined by 
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Tr4|(f) = ~i fIk Y = ~ ', 
YE ro(4)\r n(mod 4) 

ab 
(cf. ~13]). Also, for Y = (c d ) ~ to(4)' 

c -4 -i/2 i/2 
O(¥z) = (~)(-~-) (cz+d) 0(z), 

so 

~ ' jk(y,z)Q(yz) = Q(z) E(4~ (z). 
Yer kro(4) k-~ 

Therefore 

~+1 2k-I 
Tr~ (OE(k4?!) = Ek * (_1)2 rCk) 

2 ~k (3_2k) ~k-I" 

, o  
fl k(n I ) + 2n ) 

n(mod 2) 

Equation (64) can now be obtained from this by using equations (68) and (69) 

and the explicit description of the way the series @ and E (4) transform under 
k-I/2 

O-I 
the operation of (4 0 ) and of the matrices involved in the definitions of Tr4 l 

and U 4. We omit the details. 

We observe that the argument used here for ~G 2(z) would apply to any 
~ n 

series b(n) G(z), where the b(n) are the Fourier coefficients of a modular 

form (here Q(z)). Since this principle is not very well known (although it 

was already used by Rankin in |952), we give a general formulation of it, 

applicable also to forms of non-integral weight. 

Let F' C F be a congruence subgroup and k > 0 a real number. We consider 

multiplier systems v : F'--~ {t e ~ lltl = l} such that the automorphy factor 

J(y,z) = v(y)-l(cz+d) -k (y = (~ ~)E F', z e H) 

satisfies the cocycle condition 

J (YIY2 ,z ) 

and such that v(y) 

on the coset of Y 

= J(YI'Y2 z) J(Y2' z) (yi,Y2 ~ r', z ~ H) 

= I for y @_ F" = F' (~ r~ (then J(~,z) depends only 

in F~N F, ~ i.e. on the second row of Y). We write Mk(F',v) 
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(Sk(r',v)) for the 
transform by 

spaces of modular forms (cusp forms) on r' which 

f(z) = J(Y,z) f(Yz) (Y £ r', z e H). 

(If k 6 ~, then v is a character on r' and this agrees with the usual 

notation; if k ~ • + ½, then our notation conflicts with that of [21] but has 

l(F',vl) (F',v2) lies in the advantage that the product of forms in M k and Mk2 

Mk|+k2(r',VlV2).) If k > 2, we have the Eisenstein series 

E~(z) = ~ J(Y,z) e MkCr',v) 
Y ~ r'\r' 

and for each natural number n the Poincar& series 

G~(z) = 
Te r~\r' 

where w = [rc~ : r~] is the width of F'; 

(70) (f,G~) = I f(z)G~(z) yk dV = 

F'\H 

for any form f = ~ a(n)e 2Winz/w 

J(Y,z) e2Winyz/wc Sk(r',v) ' 

the same proof as for (41) shows that 

r(k-l)wk a(n) 

(4wn) k-| 

in ~(r',v). With these notations we have: 

Proposition 5: Let Ji(Y,z) = vi(Y)-l(cz+d)-ki (i = 1,2) be two automorphy 

factors on r', where kl,k 2 are real numbers with k 2 ~ k I + 2 > 2. Let f(z) = 

a(n) e 2~inz/w and g(z) = b(n) e 2~inz/w be modular forms in 
n = l ...... n=O 

Skl+k 2 (r',vlv 2) and ~l(r',vl), respectively, and E'k2(Z) the Eisenstein series 

__in Mk2(r',v 2) as defined above. Then the Petersson product of g(z) E'k2 (z) and 

f(z) is given by 

(7~) (f,gE~z) = 

Proof : 

r(kl+k2 -l) kl+k 2 

(4w)kl+k2. l w 

Set 

o~ 

a (n)b (n) 

n ~ l 

k = kl+k 2 , v = vlv2, J(Y,z) = v(y)(cz+d) -k = Jl(y,z) J2(y,z). 

If k2> k I + 2 , then 
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g(z) E' (z) 
k 2 

= / i J2(y,z) g(z) 
Y ~ r-\r ' 

= ~ J2(Y,z) Jl(Y,z) g(yz) 
Y e [-kr ' 

= ~ £ b(n) J(y,z) e 2~inYz/w 

y e r - \ r '  n=0 

= bOO) EI~(Z) + ~ b(n) Gn(Z), 
n=] 

because the double series is absolutely convergent; if k 2 = k: + 2, we obtain 

the same equation by multiplying J2(Y,z) by yg Icz+d1-2g and letting g ~ O 

(Hecke's trick). Equation (70) now implies the statement of the proposition. 

k2/2 
(The series in (71) converges for k 2 > 2 because a(n) = O(n ~ and b(n) = 

o(nkl- l ) . )  

The method we have just described was used by Rankin (for forms on the full 

modular group) in [18]; his identity (33) is obtained by taking k| = q, 

k 2 = k - q, g(z) = mq(Z) = I - B 2~ ~ Oq_l(n) e 2~inz and f = 
q 

E a ( n )  e2ginzE Sk an eigenform and using the identi ty 

Or(n) a(n) Lf(s) Lf(s-r) k+! 
(72) ~ (Re(s) > r + ~ ). 

s ~ (2s-r-k+1) n=] n 

We remark that equation (71) is in fact true under weaker restrictions than those 

given. For example, Rankin's identity (33) is ~till valid for q-~_ (the reader can 

check this for k=12, f=A, using (32)). It is also worth remarking that the 

identity (33), together with the non-vanishing of Lf(s) in the region of absolute 

convergence and the fact that the Hecke algebra acts on M k with multiplicity |, 

imply that for q ~ k Ek_q(Z ) + | the modular form Eq(Z) generates M k as a 

module over the Hecke algebra. I do not know any elementary proof of this fact; 

k 
a direct proof in the case q = E would imply the non-vanishing of Lf(k/2). 

We now prove a generalization of Prop. 5 which can be used to give another 

proof of Theorem 2 (i.e. of the proportionality of ~r and Ck, r) and hence 

of the identities for Df(r+k-l), where r is an odd number satisfying 
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I < r < k - I. 

defined bilinear operators 

by the formula 

(73) 

To prove that C. is a modular form when r < k - I, Cohen 
~ ' r k l , k  2 

F~ = ~ (~ 6 ~, kl,k 2 E ~) on smooth functions 

,0 
F (kl+V) F (k2+~) 3~fl ~-IJf 2 

F~(fl'f2)(z) = ~l~ (-l)V-~J ¢))~J F(kl+lJ) F(k2+~)-P) ~zIJ ~z~)-~J 

and showed ([~ , Theorem 7.1) that 

(74) F~(fl;klY , f2lk2Y) ffi F~)(fl,f2)ikl+k2+2 v Y 

for all Y ~ GL~ (R). From this it follows that if fl and f2 are modular 

forms on some group F', with weights k I and k 2 and multiplier systems v! 

and v2, respectively, then F~(fl,f2) is a modular form on F' of weight 

k I + k 2 + 2~ and with multiplier system vlv 2 and is a cusp form if ~ > O. 

(Of course Fo(fl,f2) = flf2.) The fact that Ck, r (r < k - 1) is a cusp form of 

weight k on SL2(~ ) then follows by the same argument as in the case r = k - 1 

from the identity 

(75) Ck, r = (2~i) -~ F(~+r) F (@, °~r) IU4 (~ = k-r-l) 
F(r) F (k-r) 2 

We now give a formula for Fv(fl,f2) when either F 1 or F 2 is an Eisenstein 

series; this proposition in conjunction with (69) and (75) can be used to 

give another proof of the identity 

1Ck F(k-r) r (r 3,5,..., k-3), ~r(Z) = - g ~ Ck,r(Z) = 

which is equivalent to Theorem 2. 

Proposition 6: Le__~t kl' k2 Jl' J2' g and E k >e as in Proposition 5, V 

22~inz/w 
non-negative integer, and f(z) = a(n) e a cusp form in Sk(F',v), 

n=l 

where k = k I + k 2 + 2v ~and v = VlV 2. Define F (g, E'k2 ) as in (73). 

(f F (g,E~2)) = (2~i)~ F(k-l) r(k2+Y) wk-~ /~ a(n) b(n) 
• ~ kl+k2 +'~-1 (4~)k-; r(k2) n 

Then 
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Proof: Let giVe(z) = 3Vg(z)v Then for y = (ac bd) ~ r' 
az 

x) r(kl+X>) 
(76) g(V) (Yz) = vI(Y) ~ (~) c v-~l (cz+d) k 1 +~+]a 

tJ=O 
g(~)(z). 

This can be proved by induction on V (the case ~ = O is just the transformation 

law of g), using the identities 

d g('~+l ) (Yz) = (cz+d)2 ~z g ('0) (Yz) 

and 

r(kl +V) "o r (kl+~) = ('o÷I F (kl+'J+l) . 

(~) r(kl+la) (kl+V+u) + (~_i) l'(kl+la-I ) - U ) r(kl+~a ) ' 

we leave the verification to the reader. Let 

Sk(F', v). Using the Fourier expansion 

= (2~i)'~ 2 n~b(n)e2~inz/w g(V)(z) _--$- 
n=O 

Gn(Z) be the Poincar~ series in 

and (76) we obtain 

( ' ~ )  n'°b(n) Gn(Z ) = 
n=O. 

~=O F(kI+U) 

v=o u) r(ki+v) 

~t v(y)-I (cz+d)-k g(V)(yz) 

~ er£xr' 

g(~)(z) ~, v2(Y)-I c 9-~ (cz+d) -k2-v+~ 
y 6r~\r t 

g(V)(z) • (-I) ~-u r(k2) E' (v-U)(z) 
r(k2+~-V) k 2 

r (k 2) 
F(k2+~ F (g ,  E'k2), 

and this together with (70) implies the statement of the Proposition. 

Applying Proposition 6 to the case F' = F, g an Eisenstein series, and f 

a Hecke eigenform, we obtain (using (72)) the following generalization of Rankin's 

identity (33): 

Corollary: Let ..... k I , k 2 ~ 4 be even inteKers wi~h k I # k 2 aRd Ekl, Ek2 
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the normalized Eisenstein series of weisht kl,k 2. Let ~ be a non-nesative 

inteser and f(z) = ~a(n) e 2~inz a normalized eisenform in Sk, k 

k I + k 2 + 2v. Then ' 

(771 (2~i) -v (f, Fg(EkI,Ek2)) = 
(_1)k2/2 2kl 2k2 r ( k - I )  

Bk I Bk 2 2 k - 1 F ( k  -~-l) 

* L~(k-~-I) L~(k2+~), 

where Bkl, Bk2 are Bernoulli numbers and Lf(s) is defined by equations 

(30) and (31).  

Remarks: I. If k 2 > k I ~ 4, we prove (77) by applying Proposition 6 directly; 

if k; > k2, we interchange the roles of k I and k2, using the functional 

equation (31). As in the case ~ = O, we observe that (77) remains 

valid also when k = k 2 . 
1 

2. Since (2wi) -~ F (Ekl,Bk2) has rational coefficients, the left-hand side 

of (77) is equal to the product of (f,f) with an algebraic number lying in the 

field generated by the Fourier coefficients of f. For any k ~ 16 there are 

sufficiently many triples (kl, k2, ~) satisfying the conditions of the Corollary 

to deduce that L~(a) L~(b) is an algebraic multiple of (f,f) whenever a and 

b are integers of opposite parity satisfying k < a,b < k (or simply O < a,b < k 

if we use (77) for k I = k2). For example, if k = 16 and f = A16 is the unique 

normalized eigenform in $16 , we find 

= 2|4(f,f) L~(|O) L~(15) 214(f,f) 

Lf(12) l,f(9) 214(f,f) L~(14) n~(ll) 

I x 3617 x 3.5,7 x 23'32"I~ 3 
2.3.5.13 2,3.7 3617 l 

l 

5.72 

5.7.11 
3 

22 
7 
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Thus we obtain a different proof of the result of Eichler-Shimura-Manin on 

periods of cusp forms mentioned in § I. 

3. For the six values of k with dim S k = I, equation (77) takes the form 

k 

Lf(k2) Lf(k-l) = (-I) ~- 12k-2 + Bkl (f,f) 
\ k I k 2 B k k I k 2 

if v = O (Rankin [18], Theorem 5) and 

Lf (k2+~)) Lf (k-~)- I ) = (-I) ~-I 2k-2 F (k-V- L) 
r(k-1) 

q F (kl+'O) F(k2+~) 1 
(-I) ~ + Bk| ~ Bk 2 (f,f) 

if V > O. 

4. Proposition 6 is similar to a recent result of Shimura ([22], Theorem 2). 

Also, the method sketched in this section for proving Theorem 2 is related to the 

method used by J.Sturm (cf. note at the end of the introduction). 
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§ 6 The Doi-Naganuma lifting and curves on Hilbert modular surfaces 

In |969 Doi and Naganuma [4] constructed a "lifting" from modular form on 

SL2(~) to Hilbert modular forms on SL2(~) , where @ is the ring of integers 

of a real quadratic field K = @(~D). Four years later, Naganuma [14] defined a 

similar lifting from Sk(ro(D), (~)) to Sk(SL2(~)); together, these maps give 

the subspace of Sk(SL2(@)) generated by eigenforms which are invariant under the 

action of GaI(K/Q). In [24] the author constructed a "kernel function" for the 

Naganuma mapping, i.e. a function ~(z, z'; ~) of three variables which is a 

modular form of Nebentypus (~) with respect to T and a Hilbert modular form 

with respect to (z, z') and whose Petersson product with any modular form 

f(T) of Nebentypus is the Naganuma lift ~(z, z') of f. The m th Fourier 

coefficient of ~(z, z'; T) (with respect to T) is a Hilbert modular form 

~m,D(Z,Z') defined by a series similar to that defining the function ~m = 

~m,| of § 2. By replacing ~m by Wm, D in the calculations of §§ 2 - 3 of 

this paper, we will obtain a theorem generalizing Theorem ! an~ as corollaries, 

i) new proofs that certain functions constructed in [3] and in [~, given by 

Fourier expansions whose coefficients involve finite sums of values of 

L-series at integer arguments, are modular forms; 

ii) characterization of these forms in terms of their Petersson product with 

Hecke eigenfor~zs; 

iii) proof that (f,f)/(f,f)2 is an algebraic number for any eigenform 

f e Sk(Fo(D), (~)); 
.partlal 

iv) /proof of a conjecture made in [8] expressing the adjoint map of the 

Naganuma lifting (w.r.t. the Petersson product) in terms of intersection 

of curves on the Hilbert modular surface H2/SL2(~). numbers 

Some of the results have been obtained independently by T. Asai and T. Odd in the 

period since the Bonn conference. In particular, both iii) and iv) Overlap with 

work of Odd. 

We recall the result of L24]. We suppose throughout that the discriminant 
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K is E I (mod 4) and denote by k some positive even integer. The D of 

forms ~0m, D are defined (if k > 2) by 

%------# 

(78) C0m,D(Z,Z') = >', (azz' + ~z + ~'z' + b) -k (z,z'eH, m=l,2 .... ), 
a,b 6 7z 
X¢# -J 

%% '-ab-m/D 

where ~' denotes the conjugate of % and ~= (/D) is the different of K; 

one checks without difficulty that ~m,D is a cusp form of weight k for the 

Hilbert modular group SL2(ff). The main result of [24] is that the function 

~ ,  2~imT 
(79) ~(z,z' ; T) ffi m k- I  ~m,D(Z,Z') e (z,z' , T 6 H) 

m=l 

is a cusp form on Fo(O ) of weight k and Nebentypus (~) with respect to the 

variable T whose Petersson product with any other cusp form f E Sk(Fo(D); (~)) 

is given by 

(80) 5 f(~) ~(~,z' ;-~)<I~ ~)kdV c k ~ c((~)~) e z~i(~ ÷ ~IZ' ) 
= - ) 

F\ H v >>O 

where C k is given by (12) and c(DL) (Ut an integral ideal) is an explicitly 

given finite linear combination of the Fourier coefficients of f at the various 

cusps of F (D). It is also shown that, if D is prime and f a normalized 
O 

Hecke eigenform, then Zc((W)Lg') e 2~i(vz+ w'z9 equals the Naganuma lift of f 

i.e. the coefficients c(-OL) are multiplicative and satisfy 

(81) c(~)) l 
a(p) 

= a(p) 2 + 2p k-I 

a(p) + a(p) 

(82) r c(~C) N ( ~ )  - s  
n~| 

if @~ = (p), ( ) = I, 

if p = (p), (D) = _i, 

if ~2= (p), (D) = O, 

Asai Ill has shown that equations (81) and (82) still hold (for f an eigenform) 

when D is not prime. 

Finally~for our generalization of Theorem | we must define the analogue of (2) 
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for forms of Nebentypus. Let f = ~a(n)q n ~ Sk(ro(D), (9)1 and set 

(83) Df(s) = U (l -0L 2 p - S ) - l ( |  - (D) C~p~p p-S)- l  (1_ E2 p-S )-1 
P P ' P 

where =p, ~p are defined by 

(84) ap + (p) Ep = a(p), C~pEp = pk-I 

or equivalently by 

(85) ~ a(n)n-S ~~ I • 
nffil p (I- ap p-S)(l-(D) Ep p-S) 

Then, with the same notations as in Theorem l, we have: 

Theorem 4: Let D E | (mod 4), D > l, be a square-free integer an d k > 2 a__nn 

even integer. For m ffi 1,2,... and s £ C, 2 - k < Re(s) < k - l se___~t 

! 
----S 

(86) Cm,D(S ) = mk-ID 2 [~(t2-4m, 

tZE4m (rood D) 

t;s)+l k(t2-4m,-t;s)] L(s,t~) 

Then the function 

I k-s-I (_i)k/2 r (s+k-l) ~(2s) u 
22s+k-3w s-I r (k) 

O 

co 

~s,D(Z) = ~, Cm,D(S) e 2Wimz 
m= l 

is a cusp form on F (D) of weight k and Nebentypus (~) 
O 

~s,D' f) = Ck F(s+k-i) (4~)s+k_ | Df(s+k-|) 

for any normalized Hecke eigenform f 6 Sk(Fo(D), (~)). 

2 if m = u , u > O, 

if m # square. 

and satisfies 
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Proof: We would like to imitate the proof of Theorem I in § 2 - 3 with m,D 

instead of ~m" We cannot use ~m,D(Z, -E) for this purpose, because (z,z') + 

(z, -z') is not compatible with the action of the Hilbert modular group. We 

can get around this by using ~m,D(EZ, e'~) if K has a unit ~ with £ > 0 > £' 

and in general by using the function ~0_m,D(Z , E), where ~-m,D is obtained by 

replacing m by -m in (78) and is defined for (z,z') 6 H × H_ (H_ = lower 

half-plane). Writing c instead of b in (78) and setting ~ = ~(b + ~D ), 

we obtain 

~_m,D(Z, ~) Z 
a,c e 
X~-! 

%)~ '-ac=-m/D 

(a]zl 2 + Xz + X'{ + c) -k 

a,b,c,t e~ 

(b2-t2/D)-ac=-m/D 

ity -k 
+ bx + C + ' ~ -  ) 

or~with the notation (48)~ 

yk~_m,D(Z,~) = 
^tc~ 

tz--4m (rood D) 

Re (z,t) . 

Theorem 3 (§ 3) now implies 

s+k- I 

(87)  Cm,D(S ) = ~ ( s ) - l D  2 m 0j_m,D(Z,E ) E(z,s) yk dV. 
F\H 

Hence 

_ s + k -  1 
-1 2 

(88) Cs,D(~) = ~(s) D I ~_(z,~; T) E(z,s) yk dV, 
F\H 

where 

~_(z,z'; z) 

co 

= 

m=| 

k-I 2~im T 
m 0J_m,D(Z,Z') e (z, T 6 H, z' E H.). 

The function ~_ has properties like those of ~, namely it is a cusp form of 

Nebentypus with respect to T and satisfies an equation like (80) but with the 

summation running over all ~ 6 t ~-| such that 9 > O > 9'. (This follows 



155 Za-51 

directly from the results of [24] if K has a unit E with g > O > g', 

since then ~_(z,z'; T) equals ~(gz, g'Z';T ), and can be proved without this 

assumption by making the obvious modifications in the proofs given in [24].) There- 

fore (88) implies that ~s,D E Sk(ro(D) , (~)) and that 

_ s+k-I 

(¢s,D" f) = C k ~(s) -I D 2 hf(z) E(z,s) dV 
FXH 

for any f E Sk(ro(D), (~)), where 

hf(z) = yk y, c((v)1~) e 2~i(vz + V'~) (z E H). 

ve~  -I 
>0>V' 

The function hf(z) is SL2(Z)-invariant because ~ (z,z'; T) is a cusp form of 

weight k with respect to the action of SL2(O) on (z,z') E H x H_. 

Therefore we can apply the general principle (44) to obtain 

hf(z) E(z,s) dV = ~(2s) c((v)~) e 2~i(V + V')x-2~(v v' 

r\H 0 o 

The only terms that contribute to this integral are those with v + v' = O, 

i.e. v = n with n ~ ~, and we obtain the identity 
#D 

(89)  ( ¢ s , D , f )  = Ck r(s÷k-J)_ ~!2,S) , c((n))s+k_l 
(4~) s+k-1 n~l n 

v a l i d  f o r  a l l  f ~ Sk(Fo(D), (~) ) .  I f  f i s  an e igenfo rm,  then c ( ( n ) )  = c ( ( n ) )  

and the series ~7=c((n)) n -s has an Euler product whose terms can be computed 

using (81); a short computation then shows that the expression in brackets 

in (89) equals Df(s+k-l). 

We can now deduce several corollaries exactly as in the case D = I. First 

of all, the functions Df(s) is entire (proved by Shimura, [21], Theorem l) and 

satisfies a functional equation ~roved by Asai Eli, Theorem 3). Next, by taking 

s = r E {3,5 ..... k - 3} and using (22) and (26), we find that 

r 
= _ ~._ Ck F(k-r) 

er,D (z) 4 I" (k- I ) Ck, r,D(Z) ' 
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where 

Ck,r, D (z) = ~ Pk , r ( t ,m)  I t(r ,  ~ e 2"gimz 

t z -4m (mod D) 

For r = k - I we get an extra contribution which can be computed as in § 4, the 

only difference being that the multiplicative function p(a) occurring in 

equation (63) must be replaced by the multiplicative function 

PD(a) = ~6{b,t (mod 2a) b2 E t2-4mD (mod 4a)} 

which is calculated in [24] (Lemma 3, p. 27). We obtain an equation similar to 

(27) but with Ok_|(m) replaced by the m th Fourier coefficient of the Eisenstein 

series e~(z) in the space ~o(D),(~)) consisting of those modular forms in 

Mk~o(D),(~ ) whose m th Fourier coefficient vanishes whenever m is not a 

quadratic residue of D (M~(Fo(D) , (~)) is the subspace of Mk~o(O),(~)) 

fixed under all Atkin-Lehner involutions). Therefore Theorem 4 implies the result 

of Cohen ([3], Theorem 6.2) that the functions Ck,r, D are modular forms 

(cusp forms if r < k - |) and at the same time gives a formula for the 

Petersson product of these functions with Hecke eigenforms. In particular, since 

multzpllcity I" theorem that each Df(r+k-l) # O for r > I, we deduce from the " " " 

Ck,r, D generates the whole of Mk(ro(D) , (~)) (resp. of Sk(Fo(D), (~)) if 

r < k - I) under the action of the Hecke algebra. 

For r = I, we again find an extra contribution (given by (21)) coming from 

t2-4m 
the terms in (86) for which D is a perfect square. In contrast to the case 

D : I, there are in general infinitely many such terms, in I : I correspondence 

with the integers of norm m in K, and we find 

(90) ¢I,D (z) = - ~4 Ck" Ck, I,D(z) (k > 2) 

with 
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(9|) Ck, l ,D(Z) = 
Z ~<4m ¢~ Xe@ / 

2_ X>O / 
t = 4m (mod D) %%'=m 

e2Wimz. 

Finally, if k = 2 then we find (as in the case D = l), that ~I,D equals 

- ~ C2,I, D plus a multiple of the Eisenstein series E~(z). Thus C2,1, D 

t 
M~(Fo(D), (~)) and Ck,|, D e Sk(Fo(D) , (~)) for k > 2. This result is con- 

siderably harder to prove directly than the modularity of Ck,r, D for r > I, 

because the function ~{r(Z) = ~ H(r,N)q N used by Cohen is no longer a 

modular form of half-integral weight when r=1. The fact that C2,1, D 

M~(No(D),(~)) was proved in [8], Chapter 2. 

Equation (90) together with Theorem 4 characterize the function Ck,l, D 

by the formula 

4 r(k) Df(k) (f 6 Sk(ro(D), (~)) an eigenform). (92) (Ck, l,D,f) w (4w) k 

To interpret this, we need some other product representations of Dr(s). Let 

A 

a(n) and c(~r~) be the Fourier coefficients of f and of the Naganuma lift f, 

respectively, ~p, ~p the numbers defined by(85), and A~ (~ C 0 a prime 

ideal) the numbers defined by 

f f (93) Ap = ~p if N(p) ~ p. 

Then (81), (82) are equivalent to the Euler product expansion 

p 

for the Mellin transform of f, and by applying the identity (3) (or rather its 

analogues for forms of Nebentypus and for Hilbert modular forms) to f and ~ we 

obtain 

(95) ~, c(~t) 2 N(~) -s = 
~Z ( s -k+ l )  
~K (2s-2k+2) D~(s), 

and 
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n=l n = ~ (2s-2k+2) p~u 

where 

and 

D~(s) = 

D}(s) = 

P 

(1 - (~) a 2 p - S ) - l ( l  - p k - l - s ) - I  (I - (~) ~2 p - S ) - I  
P p P 

(= the "twist" of Df by (~)). On the other hand, using (93) we deduce 

after some trivial manipulations 

(97) Dr(s) = Df(s) D~(s). 

Thus Df(s) is, up to a simple factor, the ratio of the Rankin zeta functions 

associated to ~ and to f. The above formulas (and more general ones corres- 

ponding to Hilbert eigenforms which are not liftings) have also been observed by 

As ai [2]. 

Using the analogue of formula (5) for f and 

dues on the two sides of equations (95) and (96) at 

we obtain 

(i.e. comparing the resi- 

s = k by Rankin's method) 

22k-I k + l  D- 1 (f,f), 
D~(k) = F(k) 

24k-I 2k+2 
W D-k-I ~ ~ (f,f), D~(k) = 

r(k) 2 

and hence, by (97), 

22k k+| ^ ^ 
7[ D-k (f,f) 

Df (k) F(k) (f, f) 

Substituting this into (92), we obtain 

Theorem 5: Let D E I (mod 4) be a square-free integer > I and k an integer 

2. Then the function Ck, l,D(Z ) defined b~ (91) is a modular form in 

Mk(ro(D), (~)) (a cusp form if k > 2). l_ff f £ Sk(ro(D) , (~)) is a Hecke 
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eigenform and ~ ~ Sk(SL2(@)) its lift under the Naganuma mapping, then 

A 

4 (f,f) 
(98) (Ck, |,D,f) = 

D k (f ,f) 

Since Ck,l, D has rational Fourier coefficients we deduce 

^ ~ ~ ,f)2 Corollary I: Let D, f,f be as in the Theorem. Then (f,f)/(f is an 

a.lsebraic number belongin$ to the field senerated by the Fourier coefficients 

of f. 

Doi informs me that this result has also been obtained recently by T. Oda. 

Secondly, since (~,~) and (f,f) are non-zero, we deduce from the 

"multiplicity I" principle: 

Corollary 2: The modular form Ck, l, D 

operators s~a ~ the space Sk(Fo(D),(~)) 

M2(ro(D),(~)) i ! k=2). 

to~ether with its images under all Hecke 

(r_espectively the space 

This corollary was conjectured in the case D prime, k = 2 by Hirzebruch 

and the author ([8], Conjecture |', p. 108) in connection with the intersection 

behaviour of modular curves on Hilbert modular surfaces. We devote the rest of 

this section to a discussion of the relation between the above results and the 

results of [81. 

We suppose from now on that 

T m C H x H by 

D is a prime. For each m ~ I define a curve 

m 
T m = {(z,z') i ~ a,b, e Z, % E0~ -| with ab - %%' = ~ } , 

i.e. T is the union of the divisors of all of the expressions figuring in the 
m 

definition of ~-m,D" The curve T m is invariant under SL2(@) 5 its image on 

X = SL2(~)\H x H being an affine algebraic curve (also denoted by Tm) each of 

whose components is isomorphic to the quotient of H by some arithmetic group. 

It was shown in [8] that 
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Tm 6 TI = ~ H(4m-t2) 
t ¢ ~ D 

t 2 ~ 4mm 
t 2~4m (mod D) 

if m is not a norm in K. In general, we must compactify X to a smooth 

surface ~ (by adding f in i t e ly  many "cusps" and resolving al l  s ingulari t ies  on the 

resulting surface). Then the closure of T represents a homology class in 
m 

H2(X) which we decompose as the sum of a class TCm in Im(H2(X) ÷ H2(~)) and of 

a linear combination of the classes represented by the curves of the singularity 

resolutions, and one has 

c Tc ~ hm~ 1 ~ rain (~ ~,). 
T l ~ = H( ) + CD m 

t6~ 
t2~<4m l>O 
t 2=4m (rood D) %~'=m 

Therefore we can write 

C2,I,D(Z) 12 m=l 

The formula for T c T c o (n,m 6 ~ arbitrary) was also given in [8] and can be 
n m 

compactly sumarized by 

(99) ~ (TnC ,~ Tm c) e2~imz = (C2,1,D 1 T÷(n))(z), 
m=O 

where T c is defined as a certain multiple of the volume form on ~ and T+(n) 
O 

is the composition of the n th Hecke operator on M2(~o(D) , (~)) with the 

canonical projection M2(Fo(D), (~)) ~ M~(Fo(D), (~)). By using these intersection 

number formulas in combination with a direct analytical proof (by means of non- 

holomorphic modular forms of weight 3/2) of the fact that C2,1, D E M2(Fo(D), (~)), 

the following theorem was proved in [8]: 

Theorem ([8], Chapter 3): For each hpmolo~y class K ~ H2(~; ¢) 

~K(Z) = ~, (K o T~) e 2~imz (z E H) 
m=O 

the series 

is a modular form in M~(Fo(D) , (~)). The mar # : K + ~K is in~ective on the 
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of H2(X; ~) ~enerated b7 the classes T c subspace 
n" 

On the other hand, the map ~ is zero on the orthogonal complement of a 

certain subspace U of H2(X; E) (defined in [7], p. 91) containing all the 

classes T c n' with 

D+19 ] = 
dim U - [ ~ dim M;(Fo(D ) (~)). 

On the basis of this 

jectured ([8], Conjecture l, p. 

the classes T c coincides with 
n 

is an isomorphism. But ~(T:) 

implies that the restriction of 

jective, thus proving the conjecture. 

and of numerical calculations for D < 200 it was con- 

108) that the subspace of H2(X; C) spanned by 

U and that the map ~ : U ÷ M;(Fo(D), (~)) 

= C2,I,DI T+(n) by equation (99), so Corollary 2 

to the space generated by the T c is sur- 
n 

We state this result as 

Corollary 3: The subspace of H2(X; ¢) generated by the homology classes 

FD+I9] 
rCn has dimension L"~'-J and is mapped isomorphically onto M;(ro(D), (~)) 

by ~. 

By associating to a Hilbert cusp form F ~ S2(SL2(ff)) the differential form 

[F(Ez E'~) dz A d z  - ~  + F(EZ', £'z) dz' A dzJ 
2 - 

( e = fundamental unit) and then applying the Poincar~ duality map to the 

cohomology class represented by this form, one obtains an injective map 

j : s 2 (SL 2 (~)) ÷ 

(see[7] or [8] for details). 

U°C U consisting of classes 

H2(~; ¢)  

U n d e r  t h i s  map ,  t h e  c o d i m e n s i o n  I s u b s p a c e  

x w i t h  xT c = 0 c o r r e s p o n d s  t o  t h e  s u b s p a c e  
0 

S~YmC S2(SL2(e)) generated by Hecke eigenforms F with F(z,z') = 

Thus ~ can be identified with a map from S~ ym to S~(Fo(D), (~)). 

hand, one has the Naganuma lifting %: f + ~ going the other way. 

conjectured in [8] (Conjecture 2, p. IO9) that the two maps ¢ o j : 

F(z' ,z) .  

On the other 

It was 

S~ ym 
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S:(Fo(D) ' (D)) and I : S2(Fo(D), (D))_~ S~Ym are, up to a constant, adjoint 

maps with respect to the Petersson scalar product. From the definition of ~ via 

intersection numbers with the classes T c and of t via the Petersson product 
m 

with ~Q = ~-~m~m, D e 2zim~ one sees that this is equivalent to the statement 

(lOO) j(m~m, D) = (const) . TC°m (m = 1,2 .... ), 

where 

Too = Tc (Tm To ) Tc 
m m (To c To c) o 

is the component of T c in 
m 

except that there 

U ° (equation (IO0) is conjecture 2' of E8], p. IIO, 

TOm was inadvertently written instead of T c°m ). 

There are two partial results in the direction of (1OO) which can be deduced 

from Theorem 5. First of all, a formal calculation using (80) shows that for 
-2 

k > 2 the Petersson product of mk-l~m, D and nk-l~n, D equals -~ Dktimes__ the 

th + 
m Fourier coefficient of Ck, l, D IT+(n) ~ where T+(n) = Sk(Fo(D), (~)) > 

S~(Fo(D), (~)) is the modified Hecke operator introduced above, while for 

k = 2 the same is true if we remove from C2,i, D a multiple of the Eisenstein 

+ 

series E2(z) 

-2 (~m,D, 0~n, D ) 

to get a cusp form. Using (99) and the equation j (~m,D) o j (~n,D) = 

([8], p. 109, equation (17)), we can state this result for k -- 2 

as 

j(m~,D) o j(n~,D) = ~2D2 T cO o T c° 
m n' 

which is compatible with (IOO) and gives the value of the constant occurring there 

as ±wD. Secondly, by letting s + I in (87) and using 

lira E(z,s)/ ~(s) = -~ 
s-+l 2 

we obtain the formula 

Cm,D(l ) = ~ D-k/2 mk-I ~ ~m,D(gZ, g,~) yk dV, 
£\ H 

and for k = 2 this can be interpreted (using (90) and (99) and the fact that T| 
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is the curve F\H C SL2(~)\H2, embedded by the diagonal map) as the statement 

~D TI,T~ O = T l o j(m~m,D) , 

which is again compatible with (IOO) and now gives the value of the constant 

exactly as ~D. It should be possible to prove this statement with T! replaced 

by T using similar methods; by virtue of Corollary 3, this would suffice to 
n 

establish (1OO) in full generality. 

We end this section by proving the analogue of (|00) for forms of higher 

weight. The principle is very, general and should be applicable to any cycles on 

automorphic varieties (i.e. quotients of bounded symmetric domains by arithmetic 

groups) and automorphic forms which have the same formal relation to one another 

as T m has to 60m, D. The proof we give would probably be carried over to the 

case of weight 2 (proving (I00)), by using the definition of tom, D as 

lim ~-~ (azz' + %z + %'z' + b) -2 lazz' + ~z +%'z' + bl -s 
~+0 

a,b,% 

(~24j , Appendix |) and carrying out the limit in the integrals. 

Equation (|00) (with the constant equal to ~D) is equivalent to the formula 

~D i ~ F(gZ, e'z -~) dz A d~ (VF 6 $2(SL2(0) ~ (101) (mWm,D,F) = - -~ - ,  

T 
m 

b e c a u s e  t h e  r i g h t - h a n d  s i d e  i s  j u s t  - ~gD t i m e s  t h e  i n t e r s e c t i o n s  number o f  

T co j(F) with T m (we can write T m instead of T c or because j(F) is 
m m 

orthogonal to the curves of the singularity resolutions and to the volume form 

T~). Let 

= {A eM2(O) I A ~ = A' }, 

a b (d -b. a' b' 
where A ~ and A' are defined for A = (c d ) E M2(~) as -c a ) and (c' ~')' 

respectively. The group G = SL2(O)/{±k} acts on ~ by M o A = M *~M'o Each 

A 6~ with det A > 0 defines a curve in H x H, namely its graph {(z, Az) I 

z @ H}, and T m consists of the images in SL2(~ ~ H 2 of these graphs for all A 
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with det A = m. The components of 

classes of A with det A = m. Let 

representatives of these classes and 

C0m correspond to the SL2(~)-equivalence 

A i = ci di (i = l ..... r) denote 

G. ( i = l,...,r) the isotropy groups 
i 

G. = {MeG I M~A.M ' = +A. }. 
1 1 l 

Then 

where the 

T 
m 

r 

tJ 
i=i 

.=h 
z component is embedded by 

~m,D(Z, z' ) 

r 

okI2 
i=l M £ G.\ G 

1 
r 

= Z ~(i)(z, z') 
i=l m,D 

z ~'~(z, Aiz), and ~m,D 

SM~A.M,(ez,e'z')k/2 
I 

is defined by 

(k>2) 

where 

~a b (z,z') 
(c d ) 

= (czz' - az + dz' - b) -2 

az+b.-2 
= (cz+d) -2 (z' -c--~-~) 

(of. [24] 11.4 - 5), and each function ~0 (i) is in Sk(SL2(O0) For k = 2, 
' m,D " 

co(i) Then equation (IOO) states that one has a similar splitting of C0m, D as ~ m,D " 

r r 

~ (F (i), -~D~ I (ci~+di)-2 F(ez, e'A.-~) dx dY 
i=l " c° m'D~ = i=l G.\H 

I 

for all F ~ $2(SL2(O)). The analogue we prove for forms of higher weight is the 

following. 

Theorem 6: Let k > 2, m > I Then 

r 

(F, mm,D ) = ½CkDk/2 

for all 

proportional to the integral of .... 

i=l 

and ~m,D the Hilbert modular form (78) 

I (ciz+di)-k F(ez, e'Ai--z) yk dV 

G.\H 
l 

F 6 Sk(SL2(O)), i.e. the Petersson product of 

F over the curve T m 

F with mk-1~ is 
,,, m,D -- 

in a suitable sense. 



165 z a -  61 

Proof: We have 

(i)~ 
(F, ~m, O - 

(|02) 

= D k/2 

F(ez e,z-~) m(i)(£~, g'z') yk y,k dV' dV 
m~u 

I I F(Ez, e'z %) ~Ai({,z,)k/2 yk ,k G.NH 2 Y dV~dV . 
i 

Since G i acts properly discontinuously on H, we can take for G'\H21 a 

fundamental domain of the form ~ x H, where ~ is a fundamental domain for the 

action of G. on H. Then the integral on the right-hand side of (|02) equals 
l 

G.~H H 

But one has the identity 

f(z)({_m)-k yk dV = ½ C k f(a) 
H 

for any holomorphic function f on H with 

p. 46), SO the inner integral in (103) equals 

(a E t~) 

~If(z) 12 yk dV < oo (cf. [-25], 
H 

C k F(Ez, e'Aiz). 2 

This proves the theorem. 

Remarks. I. Theorem 6 is contained in recent work of T. Oda ~5]. However, 

the explicit working out of his very general results for the case of the curve 

T has, so far as I know, not yet been given in the literature. 
m 

2. In the theorem we describe a way of integrating cusp forms of weight k over 

certain curves of X, whereas one would expect such an integral to make sense 

only for k = 2. Presumably there is some appropriate homology theory ~k(~) 

which has a natural pairing with Sk(SL2(e)) and such that the curves in question 

classes in ~k" The bilinear form on ~k corresponding to the Petersson yield 

product in Sk(SL2(~)) should then have a geometrical interpretation, i.e. for two 

compact curves C l and C 2 which meet transversally the intersection number of 
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C1 and C 2 in ~k 

points of C 1 and C 2. The intersection number of T n 

(assuming that n or m is not a norm and (n,m) = I) 

, k-l 

4<~nm4~m ok-I-~ 4nm-t 2 
t 2t2 O - ~ H(--~) , 

od D) 

should be a sum of local contributions from the intersection 

and T m in ~k 

must be given by 

I. Here ~--~H(D)anm-~2 is the number 

of intersection points of T n and Tm, and from the description of the local 

geometry near such an intersection point given in Chapter I of [8] we find that 

the number 0 at a point x £ T ~ T has a local description as the cross- 
n m 

ratio of the four tangent directions in the tangent space TxX given by ~z1,~z2 

and the directions of T and T at x. (This was suggested to me by Atiyah.) 
n 

(cf. (91)), where 0 + O = t 00 = 

3. For k > 12 the space S~YmC Sk(SL2(@)) is no longer the image of the 

Naganuma lifting I but the direct sum of this image with the image of the 

Doi-Naganuma lifting 

I o : Sk(SL2(Z)) -~ Sk(SL2(@)). 

We can give a description of the adjoint map (w.r.t. the Petersson product) of 

in terms of intersection numbers as follows: The curve T m is d~m I o Fro/d2 9 

where F m is defined in the same way as T m but with the condition that the triple 

(a, b, ~) not be divisible by any natural number > I. In a recent thesis 

("Kurven in Hilbertschen Modulfl~chen und Humbertsche Fl~chen im Siegel-Raum", 

Bonn 1977), H.-G. Franke proved that, for prime discriminants D, the curve F 
m 

is irreducible if D2~m and has exactly two components if D21m. Call these 

two components F+m and Fm; they are given by taking those triples (a, b, %) 

in the definition of F m for which (~) + (~) is positive or negative, res- 

pectively (note that ab E ~' (rood D) ~ (~) + (~) # O). Set 
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T ± = U F~D2/f2 
m f2im 

(so that T+m and T-m are unions of components of TmD2, with TmD 2 = Tm + 

T + + - We can break up e as ~ + ~+ + - in parallel way, 
m Tm)" mD2,D m,D m,D ~m,D a 

+ 

and the proof  of  Theorem 6 again  g ives  an i n t e r p r e t a t i o n  of  (F, ~ , D  ) as an 
± 

integral of F over T m The relation to the Doi-Naganuma mapping is given by 

Theorem 7: Let k > 2. The function 

2 F o0 a°(z,z';r) m k-I + (z,z') - L0 (z z') e 2~imT (z,z',T 6 H) 
= ~m,D ' 

m = I 

is a cusp form of wei sht k on SL2(Z ) with respect to 

factor, the kernel function of the Doi-Nasanuma lifting 

S k (SL 2 (~)). 

I omit the proof, which is analogous to that in ~4]. 

r and is, up to a 

1 o : Sk(SL2(~)) -+ 
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