
The First 50 Million 
Prime Numbers* 
Don Zagier 

To my parents 

I would like to tell you today about a 
subject which, although I have not worked 
in it myself, has always extraordinarily 
captivated me, and which has fascinated 
mathematicians from the earliest times 
until the present - namely, the question 
of the distribution of prime numbers. 

You certainly all know what a prime 
number is: it is a natural number bigger 
than 1 which is divisible by no other 
natural number except for I. That at 
least is the number theorist's defini- 
tion; other mathematicians sometimes have 
other definitions. For the function-the- 
orist, for instance, a prime number is 
an integral root of the analytic func- 
tion 
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Additional remarks and references to the lit- 
erature may be found at the end. 
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Birkh~user Verlag, Basel. 
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sin ~F(s) 
I - s ; 

sin -- 
s 

for the algebraist it is 

"the characteristic of a finite field" 

or 

or 

"a point in Spec ~" 

"a non-archimedean valuation"; 

the combinatorist defines the prime num- 
bers inductively by the recursion (I) 

1 
Pn+1 = [I - log2( ~ + 

n (-1)r 

r~1 ISil<'~'<irSn 2 pi1"''pir - I 
)] 

([x] = biggest integer S x); 

and, finally, the logicians have recent- 
iv been defininq the primes as the posi- 
tive values of the polynomial (2) 

F(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q, 
r,s,t,u,v,w,x,y,z) 

= [k + 2] [1 - (wz+h+j-q) 2 - 
(2n+p+q+z-e) 2 - (a2y2-y2+1-x2)2 - 
({e4+2e3}{a+1}2+1-o2) 2 - 
(16{k+1}3{k+2}{n+1}2+1-f2)2 - 
({(a+u~-u2a) 2-1}{n+4dy}2+1-{x+cu}2) 2 
- (ai+k+1-l-i) 2 - 
({gk+2g+k+1}{h+j}+h-z) 2 - 
(16r2y~{a2-1}+1-u2) 2 - 
(p-m+l{a-n-1}+b{2an+2a-n2-2n-2}) 2 - 
(z-pm+pla-p21+t{2ap-p2-1}) 2 - 
(qTx+y{a-p-1}+s{2ap+2a-p2-2~-2})2 - 
(a~12-12+1-m2) 2 - (n+l+v-y) ]. 

But I hope that you are satisfied with 
the first definition that I gave. 

There are two facts about the distri- 
bution of prime numbers of which I hope 
to convince you so overwhelmingly that 
they will be permanently engraved in your 
hearts. The first is that, despite their 
simple definition and role as the build- 
ing blocks of the natural numbers, the 
prime numbers belong to the most arbi- 
trary and ornery objects studied by math- 
ematicians: they grow like weeds among 
the natural numbers, seeming to obey no 
other law than that of chance, and no- 
body can predict where the next one will 
sprout. The second fact is even more 
astonishing, for it states just the op- 
posite: that the prime numbers exhibit 
stunning regularity, that there are laws 
governing their behaviour, and that they 
obey these laws with almost military pre- 
cision. 
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To support the first of these claims, 
let me begin by showing you a list of the 
prime and composite numbers up to 100 
(where apart from 2 I have listed only 
the odd numbers). 

prime compo s i te 

2 43 9 63 
3 47 15 65 
5 53 21 69 
7 59 25 75 

11 61 27 77 
13 67 33 81 
17 71 35 85 
19 73 39 87 
23 79 45 91 
29 83 49 93 
31 89 51 95 
37 97 55 99 
41 57 

and lists of the primes among the 1OO 
numbers immediately preceding and fol- 
lowing 10 million: 

The prime numbers between 9,999,900 and 
10,000,000 

9,999,901 
9,999,907 
9,999,929 
9,999,931 
9,999,937 
9,999,943 
9,999,971 
9,999,973 
9,999,991 

The prime numbers between 10,0OO,OOO and 
10,0OO,100 

10,0OO,019 
I0,OOO,079 

I hope you will agree that there is 
no apparent reason why one number is 
prime and another not. To the contrary, 
upon looking at these numbers one has 
the feeling of being in the presence of 
one of the inexplicable secrets of crea- 
tion. That even mathematicians have not 
penetrated this secret is perhaps most 
convincingly shown by the ardour with 
which they search for bigger and bigger 
primes - with numbers which grow regu- 
larly, like squares or powers of two, no- 
body would ever bother writing down ex- 
amples larger than the previously known 
ones, but for prime numbers people have 
gone to a great deal of trouble to do 
just that. For example, in 1876 Lucas 
proved that the number 2 127 - I is prime, 
and for 75 years this remained unsurpas- 
sed - which is perhaps not surprising 
when one sees this number: 

2127 - 1 = 

170141183460469231731687303715884105727. 

Not until 1951, with the appearance of 
electronic computers, were larger prime 
numbers discovered. In the accompanying 
table, you can see the data on the suc- 
cessive title-holders (3). At themoment, 
the lucky fellow is the 6002-digit num- 
ber 219937 - I (which I would not care to 
write down); if you don't believe me, you 
can look it up in the Guinness book of 
records. 

The largest known prime number 

~ ~ , 

~-,~ 0 0 
~'~ ~ o  o 

~O ~,~ 

2127- I 39 1876 Lucas 

~(2148 + 44 1951 Ferrier I) 

114(2127- I) + I 41 ~ Miller.+ 

180(2127- I)2+ I 79 ~ 1951 Wheeler + 
EDSAC I 

2521 - I 157 

2607 - I 183 I Lehmer + 
21279 - I 386 1952 Robinson 

22203 - I 664 + SWAC 

22281 - I 687 
Riesel + 23217 - 1 969 1957 
BESK 

24253 - I 1281 ~ Hurwitz + 

24423 - I 1332 # 1961 Selfridge 
+ IBM 7090 

29689 - I 2917 

29941 - I 2993 ~ 1963 Gillies + 
ILIAC 2 

211213 - I 3376 
Tuckerman 219937 - 1 6002 1971 
+ IBM 360 

More interesting, however, is the 
question about the laws governing prime 
numbers. I have already shown you a list 
of the prime numbers up to 1OO. Here is 
the same information presented graphical- 
ly. The function designated ~(x) (about 
which I will be continually speaking from 
now on) is the number of prime numbers 
not exceeding x; thus ~(x) begins with O 
and jumps by I at every prime number 2, 
3, 5 etc. Already in this picture we can 
see that, despite small oscillations, 
~(x) by and large grows quite regularly. 
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But when I extend the domain of x-values 
from a hundred to fifty thousand, then 
this regularity becomes breath-takingly 
clear, for the graph now looks like this: 
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For me, the smoothness with which this 
curve climbs is one of the most astonish- 
ing facts in mathematics. 

Now, wherever nature reveals a pat- 
tern, there are sure to crop up scien- 
tists looking for the explanation. The 
regularity observed in the primes forms 
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no exception to this rule. It is not dif- 
ficult to flnd an empirical formula which 
gives a good description of the growth 
of the prime numbers. Below 1OO there are 
25 primes, that is, one-fourth of the 
numbers; below 10OO there are 168, or 
about one-sixth; up to 10,OO0 there are 
1229 prime numbers, i.e. about one-eighth. 
If we extend this list, computing the 
proportion of prime numbers to natural 
numbers up to one hundred thousand, one 
million, etc., then we find the follow- 
ing table (in which the values of ~(x), 
listed so nonchalantly here, represent 
thousands of hours of dreary calculation). 

x ~(x) x/~(x) 

10 4 2.5 
1OO 25 4.0 
1OOO 168 6.0 

10,OO0 1,229 8.1 
1OO,OOO 9,592 10.4 

1,OOO,OOO 78,498 12.7 
10,0OO,0OO 664,579 15.O 
100,0OO,OOO 5,761,455 17.4 

1,O00,0OO,OOO 50,847,534 19.7 
10,OOO,OOO,OOO 455,052,512 22.0 

Here we see that the ratio of x to 
~(x) always jumps by approximately 2.3 
when we go from a power of 10 to the 
next. Mathematicians immediately recog- 
nize 2.3 as the logarithm of 10 (to the 
base e, of course). Thus we are led to 
conjecture that 

x 
~(x) ~ log x 

where the sign ~ means that the ratio 
~(x)/(x/log x) tends to I as x goes to 
infinity. This relationship (which was 
not proved until 1896) is known as the 
prime number ~eorem. Gauss, the greatest 
mathematician of them all, discovered it 
at the age of fifteen by studying prime 
number tables contained in a book of log- 
arithms that had been given to him as a 
present the previous year. Throughout his 
life Gauss was keenly interested in the 
distribution of the prime numbers and he 
made extensive calculations. In a letter 
to Enke (4) he describes how he "very of- 
ten used an idle quarter of an hour to 
count through another chiliad [i.e., an 
interval of 1,OO0 numbers] here and there" 
~ntil finally he had listed all the prime 
numbers up to 3 million (!) and compared 
their distribution with the formula which 
he had conjectured. 

The prime number theorem s~ates that 
~(x) is asymptotically - i.e., with a re- 
lative error of 0% - equal to x/log x. 
But if we compare the graph of the func- 
tion x/log x with that of ~(x), then we 
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see that, although the function x/log x 
qualitatively mirrors the behaviour of 
~(x), it certainly does not agree with 
~(x) sufficiently well to explain the 
smoothness of the latter: 
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&O00 
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1000 

log x 

I i I I I X 
v 

10 000 20 000 30 000 40 000 50 000 

Therefore it is natural to ask for better 
approximations. If we take another look 
at our table of the ratios of x to ~(x), 
we find that this ratio is almost exact- 
ly log x - I. With a more careful calcu- 
lation and with more detailed data on 
~(x), Legendre (5) found in 1808 that a 
particularly good approximation is ob- 
tained if in place of I we subtract 
1.08366 from log x, i.e. 

x 
~(x) % log x - 1.08366 

Another good approximation to ~(x), 
which was first given by Gauss, is ob- 
tained by taking as starting point the 
empirical fact that the frequency of 
prime numbers near a very large number x 
is almost exactly I/log x. From this, 
the number of prime numbers up to x 
should be approximately given by the 

logari~mic sum 

_ I I + + I 
LS(X) log 2 + log---~ "'" log-----~ 

or, what is essentially the same (6), by 
the logari~mic integral 

x I 
Li(x) = 2/ lo--~-~t. 

If we now compare the graph of Li(x) with 
that of ~(x), then we see that within the 
accuracy of our picture the two coincide 
iexactly. 
There is no point in showing you the pic- 
ture of Legendre's approximation as well, 
for in the range of the graph it is an 
even better approximation to ~(x). 
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There is one more approximation which 
I would like to mention. Riemann's re- 
search on prime numbers suggests that 
the probability for a large number x to 
be prime should be even closer to 1/log x 
if one counted not only the prime numbers 
but also the powers of primes, counting 
the square of a prime as half a prime, 
the cube of a prime as a third, etc. This 
leads to the approximation 

(x) + �89 ~(/~) + ~ ~(3~s + ... = Li(x) 

or, equivalently, 

(x) = Li(x) - �89 ~i(~) - �89 ~i(3/~) _ . . .  

(7) 

The function on the right side of this 
formula is denoted by R(x), in honour of 
Riemann. It represents an amazingly good 
approximation to ~(x), as the following 
values show: 

X ~ (X) R(X) 

I00,0OO,O00 
200,000,000 
300,000,000 
400,000,000 
500,000,000 
600,000,000 
700,000,000 
800,000,000 
900,000,000 

1,000,OO0,000 

5,761,455 
11,078,937 
16,252,325 
21,336,326 
26,355,867 
31,324,703 
36,252,931 
41,146,179 
46,009,215 
50,847,534 

5,761,552 
11,O79,090 
16,252,355 
21,336,185 
26,355,517 
31,324,622 
36,252,719 
41,146,248 
46,009,949 
50,847,455 

For those in the audience who know a lit- 
tle function theory, perhaps I might add 
that R(x) is an entire function of log x, 
given by the rapidly converging power se- 
ries 

R(x) = I + ~ I (log x) n 
n=1 n~ (n+1) n! ' 

where ~(n+1) is the Riemann zeta func- 
tion (8). 



At this point I should emphasize that 
Gauss's and Legendre's approximations to 
~(x) were obtained only empirically, and 
that even Riemann, although he was led 
to his function R(x) by theoretical con- 
siderations, never proved the prime num- 
ber theorem. That was first accomplished 
in 1896 by Hadamard and (independently) 
de la Vall~e Poussin; their proofs were 
based on Riemann's work. 

While still on the theme of the pre- 
dictability of the prime numbers, I would 
like to give a few more numerical exam- 
ples. As already mentioned, the probabil- 
ity for a number of the order of magni- 
tude x to be prime is roughly equal to 
I/log x; that is, the number of primes 
in an interval of length a about x should 
be approximately a/log x, at least if 
the interval is long enough to make sta- 
tistics meaningful, but small in compar- 
ison to x. For example, we would expect 
to find around 8142 primes in the inter- 
val between 100 million and 100 million 
plus 150,000 because 

150,OOO 150,OOO 
log (1OO,O00,OO0) = 18.427 . % 8142 

Correspondingly, the probability that 
two random numbers near x are both prime 
is approximately I/(log x) 2. Thus if one 
asks how many prime twins (i.e. pairs of 
primes differing by 2, like 11 and 13 or 
59 and 61) there are in the interval from 
x to x+a then we might expect approxi- 
mately a/(log x) 2. Actually, we should 
expect a bit more, since the fact that n 
is already prime slightly changes the 
chance that n+2 is prime (for example 
n+2 is then certainly odd). An easy heu- 
ristic argument (9) gives C.a/(log x) 2 
as the expected number of twin primes in 
the interval [x, x+a] where C is a .con- 
stant with value about 1.3 (more exactly: 
C = 1.3203236316...). Thus between 1OO 
million and 1OO million plus 150 thousand 
there should be about 

150~000 584 
(1.32''')(18.427)2= 

pairs of prime twins. Here are data com- 
puted by Jones, Lal and Blundon (io) giv-- 
ing the exact number of primes and prime 
twins in this interval, as well as in 
several equally long intervals around 
larger powers of 10: 

11 

Interval Prime Prime 
numbers twins 

I I 
O ~ ~ 

1OO,OO0,OOO- 8142 8154 584 601 
1OO,150,OOO 

1,OOO,O00,OOO- 7238 7242 461 466 
1,OOO,150,OOO 

10,OOO,O00,OOO- 6514 6511 374 389 
10,OOO,150,OOO 

100,OOO,O00,OOO- 5922 5974 309 276 
100,000,150,000 

1,000,000,000,000- 5429 5433 259 276 
1,000,000,150,000 

10,000,000,000,000- 5011 5065 221 208 
10,000,000,150,000 

100,000,000,000,000- 
4653 4643 191 186 

100,000,000,150,000 

1,000,000,000,000,000- 
4343 4251 166 161 1,000,000,000,150,000 

As you can see, the agreement with the 
theory is extremely good. This is espe- 
cially surprising in the case of the 
prime pairs, since it has not yet even 
been proved that there are infinitely 
many such pairs, let alone that they are 
distributed according to the conjectured 
law. 

I want to give one last illustration 
of the predictability of primes, namely 
the problem of the gaps between primes. 
If one looks at tables of primes, one 
sometimes finds unusually large inter- 
vals, e.g. between 113 and 127, which 
don't contain any primes at all. Let g(x) 
be the length of the largest prime-free 
interval or "gap" up to x. For example, 
the largest gap below 200 is the inter- 
val from 113 to 127 just mentioned, so 
g(2OO) = 14. Naturally, the number g(x) 
grows very erratically, but a heuristic 
argument suggests the asymptotic formu- 
la (II) 

g(x) ~ (log x) 2 

In the following picture, you can see 
how well even the wildly irregular func- 
tion g(x) holds to the expected behav- 
iour. 
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Up to now, I have substantiated my 
claim about the orderliness of the primes 
much more thoroughly than my claim about 
their disorderliness. Also, I have not 
yet fulfilled the promise of my title to 
show you the first 50 million primes, but 
have only shown you a few thousand. So 
here is a graph of ~(x) compared with the 
approximations of Legendre, Gauss, and 
Riemann up to 10 million (12) . Since these 
four functions lie so close together that 
their graphs are indistinguishable to the 
naked eye - as we already saw in the pic- 
ture up to 50,000 - I have plotted only 
the differences between them: 

This picture, I think, shows what the 
person who decides to study number the- 
ory has let himself in for. As you can 
see, for small x (up to approximately I 
million) Legendre's approximation 
x/(log x - 1.O8366) is considerably bet- 
ter than Gauss's Li(x), but after 5 mil- 
lion Li(x) is better, and it can be shown 
that Li(x) stays better as x grows. 

But up to 10 million there are only 
some 600 thousand prime numbers; to show 
you the promised 50 million primes, I 
have to go not to 10 million but all the 
way out to a billion (American style: 
10 ). In this range, the graph of 
R(x) - ~(x) looks like this(13) : 

600~ R (x)-X(x) /~ AA 

.A,.,, ,A , f L  
.;o 

-300| -- O~ < x ~< 1,000,000,000 

The oscillation of the function K(x)-~(x) 
become larger and larger,;but even for 
these almost inconceivably large values 
of x they never go beyond a few hundred. 

In connection with these data I can 
mention yet another fact about the num- 
ber of prime numbers ~(x). In the pic- 
ture up to 10 million, Gauss's approxima- 
tion was always bigger than ~(x). That 
remains so until a billion, as you can 
see in the picture on the following page 
(in which the above data are plotted log- 
arithmically). 
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z(x}+200- 

i 

~(x)+l~176 1 
3~'(x] 1 

~(x)-1ool 

Legendre 

V ~  Riemann / 

i,fV Vm 
" R,emann , M -- Rlemann " V ~ / ~  ~ '  " - ~ N  

x (m rmlilons ) 



13 

500 
L t ( x ) - R ( x )  

" ~ / / /  

/ t 

200 

200C 

100C 

10C I I i I I 1 J I 
10 20 30 50 70 100 200 500 1000 

x ( in  mi l l ions) 

Surely this graph gives us the impres- 
sion that with increasing x the differ- 
ence Li(x) - ~(x) grows steadily to in- 
finity, that is, that the logarithmic in- 
tegral Li(x) consistently overestimates 
the number of primes up to x (this would 
agree with the observation that R(x) is 
a better approximation than Li(x), since 
R(x) is always smaller than Li(x)). But 
this is false: it can be shown that there 
are points where the oscillations of 
R(x) - ~(x) are so big that ~(x) actual- 
ly becomes larger than Li(x). Up to now 
no such numbers have been found and per- 
haps none ever will be found, but Little- 
wood proved that they exist and Skewes(14) 
proved that there is one that is smaller 
than 

10101034 

(a number of which Hardy once said that 
it was surely the biggest that had ever 
served any definite purpose in mathemat- 
ics). In any case, this example shows 
how unwise it can be to base conclusions 
about primes solely on numerical data. 

In the last part of my lecture I would 
like to talk about some theoretical re- 
sults about ~(x) so that you don't go 
away with the feeling of having seen only 
experimental math. A non-initiate would 
certainly think that the property of 
being prime is much too random for us to 
be able to prove anything about it. This 
was refuted already 2,200 years ago by 
Euclid, who proved the existence of in- 
finitely many primes. His argument can 
be formulated in one sentence: If there 
were only finitely many primes, then by 
multiplying them together and adding I, 
one would get a number which is not di- 
visible by any prime at all, and that is 
impossible. In the 18th century, Euler 
proved more, namely that the sum of the 
reciprocals of the prime numbers di- 

verges, i.e. eventually exceeds any pre- 
viously given number. His proof, which 
is also very simple, used the function 

~(s) = I + i_ + I__ + ... , 
2 s 3 s 

whose importance for the study of ~(x) 
was fully recognized only later, with 
the work of Riemann. It is amusing to re- 
mark that, although the sum of the recip- 
rocals of all primes is divergent, this 
sum over all the known primes (let's say 
the first 50 million) is smaller than 
four(15). 

The first major result in the direc- 
tion of the prime number theorem was 
proved by Chebyshev in 1850(16). He 
showed that for sufficiently large x 

x 
x < ~(x) < 1.11 log x 0.89 log x 

i.e., the prime number theorem is cor- 
rect with a relative error of at most 
11%. His proof uses binomial coefficients 
and is so pretty that I cannot resist at 
least sketching a simplified version of 
it (with somewhat worse constants). 

In the one direction, we will prove 

x 
(x) < 1.7 ~ . 

This inequality is valid for x < 12OO. 
Assume inductively that it has been 
proved for x < n and consider the middle 
binomial coefficient 

Since n 

22n= (I+1)2n= (o2n)+(~n)+'''e(~n)+'''+(2n2n) 

this coefficient is at most 22n. On the 
other hand 

2n (2n) ! (2n) x(2n-1) x...x2xl 
( n ) = ~ = (nx(n-1)X. x2xl) " 

Every prime p smaller than 2n appears in 
the numerator, but certainly no p bigger 
than n can appear in the denominator. 

is divisible by every prime between n and 
2n: 

2n 
P (n) �9 

n<p<2n 

But the product has ~(2n) - ~(n) factors, 
each bigger than n, so we get 
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(2n) -~ (n) 2n 22n 
n < ~ p< (n) < 

n<p<2n 

or, taking logarithms 

~(2n) - ~(n) < 2n log 2 < 1 39 n 
log n " ~ " 

By induction, the theorem is valid for n, 
so ~(n) < I .7 (n/log n), and adding these 
relations gives 

n 2n 
~(2n) < 3.09 ~ < 1.7 log n log (2n) 

(n > 1200). 

Hence the theorem is valid also for 2n. 
Since 

n 
~(2n+I) < ~(2n) + I < 3.09 ~og n + I 

2n+I (n > 1200) 
< 1.7 log (2n+i") 

it is also valid for 2n+I, completing the 
induction. 

For the bound in the other direction, 
we need a simple lemma which can be 
proved easily using the well-known for- 
mula for the power of p which divides n! 
(17) : 

Lemma: Let p be a prime. If pVp is the lar- 

gest power of p dividing (~), 
then 

pVP < n. 

Corollary: Evergbinemial coefficient"(~) 
satisfies 

(~) = ~ pVp _< n~(n) 
p~n 

If we add the inequality of the corollary 

for all binomial coefficients (~) 

with given n, then we find 

n 
2n = (I+I) n = Z (~) S (n+l).n ~(n) 

k=O 

and taking logarithms gives 

~(n) > n log 2 log (n+1) 
- 'log n - log n 

> 2 n (n > 200). 
3 log n 

In closing, I would like to say a few 
words about Riemann's work. Although Rie- 
mann never proved the prime number theo- 

ram, he did something which is in many 
ways much more astonishing - he discov- 
ered an exact formula for ~(x). This for- 
mula has the form 

+ �89 + �89 + 

= Li(x) - Z Li (x p) 
P 

where the sum runs over the roots of the 
zeta function ~(s)(18) . These roots 
(apart from the so-called "trivial" roots 
0 = -2, -4, -6,..., which yield a negli- 
gible contribution to the formula) are 
complex numbers whose real parts lie be- 
tween 0 and 1. The first ten of them are 
as follows(19): 

I 
Pl = ~ + 14.134725 i, 

I 
P2 = ~ + 21.022040 i, 

I 
P3 = ~ + 25.010856 i, 

I 
P4 = ~ + 30.424878 i, 

I 
P5 = ~ + 32.935057 i, 

Pl ~ �89 - 14.134725 i, 

I 
P2 = ~ - 21.022040 i, 

1 
P3 = ~ - 25.010856 i, 

54 = �89 - 30.424878 i, 

55 = �89 - 32.935057 i. 

It is easy to show that with each root 
its complex conjugate also appears. But 
that the real part of every root is ex- 
actly I/2 is still unproved: this is the 
famous Riemann hypothesis, which would 
have far-readhing consequences for num- 
ber theory(20). It has been verified for 
7 million roots. 

With the help of the Riemann function 
R(X) introduced above we can write Rie- 
mann's formula in the form 

~(x) = R(x) - Z R(x p) 
P 

The k th approximation to ~ (x) which this 
formula yields is the function 

Rk(X) = R(x) + TI(X) + T2(x) +...+ Tk(X) , 
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where Tn(X) = -R(xPn) - R(x pn) is the 
contribution of the nth pair of roots of 
the zeta function. For each n the func- 
tion Tn(x) is a smooth, oscillating func- 
tion of x. The first few look like this 
(21): 

0.3 

0.2 i 

o~ 
-0.1 

-0.2 

-0.3 

~ 0 
N 
= T 1 (x) 

0.2 

0.1 

i/ ~ 

N 
= T 2 (X) 

~ O. 

-0"I I 
-0.2 

N 
T 3 (x) 

0.2 

0.1 

0 

-0.1 

-0.2 

~ /  ~ ~ o  
N 

Tz. (x) 

~ A 0 ~ AA A 

It follows that Rk(x) is also a smooth 
function for each k. As k grows, these 
functions approach ~(x). Here, for exam- 
ple, are the graphs of the 10th and 29th 
approximations, 

15-- 

X 
I I ..- 

50 100 
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R 2 9 ( x )  

I I 
50 t00 

X t x )  
.............. R10(x) 

R29(x) 

I I X 

50 100 

and if we compare these curves with the 
graph of ~(x) up to 100 (p. 9) we get 
the following picture: 

I hope that with this and the other 
pictures I have shown, I have communicat- 
ed a certain impression of the immense 
ibeauty of the prime numbers and of the 
iendless surprises which they have in 
istore for us. 

Remarks 

(I) J.M. Gandhi, Formulae for the nth 
prime, Proc. Washington State Univ. 
Conf. on Number Theory, Washington 
State Univ., Pullman, Wash., 1971 
96 - 106 

(2) J.P. Jones, Diophantine representa- 
tion of the set of prime numbers, 
Notices of the AMS 22 (1975) A - 
326. 

(3) There is a good reason why so many 
of the numbers in this list have 
the form Mk = 2k - 1: A theorem of 
Lucas states that M k (k>2) is prime 
if and only if Mk divides Lk-1, 
where the numbers L n are defined in- 
ductively by L I = 4 and Ln+ I = L~ - 2 
(so L 2 = 14, L 3 = 194, L 4 = 37634, 
...) and hence it is much easier to 
test whether M k is prime than it is 
to test another number of the same 
order of magnitude. 

The prime numbers of the form 
2K - I (for which k itself must nec- 



essarily be prime) are called Mer- 
senne primes (after the French math- 
ematlcian Mersenne who in 1644 gave 

�9 79 a list of such primes up to 10 , 
correct up to 1018 ) and play a role 
in connection with a completely dif- 
ferent problem of number theory. 
Euclid discovered that when 2P - I 
is prime then the number 2P -I (2P-I) 
is "perfect", i.e. it equals the 
sum of its proper divisors (e.g. 
6 = I + 2 + 3 , 2 8 = I + 2 + 4 + 7 +  
%4, 496 = I + 2 + 4 § 8 + 16 + 31 + 
62 + 124 + 248) and Euler showed 
that every even perfect number has 
this form. It is unknown whether 
there are any odd perfect numbers 
at all; if they exist, they must be 
at least 10 IQ0 . There are exactly 
24 values of p < 20,000 for which 
2P - 1 is prime. 

(4) C.F. Gauss, Werke II (1892) 444 - 
447. For a discussion of the histo- 
ry of the various approximations to 
~(x), in which an English transla- 
tion of this letter also appears, 
see L.J. Goldstein: A history of 
the prime number theorem, Amer. 
Math. Monthly, 80 (1973) 599 - 615. 

(5) A.M. Legendre, Essai sur la theorie 
de Nombres, 2nd edition, Paris, 
1808, p. 394. 

(6) More precisely 

Ls(x) - 1.5 < Li(x) < Ls(x), 

i.e. the difference between Li(x) 
and Ls(x) is bounded. We should also 
mention that the logarithmic inte- 
gral is often defined as the Cauchy 
principal value 

Xdt = lim /i-~ dt 
Li(x) =o § log t 

) + s oTG~q 
I-5 

but this definition differs from 
that given in the text only by a 
constant. 

(7) The coefficients are formed as fol- 
lows: the coefficient of Li(n/x) is 
+ 1/n if n is the product of an even 
number of distinct primes, -I/n if 
n is the product of an odd number 
of distinct primes, and 0 if n con- 
tains multiple prime factors. 
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(8) Ramanujan has given the following 
alternative forms for this function: 

(lOg X) "t dt 
R(x) = 7 t r(t+i)~(t+l) 

o 

(~(s) = the Riemann zeta function 
and F(s) = the gamma function) and 

R(e2~X)' 2 (2 x 4 3 6 5 1 =~ ~ + 3--~4x +~x+.. 
( 2525 ) _ ~2 12x + 40x 3 + --~--x +... 

(B k = k th Bernoulli number; the sym- 
bol ~ means that the difference of 
the two sides tends to O as x grows 
to infinity). See G.H. Hardy, Rama- 
nujan: Twelve Lectures on Subjects 
Suggested by His Life and Work, Cam- 
bridge University Press, 1940, Chap- 
ter 2. 

(9) Namely: The probability that for a 
randomly chosen pair (m, n) of num- 
bers both m and n are ~ 0 (mod p) 
is obviously [ (p-1)/p] 2 , while for 
a randomly chosen number n, the. 
probability that n and n+2 are both 

O (mod p) is I/2 for p = 2 and 
(p-2)/p for p ~ 2. Thus the proba- 
bility for n and n+2 modulo p to be 
prime twins differs by a factor 

p-2 2 
p 

for p r 2 and by 2 for p = 2 from 
the corresponding probability for 
two independent numbers m and n. Al- 
together, we have therefore improved 
our chances by a factor 

C = 2 
p2 _ 2p 

p>2 p2 _ 2p + I 
p prime 

= 1.32032. For a somewhat more 
careful presentation of this argu- 
ment, see Hardy and Wright, An In- 
troduction to the Theory of Numbers, 
Clarendon Press, Oxford, 1960, 
w 22.20 (p. 371 - 373) 

(10) M.F. Jones, M. Lal, and W.J. Blundon, 
Statistics on certain large primes, 
Math. Comp. 21 (1967) 103 - 107. 

(11) D. Shanks, On maximal gaps between 
successive primes, Math. Comp. 18 
(1964) 646 - 651. The graph of g(x) 
was made from the tables found in 
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the following papers: L.J. Lander 
and T.R. Parkin, On first appear- 
ance of prime differences, Math. 
Comp. 21 (1967) 483 - 488, R.P. 
Brent, The first occurrence of large 
gaps between successive primes, 
Math. Comp. 27 (1973) 959 - 963. 

(12) The data for this graph are taken 
from Lehmer's table of prime numbers 
(D.N. Lehmer, List of Prime Numbers 
from I to 10,OO6,721, Hafner Pub- 
lishing Co., New York, 1956). 

(13) This and the following graph were 
made using the values of ~(x) found 
in D.C. Mapes, Fast method for com- 
puting the number of primes less 
than a given limit, Math. Comp. 17 
(1963) 179 - 185. In contrast to 
Lehmer's data used in the previous 
graph, these values were calculated 
from a formula for ~(x) and not by 
counting the primes up to x. 

(14) S. Skewes, On the difference ~(x) - 
li(x) (I), J. London Math. Soc, 8 
(1933) 277 - 283. Skewes' proof of 
this bound assumes the validity of 
the Riemann hypothesis which we dis- 
cuss later. Twenty-two years later 
(On the difference ~(x) - li(x) (II), 
Proc. Lond. Math. Soc. (3) 5 (1955) 
48 - 70) he proved without using the 
Riemann hypothesis that there exists 
an x less than the (yet much larger) 
bound 101010964 
for which ~(x) > Li(x). This bound 
has been lowered to 

1010529.7 
by Cohen and Mayhew and to 1.65xiO 1165 
by Lehman (On the difference 
~(x) - li(x), Acta Arithm. 11 (1966) 
397 - 410). Lehman even showed that 
there is an interval of at least 
10500 numbers between 1.53• 
and 1.65xiO I165 where ~(x) is larger 
than Li(x). As a consequence of his 
investigation, it appears likely 
that there is a number near 6.663 
x10370 with ~(x) > Li(x) and that 
there is no number less than 1020 
with this property. 

(15) Namely (as conjectured by Gauss in 
1796 and proved by Mertens in 1874) 

7 1 = log log x + C + r 
p<x p 

where ~(x) § 0 as x tends to infin- 
ity and C ~ 0.261497 is a constant. 
This expression is smaller than 3.3 
when x = 109 , and even when x = 1018 
it still lies below 4. 

(16) P.L. Chebyshev, Recherches nouvelles 
sur les nombres premiers, Paris, 
1851, CR Paris 29 (1849) 397 - 401, 
738 - 739. For a modern presentation 
(in German) of Chebyshev's proof, 
see W. Schwarz, EinfUhrung in Metho- 
den und Ergebnisse der Primzahltheo- 
rie BI-Hochschultaschenbuch 278/278a, 
Mannheim 1969, Chapt. II.4, P. 42 - 
48. 

(17) The largest power of p dividing p! 
is p[n/P]+[nTp2]+..., where [x] is 
the largest integer S x. Thus in the 
notation of the lemma we have 

Vp = r~17. (IV] - [~ - [i) 

Every summand in this sum is either 
O or I and is certainly O for 
r > (log n/log p) (since then [n/p r] 
= O). Therefore 9p S (log n/log p), 
from which the cl~im follows. 

(18) The definition of ~(s) as I + I/2 s 
+ I/3 s + ... given above makes sense 
only when s is a complex number 
whose real part is larger than I 
(since the series converges for 
these values of s only) and in this 
domain ~(s) has no zeroes. But the 
function ~(s) can be extended to a 
function for all complex numbers s, 
so that it makes sense to speak of 
its roots in the whole complex 
plane. The simplest way to extend 
the domain of definition of ~(s) at 
least to the half,plane Re(s) > O 
is to use the identity 

(1-21-s)~(s) = I + 1 + I_~ + ... 
2 s 3 s 

- 2 + 4- ~ 6 s ... 

= (_I)n-1 

n=l n s ' 

which is valid for Re(s) > I, and 
to observe that the series on the 
right converges for all s with pos- 
itive real part. With this, the "in- 
teresting" roots of the zeta func- 
tion, i.e. the roots p = B + iy with 
O < 8 < I, can be characterized in 



an elementary way by the two equa- 
tions 

n~ I (-I)n-I 
n 8 

n~ 1 (-I)n-I 
n 8 

cos(ylog n) = O, 

sin(ylog n) = O. 

The sum over the roots p in Rie- 
mann's formula is not absolutely 
convergent and therefore must be 
summed in the proper order (i.e., 
according to increasing absolute 
value of Im(p)). 

Finally, I should mention that, 
although Riemann stated the exact 
formula for ~(x) already in 1859, 
it wasn't proved until 1895 (by von 
Mangoldt). 

(19) These roots were calculated already 
in 1903 by Gram (J.-P. Gram, Sur 
les zeros de la fonction ~(s) de 
Riemann, Acta Math. 27 (1903) 289 - 
304). For a very nice presention of 
the theory of Riemann's zeta func- 
tion, see H.M. Edwards, Riemann's 
Zeta Function, Academic Press, New 
York, 1974. 

(20) Namely the Riemann hypothesis im- 
plies (and in fact is equivalent to 
the statement) that the error in 
Gauss's approximation Li(x) to ~(x) 
is at most a constant times 
xl/2.1og x. At the present it is 
even unknown whether this error is 
smaller than xC for any constant 
c < I. 

(21) This and the following graphs are 
taken from H. Riesel and G. G6hl, 
Some calculations related to Rie- 
mann's prime number formula, Math. 
Comp. 24 (1970) 969 - 983. 
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The 1977 Mathematics Calendar has found a 
worthy successor: 
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Psychology 
Calendar '78 

containing a selection of twelve themes 
which portray something of the exciting 
spirit which pervades psychological in- 
quiry: 

Dreaming 

Cognitive Contours 

Social Dominance in Monkeys 

McCollough Effect 

Dynamic Effects of Repetitive Patterns 

Harlow and Piaget 

Shadow and Light 

Memory Span Test 

Wilhelm Wundt Father of Psychology 

Recognition of Faces 

Split Brain 

Jerome Bruner's Theory of Cognitive 
Learning 

P.S. No cause for concern. The next Mathematics 
Calendar will appear in 1979. 




