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A~tract, In 1956, Rankin described which polynomials in the derivatives of modular forms 
are again modular forms, and in 1977, H Cohen defined for each n i> 0 a bilinear operation 
which assigns to two modular forms f and g of weight k and l a modular form If, g], of 
weight k + l + 2n. In the present paper we study these "Rankin-Cohen brackets" from t w o  

points of view. On the one hand we give various explanations of their modularity and various 
algebraic relations among them by relating the modular form theory to the theories of theta 
series, of Jacobi forms, and of pseudodifferential operators. In a different direction, we study 
the abstract algebraic structure (~RC algebra") consisting of a graded vector space together 
with a collection of bilinear operations [-,In of degree + 2n satisfying all of the axioms of 
the Rankin-Cohen brackets. Under certain hypotheses, these turn out to be equivalent to 
commutative graded algebras together with a derivation c3 of degree 2 and an element �9 of 
degree 4, up to the equivalence relation (~,q~)~(~-~bE, O - ~ z +  c~(qb)) where ~ is an 
element of degree 2 and E is the Fuler operator ( = multiplication by the degree). 

Keywords. Modular forms; Jacobi forms; pseudodifferential operators; vertex operator 
algebras. 

The derivative of a modular form is not a modular form. Nevertheless, there are 
many interesting connections between differential operators and the theory of modular 
forms. For instance, every modular form (by which we shall always mean a 
holomorphic modular form in one variable of integral weight) satisfies a nonlinear 
third order differential equation with constant coefficients; in another direction, if 
such a formf(T) is expressed as a power series cp(t(T)) in a local parameter t(T) which 
is a meromorphic modular function of z, then the power series ~p(t) satisfies a linear 
differential equation of order k + 1 with algebraic coefficients, where k is the weight 
off. This latter fact, which leads to many connections between the theory of modular 
forms and the theory of hypergeometric and other special differential equations, 
played an important role in the development of both theories in the 19th century 
and up to the work of Fricke and Klein, but surprisingly little role in more modem 
investigations. 

In 1956, .R.A. Rankin [Ra] gave a general description of the differential operators 
which send modular forms to modular forms. A very interesting special case of this 
general setup are certain bilinear operators on the graded ring M.(F) of modular 
forms on a fixed group F c PSL(2, R) which were introduced by H. Cohen [Co] and 
which have had many applications since then. These operators, which we call the 
Rankin-Cohen brackets, will be the main object of study in the present paper. On 
the one hand, we will be interested in understanding from various points of view 

57 



58 Don Zagier 

"why" these operators on modular forms have to exist. These different approaches 
(in particular, via Jacobi forms and via pseudodifferential operators) give different 
explanations and even different definitions of the operators, and although these 
definitions differ only by constants, the constants turn out to depend in a subtle way 
on the parameters involved and to lead to quite complicated combinatorial problems. 
On the other hand, we will try to understand what kind of an additional algebraic 
structure these operators give to the ring M,(F) and what other examples of the 
same algebraic structure can be found in (mathematical) nature. We will give a partial 
structure theorem showing that the algebraic structure in question is more or less 
equivalent to that of a graded algebra together with a derivation of degree 2 and an 
element of degree 4. The results will be far from definitive, our main object being to 
formulate certain questions and perhaps arouse some interest in them. 

1. The Rankin-Cohen bilinear operators 

Let f(~) and g(~) denote two modular forms of weight k and 1 on some group 
1 d d 

F c PSL(2, R). We denote by D the differential operator ~n/d-~ = qdqq (where q = e 2~i' 

as usual) and use f ' , f" ,  .... ftn~ freely instead of Df, D2f, .... Dnf The nth 
Rankin-Cohen bracket o f f  and g is defined by the formula 

[f,g-I.(T) = ~ ,+s=. ( - 1 ) ' ( n + k - l ) ( n + ~ - l )  f ' ' ( ~ ) g ' ' ( ~ ) ' s  (1) 

(The normalization here is different from that in [Co] and has been chosen so that 
If, g], is in 7 [ [q ] ]  i f f  and g are.) The basic fact is that this is a modular form of 
weight k + l + 2n on F, so that the graded vector space M,(F)  possesses not only 
the well-known structure as a commutative graded ring, corresponding to the 0th 
bracket, but also an infinite set of further bilinear operations C,].: M ,  | M ,  ~ M ,  +, § 2.. 
We shall be interested in seeing what kind of an algebraic structure this is and where 
other examples of such a structure arise. Let us start by recalling why If, g]. is a 
modular form. There are at least two ways to see this. 

The first is to associate to the modular form f(z) the formal power series 

f~(~) 1)I (2niX)~ (2) . ! ( .  + k -  n = O  

introduced by Kuznetsov [Ku] and Cohen [Co]. Then the higher brackets o f f  and 
g given by 

If, g].(~) ...(2niX) ~ (feMk, geMl). 7(3, ~ X ~ g ~  X~ ~ 
- ( n + k -  1 ) ! ( . + t -  o'. 

n .~ O (3) 

On the other hand, .~ satisfies the transformation law ([Ku], Theorem 1, [Co], 
Theorem 7.1a) 

?('(~),ie.c~d)2) --(CT'l-d)'ecx/(ct+a37(T,x) (~'=(: :)~F,'Y(~'):--~aT-I-b~ 
cx +d/" 

(4) 
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Indeed, this identity is equivalent by comparison of coefficients to the sequence of 
identities 

f('~(~(~)) _ ~, (2~ic)'-'(cz +d) ~+n+" ftm)(~) (n /> 0), 
n ! ( n + k - 1 ) !  m=o/'' ( n - m ) !  m ! ( m + k - 1 ) !  

and these are easily proved by induction on n. [For  a non-inductive proof of (4), 
observe that (2) is the unique power series solution of the differential equation 

~ - OX - X - ~  f =  0 with initial conditions .~T, 0) = (k - 1)! - ~ f(T), and verify 

that (cT + d)-ke-CX/~§ + d)~)) satisfies the same conditions.] Now 
identity (4) and the corresponding formula for 0 imply that the product occurring 
on the left-hand side of (3) is multiplied by (ez+ d) T M  under the transformation 
(3, X)~--~(7(T), (c~ + d)-2 X)(the exponential factors drop out because of the minus sign 
in (3)), and this says that the coefficient of X ~ in this product transforms like a modular 
form of weight k + l + 2n for all n. Since the ho lomo~hy  at the cusps is also easy to 
check, this proves the assertion. 

For the second proof, which will also make it clear that the operator [., .]~ is the 
only bilinear differential operator of degree 2n sending modular forms to modular 
forms - a fact which can be seen in many other ways - is to look at the effect of this 
operator on theta series. Recall that if Q: Z" ~ Z is a positive definite quadratic form 
in m variables and P:Z~'~ 12 a spherical function of even degree d with respect to Q 
(i.e. a homogeneous polynomial of degree d in m variables which is annihilated by 
the Laplacian AQ associated to Q), then the theta seriesf(z)= Oe.e(z)= Y~z. ,  P(x)q ~ ~  
is a modular form of weight k = d + m/2 on some subgroup F c PSL(2, Z) of finite 
index. If0 = OQ, p, is a second such theta series of weight ! = d' + m'/2, then the function 

F..I-S=~n 

c , ,Q(x)" Q'(x'y' qQ~x~+~,~x,~ 

will be a modular form (of weight k + l +  2n) if and only if the homogeneous 
polynomial of weight d + d' + 2n appearing in parentheses is spherical with respect 
to the combined Laplacian A~ + AQ,. But a short calculation, facilitated by choosing 
coordinates in which Q(x) = Z~'= 1 x~, shows that AQ(P(x)Q(xf) equals 4r(r + k - 1) 
P(x)Q(x)'- l, so this will happen if and only if r(r + k - 1)c, s + (s + 1)(s +/)c ,_ 1 ~+ 1 
vanishes for all r and s, i.e., if the c are proportional to ('-' 1)'(n+k s- 1)(,+z-1). ' 

2. Algebraic properties of the Rankin-Cohen brackets 

The brackets introduced in w 1 satisfy a number of algebraic identities. First, we have 
the obvious (anti-)commutativity property 

[.f,e]n = ( -  1)n[0,f']n, (5) 

for all n. The 0th bracket, as already mentioned, is usual multiplication, so satisfies 
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the identities 

[If ,  g']o, h]o = [.f, [0, h]o]o (6) 

making (M,,  {,]o) into a commutative and associative algebra. We also have the 
formulas 

[ . f , l ]o=[1 , f ]o=f ,  [f, 1 ] ,=[1 , f ] ,=O (n>0)  (7) 

(because the binomial coefficient (,:1) in (1) is zero), which say that the unit of this 
algebra structure has trivial higher brackets with all of M. .  The 1 st bracket, given by 

[-f,g]x = - [.0,f]1 = kfg' - If' g~M~+l+ z ( f  ~Mk, g~Mz), 

satisfies the Jacobi identity 

[[.fg] 1 h]l + [[gh]l f] l  + [[hf]lg]l = O, (8) 

giving M . _  2 the structure of a graded Lie algebra. (From now on, we often drop 
the comma in the notation for the bracktes). The double brackets [ [']o ]1 and [!'.] ~ ] o 
satisfy the identities 

[[fg]oh]x + [[.gh]of] l + [[hf]og]x = 0 (9) 
and 

m[[.fg]l h]o + l[[17h]if]o + k[[hf]lg]o = 0 ( f  eMk, geMz ,heM, )  (10) 

(the first one in which the weights play a role) as well as the mixed relations 

[[fg]o hi1 = [ [jTh] 1 f ] o  - [ [hf]  1 g]o, (1 la) 

(k + m +/ )  [ [ fg] ,  h]o = k[[hflog]l - I[~h]of]x ,  (1 lb) 

the first of which says that the Lie bracket with a fixed element of M ,  acts as a 
derivation with respect to the associative algebra structure [,]o. CA space having 
simultaneously the structures of an associative and a Lie algebra, with the latter 
acting via deri#ations on the former, is called a Poisson algebra.) The relations (6)-(11), 
which are not all independent, describe all identities relating the 0th and 1st brackets. 
At the next level, the relations involving the second bracket 

[.f,g.]2 = ( k  + 1 )  ( l + l )  
2 f g " - ( k +  1)(l+ 1)f 'g'+ 2 f"g~Mk+'+" 

(feMh, gr 

are already quite complicated. Starting wi th f  | g | heM~ | Mt | M= we can already 
make nine trilinear expressions of weight k + l + m + 4 ,  namely [[fg]oh]2, 
I[.fg] 1 hi 1, I [ fg]2]  h]o and their cyclic permutations. (The non-cyclic permutations 
give the same elements up to sign by (5).) The space they span has dimension 3, a 
basis being given by the first or the last group, which are mutually related by 

(k + 1)(l + 1) [[fg]oh]2 = -- m(m + 1)['[fg]2h]o 

+ (k + 1)(k + l + 1)[[gh]2f]  0 + (l + 1)(k + l + 1) [[hf]2g]o, (12a) 
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(k + ! + m + 1)(k + l + m + 2) [[.fo]2 h ]o=  (k + 1)(l + 1) [[.fg]o h]2 

- ( k +  D(k + l +  1)[[gh]of]2 - ( l +  1)(k + l +  1)[[hf]og]2, (12b) 

while the second group (which is linearly dependent by virtue of the Jacobi identity 
(8)) is expressed in terms of these by 

[[fg]  t h']t = [[gh']of']2 - [ [hf]og]2 + [[gh]2f']o - [[hf]2g]0.  (13) 

Of course we could go on in this way, giving more and more axioms for the bracket 
operations of various degrees. However, it is not obvious how the whole set of relations 
looks, or even when we have a complete defining set for a bracket of given order. 
For instance, although the bracket [']2 satisfies no trilinear relations like (6) or (8), 
a simple dimension count shows that the permutations of the r-fold 2-brackets 
[. . .  [[_fg]2h]v..]2 are linearly dependent for all sufficiently large r, but it is not clear 
how far we would have to go to get the first relation or how much further to ensure 
that all subsequent relations obtained would be consequences of ones already found. 
In w 3 we will give an infinite collection of trilinear relations among the Rankin-Cohen 
brackets which possibly may generate all relations, though we do not know this. 

However, even not knowing a complete (let alone minimal) collection of universal 
identities satisfied by the Rankin-Cohen brackets, one can investigate the class of 
graded vector spaces having bracket operations which satisfy these identities and try 
to elucidate their structure. This will be done in w 5-6. First, however, we look at two 
other structures on modular forms which give new explanations of the existence of 
the bracket operations (1) and shed further light on their algebraic nature. 

3. Rankin-Cohen operators and JacobMike forms 

We fix a subgroup F of PSL(2, R). For each integer k > 0 let dk = J~(F) be the set of 
all holomorph.ic functions O(z, X) on ~ x C(~" = upper half-plane) satisfying 

$(7(*),(c, Xd)2)=(c*+d)'dx/'rt+a'$(%X) ( , = ( :  bd)~F ) (14) 

(i.e., equation (4) with $ in place of~) as well as the usual holomorphy conditions 
at the cusps. We call the elements of Jl dacobi-like of weioht k because they satisfy 
one of the two characteristic functional equations of Jacobi forms. (The other one, 
which does not concern us here, involves translations of z by elements of the lattice 
Z ,  + Z, where X is proportional to z 2. See [EZ] for the theory of Jacobi forms, and 
in particular w 3 of [EZ] for many calculations related to the ones here.) 

Clearly the restriction of a Jacobi-like form to X = 0 is a modular form of weight 
k on F, and the kernel of this map dk -* Mk = Mk(F) is just X times Jt  § z (IO. The 
Kuznetsov-Cohen functional equation (4) says that we have a canonical section 
f ~ ( k -  1) ! fo f  Jk---*Mk, so that the sequence 

,X X = O  

0 - , J k + 2 ( F  ) ---* Jk(F) , Mk (1 0~0  

is exact and splits canonically. This implies that there is a bijection between Jacobi-like 
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forms of weight k and sequences of modular forms of weight k + 2n (n t> 0). Then the 
multiplication of Jacobi-like forms induces bilinear pairings M,  | M,  ~ M,  +, + 2,, 
and these must be multiples of the Rankin-Cohen brackets. We now look at the details. 

If we write d?(z,X)eJh(F ) as Y,~o~b~(z)(27riX)", then comparing coefficients of X" 
in the defining functional equation (14) gives the functional equations 

)- 
(c'r + d)-k-2"dp,,O,(z)) = d'~o m! \2h i  c'c + d dp,,_,,,(z) 

and conversely any sequence of holomorphic functions O,(T) satisfying (15) and a 
growth condition at cusps defines an element of Jk(F). Equations (15) are in turn 
equivalent to the sequence of transformation laws 

~bo~M~, k~b~ - ~bo~Mk+2, 2(k + 2)(k + 1)~b 2 - 2(k + 1)~b'~ + ~boeMk+,,... 
(16) 

and in general 

h,: = ~ ( -  1) "(2n - m + k 
,ffio m! -2)!~b~_),,eMh+z. (n~>O). (17) 

This can be proved from (15) by induction on n just as (4) was proved, or alternatively 
deduced from (4), since a simple binomial coefficient identity lets us invert (17) to write 

2 m + k -  1 

c~,(z) = ,+,~+,~ r[(r + 2m + k - 1)! 
h~)(z) (18) 

or equivalently as 

dp(L X )  = ~. (2n + k - 1)h,(L X)(2rc iX)"  
nffiO 

(19) 

and then the modularity of h, follows inductively from (4) (applied to h,,, n' < n) and 
the Jacobi-like property of ~. Equations (17) and (18) realize the afore-mentioned 
bijection between Jk(F) and II, Mt+zn(I0. Now to get the bracket operations we 
consider the Cohen-Kuznetsov lifts of two modular formsf~M~,o~Mt.  If �9 and fl 
are two complex numbers, then the product t~(z) ffi f (z ,  otX)O(r fiX) will be Jacobi-like 
with respect to the variable (~t + fl)X, since the exponential factors in (14) multiply. 
The case ~t + fl = 0 (when we can normalize to fl = - a t - -  1) was the case used to 
obtain the Rankin-Cohen brackets in w I. If �9 + fl is different from 0, we can normalize 
it to be equal to 1 by rescaling X. Then ~b belongs to J~+i and has an expansion of 
the form (19). The coefficient of (27fiX) n in ~ is given by 

Z T w" 1-- 1)! f('(x)O~ ,+~=n r.s.(r + k -  1)!(s + 

so by Leibniz's rule the modular forms h, defined by (17) (with k + l in place of k) 
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are given by 

h,(z) = ~ ( 2 n -  p -  q + k + l -  2)! a'fl~f(P+')(z)g(q+s~(z) (n >~ 0), 
p+q+,+~=, p!q!r!s!(r + k - l)!(s + l - 1)! 

(20) 

This is a combination of products of derivatives of f and 0 which is modular of 
weight k + l + 2n and hence must be a multiple r,  = u,(k, l; ~t, fl) of the Rankin-Cohen 
bracket [f,  #]~, so as ~ and fl = 1 - ~ vary we get infinitely many explanations of the 
existence of these brackets. Our next job is to compute the scalar x~. 

We define for each n a polynomial H,  of four variables, of degree n in the first two 
and homogeneous of degree n in the last two, by 

H.(k , I ;X ,Y )=  ~ , + s = n ( - 1 ) ' ( n + k - l ) ( n + l - 1 ) X ' Y  r (21) 

so that equation (1) can be rewritten as 

[_f,a].=H.(k,l;D~,D,.)(f(zl)O(zz))l.,=,2ffi, ( f~M~,oeM~). (22) 

The polynomials H~, whose definition can also be written 

I (  Xc~ Y ~  H,(k,l;X, Y ) = ~ . . \ -  ff~+ (r 't ,lr 

satisfy many algebraic identities. We mention in particular 

Hn(k, l; X, Y) = ( -  1)"Hn(l, k; Y, X), (23) 

H~(k, l; X, Y) = H.(l, - k - ! - 2n + 2; Y, - X - Y), (24) 

n!(n + k + l - 2)! 
H.(k, l; X,  Y)H.(k,l; ~, fl) 

(n + k - 1)!(n + 1 - 1)! 

(2r + 2s + t + k + ! - 2)! . . . . . . . . . . . . . .  t 
= ~ . . . . . . . . . . .  v (aAy(prT(--  y,'-J 

,+~+t=. r!s!t!(r + k - 1)!(s + l -  1). 

(~ + fl + ~= X + Y + Z=O). (25) 

The first two of these say that the 6-argument function 

I X  Y Z ]  ( k + l + m = 2 - 2 n ,  X +  Y-t-Z=O) 

is symmetric under even and ( -  1)n-symmetric under odd permutations of its three 
columns, and the third (for k + leZ) can then be rewritten more symmetrically as 

(~X)" (fl Y)*O, Z)' 
r!s!t!(r + k 1)!(s + l -  l)[(t + m - 1)l r + $ + t = n  

1 I X  Y Z m ] [ : f , m l  
= ( n + k - 1 ) [ ( n + l - 1 ) [ ( n + m - 1 ) [  1 

where x! denotes F(x + 1) for xeZ. 
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Identity (23) is trivial. To prove (24) and (25), we observe that H. = H.(k, l; X, Y) 
satisfies the differential equations 

02 -t- ' 0 02 
(Xo~--~ + Y O  )H.  =O, ( k o ~ +  -~X 5 t - ~ +  ~ i  )H .  =O (26) 

(the first is Euler's equation saying that H.  is homogeneous of degree n in X and Y, 
and the second was already used implicitly in the proof of modularity of[@ e q, Or, q,].  
in w 1), and these characterize H.  uniquely up to a scalar factor as a function o] ~ X 
and E Thus to prove (24) we verify, using (26), that the right-hand side also satisfies 
(26), and then fix the normalizations by taking Y = 0 and using (23). Similarly, to 
prove (25) we verify that the expression on the right satisfies (26) and hence is a 
multiple (depending on ~t and [3) of H.(k, l; X, Yg by the symmetry in (X, Y, Z) and 
(at, [3, y), this multiple must be a scalar multiple 2.(k,/) of H.(k, l; ct, [3), and the value 
of 2.(k,/) is fixed by specializing to a = Y = 0. One can also prove both identities 
using generating functions; for instance, we have 

~ H . ( k - n + I , I ; X , Y )  T"= ~ ( - 1 ) ' ( k s ) ( r + s + l - l ) x ' Y "  
n=O r,s>~ 0 r 

,~>oks /  (1 + TX) T M  

and hence H,(k - n + 1, l; X, Y) = ( -  1 ) ' H , ( -  k - l - n + 1,1; Z, Y), which is equivalent 
to (24). 

Now returning to (20), where a + [3 = 1, we see from (25) and (21) that 

n!(n + k + l - 2)! 
h.(T) = H.(k, i; or, [3)If,, O].(x). 

(n + k - 1)!(n + l - 1)! 

(This actually gives another proof of (25), since we already knew that h, had to be a 
multiple of If ,  O],, so the right-hand side of (25) must be a multiple of H,(k, l; X, Y).) 
Changing to the inhomogeneous notation, we can summarize what we have proved as: 

P R O P O S I T I O N  

For f 6 M k ( F  ), 96Mt(F) (k, l > 0) and a, flEC we have the identity 

](3, atX)O(z, fiX) = ~ c.(k, l; ct, [3)[.f,, 0].(x,(0t + [3)X)(2niX)" 
n=O 

(27) 

with 
1) n!(n + k + l -  2)! 

c. = (2n + k - (n ~-~--1)v.-~-l ~ 1)! H'(k' l; a' fl)" (28) 

Applying this proposition twice, we find that, if h e M . ( F )  is a third modular form 
on F, then 

] (3 ,  ~x)o(~ ,  f lx)~(~, ~ x )  = ' 

c.(k, l; ~,, t)cv(k + l + 2n, m; ~t + [3, ~) ff .v(z, (a + [3 + ~)X) (21tiX)" + p 
n,p~ 0 
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with F..p(T)f[[f,g].h]p. Since the expression on the left is symmetric in its 
arguments, we get: 

COROLLARY 

For f~M~(F), o~MI(F) and htM,.(F) and o~, ~, yr the expression 

~, c.(k,l;cz, fl)c,_.(k + ! + 2n, m;o~ + fl ,~)[~,g]. ,h],_.  EMk+,+.,+2,(F ) 
nffiO 

(rEZ ~ o), 

with c. given by (28), is symmetric under all permutations of (f,, k, ~), (g, l, ~), (h, m, ~). 
Varying r and comparing coefficients of the various monomials in a , / / and  ~, we 

systematically obtain in this way universal identities satisfied by the Rankin-Cohen 
brackets of the sort studied in w For instance, the triple brackets I [ fg ] .h ] .  can 
always be expressed (in general, in many ways) as linear combinations of the triple 
brackets [[fhl.O]..  

Finally, we mention that combinational identities similar to (24) and (25) occur, 
in a somewhat related context, in the paper [IZ]. 

4. The Rankin-Cohen operators and pseudodifferential operators 

This connection was suggested to the author by Yu. Manin and will be treated in 
detail in the joint paper [MZ], so we give only a few indications. 

Let D as before be the differential operator (21r 0-1 d/dz. (The factor 21ri, introduced 
earlier for convenience, is more of a nuisance now, but we will let it be.) Then by a 
formal pseudodifferential operator we mean a formal power series Y~ffi o O.(r where 
the g. are holomorphic functions in the upper half-plane. We can multiply two such 
series by Leibniz's rule 

( ~_'_of,.(~)D-")(.~og.(~)D-')=,.,.~o(-rm)f.(r162 D - ' - ' - ' ,  

and the pseudodifferential operators in this way form an associative, but of course 
not commutative, ring. 

Now if we consider some modular group F acting on the upper half-plane, then 
F also acts on D via D~---*(c~ + d)2D, so it makes sense to speak of a pseudodifferential 
operator Z.~ffioO.(~)D -" being F-invariant. If no > 0 is the smallest index with g.o r 0 
for such an operator, then it is easily seen that g.o is a modular form of weight 

1 ' " modular form of weight k + 2, etc. This is reminiscent k = 2no, O.o+ t + �89 + )g.o is a 
of the equations (15), and indeed, a calculation shows that the power series 

E 
.=,o n ! ( n  - 1)! 

belongs to J~(F), setting up a 1:1 correspondence between invariant pset:dodifferential 
operators of the form ~.~ .og.D-" and Jacobi-like forms of weight k. Combining this 
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with the Kuznetsov-Cohen lifting (4), we find that there is a canonical lifting 

f(~) ~-~ ~[ . f ]  = ~,, (_  l),(r + k/2)!(r +k/2 - 1)!f~,~(z)D_,_k/z 
,=o r!(r + k -  1)! 

(f6Mk, k > 0 even) 

from modular forms to pseudodifferential operators, and that conversely any F- 
invariant pseudodifferential operator can be expanded as a sum of such lifts. In 
particular, since the product of two F-invariant pseudodifferential operators is another 
one, we can associate to two modular forms fEM~,  g~Mt a sequence of modular 
forms {h,},~>o via 

~[_f'l '~[,q] = ~, ~l-hn] (h,~Mk+~+2,). 
n = O  

Then, just as in w 3, the uniqueness of the Rankin-Cohen brackets implies that h, 
must be some universal factor t, = t,(k,l) of If,0], .  Since, unlike the situation in w 
where the definition of the modular forms h n depended on an arbitrary parameter g, 
the present operation is completely canonical, one would expect the scalar factor 
occurring to be very simple. Surprisingly, it is not: the combinatorial calculations 
needed here are far worse than the already complicated ones in w 3. The formula" for 
tn(k, l), as well as other aspects of the connection between pseudodifferential operators 
and modular forms (including a connection with super-pseudodifferential operators 
in the case of modular forms of odd weight), will be discussed in [MZ]. 

5. Def'mition and examples of Rankin-Cohen algebras 

We define a Rankin-Cohen aloebra (or RC algebra for short) over a field K as a 
graded K-vector space M,  = ~ Mk (with M o = K ' I  and dimKM~ finite for all k) 

k~o 
together with bilinear operations f,],:Mh | Mz--, M h +t + e, (k, l, n/> 0) which satisfy 
(5)-(13) and all the other algebraic identities satisfied by the Rankin-Cohen brackets. 
In view of the remarks at the end of w 2, this may seem like a strange definition, since 
we do not know how to give a complete set of axioms. Nevertheless, we will be able 
to construct examples and, to a large extent, to clarify the structure of these objects. 
The situation should be thought of as analogous to building up the theory of Lie 
algebras starting with the observation that the operation IX,  Y] = X Y -  Y X  in an 
associative algebra seems to have interesting properties. One could then define Lie 
algebras as algebras with a bracket satisfying all algebraic identities universally 
satisfied by this standard bracket in any associative algebra, and a good many results 
could be proved without knowing a complete generating set for these identities. One 
would initially be forced to look at subspaces of associative algebras closed under 
the standard bracket, but would eventually prove that all Lie algebras arise this way 
(existence of the universal enveloping algebra) and also that all universal identities 
satisfied by the bracket are in fact consequences of anticommutativity and the Jacobi 
identity. In the same way, we will start by considering RC algebras which are subspaces 
closed under all bracket operations of some standard examples, and then show that, 
under some general hypotheses, all RC algebras in fact arise in this way. 
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We will suppose the ground field K to be of characteristic 0 (in our examples it is 
usually Q or C) although it is clear that the theory makes sense in any characteristic 
or, for that matter, even if we work over Z rather than a field. 

Example 1. Since modular forms and their derivatives do not satisfy any universal 
relation, the only identities satisfied by the Rankin-Cohen brackets on M,(F)  are 
those following from the formula (1) and Leibniz's rule. The basic example of an RC 
algebra is therefore given by 

Definition. Let R ,  be a commutative graded algebra with unit over K together with 
a derivation D:R. ~ R .  of degree 2 (i.e. D(R,)~_ Rk+ 2 for all k and (fg)' = f ' g  + fg', 
where as before f ' , f '  . . . . .  ft'~ denote Df, D2f, .... D'f), and define [,]o., by 

[f '0]a '"  = ~,+,=. ( - 1 ) ' (  n + k - 1 ) ( n  + l - 1 )  r 

( f  ~Rk, gERz). (29) 

Then (R. ,  [,]D..) is an RC algebra which we will call the standard RC aloebra on (R. ,  D). 
Since a subspace of an RC algebra which contains 1 and is dosed under all ~he 

bracket operations is obviously again an RC algebra, this gives us a large further 
class of examples, the sub-RC algebras of the standard ones. A basic question (the 
analogue of the question of the existence of universal enveloping algebras in the Lie 
algebra case) is whether every RC algebra can in fact be realized in this way. We will 
give an affirmative answer under a weak additional hypothesis below. 

Example 2. Our original example of an RC algebra, M, (F)  with the brackets defined 
by (1), is not a standard algebra, since M.(F) is not closed under D = (27ri)-ld/dz. 
Of course it is a subalgebra of a standard RC-algebra in a variety of ways, since we 
can take R .  to be any algebra of functions on the upper half-plane which contains 
M,(F)  and is closed under differentiation (e.g. the space of all C ~~ or of all holomorphic 
functions). However, we would like an R .  which is not too big, Let us look in more 
detail at the case F = PSL(2,Z). Here M. (F)  = C[Q,R] ,  where Q = 1 + 240q + - . .  
and R = 1 - 504q . . . .  are the normalized Eisenstein series of weights 4 and 6 (in 
Ramanujan's notation). As is well-known, their derivatives are given by 
Q'=~(PQ-R) and R'=�89 where P =  1 - 2 4 q  . . . .  is the normalized 
Eisenstein series of weight 2, and since we also have P' = ~ ( p 2  _ Q) this says that 
M, (F)  is contained in the standard RC algebra on (C[P, Q, R],D). Now, forgetting 
modular forms and the interpretation of P, Q and R as functions, we can express 
this example purely algebraically: let K be a field of characteristic 0 and define a 
derivation on the polynomial algebra over K on three graded generators P, Q, R of 
degrees 2, 4 and 6 by 

D p2_Q t~ P Q - R  c9 PR-Q2 
= - -  .l- - -  q- - -  : K[P,Q,R],~K[P,Q,R],+2; 

12 ~3P 3 aQ 2 ~R 
(30) 

then the subalgebra generated by Q and R is closed under the bracket operators 
[ ] ,  = [ ]o., defined by (29) for all n i> 0. From an algebraic point of view this is not 
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at all obvious (except for n = 0), although one can easily check a few examples, e.g. 
(with 1728A -- Q3 _ R e )  

[ Q , R ] I = - 3 4 5 6 A ,  [ 'Q,A]I=4RA, [R,A]I=6Q2A, 

[Q, Q]2 = 480(0, [Q, R]2 = 0, [R, R]2 = - 21168QA, 
[A, A]2 = - 13QA 2. (31) 

Example 3. We try to understand the last example by observing that we also have a 
derivation ~ of degree 2 on the subalgebra M ,  -- K [Q, R] of R .  = K I'P, Q, R], defined 
in terms of D by 

Of = Df - k p f  EMk+ 2 

or directly by 

(f~M~) (32) 

Rc~ Q 2 0  
0 = 3 0Q 2 OR : M ,  - ,  M ,  + 2 (33) 

(this is a well-known fact about derivatives of modular forms, but is also clear 
algebraically from (30)). Of course the standard RC algebra structure on M,  associated 
to 0 is completely different from the one inherited from (R,,  D). But we now see that 
we can reconstruct (R,, 0) from (R,,  0) by using (32) to  define Df for f r  and 

1 2 defining D(P) as H ( P  - Q). We generalize this example in the following result. 

PROPOSITION 1 

Let M ,  be a commutative and associative graded K-algebra with Mo = K.1 together 
with a derivation O:M,--*M ,+ 2 of degree 2, and let O~M,.  Define brackets I ]0.| 
(n >>. O) on M ,  by 

~'g]~174 = ~,+,=,, ( - 1 ) ' ( n + k - 1 ) ( n + l - 1 )  r 

(f~M~,geMt) (34) 

where f ,~ M k + 2,, g,~ M t + 2s (r, s >>. O) are defined recursively by 

f ,+l  = O f , + r ( r + k -  l)~bf,_ t , gs+t ---Og~+s(s+l- 1)~g~_ 1 (r,s>>.O) 
(35) 

with initial conditions f o = f,  go = g (so f l = Of, f 2 = 02 f + kOf and similarly for g,). 
Then (M,,  [ ]0.| is an RC algebra. 

Definition. An RC algebra will be called canonical if its brackets are given as in 
Proposition 1 for some derivation 0 :M,  ~ M ,  of degree + 2 and some element Or 

Proof. As already observed, our only way to verify that something is an RC algebra 
is to embed it into a standard RC algebra (R,, [,]o.,) for some larger graded ring 
R,  with derivation D. We take R,  = Ml~b],: ' --M, |  where 0 has degree 2, 
and define D by 

D(f) = O(f) + kt~f~R~+ 2 (f~M~), D(~) = t~ + ~b2~R,. (36) 
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(This defines D on generators of R, ,  and we extend D uniquely as a derivation.) If 
we show that if ,  0]D.n = I-f, 0]o.| for f and g in M,  then we are done, since M,  is 
obviously closed under the brackets [']o.| To this end, we observe that the brackets 
[']D.,, just as in w 1, can be described by the generating function 

where 

[.f,o]o,, x'= 7(-  x)o(x)~R,[[x]] (f ER~,O~R,) 
. = o ( n + k -  1 ) t (n+ l -  1)! 

f ( . )  = g(n) X a. ](x) = .=o ~ , ! ( ,  + k -  1)! x ' '  0(x) = .__E o, ! ( .  + l -  1)! 

(These make sense only for k and I strictly positive, but since Mo = K.1 and the 
brackets (34) clearly satisfy (7), there is no harm in assuming this.) We claim that 

e-r f ~ x ) =  ~ f" X" (37) 
,:'o r!(r + k -- 1)! 

withfr defined by (35), and similarly of course for 0; the assertion follows immediately 
since the exponential terms e + ~x drop out in the product f ( -X )0 (X ) .  

To prove (37), we define f ,  by the generating function (37) and prove the recursion 
(35) by induction (the initial condition fo-= f is obvious). Clearly (37) is equivalent 
o the closed formula 

=.=Zo ~ . , ( ; ~ - ~ , T . ,  ~ J ,~,+~, .  

Assume inductively that we have proved thatf,r for some r. Then 

Of, = f ' ,  - (k + 2r)Of, 

= ~. ( - -  l ~ ' - " r t ( r  -t- k - 1)t [ - ~ r - . f ( . *  t~ 
,~'o ~.(n + -k : i ~.(r -- ~ .  + (r - n) ~ ' - "  - t ( dp2 + ~) f " '  

- (k + 2r)~b '-"+ 1 f{,)] 

= ,~1 ( _  1) ,+ l - .r ! (r  + k - 1)[ [. f 
.':'o ~ - k - -  ~ i - ~t. n.n + k - 1) - (r - n)(r + 1 - n) 

+ (k + 2r)(r  + 1 - n) ]  ~b'-" + ~ f { " )  

"~'i ( -  1)'-'r[(r + k 1 ; 
- -  )" cb'- " -  1 f C , ~  

+ | .=-o.~ + F= 1)-~,= n =i)~- - 

=f ,+1 - - r ( r+  k -  1)~f,_ 1 EMt+2,+2, 

and this simultaneously proves the recursion (35) and the inductively used assumption 

f ,r  2,. [] 
We observe that the definition (36) is motivated by (32) in the special case M,  = 

K[Q,R],~k= IA~p, _ -1 q~-~-~Q, and that the proof just given is merely the algebraic 
abstraction of the proposition on page 94 of [VZ] in that case (compare also iv) and 
v) on the following page for the case when M ,  is the ring of modular forms on some 
group F other than PSL(2, Z)). 
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6. A structure theorem for Rankin-Cohen algebras 

A priori one would not expect that a subring of a ring R,  with derivative would ever 
be closed under all the infinitely many bracket operations [']D,. unless it were already 
closed under D. The only non-trivial example which we had where this happened, 
the rings of modular forms on subgroups of PSL(2, R), has just been explained by 
the construction given in the Proposition above. It is then natural to expect that this 
construction may suffice to yield all examples of RC algebras. In this section we will 
show that this is "almost" true, and write down conditions under which It is exactly 
true. 

We therefore assume given an RC algebra M. over a field K, and want to realize 
its brackets as the brackets [-]~.| for some derivation d of degree 2 and some element 

�9 �9 of degree 4. Since the 0th bracket makes M.  into an ordinary commutative algebra 
(by virtue of equations (5)-(7)), we already have a ring structure, which we will denote 
from now on in the usual way by juxtaposition (i.e. fg instead of [f,0"lo). Let us 
assume that this ring is an integral domain, or at least that there is one homogeneous 
element F of some positive degree N which is not a zero-divisor, and let A~. be the 
quotient field of M,  or the ring M [ I / F ] , ,  respectively. (It has elements of positive 
and negative grading and hence is not quite the kind of object considered up to now. 
The compatibility of all the brackets in the case of a standard RC algebra now implies 
that we can canonically extend the bracket operations to M. .  For instance, the first 
equation in (11), which says that the Lie bracket [.,h]~ with a fixed element h acts 
as a derivation with respect to the ring structure, forces us to define [f/F, h]l as 
~,  hi1/F - f IF, hi 1 / F2. We now define a derivation d : ~ ,  --+ ~ ,  + 2 and an element 
O~M 4 by 

dlf) - [ F ' f ] l  ( fe/~,) ,  O =  [F'F']2 (38) 
N F  N2(N + 1)F 2 

We claim that the brackets [']0.| associated to 0 and �9 agree with the given brackets 
on b~,. Indeed. since all formal identities among brackets which arc satisfied by 
standard RC algebras are. by definition satisfied in all RC algebras, it is enough to 
check this for (M,, [ . ] , ) f l  subalgebra of a standard RC algebra (R,, [.]o.,). The 
bracket I-]o., extends to R, = R,  |  for the same reason as before. Define ~ERz 
by 

Ft 
d? = (F' = D(F)ERN+ 2). 

N F  

Then for f ~ R k  we have 

D(f )  - kdpf - d(f) = N~-ff(NFf' - kfF' - [F , f ] l  ) =. 0 

by (29) with n = 1 and 

N ( N  + 1)FF" - (N + 1)2F '2 

N2(N + 1)F 2 
= 0  
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by (29) with n = 2, so D and d are indeed related by (36) and consequently 
[ '] ,  = [']1)., IN. = [']e.| by the calculation already given in the proof of Proposition 1. 
This shows that any RC algebra M ,  which contains at least one homogeneous element 
F of positive degree which is not a zero-divisor is a subalgebra of a canonical RC 
algebra (namely, (M,,  [']e.~.,) with ~,1, = M,  [1/F] and d,O given by (38)) and hence 
also a sub R C algebra of a standard algebra (namely (.~t, [~b], [']1).,) with ~b of degree 2 
and D:h4[~b],--,M[~b],+2 defined by (36)). Note that if M,  is already embedded as 
a sub RC algebra of a standard RC algebra (R,, [']D.,)' then this embedding extends 
to an embedding of M,[~b] !nto/~, = R[1/F] ,  by d~-,D(F)/NF and this extension 
is compatible with the differentials by the calculations just done. We state the special 
case when M,  is closed under d and contains ~ as: 

PROPOSITION 2 

Let M ,  be an RC algebra and suppose that M ,  contains a homogeneous element F of 
some degree N > 0 such that 

(i) F is not a zero-divisor; 

(ii) IF ,M, ] I  __q(F) = M,'F;  

(iii) IF, F]2E(F2). 

Then ['-l, = [']0,~,, for O:M,--, M ,+ 2 and ~ M 4  as in (38), so M ,  is a canonical RC 
algebra. 

Examples of RC algebras which satisfy the conditions of Proposition 2 are the 
rings of modular forms M,  (F) with F c PSL(2, R) commensurable with F1 = PSL(2, Z) 
and the RC bracket defined by (1). Indeed, on such a group we can define a modular 
form F(z)=l-]Al12)'(z), where ~ runs over the set of left cosets (Fc~F1)\r 1 and 

fl~'(~) = (c~ + d)kf(7~) for 7 = d as usual. This is a modular form of weight N -- 

12 [FI:F1 r~ F] which has no zeros in the upper hag-plane. Thus [F,f] ~/F (fsMk(F)) 
and [F, F]2//i "2 are certainly holomorphic in the upper half-plane, and of course they 
transform with respect to F~ like modular forms (of weights k + 2 and 4, respectively). 
To see that they actually belong to M,(F), we must check that they are holomorphic 
at the cusps, but this is clear because it is obvious from (1) that ord| 
ord~o(f) + ord~o(g) for anyf,  gEM,(F~) and the identity [J]k)~,gJt~lln = [f,g]nlk+z+z,~ 
shows that the same inequality is true at any cusp. 

I do not know whether it is true that any RC algebra which is finitely generated 
(over the ground field K) and an integral domain satisfies the conditions of Proposition 2 
for some F. (The stated hypotheses are definitely necessary). But even apart from 
this, Proposition 2 is not really a satisfactory characterization, since there is no 
obvious way to pick F, which a priori could have arbitrarily high degree. The following 
sharpening of Proposition 2 gives a criterion for an RC algebra to be canonical which 
can be checked in a finite amount of time. 

Theorem. Let (M,, [ ' ] , )  be an RC algebra which is finitely generated over a field of 
characteristic O. Then the followino are equivalent: 

(a) (M,, ['-I,) is canonical. 
(b) for every homogeneous element F e M ,  there is an element G e M ,  +2 such that 
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(i) [F, f]  1 =- kfG(mod F) for all k >i 0 and all f eMk. 

(ii) [F, F]2 --- (N + 1)G 2 - (N + I) [F, GJt (rood F2). 
(ci Property (b) holds for some homogeneous F e M .  which is not a divisor of zero. 

Specifically, if (F, G) are a pair of elements satisfyin 0 (i) and (ii), and with Fr N not 
a divisor of zero, then the bracket on M .  agrees with the canonical bracket associated to 

- kf6 IF, rJ2 + (N + 1)(IF, q l  - G 2) 
OF'G(f):  = NF (feMk[ r = N2(N + 1)F 2 

(39) 

Remarks. The special case when F can be chosen in (c) with G = 0 is Proposition 2, 
but because of our freedom to pick any element (homogeneous and not a divisor of 
0) to verify (c), we now get an effective criterion to check whether a given RC algebra 
is canonical. Indeed, pick any F, say of weight N, and cheek whether the elements 
[F,f~] are proportional to k~fl modulo the ideal (F), whereft (i = 1 . . . . .  /) are homo- 
geneous generators of M .  of weight kj. If this is not the case, then M .  is not canonical 
by the implication (a)=~(b). If it is, then pick an element G to M,+ 2 satisfying (i) and 
verify whether (ii) is true. If it is, then M ,  is canonical by the implication (c)=~(a) of 
the theorem. If it is not, then M ,  is not canonical, because of the implication (a)=~ (b) 
and the fact that the truth of (ii) is independent of the choice of G. (Any two choices 
differ by a multiple of F, and if G1 =G+Fd~ with 0 e M  2 then [F, G I ] I - G ~ -  
[F, G]x + G 2 = F([F, ~b] 1 - 2GO) - ~2F2 belongs to (F 2) by the defining property of 
G.) 

Example. Let M .  = M.(PSL(2,Z))= C[Q,R] with the original Rankin-Cohen bracket 
(1). Of course we already know that this satisfies the conditions of Proposition 2 with 

Q3 _ R 2 
F = A =  "" 172------8' giving M .  the canonical structure associated to the derivation (33) 

and the element �9 = - Q/144. But suppose that we had not noticed this nice element 
A and instead wanted to cheek the canonicalness of M ,  starting with F = Q, the 
homogeneous element of lowest positive weight in M. .  According to the theorem, 
we must find an element GeM6 satisfying (i) and (ii). Since M .  has only two generators 
Q and R, and by the derivation property of [']1, it is enough to cheek (i) for f =  Q 
a n d f  = R. Using (31) we find 

[F,Q]I =O=-4Q'3(modQ), IF, R] , - -  - 2 Q  3 + 2 R 2 - 6 R  .R (modQ) 

and hence (i) holds with G = R/3. Then, using (31) again, we find 

[ F ,F ]  2 - ( N  + 1)['F, G'I~ - ( N  + 1)G 2 

5 3 =2~59(Q3-R2)-l---~(Q3-R2)-~R2=--~Q -=0(modQ 2) 

and hence (ii) also holds, proving that M ,  is canonical with respect to the derivation 
0 and element ~ given by O(Q) = O, O(R) = - Q2/2, �9 = - Q/36. 
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Proof of the theorem. The statement of the theorem indicates the proof. Assume first 
that M. is canonical with respect to some 0 :M. -~M,+  2 and O~M4, and choose 
any homogeneous element F~MN, N > 0. Then properties (i) and (ii) in (b) hold with 
G ffi -0 (F )  because of the identities 

[F,f]~ - kfG = IF, fie,| ~ + kfO(F) = NO(f)F ( f  eMk ,k  >i 0), 

IF, F] 2 + (N + I)[F, G]~ - (N + 1)G 2 -.~ (N(N + I)FO2(F) - (N + 1)20(F) 2 

+ N2(N + 1)~F 2) - (U + 1)(NO(F)F - (N + I)Fc32(F))- (N + 1)(0(F)) 2 

ffi N2(N + 1)OF 2. 

Conversely, suppose that M,  contains elements F~MmGr 2 for some N > 0  
satisfying (i) and (ii) (and with F not a zero-divisor), and define 0 and �9 by (39). Then 
we claim that the brackets [.]e.| induced by 0 and �9 agree with the given bracket. 
As in earlier proofs, we can assume here that (M., [ '] ,)  is a sub RC algebra of a 
standard RC algebra (R,, [']~,,), since the assertion to be proved is equivalent to a 
collection of universal identities for the brackets of RC algebras and such identities 
are true ~y definition if they are true for standard algebras. Now the larger algebra 
(R., [']t~.,) is canonical, with derivation D and weight 4 element 0, so we have to 
show that in a ring with more than one choice of (F, G) as in (b) of the theorem, the 
induced bracket operations agree. 

In fact, a little reflection shows that the key thing to check is that the property (b) 
in the theorem in a given RC algebra is independent of the choice of F, corresponding 
to the equivalence of (b) with the apparently much weaker (c). So now suppose that 
(F, G) satisfy (i) and (ii) and let F~Mt7 be an arbitrary homogeneous element of M. .  
We must show that there is an element G~M~ +2 so that (F, G) also satisfy (ii). We 
may start by choosing any G which satisfies (ii), since we have already seen (in the 
"Remarks" above~ that the truth or falsity of property (ii) is independent of the choice 
of (~ for a given F. We set 

= NGP - [F, ~ (40) 
N F  

which belongs to M~ + 2 by property (i) of (F, G). Then for f ~ M ~  we find 

NFU,  F]I + N F [ g , f ] l  + = 0 
Or, o(.f ) -- 0~, 6(.f) = N~lFF 

by the identity (10) of w and similarly OF,a -O~,~=0  by virtue of the more 
complicated identity 

N2(N + 1)F 2 [i~, F]2 = ~2(~  + 1)F2 IF, F] 2 - (N + 1)(N + 1)IF, F]~ 

+ + (41) 

which could have been (but was not) included in the list of universal identities in RC 
algebras given in w 2. Thus the brackets constructed with 0v. ~ and (l)r. 6 are the same 
as those constructed from P and G chosen as in (40), and therefore the same as those 
constructed from any pair (F, G) satisfying (i)-(ii) at all. (Changing G to G + 4~F 
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changes ~(f) (feMk) to ~ ( f )+  kekf and r to q~ + r  c~(4~) but does not change 
the associated brackets, by the proof of Proposition 1.) [] 

We remark that the reason for the truth of the theorem is that we have the identities 
(10) and (41). The former says that, once we have fixed the multiplication (0th bracket) 
on an RC algebra, the first bracket for any two elements f, geM, is determined once 
we have given the first brackets o f f  and 0 with a fixed homogeneous element F of 
M,  which is not a zero divisor. Similarly, the identity (41) tells us how to compute 
the second bracket [~F, PJ2 for any homogeneous F e M .  (and hence also how to 
compute the second bracket [0, hi2 for any elements 0, heM,, by the usual polarization 
procedure for recovering a bilinear form from its associated quadratic form) knowing 
only the 0th and 1st brackets and the second bracket of F with itself. In other words, 
to specify the brackets in an RC algebra (assumed to contain one homogeneous 
non-zero divisor F), we need to know only 

1. the 0th bracket ~,  0]o for arbitrary f and 0, which is arbitrary subject only to 
the conditions of bilinearity, associativity, and commutativity. 

2. the 1st bracket of arbitrary elementsf with the fixed element F, i.e. the derivation 
f~-+ [~, F] 1, and 

3. the 2nd bracket of F with itself, i.e. a single further element of M,.  

7. Other occurrences of Rankin-Cohen algebras 

We end by raising the question where else RC algebras arise naturally in mathematics. 
One possible candidate, pointed out to me by T. Springer, is in invariant theory, 
where the algebras of invariants have natural bilinear operations called the 
"transvectant" or "Oberschiebung" (cf [Sp], p. 66). These operations are indexed by 
integers n I> 0 and satisfy some universal identities of the general form of those 
occurring in w 2, but they decrease rather than increasing the total weight (i.e., they 
send M~| to M~+z_2, rather than Mk+z+2, ). The relationship between the two 
types of algebraic structures remains to be determined. Another possibility are the 
so-caUed Moyal brackets in quantum theory, which are related to symplectic structures 
and seem to have similar algebraic properties to the brackets considered in this paper. 
Finally, the most natural source of interesting algebras with an infinite number of 
bilinear operations seems to be conformal field theories and more specifically vertex 
operator algebras. The axioms for vertex operator algebras as given in [Bo] or the 
appendix of [Ge] are different from ours, but discussions with Yu. Manin and 
W. Eholzer suggest that there may be a reformulation of the axioms of vertex operator 
algebras which is much closer to the RC algebras studied here. We hope to discuss 
this in a future publication. 
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Note added in proof. Following a remark of W. Eholzer, it transpired that there is a 
further universal identity satisfied by the brackets in RC-algebras which is particularly 
simple and appealing: the multiplication on ~ M k  defined by f * g  = ~n~ o I f ,  gin is 
associative. That implies in turn infinitely many identities of the sort considered in 
w 2 (possibly including all identities whose coefficients are independent of the weights, 
like (6), (8), (9), (11a) and (13)). Moreover, this multiplication turns out to be one of 
a whole one-parameter family of associative multiplications, all the rest of which do 
explicitly involve the weights of the forms involved, and one of which is the one 
arising from the correspondence with pseudodifferential operators discussed in w 4. 
Details will be included in the paper [MZJ. 


