Realizability of a Model in Infinite Statistics

Don Zagier
Max-Planck-Institut für Mathematik, Bonn, FRG and University of Maryland, College Park, MD 20742, USA

Received August 26, 1991; in revised form November 22, 1991

Abstract

Following Greenberg and others, we study a space with a collection of operators $a(k)$ satisfying the " q-mutator relations" $a(l) a^{\dagger}(k)-q a^{\dagger}(k) a(l)=\delta_{k, l}$ (corresponding for $q= \pm 1$ to classical Bose and Fermi statistics). We show that the $n!\times n!$ matrix $A_{n}(q)$ representing the scalar products of n-particle states is positive definite for all n if q lies between -1 and +1 , so that the commutator relations have a Hilbert space representation in this case (this has also been proved by Fivel and by Bozejko and Speicher). We also give an explicit factorization of $A_{n}(q)$ as a product of matrices of the form $\left(1-q^{j} T\right)^{ \pm 1}$ with $1 \leqq j \leqq n$ and T a permutation matrix. In particular, $A_{n}(q)$ is singular if and only if $q^{M}=1$ for some integer M of the form $k^{2}-k, 2 \leqq k \leqq n$.

1. Introduction

In this paper we study the following object: a Hilbert space \mathbf{H} together with a nonzero distinguished vector $|0\rangle$ (vacuum state) and a collection of operators a_{k} : $\mathbf{H} \rightarrow \mathbf{H}$ satisfying the commutation relations (" q-mutator relations")

$$
\begin{equation*}
a(l) a^{\dagger}(k)-q a^{\dagger}(k) a(l)=\delta_{k, l} \quad(\forall k, l) \tag{1}
\end{equation*}
$$

and the relations

$$
\begin{equation*}
a(k)|0\rangle=0 \quad(\forall k) . \tag{2}
\end{equation*}
$$

Here q is a fixed real number and $a^{\dagger}(l)$ denotes the adjoint of $a(l)$. The statistics based on the commutation relation (1) generalizes classical Bose and Fermi statistics, corresponding to $q=1$ and $q=-1$, respectively, as well as the intermediate case $q=0$ suggested by Hegstrom and investigated by Greenberg [1]. The study of the general case was inititated by Polyakov and Biedenharn [2].

Our first main result is a realizability theorem saying that the object just described exists if $-1<q<1$. In view of (2), we can think of the $a(k)$ as annihilation operators and the $a^{\dagger}(k)$ as creation operators. As well as the 0 particle state $|0\rangle$, our space must contain the many-particle states obtained by applying combinations of $a(k)$'s and $a^{\dagger}(k)$'s to $|0\rangle$. To prove the realizability of our model it is obviously necessary and sufficient to consider the minimal space
containing these vectors. We therefore define for each $q \in \mathbb{R}$ an inner product space $\mathbf{H}(q)$ generated by $|0\rangle$ and its images under polynomials in the operators $a(k)$ and $a^{\dagger}(k)$, subject to the relations (1) and (2). It has a basis consisting of n-particle states

$$
\mathbf{x}_{\mathbf{k}}=a^{\dagger}\left(k_{1}\right) \cdots a^{\dagger}\left(k_{n}\right)|0\rangle
$$

for each $n \geqq 0$ and each n-tuple of indices $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right)$, since we can use (1) to write any monomial in the $a(k)$'s and $a^{\dagger}(k)$'s as a sum of monomials having all the $a(k)$'s on the right and all the $a^{\dagger}(k)$'s on the left, and the only ones of these which do not annihilate $|0\rangle$ are those consisting of $a^{\dagger}(k)$'s only (the linear independence is clear). By the same argument, we can use (1) and (2) to calculate each scalar product $\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathrm{k}}\right)$ as a polynomial in q, for instance, for $k \neq l$ we have

$$
\begin{aligned}
\left(\mathbf{x}_{k l}, \mathbf{x}_{l k}\right) & =\langle 0| a(l) a(k) a^{\dagger}(l) a^{\dagger}(k)|0\rangle=q\langle 0| a(l) a^{\dagger}(l) a(k) a^{\dagger}(k)|0\rangle \\
& =q\langle 0|\left(1+q a^{\dagger}(l) a(l)\right)\left(1+q a^{\dagger}(k) a(k)\right)|0\rangle=q\langle 0 \mid 0\rangle=q .
\end{aligned}
$$

(Here $\langle 0|$ denotes the operator $(|0\rangle, \cdot$) and we have normalized by $\langle 0 \mid 0\rangle=1$.) In particular, for each value of q the infinite matrix $A(q)=\left\{\left(x_{1}, x_{\mathbf{k}}\right)\right\}_{1, \mathbf{k}}$ is welldefined. The condition for the Hilbert space realizability of the q-mutator relation (1) is then that $A(q)$ be positive definite, i.e., that $(\mathbf{x}, \mathbf{x})>0$ for every non-zero vector $\mathbf{x} \in \mathbf{H}(q)$.
Theorem 1. The matrix $A(q)$ is positive definite for $-1<q<1$, so that the q mutator relation (1) has a Hilbert space realization for q in this range.

It is easy to see that ($x_{\mathbf{k}}, x_{1}$) vanishes unless \mathbf{k} is a permutation of \mathbf{l}. Thus the space $\mathbf{H}(q)$ [respectively the matrix $A(q)$] is the direct sum of infinitely many finitedimensional spaces (respectively matrices) indexed by all unordered n-tuples $\left\{k_{1}, \ldots, k_{n}\right\}$, and we only have to show the positive definiteness of these. We will show in Sect. 2 that the general case of this follows from the case when all of the indices k_{i} are distinct. It is not hard to see (Sect. 2) that

$$
\begin{equation*}
\left(\mathbf{x}_{\pi(1) \ldots \pi(n)}, \mathbf{x}_{1 \ldots n}\right)=q^{I(\pi)} \tag{3}
\end{equation*}
$$

for each permutation π in the $n^{\text {th }}$ symmetric group \mathcal{S}_{n}, where $I(\pi)$ denotes the number of inversions of π, i.e., the number of $i, j \in[1, n]$ for which $i<j$ but $\pi(i)>\pi(j)$. Thus the problem reduces to showing that the $n!\times n!$ matrix $A_{n}=A_{n}(q)$ defined by

$$
\begin{equation*}
A_{n}(\pi, \sigma)=q^{\left.I / \sigma^{-1} \pi\right)} \quad\left(\pi, \sigma \in \mathbb{S}_{n}\right) \tag{4}
\end{equation*}
$$

is positive definite for q between -1 and 1 . For this, in turn, it is sufficient by continuity to show that $A_{n}(q)$ is non-singular in this range, since $A_{n}(0)$ is the identity matrix and the eigenvalues of $A_{n}(q)$ vary continuously with q and are real for q real (because $A_{n}(q)$ is real and symmetric). We will prove the following stronger statement.

Theorem 2. The determinant of the matrix $A_{n}(q)$ is given by

$$
\begin{equation*}
\operatorname{det} A_{n}(q)=\prod_{k=1}^{n-1}\left(1-q^{k^{2}+k}\right)^{\frac{n!(n-k)}{k^{2}+k}} \tag{5}
\end{equation*}
$$

In particular, $A_{n}(q)$ is non-singular for all complex numbers q except the $N^{\text {th }}$ roots of unity for $N=2,6,12, \ldots, n^{2}-n$.

We will also describe explicitly the inverse of $A_{n}(q)$. Based on calculations for $n \leqq 5$, we conjecture that

$$
\begin{equation*}
A_{n}(q)^{-1} \stackrel{?}{\in} \frac{1}{A_{n}} M_{n!}(\mathbb{Z}[q]), \quad A_{n}:=\prod_{k=1}^{n-1}\left(1-q^{k^{2}+k}\right) \tag{6}
\end{equation*}
$$

For instance, for $n=3$ we have

$$
A_{3}(q)=\left(\begin{array}{cccccc}
1 & q & q & q^{2} & q^{2} & q^{3} \tag{7}\\
q & 1 & q^{2} & q & q^{3} & q^{2} \\
q & q^{2} & 1 & q^{3} & q & q^{2} \\
q^{2} & q & q^{3} & 1 & q^{2} & q \\
q^{2} & q^{3} & q & q^{2} & 1 & q \\
q^{3} & q^{2} & q^{2} & q & q & 1
\end{array}\right)
$$

where the rows and columns are indexed by the elements of \mathcal{S}_{3} in the order [123], [213], [132], [231], [312], [321] (we use $\left[j_{1} \ldots j_{n}\right]$ to denote the element π of \mathbb{S}_{n} defined by $\left.\pi(i)=j_{i}\right)$. The determinant of this matrix is $\left(1-q^{2}\right)^{6}\left(1-q^{6}\right)$ and its inverse is

$$
A_{3}(q)^{-1}=\Delta_{3}^{-1}\left(\begin{array}{cccccc}
1+q^{2} & -q & -q & -q^{4} & -q^{4} & q^{3}+q^{5} \tag{8}\\
-q & 1+q^{2} & -q^{4} & -q & q^{3}+q^{5} & -q^{4} \\
-q & -q^{4} & 1+q^{2} & q^{3}+q^{5} & -q & -q^{4} \\
-q^{4} & -q & q^{3}+q^{5} & 1+q^{2} & -q^{4} & -q \\
-q^{4} & q^{3}+q^{5} & -q & -q^{4} & 1+q^{2} & -q \\
q^{3}+q^{5} & -q^{4} & -q^{4} & -q & -q & 1+q^{2}
\end{array}\right]
$$

Finally, we remark that the matrix $A_{n}(q)$ splits as a direct sum of pieces corresponding to the irreducible representations of \widehat{S}_{n}, the piece corresponding to a representation Π of dimension d being the direct sum of d copies of a $d \times d$ matrix $A_{n, I I}(q)$. For the bosonic and fermionic cases $q=1$ and $q=-1$ all of these matrices are identically zero except for the one corresponding to the onedimensional trivial or alternating representation, respectively, but for $-1<q<1$ Theorem 1 says that every representation of every symmetric group occurs in a non-trivial (indeed, non-degenerate) way. (This is the reason for the term "infinite statistics" used by the physicists.) It would be of interest to calculate the determinants of the matrices $A_{n, \Pi}(q)$, say in terms of the Young diagram corresponding to Π. By Theorem 2, each of these determinants is a product of cyclotomic polynomials $\Phi_{m}(q)$ for integers m dividing some $k^{2}+k$, $1 \leqq k \leqq n-1$.

The paper is organized as follows. In Sect. 2 we give some generalities on group determinants and show that Theorem 1 follows from Theorem 2, which is then proved in Sect. 3. In Sect. 4 we give an explicit description of the inverse matrix of $A_{n}(q)$, while Sect. 5 gives a conjectural formula for the "number operators" in the Hilbert space $\mathbf{H}(q)$.

The author would like to thank O.W. Greenberg who told him about the q mutator relation and suggested the problem of proving the positive definiteness for $-1<q<1$. This positive definiteness has been proved independently by Fivel and by Bozejko and Speicher [3]. (However, Fivel apparently asserts that the zeros of $A_{n}(q)$ are all roots of $q^{2 n}=1$, which contradicts Theorem 2 and is false for all
$n \geqq 4$.) Consequences and related results are discussed in several subsequent papers by Greenberg [4].

2. Group Determinants and the Reduction to $\boldsymbol{A}_{n}(q)$

Let G be a finite group of order m and $\varrho: G \rightarrow G L(V)$ a representation of G on a (finite-dimensional) complex vector space V. We can extend ϱ to an algebra homomorphism from the group algebra

$$
\mathbb{C}[G]=\left\{\sum_{g \in G} t_{g} g \mid t_{g} \in \mathbb{C} \text { for } g \in G\right\}
$$

to the matrix algebra $\operatorname{End}(V)$ by $\varrho\left(\sum t_{g} g\right)=\sum t_{g} \varrho(g)$. The determinant of $\varrho\left(\sum t_{g} g\right)$ is a polynomial $F_{e}(\mathbf{t})$ of degree $\operatorname{dim}(V)$ in the m variables $\mathbf{t}=\left\{t_{g}\right\}_{\xi_{\in G}}$ which is determined by and uniquely determines the isomorphism class of the representation ϱ. Thus the entire representation theory of G can be expressed in terms of the "group determinants" $F_{\ell}(\mathbf{t})$; this is in fact the way that representation theory was developed in its early years (see for instance Weber's Lehrbuch der Algebra, Vol. 2, Chap. 7).

If V is reducible, say $V=V_{1} \oplus V_{2}$, then $F_{g}(\mathbf{t})$ splits as $F_{e_{1}}(\mathbf{t}) F_{\rho_{2}}(\mathbf{t})$, so the study of group determinants can be reduced to the case of irreducible representations of G. At the other extreme, let (V, R) be the (right) regular representation of G, i.e. $V=\mathbb{C}^{G}$ is the m-dimensional vector space of functions $f: G \rightarrow \mathbb{C}$ and $\varrho=R$ is given by

$$
(R(g) f)\left(g^{\prime}\right)=f\left(g^{\prime} g\right) \quad\left(g, g^{\prime} \in G\right)
$$

The matrix representation of R with respect to the basis of δ-functions on G is clearly given by

$$
R(g)_{g_{1}, g_{2}}= \begin{cases}1 & \text { if } g_{1} g=g_{2}, \\ 0 & \text { otherwise },\end{cases}
$$

so that the group determinant $F_{\mathbf{R}}(\mathbf{t})$ is the determinant of the $m \times m$ matrix $\left(t_{g_{1}^{-1}} g_{2}\right)_{g_{1}, g_{2} \in G}$. It is well known that R contains every irreducible representation Π of G with positive multiplicity (equal to $\operatorname{dim} \Pi$). Hence if $F_{\mathbf{R}}(\mathbf{t}) \neq 0$ for some $\mathrm{t} \in \mathbb{C}^{m}$ then $F_{I}(\mathbf{t}) \neq 0$ for every irreducible representation π and consequently $F_{e}(\mathbf{t}) \neq 0$ for every representation ϱ of G - -

Now apply this to $G=\mathfrak{\Im}_{n}, m=n!$. Formula (4) and the discussion just given say that $A_{n}=A_{n}(q)$ is just the matrix representation $R\left(\alpha_{n}\right)$ of the element

$$
\begin{equation*}
\alpha_{n}=\alpha_{n}(q)=\sum_{\pi \in \mathbb{S}_{n}} q^{I(\pi)} \pi \in \mathbb{C}\left[\widetilde{\Xi}_{n}\right] \tag{9}
\end{equation*}
$$

acting on the regular representation $\left(\mathbb{C}^{⿷_{n}}, R\right)$. Here we are thinking of q as being a complex number; if q is thought of as a variable, then $\alpha_{n}(q)$ belongs to the group ring $\mathbb{Z}[q]\left[\mathbb{S}_{n}\right]$. We will usually consider q as fixed and omit it from the notation. To prove Theorems 1 and 2 , we will forget that α_{n} is acting on $\mathbb{C}^{\mathfrak{E}_{n}}$ and simply show that it is invertible in the group algebra if $\prod_{\substack{n=1 \\ n}}^{\substack{n}}\left(1-q^{k^{2}+k}\right) \neq 0$, in which case the inverse of the matrix A_{n} is simply the matrix $R\left(\alpha_{n}^{-1}\right)$.

We now use this point of view to show how the positive definiteness of $A(q)=\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{k}}\right)\right\}$ follows from that of the $n!\times n!$ matrices $A_{n}(q)$ for $n=1,2,3, \ldots$ Equation (1) gives by induction the formula for any indices l, k_{1}, \ldots, k_{n} (not
necessarily distinct)

$$
\begin{aligned}
a(l) a^{\dagger}\left(k_{1}\right) \cdots a^{\dagger}\left(k_{n}\right)= & q^{n} a^{\dagger}\left(k_{1}\right) \cdots a^{\dagger}\left(k_{n}\right) a(l) \\
& +\sum_{\substack{1 \leq i \leq n \\
k_{i}=l}} q^{i-1} a^{\dagger}\left(k_{1}\right) \cdots \widehat{a^{\dagger}\left(k_{i}\right)} \cdots a^{\dagger}\left(k_{n}\right)
\end{aligned}
$$

where the sum runs over those indices i for which k_{i} equals l and the hat over the $i^{\text {th }}$ term of the product indicates that this term is to be omitted. Combining this with (2) gives

$$
a(l) a^{\dagger}\left(k_{1}\right) \cdots a^{\dagger}\left(k_{n}\right)|0\rangle=\sum_{\substack{1 \leq i \leq n \\ k_{i}=\bar{l}}} q^{i-1} a^{\dagger}\left(k_{1}\right) \cdots \widehat{a^{\dagger}\left(k_{i}\right)} \cdots a^{\dagger}\left(k_{n}\right)|0\rangle
$$

Now induction on m gives a formula for $a\left(l_{m}\right) \cdots a\left(l_{1}\right) a^{\dagger}\left(k_{1}\right) \cdots a^{\dagger}\left(k_{n}\right)|0\rangle$ as a sum of terms $\left.q^{N} a^{\dagger}\left(k_{1}\right) \cdots \widehat{a^{\dagger}\left(k_{i_{1}}\right)} \cdots \widehat{a^{\dagger}\left(k_{i_{m}}\right.}\right) \cdots a^{\dagger}\left(k_{n}\right)|0\rangle$, where i_{1}, \ldots, i_{m} are distinct indices with $k_{i_{1}}, \ldots, k_{i_{m}}$ equal to l_{1}, \ldots, l_{m} in some order, the final result for $m=n$ being

$$
a\left(l_{n}\right) \cdots a\left(l_{1}\right) a^{\dagger}\left(k_{1}\right) \cdots a^{\dagger}\left(k_{n}\right)|0\rangle=\sum_{\substack{1 \leqq i_{1}, \ldots, i_{n} \leqq n \\ i_{1}, \ldots, i_{n} \text { distinct } \\ k_{i_{1}}=l_{1}, \ldots, i_{i_{n}}=i_{n}}} q^{\sharp\left\{1 \leqq r<s \leqq n, i_{r}>i_{s}\right\}}|0\rangle
$$

i.e., in the notation of Sect. 1 ,

$$
\begin{equation*}
\left(\mathbf{x}_{\mathrm{l}}, \mathbf{x}_{\mathrm{k}}\right)=\langle 0| a\left(l_{n}\right) \cdots a\left(l_{1}\right) a^{\dagger}\left(k_{1}\right) \cdots a^{\dagger}\left(k_{n}\right)|0\rangle=\sum_{\substack{\pi \in \mathbb{S}_{n} \\ l_{i}=k_{\pi(i)}(i=1, \ldots, n)}} q^{I(\pi)} \tag{10}
\end{equation*}
$$

This formula includes (4) and also shows that $\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{k}}\right)=0$ unless \mathbf{l} and \mathbf{k} are permutations of one another, as already mentioned in Sect. 1, so that $A(q)$ splits up into the matrices $A_{\mathbf{k}_{0}}$ having as entries the numbers ($\mathbf{x}_{1}, \mathbf{x}_{\mathbf{k}}$) for \mathbf{l} and \mathbf{k} ranging over all permutations of a given index set \mathbf{k}_{0}, e.g. for $\mathbf{k}_{\mathbf{0}}=(k, k, l)$ with $k \neq l$

$$
\begin{aligned}
A_{\mathbf{k}_{0}} & =\left(\begin{array}{ccc}
\left(\mathbf{x}_{k k l}, \mathbf{x}_{k k l}\right) & \left(\mathbf{x}_{k k l}, \mathbf{x}_{k l k}\right) & \left(\mathbf{x}_{k k l}, \mathbf{x}_{l k k}\right) \\
\left(\mathbf{x}_{k l k}, \mathbf{x}_{k k l}\right) & \left(\mathbf{x}_{k l k}, \mathbf{x}_{k l k}\right) & \left(\mathbf{x}_{k l k}, \mathbf{x}_{l k k}\right) \\
\left(\mathbf{x}_{l k k}, \mathbf{x}_{k k l}\right) & \left(\mathbf{x}_{l k k}, \mathbf{x}_{k l k}\right) & \left(\mathbf{x}_{l k k}, \mathbf{x}_{l k k}\right)
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1+q & q+q^{2} & q^{2}+q^{3} \\
q+q^{2} & 1+q^{3} & q+q^{2} \\
q^{2}+q^{3} & q+q^{2} & 1+q
\end{array}\right)
\end{aligned}
$$

In each such matrix, the rows and columns are indexed by the permutations $\mathbf{k}=\pi \mathbf{k}_{0}$ of $\mathbf{k}_{\mathbf{0}}$ or equivalently by the left cosets G / H, where $G=\mathcal{S}_{n}$ and H is the subgroup of permutations of \mathcal{S}_{n} fixing $\mathbf{k}_{\mathbf{0}}$. Write $\mathbf{k}=\sigma \mathbf{k}_{0}, \mathbf{l}=\tau \mathbf{k}_{\mathbf{0}}$ with $\sigma, \tau \in \mathcal{S}_{n}$; then (10) says that the (\mathbf{l}, \mathbf{k}) matrix coefficient of $A_{\mathbf{k}_{0}}$ is equal to

$$
\sum_{\substack{\pi \in \mathbb{E}_{n} \\ \pi \sigma H=\tau H}} q^{I(\pi)}
$$

But a moment's thought shows that this is simply the $(\tau H, \sigma H)$-matrix coefficient (with respect to the basis of δ-functions) of the element

$$
\alpha_{n}=\sum_{\pi} q^{I(\pi)} \pi
$$

on the subspace $V=\mathbb{C}^{G / H}$ of \mathbb{C}^{G} consisting of functions $f: G \rightarrow \mathbb{C}$ which satisfy $f(g h)=f(g)$ for all $g \in G, h \in H$. This subspace is invariant under the action R of G on \mathbb{C}^{G}, so that (V, R) is a representation of G. Hence if α_{n} is invertible in the group algebra $\mathbb{C}[G]$, then the matrix $A_{\mathbf{k}_{0}}$ is invertible. This completes the reduction of Theorem 1 to Theorem 2.

3. Factorization of α_{n}; Proof of Theorem 2

We first introduce some notations. As in Sect. 1 we denote by $\left[i_{1}, i_{2}, \ldots, i_{n}\right]$ the permutation in Θ_{n} which sends 1 to $i_{1}, 2$ to i_{2}, \ldots, n to i_{n}. We identify Θ_{n-1} with the subgroup of Ξ_{n} consisting of permutations fixing n. For $1 \leqq k \leqq n$ we denote by $T_{k, n}$ the element $[1, \ldots, k-1, n, k, k+1, \ldots, n-1]$ of \mathfrak{S}_{n}, i.e.

$$
T_{k, n}(i)=\left\{\begin{array}{ll}
i & 1 \leqq i<k, \\
n & i=k, \\
i-1 & k<i \leqq n,
\end{array} \quad T_{k, n}^{-1}(i)= \begin{cases}i & 1 \leqq i<k \\
i+1 & k \leqq i<n \\
k & i=n\end{cases}\right.
$$

Any element $\pi \in \mathbb{S}_{n}$ can be represented uniquely as $\sigma T_{k, n}$ with $\sigma \in \mathcal{S}_{n-1}$ and $1 \leqq k \leqq n$ (namely $k=\pi^{-1}(n), \sigma=\pi T_{k, n}^{-1}$), and a short calculation shows that then $I(\pi)$ equals $I(\sigma)+n-k$. Hence

$$
\alpha_{n}=\sum_{\pi \in \mathbb{S}_{n}} q^{I(\pi)} \pi=\sum_{\substack{\sigma \in \mathbb{S}_{n}-1 \\ 1 \leqq k \leqq n}} q^{I\left(\sigma T_{k, n)}\right.} \sigma T_{n, k}=\left(\sum_{\sigma \in \mathbb{S}_{n-1}} q^{I(\sigma)} \sigma\right)\left(\sum_{k=1}^{n} q^{n-k} T_{k, n}\right) .
$$

In other words,
Proposition 1. Define $\beta_{n}=\beta_{n}(q)=\sum_{k=1}^{n} q^{n-k} T_{k, n} \in \mathbb{C}\left[\mathbb{S}_{n}\right]$. Then $\alpha_{n}=\alpha_{n-1} \beta_{n}$.
Here α_{n-1} is considered as an element of $\mathbb{C}\left[\Xi_{n}\right]$ via the inclusion $\boldsymbol{\Xi}_{n-1} \subset \Xi_{n}$. In particular, the representation of α_{n-1} in R_{n}, the n !-dimensional regular representation of \mathcal{E}_{n}, consists of n copies of the representation of α_{n-1} in R_{n-1}. Thus in terms of the matrices A_{n} we can rewrite Proposition 1 as $A_{n}=\left(A_{n-1} \otimes 1_{n}\right) \cdot B_{n}$, where $A_{n-1} \otimes 1_{n}$ denotes the $n!\times n!$ block matrix with n copies of A_{n-1} on the diagonal blocks and zeros elsewhere and $B_{n}=B_{n}(q)$ has the matrix coefficients

$$
B_{n}(\pi, \sigma)= \begin{cases}q^{n-k} & \text { if } \pi \sigma^{-1}=T_{k, n} \text { for some } 1 \leqq k \leqq n \\ 0 & \text { otherwise }\end{cases}
$$

In particular, $\operatorname{det}\left(A_{n}(q)\right)=\operatorname{det}\left(A_{n-1}(q)\right)^{n} \operatorname{det}\left(B_{n}(q)\right)$, so by induction on n we have reduced Theorem 2 to the simpler

Theorem 2'. $\operatorname{det}\left(B_{n}(q)\right)=\prod_{i=1}^{n-1}\left(1-q^{k^{2}+k}\right)^{\frac{n!}{k^{2}+\bar{k}}}$.
We now make a second reduction by expressing B_{n} in turn as a product of yet simpler matrices.
Proposition 2. For each n define elements γ_{n}, δ_{n} in the group algebra $\mathbb{C}\left[\Theta_{n}\right]$ by

$$
\begin{aligned}
& \gamma_{n}=\left(1-q^{n-1} T_{1, n}\right)\left(1-q^{n-2} T_{2, n}\right) \cdots\left(1-q T_{n-1, n}\right), \\
& \delta_{n}=\left(1-q^{n+1} T_{1, n}\right)\left(1-q^{n} T_{2, n}\right) \cdots\left(1-q^{2} T_{n, n}\right)
\end{aligned}
$$

Then $\beta_{n} \gamma_{n}=\delta_{n-1}$.
Proof. Let $\beta_{r, n}=\sum_{k=r}^{n} q^{n-k} T_{k, n}$, so that $\beta_{1, n}=\beta_{n}, \beta_{n, n}=1$ (note that $T_{n, n}=1 \in \Theta_{n}$).
Using the easily checked commutation relation

$$
T_{k, n} T_{r, n}=T_{r, n-1} T_{k+1, n} \quad(r \leqq k \leqq n-1),
$$

we find

$$
\begin{aligned}
\beta_{r, n} \cdot\left(1-q^{n-r} T_{r, n}\right)= & \sum_{k=r+1}^{n} q^{n-k} T_{k, n}+q^{n-r} T_{r, n} \\
& -q^{n-r} T_{r, n}-\sum_{k=r}^{n-1} q^{2 n-k-r} T_{k, n} T_{r, n} \\
= & \sum_{k=r+1}^{n} q^{n-k} T_{k, n}-\sum_{k=r+1}^{n} q^{2 n-k+1-r} T_{r, n-1} T_{k, n} \\
= & \left(1-q^{n-r+1} T_{r, n-1}\right) \cdot \beta_{r+1, n}
\end{aligned}
$$

and hence by induction on r (starting with the trivial case $r=0$)

$$
\begin{aligned}
& \beta_{1, n}\left(1-q^{n-1} T_{1, n}\right) \cdots\left(1-q^{n-r} T_{r, n}\right) \\
& \quad=\left(1-q^{n} T_{1, n-1}\right) \cdots\left(1-q^{n+1-r} T_{r, n-1}\right) \beta_{r+1, n} .
\end{aligned}
$$

The case $r=n-1$ of this identity is the desired identity.
To complete the proof of Theorem 2 we need to compute the determinants of the factors in γ_{n} and δ_{n-1} under the regular representation R_{n} of \Im_{n}. We use the inclusions $\mathbb{S}_{b} \subset \mathbb{S}_{b+1} \subset \cdots \subset \mathbb{S}_{n}$ to define elements $T_{a, b} \in \mathbb{S}_{n}$ for all $1 \leqq a \leqq b \leqq n$ (we actually need only the cases $b=n-1$ and n). Its characteristic polynomial is given by:
Lemma. For $1 \leqq a \leqq b \leqq n$ the determinant of $R_{n}\left(1-t T_{a, b}\right)$ is $\left(1-t^{b-a+1}\right)^{\frac{n!}{b-a+1}}$.
Proof. The element $T_{a, b} \in \Theta_{n}$ is a cyclic permutation of the indices $a, a+1, \ldots, b$ and hence has order $b-a+1$. But if G is an arbitrary finite group of order m and $g \in G$ an element of order d, then the characteristic polynomial $\operatorname{det}(1-t R(g))$ of g under the regular representation is $\left(1-t^{d}\right)^{m / d}$, because the cycle structure of the permutation of G given by left multiplication by g^{-1} consists of m / d disjoint cycles of length d. The lemma follows.

The proof of Theorem 2 is now immediate: we have

$$
\begin{aligned}
& \operatorname{det}\left(R_{n}\left(\gamma_{n}\right)\right)=\prod_{k=1}^{n-1} \operatorname{det}\left(R_{n}\left(1-q^{k} T_{n-k, n}\right)\right)=\prod_{k=1}^{n-1}\left(1-q^{k(k+1)}\right)^{\frac{n!}{k+1}} \\
& \operatorname{det}\left(R_{n}\left(\delta_{n}\right)\right)=\prod_{k=1}^{n} \operatorname{det}\left(R_{n}\left(1-q^{k+1} T_{n-k+1, n}\right)\right)=\prod_{k=1}^{n}\left(1-q^{k(k+1)}\right)^{\frac{n!}{k}}
\end{aligned}
$$

and hence

$$
\begin{aligned}
\operatorname{det}\left(B_{n}\right)=\operatorname{det}\left(R_{n}\left(\beta_{n}\right)\right) & =\frac{\operatorname{det}\left(R_{n}\left(\delta_{n-1}\right)\right)}{\operatorname{det}\left(R_{n}\left(\gamma_{n}\right)\right)}=\frac{\operatorname{det}\left(R_{n-1}\left(\delta_{n-1}\right)\right)^{n}}{\operatorname{det}\left(R_{n}\left(\gamma_{n}\right)\right)} \\
& =\prod_{k=1}^{n-1}\left(1-q^{k(k+1)}\right)^{\frac{n \cdot(n-1)!}{k}-\frac{n!}{k+1}} \\
& =\prod_{k=1}^{n-1}\left(1-q^{k(k+1)}\right)^{\frac{n!}{k(k+1)}}
\end{aligned}
$$

which is Theorem 2^{\prime}; Theorem 2 then follows by induction from this and Proposition 1.

4. Formula for $A_{n}(q)^{-1}$

According to Propositions 1 and 2 we have

$$
\begin{aligned}
& \beta_{n}=\delta_{n-1} \gamma_{n}^{-1}, \\
& \alpha_{n}=\beta_{2} \cdots \beta_{n}=\delta_{1} \gamma_{2}^{-1} \delta_{2} \gamma_{3}^{-1} \cdots \gamma_{n-1}^{-1} \delta_{n-1} \gamma_{n}^{-1}
\end{aligned}
$$

and hence

$$
\alpha_{n}^{-1}=\gamma_{n} \delta_{n-1}^{-1} \gamma_{n-1} \cdots \gamma_{2} \delta_{1}^{-1}
$$

To invert α_{n}, therefore, the first step is to invert δ_{k} for each k.
Proposition 3. For $\pi \in \Theta_{n}$ define $W(\pi) \in \mathbb{Z}$ by

$$
\begin{aligned}
W(\pi) & =\sum_{\substack{1 \leq i<j \leq n \\
\pi(i)>\pi(j)}}\left(1+(n+1-i)(n+1-j) \delta_{j-1, i}\right) \\
& =I(\pi)+\sum_{\substack{1 \leq i \leq n-1 \\
\pi(i+1)<\pi(i)}}(n+1-i)(n-1)
\end{aligned}
$$

and set $\varepsilon_{n}=\sum_{\pi \in \mathbb{S}_{n}} q^{W(\pi)} \pi^{-1} \in \Theta_{n}$. Then $\delta_{n}^{-1}=\frac{1}{\Delta_{n+1}} \varepsilon_{n}$ with A_{n+1} as in Eq. (6).
Proof. Denote by $\sigma \mapsto \tilde{\sigma}$ the map $\Xi_{n-1} \rightarrow \Theta_{n}$ defined by $\tilde{\sigma}(1)=1$, $\tilde{\sigma}(i)=\sigma(i-1)+1$ for $i>1$ (this is a homomorphism since $\tilde{\sigma}$ is just $T_{1, n}^{-1} \sigma T_{1, n}$). Then $\quad \tilde{T}_{a, b}=T_{a+1, b+1} \quad$ for $\quad 1 \leqq a<b \leqq n-1$, so $\delta_{n}=\left(1-q^{n+1} T_{1, n}\right) \tilde{\delta}_{n-1}$. Hence by induction it suffices to show that $\varepsilon_{n}\left(1-q^{n+1} T_{1, n}\right)=\left(1-q^{n^{2}+n}\right) \tilde{\varepsilon}_{n-1}$.

For $\pi \in \mathbb{S}_{n}$, let $k=\pi^{-1}(1)$ and denote by π^{\prime} the element $T_{1, n} \pi$ of $\mathbb{\Xi}_{n}$. Since $\pi^{\prime}(k)=n$ but $\pi^{\prime}(i)=\pi(i)-1$ for all $i \neq k$, all the terms in the definition of $W(\pi)$ and of $W\left(\pi^{\prime}\right)$ are the same except those with i or j equal to k, so

$$
\begin{aligned}
W\left(\pi^{\prime}\right)-W(\pi)= & \sum_{k<j \leqq n}\left(1+(n+1-k)(n+1-j) \delta_{j, k+1}\right) \\
& -\sum_{1 \leqq i<k}\left(1+(n+1-i)(n+1-k) \delta_{i, k-1}\right) \\
= & n-k+(n+1-k)(n-k)-(k-1) \\
& - \begin{cases}(n+1-k)(n+2-k) & \text { if } k>1 \\
0 & \text { if } k=1\end{cases} \\
= & \begin{cases}-n-1 & \text { if } k \neq 1, \\
n^{2}-1 & \text { if } k=1 .\end{cases}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\varepsilon_{n}\left(1-q^{n+1} T_{1, n}\right) & =\sum_{\pi \in \mathscr{S}_{n}}\left(q^{W(\pi)}-q^{W\left(T_{1, n} \pi\right)+n+1}\right) \pi^{-1} \\
& =\sum_{\substack{\pi \in \mathbb{S}_{n} \\
\pi(1)=1}}\left(q^{W(\pi)}-q^{W(\pi)+n^{2}+n}\right) \pi^{-1} \\
& =\left(1-q^{n^{2}+n}\right) \sum_{\sigma \in \mathbb{S}_{n-1}} q^{W(\sigma)} \tilde{\sigma}^{-1}
\end{aligned}
$$

as desired.
We next give a formula expressing γ_{n} as a sum rather than a product.
Proposition 4. The element $\gamma_{n} \in \Theta_{n}$ defined in Proposition 2 is given by

$$
\gamma_{n}=\sum_{k=1}^{n} \gamma_{n, k}, \quad \gamma_{n, k}=(-1)^{n-k} \sum_{\pi \in \mathcal{E}_{n, k}} q^{I(\pi)} \pi^{-1}
$$

where $\mathfrak{S}_{n, k}$ is the subset of Θ_{n} of cardinality $\binom{n-1}{k-1}$ consisting of those permutations π for which $\pi(1)<\cdots<\pi(k)>\cdots>\pi(n)$.
Proof. Multiplying out the terms in the product defining γ_{n}, we find

$$
\gamma_{n}=\sum_{s=0}^{n-1}(-1)^{s} \sum_{1 \leqq i_{1}<\ldots<i_{s} \leqq n-1} q^{\left(n-i_{1}\right)+\cdots+\left(n-i_{s}\right)} T_{i_{1}, n} T_{i_{2}, n} \cdots T_{i_{s}, n}
$$

The element $\sigma=T_{i_{1}, n} T_{i_{2}, n} \cdots T_{i_{s}, n}$ of \mathbb{G}_{n} maps i_{1} to n, i_{2} to $n-1, \ldots$, and i_{s} to $n-s+1$, and maps the rest of $\{1,2, \ldots, n\}$ monotone increasingly to $\{1,2, \ldots, n-s\}$. Moreover, it is easy to check that $\left(n-i_{1}\right)+\cdots+\left(n-i_{s}\right)$ equals $I(\sigma)$. The proposition now follows on setting $\pi=\sigma^{-1}$ and $k=n-s$.

The explicit formulas for δ_{n}^{-1} and γ_{n} just given together with the formula $\alpha_{n}^{-1}=\gamma_{n} \delta_{n-1}^{-1} \alpha_{n-1}^{-1}$ give an inductive method to calculate α_{n} for each n. To describe this a little more explicitly, we define another element of $\mathbb{C}\left[\Im_{n}\right]$ by

$$
\zeta_{n}=\varepsilon_{n} \alpha_{n}^{-1}
$$

with ε_{n} as in Proposition 3. We conjecture that ζ_{n} has coefficients which are polynomials in q. Propositions $1-3$ give $\alpha_{n}^{-1}={J_{n}^{-1}}_{n} \zeta_{n-1}$, so this conjecture implies the conjecture in (6). In fact, the two propositions are equivalent. Indeed, for each $\pi \in \mathcal{S}_{n, k}$ we have $\pi(k)=n$ and hence $\pi=\sigma T_{n, k}$ for some $\sigma \in \mathbb{S}_{n-1}$, so $\gamma_{n, k}$
equals $T_{n, k}^{-1} \gamma_{n-1, k}^{*}$ with $\gamma_{n-1, k}^{*} \in \mathbb{C}\left[\mathbb{S}_{n-1}\right]$ (in fact $\gamma_{n-1, k}^{*}=\gamma_{n-1, k-1}-\gamma_{n-1, k}$). It follows that if π is any element of \mathfrak{S}_{n}, and $\pi=\sigma T_{n, k}\left(1 \leqq k \leqq n, \sigma \in \mathfrak{S}_{n-1}\right)$ its canonical decomposition as at the beginning of Sect. 3, then the coefficient of π in $\Delta_{n} \alpha_{n}^{-1}$ equals the coefficient of σ^{-1} in $\gamma_{n-1, k}^{*} \zeta_{n-1}$. In particular, taking $k=n$ we find that the first $(n-1)$! coefficients in $\Delta_{n} \alpha_{n}^{-1}$ are exactly the coefficients of ζ_{n-1}, so that the integrality of ${A_{n}}_{n}$ implies that of ζ_{n-1} for each n.

We illustrate with numerical examples for $n \leqq 4$. For $n=2$ we have

$$
\begin{aligned}
& \alpha_{2}=1+q T_{1,2}, \quad \alpha_{2}^{-1}=\frac{1}{1-q^{2}}\left(1-q T_{1,2}\right), \quad \varepsilon_{2}=1+q^{3} T_{1,2} \\
& \zeta_{2}=\varepsilon_{2} \alpha_{2}^{-1}=\left(1+q^{2}\right)-q T_{1,2}
\end{aligned}
$$

We see that ζ_{2} is integral and that its coefficients are the first two coefficients of $\Delta_{3} \alpha_{3}^{-1}$, i.e., the first two coefficients of the matrix in (8). The other coefficients of α_{3}^{-1} are obtained by multiplying ζ_{2} by the elements $\gamma_{2, k}^{*}$ for $k=2$ and $k=3$, and we find

$$
\begin{aligned}
\left(1-q^{2}\right)\left(1-q^{6}\right) \alpha_{3}^{-1}= & \left(1-T_{2,3}^{-1}\left(q T_{1,3}+q^{2} T_{2,3}\right)+T_{1,3}^{-1}\left(q^{3} T_{1,3} T_{2,3}\right)\right) \zeta_{2} \\
= & \left(1+q^{2}\right)[123]-q[213]-q[132]-q^{4}[231] \\
& -q^{4}[312]+\left(q^{3}+q^{5}\right)[321],
\end{aligned}
$$

giving the remaining coefficients in the first row of the matrix in (8) (the other rows are permutations of the first one). Write this as $\Delta_{3} \alpha_{3}^{-1}=\left\{1+q^{2},-q,-q,-q^{4}\right.$, $\left.-q^{4}, q^{3}+q^{5}\right\}$ in the obvious notation. Using this value of α_{3}^{-1} and the value $\varepsilon_{3}=\left\{1, \quad q^{7}, \quad q^{3}, \quad q^{4}, \quad q^{8}, \quad q^{11}\right\} \quad$ we find $\zeta_{3}=\left\{1+2 q^{2}+q^{4}+2 q^{6}+q^{8}\right.$, $\left.-q-q^{3}-q^{5}-q^{7},-q-q^{7},-q^{4},-q^{4}, q^{3}+q^{5}\right\}$, which is integral as claimed. Now multiplying this by the various components $\gamma_{4, k}(1 \leqq k \leqq 4)$, we find

$$
\begin{aligned}
& \alpha_{4}^{-1}=\left(1-q^{2}\right)^{-1}\left(1-q^{6}\right)^{-1}\left(1-q^{12}\right)^{-1} \\
& \times\left\{1+2 q^{2}+q^{4}+2 q^{6}+q^{8},-q-q^{3}-q^{5}-q^{7},-q-q^{7},-q^{4},-q^{4}, q^{3}+q^{5}\right. \\
&-q-q^{3}-q^{5}-q^{7}, q^{2}+q^{4}+q^{6},-q^{4},-q^{9}-q^{11}, 0, q^{10} \\
&-q^{4}, 0, q^{3}+q^{5}, q^{10},-q^{8}-q^{10}-q^{12}, q^{7}+q^{9}+q^{11}+q^{13} \\
&-q^{9}-q^{11}, q^{10}, q^{10}, q^{7}+q^{13}, q^{7}+q^{9}+q^{11}+q^{13} \\
&\left.\quad-q^{6}-2 q^{8}-q^{10}-2 q^{12}-q^{14}\right\}
\end{aligned}
$$

where the 24 components have been listed in the obvious order (namely, the elements $\sigma \in \mathfrak{G}_{3}$ in the order above, followed by the elements $T_{3,4} \sigma$ with the same σ, then the $T_{2,4} \sigma$, then $T_{1,4} \sigma$). This gives the 24 elements of the first row of the matrix $A_{4}(q)^{-1}$, the other rows of course being permutations of this one. We have also checked the ζ_{4} has integral coefficients and thus that (6) holds for $n=5$.

5. Number Operators

For each index k, the $k^{\text {th }}$ number operator is the operator on \mathbf{H} having each vector $\mathbf{x}_{\mathbf{k}}=a^{\dagger}\left(k_{1}\right) \cdots a^{\dagger}\left(k_{n}\right)|0\rangle$ as an eigenvector with eigenvalue equal to the number of i with $k_{i}=k$, so that the eigenspace of $N(k)$ with eigenvalue r is the space spanned
by the states containing exactly r particles of type k. It is easy to see that this definition is equivalent to the requirements

$$
\begin{equation*}
N^{\dagger}(k)=N(k), \quad N(k)|0\rangle=0, \quad\left[N(k), a^{\dagger}(l)\right]=\delta_{k l} a^{\dagger}(l) \quad \text { for all } l \tag{11}
\end{equation*}
$$

(and hence $[N(k), a(l)]=-\delta_{k l} a(l)$ for all l).
Consider first the case in which there is only one operator $a(1)$ and its adjoint, i.e., only one kind of particle. In this case $\mathbf{H}(q)$ can be realized explicitly as the space spanned by vectors $e_{0}=|0\rangle, e_{1}, e_{2}, \ldots$ with

$$
a(1) e_{n}=\sqrt{n \frac{1-q^{n}}{1-q}} e_{n-1} \quad(=0 \text { for } n=0), \quad a^{\dagger}(1) e_{n}=\sqrt{\frac{1}{n+1} \frac{1-q^{n+1}}{1-q}} e_{n+1},
$$

since then

$$
a(1) a^{\dagger}(1) e_{n}-q a^{\dagger}(1) a(1) e_{n}=\frac{1-q^{n+1}}{1-q} e_{n}-q \frac{1-q^{n}}{1-q} e_{n}=e_{n},
$$

while the number operator $N(1)$ is given by either of the two formulas [5]

$$
\begin{equation*}
N(1)=\sum_{n=1}^{\infty} \frac{(1-q)^{n}}{1-q^{n}} a^{\dagger}(1)^{n} a(1)^{n}=\sum_{n=1}^{\infty} \frac{(1-q)^{n}}{\log \left(1 / q^{n}\right)}\left(a^{\dagger}(1) a(1)\right)^{n}, \tag{12}
\end{equation*}
$$

as one sees either by computing the action of the expressions on the right on the vectors e_{n} or else by verifying the relations (11) using (1) and (2). The first formula makes sense for all q between -1 and 1 , the second (which can be rewritten $\left.\frac{1-q^{N(1)}}{1-q}=a^{\dagger}(1) a(1)\right)$ only for $0<q<1$. Both reduce to $N(1)=a^{\dagger}(1) a(1)$ in the limit as q tends to 1 . For $q=0$ the first formula reduces to

$$
\begin{equation*}
N(1)=\sum_{n=1}^{\infty} a^{\dagger}(1)^{n} a(1)^{n} \quad(q=0) \tag{13}
\end{equation*}
$$

which makes sense since only finitely many of the terms act non-trivially on any given state.

In [1], Greenberg showed that the generalization of (13) to the case when there are many indices k is

$$
N(k)=\sum_{n=1}^{\infty} \sum_{k_{2}, \ldots, k_{n}} a^{\dagger}\left(k_{n}\right) \cdots a^{\dagger}\left(k_{2}\right) a^{\dagger}(k) a(k) a\left(k_{2}\right) \cdots a\left(k_{n}\right) \quad(q=0) .
$$

We now give a conjectural generalization of this formula to the case of arbitrary q between -1 and 1. It is convenient to express the formula for all $N(k)$ simultaneously by giving a formula for the energy operator $\mathscr{E}=\sum_{k} E_{k} N(k)$, where the E_{k} (interpreted as the energy of particle k) are scalar coefficients.

Conjecture. The operator \mathscr{E} is given by

$$
\mathscr{E}=\sum_{n=1}^{\infty} \sum_{k_{1}, \ldots, k_{n}} \sum_{\pi \in \Theta_{n}} \sum_{i=1}^{n} c_{i}(q, \pi) E_{k_{i}} a^{\dagger}\left(k_{\pi(n)}\right) \cdots a^{\dagger}\left(k_{\pi(1)}\right) a\left(k_{1}\right) \cdots a\left(k_{n}\right),
$$

where the coefficients $c_{i}(q, \pi)$ are given by

$$
\begin{aligned}
\sum_{\substack{\pi \in \mathbb{E}_{n} \\
1 \leqq i \leqq n}} c_{i}(q, \pi) X^{i-1} \pi= & \alpha_{n}^{-1}\left(1-q X T_{1,2}\right)\left(1-q^{2} X T_{1,3}\right) \\
& \cdots\left(1-q^{n-1} X T_{1, n}\right) \in \mathbb{C}[X]\left[\Theta_{n}\right] .
\end{aligned}
$$

This formula gives the correct result up to terms annihilating all $1-, 2$, and 3 particle states, viz:

$$
\begin{aligned}
& \mathscr{E}= \sum_{k} E_{k} a^{\dagger}(k) a(k) \\
&+ \frac{1}{1-q^{2}} \sum_{k, l}\left\{\left(E_{k}+q^{2} E_{l}\right) a^{\dagger}(l) a^{\dagger}(k)-q\left(E_{k}+E_{l}\right) a^{\dagger}(k) a^{\dagger}(l)\right\} a(k) a(l) \\
&+ \frac{1}{\left(1-q^{2}\right)\left(1-q^{6}\right)} \times \\
& \sum_{k, l, m}\left\{\left(\left(1+q^{2}\right) E_{k}+\left(q^{2}+q^{6}\right) E_{l}+\left(q^{6}+q^{8}\right) E_{m}\right) a^{\dagger}(m) a^{\dagger}(l) a^{\dagger}(k)\right. \\
& \quad-q\left(E_{k}+E_{l}+q^{6} E_{m}\right) a^{\dagger}(m) a^{\dagger}(k) a^{\dagger}(l) \\
&-q\left(E_{k}+q^{6}\left(E_{l}+E_{m}\right)\right) a^{\dagger}(l) a^{\dagger}(m) a^{\dagger}(k) \\
&-q^{4}\left(E_{k}+E_{l}+E_{m}\right) a^{\dagger}(k) a^{\dagger}(m) a^{\dagger}(l) \\
&-q^{4}\left(E_{k}+E_{l}+E_{m}\right) a^{\dagger}(l) a^{\dagger}(k) a^{\dagger}(m) \\
&\left.+q^{3}\left(1+q^{2}\right)\left(E_{k}+E_{l}+E_{m}\right) a^{\dagger}(k) a^{\dagger}(l) a^{\dagger}(m)\right\} a(k) a(l) a(m) \\
&+ \ldots
\end{aligned}
$$

Note added in proof. The conjecture stated in this section has now been proved by Sonia Stanciu (see paper following this one).

References

1. Greenberg, O. W.: Example of infinite statistics. Phys. Rev. Lett. 64, 705-708 (1990)
2. Biedenharn, L.C.: J. Phys. A22, L873-L878 (1989)
3. Fivel, D.: Interpolation between Fermi and Bose statistics using generalized commutators. Phys. Rev. Lett. 65, 3361-3364 (1990)
Bożejko, M., Speicher, R.: Commun. Math. Phys. 137, 519-531 (1991)
4. Greenberg, O. W.: Q-mutators and violations of statistics. Argonne Workshop on Quantum Groups. T. Curtright, D. Fairlie, C. Zachos (eds.). Singapore: World Scientific, pp. 166-180 (1991)

Greenberg, O. W.: Particles with small violations of Fermi or Bose statistics. Phys. Rev. D 43, 4111-4120 (1991)
Greenberg, O. W.: Interactions of particles having small violations of statistics. Physica A (to appear)
5. Freund, P.G.O., Nambu, Y.: Private communication (1989)

