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Introduction

Let H=Homeo*(S') be the group of orientation preserving homeomorphisms of
the circle. Our main question is the following: for given numbers y, and y,, what
are the possible rotation numbers of a product q,g, of elements q,, g, of H with
rotation numbers y,, y,? What if some or all of q,, q,, 4,9, are required to be
conjugate to rotations? Qur original motivation was the question of which Seifert
fibered 3-manifolds admit transverse foliations, which we discuss in Sect. 7. The
answers turn out to be much more subtle than we originally expected.

We can make the question more precise by working in the universal covering
group H of H. This is the group of homeomorphisms of R which lift from an
orientation preserving homeomorphism of §'=R/Z, that is H={Q:R-R|Q
monotonically increasing, Q(r+ 1) = Q(r) + 1 for all r e R}. (H is simply connected
since it is a convex subset of RR) For ye R define sh(y)e H by

ship)(x)=x+y, xeR.

The center of H is Z={sh(n)neZ} and H/Z=H.
For Q € H the (Poincaré) rotation number of Q is defined as

Rot(Q) = lim %[Q"(x)~x], xeR,

where Q" means Qo...oQ (ntimes). As is well known, this limit exist and is
Independent of x. The rotation number of an element g € H is defined as rot(g)
=Rot(Q) (mod Z) e R/Z where Q is a lift of ¢, but we will never actually use this.
Rotation number is a conjugacy invariant. Clearly Rot(sh(y)) =y. However, not
¢very element of rotation number y is conjugate to sh(y).

Our question above is the case n=3 of the:
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Problem. Given y,, ...,7,€ R, (n23), and be Z, when do there exist Qe H with
Q,...Q,=sh(b) and Rot(Q)=y; for i=1,...,n? What if we require Q; to be
conjugate to sh(y,)) for i in some specified subset JC{1,...,n}?

We require n=3 because the problem is trivial for n=2 (the answer is
91 +7,=>). In principle the answer for n>3 can be inductively deduced from the
answer for n =3, but, as we shall see, there is some nonobvious arithmetic involved,

We shall say (J; b;y,, ..., 7,) is realizable if the above problem has a positive
answer. We can ask the same question in any subgroup of H, for instance the
subgroups C'H, 1Zr=<w, of smooth or analytic difffomorphisms. We then
speak of realizability in this subgroup.

Our results described below offer very strong evidence for the following

Conjecture 1. (J;b; 7y, ..., 7,) is realizable in H if and only if it is realizable in some
3-dimensional Lie subgroup of C°H.

Such a Lie subgroup is conjugate to some G, ,n=1,2,3, ..., described as
follows. Let G, =PSL(2,R). Then G, acts by projective homeomorphisms on
RP!'=S!, so G,CH, and hence G,=PSL(2,R)cH. Let G, be the n-fold cyclic
cover of G,, which also acts on S* (by lifting the action of G, to the n-fold cover of
S* which is also a circle) so G,CH, and G,C H. Note that G,=G,; in fact G, is




Circle Homeomorphisms 183

Fig. 2 ) —

conjugate to G, in the group of all homeomorphisms of R by G, =P, 1 G, P, where
P,:R-R is P,(x)=nx.

We shall show that conjecture 1 holds if it holds for n=3. As evidence for the
conjecture when n=3 we offer the following pictures which we discuss in more
detail later. We describe below how Conjecture 1 can easily be reduced to the case
b=1 and 0<y,<1. The set of (y,,7,,75)€(0,1)* for which (¢;1;%;,72,73) is
realizable in some G, is the subset R C (0, 1)° of points on and below the piecewise
linear surface pictured in Fig. 1. We cannot yet decide realizability for points in the
union § of the open stair-step regions of Fig. 2. All points outside RS (pictured
in Fig, 3) are non-realizable, even in H.

For realizability of (J;1;7,,72,73), JE{1,2,3}, the pictures are the same
txcept that faces of R; (respectively §) perpendicular to the i-th coordinate axis
should be removed (resp. added) for each ieJ.

The volume of the “unsolved” region S is approximately 0.0010547 while the
volume of R, is

6{(2)£0)
(o)

Thus we could say our conjecture is about 99.9% proved and at least 99.5% true!

25130 +3¢(3)— =0.224649208402....
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Don Zagier did the above volume computation (see Appendix). We are gratc-
ful to him for many useful discussions and for help in drawing the pictures.

1. Statement of Results

By adjusting the Q; by central elements and adjusting b accordingly we can assume
that0<y, < L fori=1, ..., n. There is clearly also no loss in assuming y; # 0 for iel.
‘We make these normalizing assumptions from now on.

In case y,=0 for some i, our problem is solved (implicitely) in [EHN] (s¢¢
Sect. 2):

Theorem 1. Suppose the number g of vanishing y, is positive. Then (J;b;71, - yAL
realizable if and only if 2—g<b=<n-—2. It is then even realizable in G-

We may now assume
O<y, <l for i=1,..,n

Under this assumption we have ((EHN], see also Theorem 3.1):



Circle Homeomorphisms 385
Theorem 2. If (J;b;7,,...,7,) is realizable in H then 1Sb<n—1.1f 2<b<n—2
then (J;b371s ..., 7,) is realizable in G,.

Thus only the cases b=1 or b=n—1 remain open. If b=n— 1 we may replace
each y; by 1 —7,; which replaces b=n—1 by b= 1. Thus until further notice we will
assume:

b=1, O<y,<l for i=1,...,n.

Theorem 3. (J; 1574, ...,7,) is realizable in some G’k if and only if the following
condition (*) holds:

For some integers 0 <a<m with gcd(a, m) =1 and some permu-

. a a a m—a 1 1
tation (4,...,—5) of (- ,—,...,~), we have:
m m

m m’ m ‘m

NSE for igJ, *)

a )
Vi<g for ield.

See Fig 1 for the case n=3.
In view of these results, Conjecture 1 is equivalent to:

Conjecture 2. (J; 1;y,, ...,7,) is realizable in H if and only if condition (*) holds.
We shall show
Theorem 4. Conjectures 1 and 2 hold for all n if they hold for n=3.

The non-realizability results which give Fig. 2 are rather ad hoc. They are
described in Sects. 4 and 5. Given the naivety of the approach used in Sect. 4, we
found it remarkable that it leads to results so close to a definitive answer. Section 6
describes our pictures in more detail. Section 7 describes the application to
transverse foliations of Seifert manifolds.

2. Basic Material

We first note the fact (which has already been used implicitly) that the realizability
of (J;b;y,,...,9,) is invariant under permutations of the index set {1,...,n}.
Indeed, since Q,0,=0,(0;'0,0,), a simple induction shows that one can
permute the factors in a product Q...0Q, without changing the value of the
product if one replaces each factory by a conjugate as necessary.

Another fact that we shall use with little comment in the following is that if

Qe G, hasRot @)=y ¢%Z, then Q is conjugate to sh(y). This follows from the fact

thilt any element of PSL(2, R) either has a fixed point on S* or is conjugate to a
Totation.
We shall use Knuth’s “floor” and “ceiling” notation |y J, [y] for“integer part of

7(;; and “least integer not smaller than y”. Moreover {y} will denote fractional part
7.
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For Qe H we denote
m(Q)=min{Q(x)—x|x e R}
m(Q)=max(Q(x)—x|xeR}.
Clearly
0=m(Q)—m(@)<1. 2.0
If the interval [m(Q), m(Q)] contains an integer S then there exists a point x with
Q(x)—x=4, so @Q"(x)=x-+npf by induction, so Rot(Q)=pf. Hence
Rot(Q) ¢ Z=>|Rot(Q)| <m(Q) Rot(Q) =m(Q) <[Rot(D)1. 2.2)

Moreover, for any elements Q,,...,Q, of H

(Q,.-0) 2 (@) + T m(Q)
- (2.3)

Q.- @)Sm@)+ X m(@).

For these and other elementary properties of m and i see Lemma 2.1 of [EHN].

Proof of Theorem 1. The necessity of the condition 2 —g<b <n—2in Theorem 1is
immediate from the inequalities (2.3) above. To see sufficiency, suppose 0 <y, <1
for i=1,...,n—g and ;=0 for i=n—g+1,...,n with g>0. Assume 2—g=<b
<n-2. These inequalities imply that there exists an r € R satisfying

O<r<n—g (or r=0 if n=g) (*)
b-re(l—g,g—1)u{0}. (*%)

By Theorem 2.5 of [EHN] inequalities (*) are equivalent to the existence of
conjugates Q; of sh(y;) for i=1,...,n—g with re [m(Q,...Q,-,), m(Q;...0x-5)]}
Put X=(Q;...0,_,) 'sh(b), so b—re[m(X), m(X)]. Then by Theorem 2.3 of
[EHN], the fact that [m( X), i(X)1n((1—g,g — 1)u{0})is nonempty is equivalent
to the existences of Q,_, 4, ..., Q, of rotation number 0 with X=0,_,+:---0n
This proves Theorem 1; by Theorem 4.1 of [EHN] this proof can also be carried
out in G, =PSL(2,R).
The following lemma will be needed in Sect. 4.

Lemma 2.1. Suppose Qe H has Rot(Q)=y. Then for any ¢>0 there exists ¢
conjugate Q' of Q with

y—eSm(@)sm(Q)=y+e.
Proof. We first observe that for any xe R

1
<-.
n

L@ @-x-

Indeed, this follows from the inequalities m(Q")<Rot(Q")=ny<mQ" and

m(Q")—m(@)<1.
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1
To prove the lemma choose n> " and put

P(x)= -'1; g 0(x), xeR.

Since H is a convex subset of R® we have P e /. Moreover, Q’=PQP ~ satisfies

1 .
the lemma. Indeed, PQ(x)—P(x)z;(Q"(x)—-x), so putting y=P(x) we have

POP Y(y»)—y =%(Q"(x) — x) which is within % of . Since y is arbitrary this proves

the lemma.

3. Realizability in G,
In [JN] the following is proved

Theorem 3.1. (J;b;yy,...,7,) with 0<y,<1 for i=1,...,n is realizable in
G,=PSL(2,R) if and only if one of the following conditions is true
(a) 2:-<_b§n-25

(b) b=1and ¥ 7,51,
i=1
(©) b=n—1and ¥ y;2n—-1.
i=1
Note that an element of G, of non-integral rotation number is always

conjugate to a shift, so J plays no role in Theorem 3.1.
Define for JC{1,...,n} and m a positive integer:

T= {m, )€, 1) E:J)’ié 1},

R,(m; N={(yy, ....y.) €0, 1)"3a,,...,a,€Z,a,+... +a,
=m+n-2,y;Sa/miori¢J,y,<a/mfor ie J}
Proposition 3.2. Suppose (y1,...,7,)€(0, 1)* =T, that is, (J;1;y,...,7,) is not

realizable in G,. Then (J;1;y,,...,7,) is realizable in G, if and only if
(P15 ooy 7)€ R (m; J).

Proof. Let

- Lmy,l+1 for ielJ,
A Tmy for i¢J.

Then (y,, s P € R(m; J) if and only if 3°a,<n+m—2. By permuting indices we
maY‘assume my¢Z for i=1,....k and my;e Z for i=k+1,...,n. We shall first
Consider the case that {k+1,...,n}CJ, so

a={my]+1 forall i.
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(J;1:%,,...,7,) is realizable in G,, if and only if (J; m; my,, ..., my,) is realizable
in G,. We renormalize to get

(J(;; m— él_m}’d; {my}, ..., {mYk})

with Jo=J—{k+1,...,n}. Thus we must show

(Jo§ m— éLm?i_H {my}, ..., {myk}>

satisfies one of the conditions a), b), or ¢) of Theorem 3.1 if and only if
Sa,sm+n—2.

n n k
If it satisfies b) of Theorem 3.1 then mY y;=3 |my,J+ 3 {my;}=
1 1 1
n k
- (m - Z[myij) +Y. {my;} +m=m, so (y,...,y,) € T, contradicting assumption.
1 1

Cases a)and ¢)imply 2<m— 3 |my;] and hence > a;= 3" |my;| +n<m+n—2,as
1 1 1
desired.

Conversely, assume $a5§m+n—2. Since éyi>1 we get m+n—2g2:jai
=é|_my,~]+é‘,l my,-+n>2::my,~+n—-k>m+n—k, so k>2. Moreover é‘,[myij
=}::a,-—n§m—2, S0 m—}:: my;}=2. Also éLmyiJ>)::myi—kgm—k, $0
m—z:: {my;J<k—1. Thus by part a) of Theorem 3.1 we are done unless

n k n n
m— Y |my;}=k—1.Butin this case 3 {my;} = S my;— X | my; | >m~—(m—k+1)
1 1 1 1

=k—1, so we are done by part ¢) of Theorem 3.1.
Now suppose {k+1, ..., n} ¢ J, in fact suppose {k+1, ..., n} — J has g elements.
Then we must show that

(m—- 51.: Lmy.d, {my}, ..., {mn}, 0, ..., 0)

(g zeros) is realizable in G, if and only if " a;<m+n—2. By Theorem 1 we have
1
realizability if and only if
2—gSm— 5_‘, Lyl S<g+k—2. ®

But a;=|my,] for ie{k+1,...,n}—J and a;=|my,|+1 otherwise, so }:a

=Y |my;]+n—g. The left hand inequality in (*) is thus equivalent 0
1

Y a;<m+n—2 while the right hand inequality in (*) holds automatically (since

1

m—Y |myjSm—Ymy+n—1<n— 1). The proof is complete.
1 1
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Define

R(D= U Ry(m:J).

Corollary 3.3. Assume 0<y; <1 fori=1,...,n. Then (J;1;7,,...,7,) is realizable in
some G, if and only if (y,, ..., 7.) CR(J).

Proof. This is immediate from the above Proposition once we know that TC R,(J),
which is part of the following Proposition.

Proposition 3.4. Denote R,=R,({1, ...,n}) and let R, be its closure in (0, 1)". Then
(i) R, is open. R,SR,(J)CR, for all J.
(ii) TCR,.
(il) Ri(#)=R,

Proof. Put R,(m)=R,(m; {1, ...,n}). Then R, (m) is open and R,= G R,(m) and
m=2

R,(m, J)S R,, so (i) follows. For (ii) suppose (71, ...,7,) € T. If 3"y, <1 then we can
1

find rational % with 0<yi<ﬂ for i=1,...,n and Zg—"<l, SO
m m Tm
Gu o) ERM)CR,. If 3 y,=1 and the y; are all rational then we can write
1
1
2 %(a,, ...,a,) for some a, ...,a,, ke Z. Put m=k—1. Then y;< a for

each i and Y a;=k<m+n—2 50 (y4,...,7.) € R,(m)CR,. Finally, ifZ'yizl and
1 1

some y, is irrational then at least two y;’s are rationally independent, say y, and y,.
The set of (my,, my,) (mod Z@Z), m a positive integer, is dense in (R/Z)?, so we can
find m with £ < {my,} <1and 4 < {my,} <1. Then (my,+ 1 |—my, <} fori=1,2, so,

putting a,=[my,;+1] for i=1,...,n, we have Y a;= Y |my,+1]1< X my;+n—1
1 1 1
n
=m+n—1,s50 Y a,sm+n—2, 80 {y4,...,y,) € R,(m).

To see statement (iii) of the Proposition, suppose (9, ...,y¥), j=1,2,...,is a
Se‘luence of points in R, which approaches a limit x € (0, 1)". If there e)usts m such
that (49, ...,9%) e R (m; @) for all sufﬁcxently large j then the limit is in R,(m; ¢)

-1
since R,(m;¢) is closed. Otherwise ny’) <1427~ m where m;—> o, so xeT,
whence x e R, by part (ii). Thus R,,QR,,(¢) so R, R,,(¢) by part (i).
Define

SN ={(y4,.--,¥s) € (0, 1)"| condition (*) holds}

Where (%) is the condition:



390 M. Jankins and W. D. Neumanp

. . a; a,
For some integers 0 < a <m and some permutation | —, ...,—
m

m

a m—a 1 1

of { —, , —,--,— |} We have
m m m m

v.-é% for i¢J,

a.
y,<— for iel.
m

Note that if (*) holds with given a and m, then it also holds with "= a/gcd(a, m) and
m’=mfgcd(a, m). Thus we could require gcd(a, m)=1 in (*), which is condition (x)
of Theorem 3.

Clearly S, (J)SR,(J). To prove Theorem 3 we must show S,(J) = R,(J). Before
we do so we define another subset of (0, 1)” relevant to Theorem 4.

For any subset JC{1,...,n} let

Jl =Jn{1, ...,n—2}

¢ ¢
R . | An—1}
J,= 33 accordingas Jn{n—1,n}= n
{29 3} {n_l,n}

Define inductively
T,(J)=Rs(J)
T ={Q1 V) €O, D)"Ex, 1, s Va2, X) € T, 1(J 1)
and (1—-x,7,_1,7s-2)€ T3(72)} .
If, in this inductive definition, we replaced Ty(J) by the (conjecturally equal) set
{1572, 73)10; 1571572, v3) s realizable in Hy,

then we would have T(J)={(y4, ..., TIJ; 1; 71, ..., V) is realizable in A} for alln
and J. This is because Q,...Q,=sh(1) in H if and only if @,...Q, _,X =sh(l) and
(sh(1)X 10, _,0,=sh(1) with X =0,_,0,. Thus Theorem 4 of the Introduction
is proved if we show always T,(J)=R,(J). Thus to complete the proofs of
Theorems 3 and 4 we must show:

Lemma 3.5. S,(N)=R,(J)=T,(J) for n=3 and any J.

Proof. Clearly S,()YSR,(J)S T.(J), so we must show T,(J)CS,(J). We do this by
induction. Our original proof of the induction start,n=3, is superceded by the
following much simpler proof due to Don Zagier.

For n=3 the statement to be proved is R,(J) € $5(J). It is sufficient to show that
b .
the external points (—:;, P ;;—,) ,m=a+b+c—1, of Ry(4) are in S3(¢). Without

Joss of generality @ <b<c. Moreover, we may assume 2 < g since if a=1 we ar
done. We consider two cases:
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b
* s
m

Case I. m<2a+2b—2. Then % <i so (

S 3=

Case2. m22a+2b—1. Put k=|ﬁJ and let I= O I, where

I=2k+1
b— . . -
b Ha+b-1) . These intervals overlap since [>2k+ I:M

Sl k A
B (l+kl)b _ l(a—l:)—b > (2k+1)(a—-ll)c—(ka+a——l) —a—230. Hence
I= [(Zk-;;l)b’oo) But (ZkII)b §2b+ka+ka—1 <2b+2a—1=m, so mel,
that is m e I, for some > 2k. Then 1,2,—6-> < l,k,l_—_k .

mmm A

We shall prove the induction step just for J = ¢. It will be clear that the same
proof works for any J if appropriate inequalities are replaced by strict inequalities.
Assume therefore that T,(J)=S(J) for k=3,..,n—1 and any J. Let
(15 .- Ya) € T,(d). Hence there exists x €(0, 1) such that (y4,...,7,_5,x)€T,_,(¢4)
and (1 —x, v, 1, 7.) €T3(¢). By the induction hypothesis we can find a,me Z and a

permutation (ay, ...,a,_) of (a,m—a, 1, ..., 1) such that y,< ;;—i fori=1,...,n—2

and x < a—"”‘l—‘. We can also find b,/ € Z and a permutation (b, b,, b3) of (b,I—b, 1)

b, -1

such that 1 —x < %1, 7,,_1_3_7-, y,§%. Note that 1—-%1§x§ ,;n , whence
by  a,
< — .
=7+ (*
n-1
Since ¥ a,=m+n—3, this is equivalent to
1
n—2 4. —

i=1m m =1
We consider four cases:

Case 1. a,_ =1 and b; =1. In this case () forces [=m=2, so y,<4 for all i, so
()’1: trey 7,,) € Rn(z; ¢) CR“(¢)

Case 2.4, ;=1and b, >1. Then without loss of generality b, =1. By (+) we have
2

!

a4 Gy by b3\ _(ay a5 11
m""’ m ,l,l 1 m""’ m Qm’m

(component-wise tnequality} so (7, ..., 7,) € R(m; $) C R (#).

I2m. In addition, since b, =I— b, inequality (*) says 1 < + % and hence
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Case 3.a,_,>1 and b, =1. Then without loss of generality a, = .. =a,,_3=1,]3y
n—-2
(*) we have m= 1. Since Z a__uza él. Then
m m m )

G Gz b by) (1 1b: by

m""’ m > l’ l = l""’l, l’ l .
Case4.a,_;>1and b, >1. Weagainassumea, =...=4a,_3=1and b,=1. By ()
we have a,;nz <bl If I<m then

a4 Gy Gy by by (1 1by1by
m’ " m m T m) TN\
If IZm then

a_l Gn—3 Gy-2 bZ b3 < 1 1 dy-2 1 m—a,—y
3 eves ’ 3T s T =N T s ey T s LR .
m m m m m m m m m m
_b_3_<m - n-
I~ m m =1

The last inequality
by=I1-b,.

4. Nonrealizability

Theorem 4.1 below is our main nonrealizability result. It leaves undecided for n=3
only the region S of Fig. 2 (Sect. 1) together with six additional boxes, namely the
following box of volume 0.001736... and all boxes obtained by permuting the
coordinates: )

Nl»—
II/\

Y3515} -

{(71,)’2,?3)|5 < —4,%§7 _S_%
t to eliminate these boxes.:

In the next section we give a special argument

Theorem 4.1. Suppose (ﬂ 1 B2 B 3) e@Q?® with 0< g <1 for each i and

2“3 i

B . (B B3
Ei_ - (“2 * oy oy — 1))

Then (J;1;7,, ..., 7,) is not realizable in H if, after some permutation of indices, we
have ;> gi for i¢Jn{1,2,3} and y;= % forieJn{l,2,3}.

Remark. Exchanging indices 2 and 3 gives a weaker version of the theorem unless

ﬁZ < ﬁ3
az—'l =a3—1’

Proof. Suppose y,> —ﬁ— for i=1,2,3 and suppose we have Qieﬁ with
Q,...0,=sh(1)and Rot(Q) yfori=1, ..., n. Choose any ¢ >0. By Lemma 2.1 W¢
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may assume, by conjugating if necessary, that m(Q,)>7,; —e. Then

m(Q;...0,) =m(Qr 'sh(1)) S1—yp, +e. 4.1)

Write 6=1—y;+¢ and m;=m(Q,) and M,=m(Q,) for i=2,3. Then (4.1) implies
my+M;<6

M:+m3§5. (4.2)

On the other hand, the facts that Rot(Q,)> % for i=2, 3 imply Rot(Q%*)> B; and

hence, by inequalities (2.2) and (2.3),
ﬁzémz‘l’(“z—l)Mz} 4.3)
Bismy+{a3—1) M,

(actually with strict inequality, but we don’t need this). Combining (4.2) and (4.3)
gives
Br—0S ~My+(a;— )M,

Bs—6—My+(as—DM;.

Adding (3 —1) times the first inequality to the second gives

f3—0+(a3—1) (B — )= (s~ (e~ 1)- )M,
On the other hand (4.2) implies M, <4, so

B3 —0+(a3—1)(B;— ) <((as—Nloy — 1)~ 1)3,
or

3Py +Ba— By — 36 <(oy05—ty — 3)0,

$0

6>°‘3ﬁz+53‘ﬁ2 _bB P

®Xp03 — 0y a,  ay(az—1)°

y1—3<1—-<&+——£§~——).

% a3 —1)
Since this holds for every e>0 we have

ylgl—(&+—ﬁ_>

ay  ay(ey—1)

B

oy

This is equivalent to

which contradicts the assumption that y, >

If either of the Q,,i=2,3, is conjugate to sh(y,) with yig% then we still get
inequality (4.3) so the proof goes through with no change. If Q, is conjugate to

$hiy,) with y, 2 gi then by conjugating if necessary we may assume Q, =sh(y,).
1
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Then
m(Q,...Q)=m(Q1 ' sh(l))=1-y,.
By letting d=1—7v,, inequality (4.2) remains valid, so as before we conclude

[P B3 R 2 B, B3 .
6>~=2+ ——=——_ This implies — <y, <1— | = 4+ ———o )
@y  alay—1) P %y =N LP) * ax(o3—1) giving the de
sired contradiction in this case.
Using a standard linear programming argument one can show that

Theorem 4.1 is the best result that one can extract out of inequalities (4.2) and (4.3).

5. A Special Nonrealizability Result

Theorem 5.1. Let (xy,0,,03)=(2,3,5) and let J be any subset of {1,2,3}. If
(J; 1574, 72, 73) satisfies

[

<y<l  for iel,

|— &

<y,<l jor i¢J,

R

then (J; 1;9,,72,73) is not realizable.

Proof. Suppose Q,Q,0;=sh(1) is a realization. By assumption Q;~sh(y;) with
1, ) .

Vi - ifieJ and Rot(Q,)=y,> aleieéJ. Either way we have m(QF) = 1. We shall

show lthis leads to a contradictioln.

We write Q%' =sh(1)R; 1, som(R;)£0fori=1,2, 3. InFig. 4 we have drawn the
Cayley graph of the icosahedral group on the surface of a dodecahedron. Consider
the following sequence of equations in H which correspond to a sequence of
expanding polygonal paths on the Cayley graph:

Fig. 4
id=Q3sh(-1)R;=Q3Q; 'Q; 'Ry =Q3Q; 'Q, sh(—~1)R,R,

=03030, sh(-2)R{’R,R; = 0301 ' 05 3,0, sh(— 1) RY’R,Rs
=0%0:05'0,0,sh(—2)R{"'RPR Ry =...,
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where R are suitable conjugates of R;. Once the path in question has expanded
over the dodecahedron and contracted back to a trivial path via the back side of
the dodecahedron we have a relation

id=sh(k)R

with ke Z and R a product of conjugates of the R;. We claim k= —2; since
m(R)S0 this gives O=m(id)=m(sh(—2)R)< —2, which is the desired
contradiction.

As we deform the path as above, the relation Q3 =sh(1)R; ! is used 12 times
(once for each of the 12 faces of the dodecahedron), the relation Q3 =sh(1)R; ! is
used 20 times (once for each vertex of the dodecahedron) and Q% =sh(1)R; ! is
used 30 times (once for each edge of the dodecahedron). This contributes
—(124+20+30)= —62 to k. The relation Q,0,Q,=sh(l) is used 60 times,
contributing 60 to k, so k= —62+60= —2, as claimed.

6. Description of the Figures

In this section we describe the numerical ingredients that go into drawing R; and §
in Figs. 1 through 3. We shall not give detailed proofs. The only proof that is not
easy to complete is that the domain § of Fig. 2 represents the best our results will
give, namely, that no further part of S is excluded by Theorems 4.1 and 5.1. This
proof is tedious and did not seem worth including,

We shall need the following notation. Let a, b be integers satisfying

az2, bz2, gcd(a,b)=1 6.1

and define integers a* and b* by

aa*=1(modb) O<a*<a 6.2)
bb*=1(moda) 0<b*<b. )
Define
A=b+b*—a*, B=a+a*-—b*

Fig. 5
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Fig. 6

Lemma 6.1. The correspondence (a, b, a*,b*)—(A, B, A*, B*) is a bijective invo-
lution on the set of 4-tuples satisfying (6.1) and (6.2). Moreover (a+ b, b, a*, A) and
(a, a+b, B, b*) also satisfy (6.1) and (6.2).

The easiest part of Fig. 1 is explicated in Fig. 5 above. A typical part of the
remaining detail of Fig. 1 is pictured in Fig. 6 with coordinates given by the
following formulae (notation as above).

X a+a*—b* b+b*—a* 1 _ B A 1
- a+b ° a+b ’a+b) \A+B’A+B A+B)’

a—b* b—a* 1
Y°=< a ' b ’a+b)’
y_(@tb-4 b—a* 1
1™\ a+b > b ’(a+b)+b)’
Y= a—b* (a+b)—B 1
2"\ a ’ a+b ’a+(atbh)

P a—b* b—a* 1
"\ a ° b ’max(ab)

For future reference Fig. 7 repeats a portion of Fig. 6 with some lengths shown.

1

YO b.(a+b)
~

Fig. 7

. a—b* b—a* 1
The point Yo—< P e
these coordinates, is at a “dimple” of R;. In each such “dimple” there is a connected
domain S(Y,) described below in which realizability is not excluded by Theore™

4.1 However if Y, has coodinates a permutation of 3,4, 4) then S(¥,) is excluded by

), and any point with a permutation of
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Theorem 5.1. Thus S of Fig. 2 is the union of the remaining §(Y,)’s. By permuting
coordinates if necessary, we may assume ¥, has coordinates as above and a>b.
Then S(Y,) ts shown in Fig. 8 with coordinates given by the following formulae
(the figure is schematic; vertical scale is compressed):

Fig. 8

Ve a—b*+ i b—a* 1
T 4 ab(a+i)> b a+l+i
a—b* b——a*+a—b+i 1

a ’ b ab(a+i) a+1+i

) (a>b)

W=

) (a>b).

A trivial calculation shows that (ﬁ, &, &> =V;and (EZ-, El, E;) =W, (note the
oy &y &3 %y %y %3

transposition of indices) are tuples satisfying the premiss of Theorem 4.1.

7. Transverse Foliations

The problem of which Seifert fibered 3-manifolds M admit a transverse foliation
(that is a codimension one foliation transverse to all the fibers of the Seifert
fibration) was solved in [EHN] except in the case that M is orientable and Seifert
fibered over the 2-sphere. The key to the solution was the following theorem.

Theorem. M has a transverse Joliation if and only if there exists a homomorphism
¢fi n,(M)—H with ¢(Z)=sh(1), where Z € ,(M) is represented by a generic fiber
o M.
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If M has Seifert invariant (g =0; b; (a4, B1), - ., (%, B)) With 0 < b < 1 then this

o
theorem says that M admits a transverse foliation if and only if | {1,...,n};b;

&, ,éf’—) is “realizable” in the sense of this paper.
%y n
In the case left open by [EHN], namely b= 1, we therefore have conjecturally
that a transverse foliation exists if and only if there exist integers 0 <a <m with
. a a a m—a | 1 )
gcd(a,m)=1 and a permutation (—1—,..., —5) of (—, — ...,—) with
B, A m’m m m 'm m
0< &i < = for i=1,...,n. Moreover, the foliation can then be chosen to be
i
analytic (in fact, even transversely projective), as in the previously solved cases. As
we have pointed out, this paper proves this conjecture in 99.9% of all cases. It also
contradicts the result announced in [G], and shows that the answer is consider-
ably more subtle than earlier results (see also [M, S, W] might have led one to
expect.

Appendix: Volume of R,

by Don Zagier

From the description of R, in Sect. 6 we see
Vol(Ry))=V,+ Vi +V,

where

TS n-1)

is the volume of the part indicated in Fig. 5, and

1 1 1
Vz=6(z%_<{, a(a+b)'b(a+b)'a+b

is the sum of volumes of the rectangular blocks of Fig. 7. Now

1 1
h=3( 2 )
and V=6 1 3 1
2 2sza:_s_b ab(a+b)® - a,l;gz ab(a+b)°
(a.b)=1 L8

™

1 1 i
= ___.___2 - ~ .
3<a,€\:>o ab(a+b)®  “igh k(k+1)° +8)

{a,b)=1
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Thus
VOl(R3)=3S2—3S1+J§,
where
S5,= 3 ———1
TS k(k+1)?
and
S;= XY ————1
27 o ab(a+b)?’

(a,b)=1
To compute S, we note that

S N T 1
k(k+1)° &k k+1 (k+1)? k+1)°

whence

11 1 1
Sl = kgl (k k+ 1) kgl (k+ 1)2 B kgl (k+ 1)3
=1-C@)-H-CB)-1

=3-{(2)-{().
For §, we use
___1___L_ 1 _ 1 _ 1
kik+0® — kM KA Kk+D) Kk+D2 Kk+D)
Thus
1
{5)S, = a,..,zb">o d’ab(a+b)?
@.b)=1
—k,1>0 kl(k+1)3
1 1 1 1
B kf:o (ﬁ_ k“(k+l)) B k,éo(k?‘(k+l)2 + k2(k+l)3>
1 1 1 1
—k§0k4<1+ +- +k> ,.;,,,nzmz
1 1
_kg;;om nm>0 N m3 +n§0n
=83—{(@L3)+{(5),
where
1 1 1
§3= k550 k4 _z,mz>:o(l+m)41 +Zl_5_'

399
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But
1 I
28, = k,lz>0 ((l+m)4l + (l+m)“m) +20(5)
1
= o (Fmm 0
={(5)5,+2L(5).
Combining the last two formulae, one finds
202)L03)
=4 2N
> )
and hence
2
Vol(Ry)=3+3{()+3((3)— G_C(Zgé)_ _
References

[EHN] Eisenbud, D., Hirsch, U., Neumann, W.: Transverse foliations of Scifert bundles and self
homeomorphisms of the circle. Comment. Math. Helv. 56, 638-660 (1981)

[G] Carmen Gazolas, M. del: Fibrés de Seifert : classification et existence de feuilletages. C.R.
Acad. Sci. Paris 295, 677-679 (1982)

[JN] Jankins, M., Neumann, W.D.: Homomorphisms of Fuchsian groups to PSL(2,R).
Comment. Math. Hely. (to appear)

M] Milnor, J.: On the existence of a connection with curvature zero. Comment. Math. Helv.
32, 215-223 (1957-1958)

[S] Sullivan, S.: A generalization of Milnor’s inequalitics concerning affine foliations and
affine manifolds. Comment. Math. Helv. 51,7183-184 (1976)

[W]  Wood,].W.: Bundles with totally disconnected structure group. Comment. Math. Helv.
46, 257-273 (1971)

Received July 2, 1984



