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Introduction 

Let H = Homeo § (S 1) be the group of orientation preserving homeomorphisms of 
the circle. Our main question is the following: for given numbers 71 and Y2, what 
are the possible rotation numbers of a product qlq2 of elements ql, q2 of H with 
rotation numbers 71, Y2? What  if some or all of ql, q2, qlq2 are required to be 
conjugate to rotations? Our original motivation was the question of which Seifert 
fibered 3-manifolds admit transverse foliations, which we discuss in Sect. 7. The 
answers turn out to be much more subtle than we originally expected. 

We can make the question more precise by working in the universal covering 
group/7 of H. This is the group of homeomorphisms of F, which lift from an 
orientation preserving homeomorphism of S 1 = R / Z ,  that is / 7=  ( Q : R ~ R I Q  
monotonically increasing, Q(r+ 1) = Q(r) + 1 for all r ~ R}. (/7 is simply connected 
since it is a convex subset of IR•.) For y ~ ~-. define sh(~) ~ H by 

sh(7) (x)=x+~,  x ~ R .  

The center o f /7  is Z = {sh(n)ln e Z} a n d / 7 / Z  = H. 
For Q e /7  the (Poincar6) rotation number of Q is defined as 

Rot(Q)= lim 1-[Q*(x)-x], x e R ,  
11400 n 

where Qn means Q . . . . .  Q (n times). As is well known, this limit exist and is 
independent of x. The rotation number of an element q ~ H is defined as rot(q) 
=Rot(Q) (modZ) e R / Z  where Q is a lift of q, but we will never actually use this. 
Rotation number is a conjugacy invariant. Clearly Rot(sh(~))= 7. However, not 
every element of rotation number 7 is conjugate to sh(v). 

Our question above is the case n = 3 of the: 
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Problem. Given 71, . . . , ? ,ER,  (n>3) ,  and b~Z, when do there exist Q~elq with 
Q1...Q,=sh(b) and Rot(Q~)=~ for i = l , . . . , n ?  What if we require Qi to be 
conjugate to sh(7~) for i in some specified subset d ~ {1 . . . .  , n}? 

We require n_>_3 because the problem is trivial for n = 2  (the answer is 
~1 + ~2 = b). In principle the answer for n > 3 can be inductively deduced from the 
answer for n = 3, but, as we shall see, there is some nonobvious arithmetic involved. 

We shall say (J;  b; 1'1 . . . . .  7.) is realizable if the above problem has a positive 
answer. We can ask the same question in any subgroup of /7 ,  for instance the 
subgroups C'/ t ,  l _<r_< to, of smooth or analytic diffeomorphisms. We then 
speak of realizability in this subgroup. 

Our results described below offer very strong evidence for the following 

Conjecture 1. ( J ;  b; 71,..., 7~) is realizable in/7 if and only if it is realizable in some 
3-dimensional Lie subgroup of C~H. 

Such a Lie subgroup is conjugate to some G~, n =  1,2, 3, ..., described as 
follows. Let Gt = PSL(2,R). Then GI acts by projective homeomorphisms on 
RI ~ = S  1, so G1CH,  and hence G1 =PSL(2 ,R)CO.  Let G. be the n-fold cyclic 
cover of G~, which also acts on S ~ (by lifting the action of G~ to the n-fold cover of 
S 1 which is also a circle) so G. C H, and (7. C/7. Note that (7. ~ (7~; in fact G. is 
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conjugate to (~1 in the group of all homeomorphisms of R by (7, = P~- 1 d iP ,  where 
P,: R--*R is P,(x) = nx. 

We shall show that conjecture 1 holds if it holds for n = 3. As evidence for the 
conjecture when n = 3 we offer the following pictures which we discuss in more 
detail later. We describe below how Conjecture 1 can easily be reduced to the case 
b=l and 0 < ~ < 1 .  The set of ( )~1,72,~3)e(0,1)  3 for which (~b;1;~1,72,~) is 
realizable in some G k is the subset/~3 C (0, 1) 3 of points on and below the piecewise 
linear surface pictured in Fig. 1. We cannot yet decide realizability for points in the 
union S of the open stair-step regions of Fig. 2. All points outside R3wS (pictured 
in Fig. 3) are non-realizable, even in/~. 

For realizability of (J; 1;~1,~2,~3), J_{1,2 ,3} ,  the pictures are the same 
except that faces of R3 (respectively S) perpendicular to the i-th coordinate axis 
should be removed (resp. added) for each i e J. 

The volume of the "unsolved" region S is approximately 0.0010547 while the 
volume of/~3 is 

+ 3~(2) + 3~(3) 6~(2)~(3) = 0.224649208402 .... 
~(5) 

Thus we could say our conjecture is about 99.9% proved and at least 99.5% true! 
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Don  Zagier did the above volume computat ion (see Appendix). We are grate- 
ful to him for many  useful discussions and for help in drawing the pictures. 

1. Statement of Results 

By adjusting the Qi by central elements and adjusting b accordingly we can assume 
that 0 < 7t < 1 for i = 1, ..., n. There is clearly also no loss in assuming 7i 4:0 for i e J. 
We  make these normalizing assumptions from now on. 

In ease 7i = 0 for some i, our problem is solved (implicitely) in [EHN] (see 
Sect. 2): 

Theorem 1. Suppose the number g of vanishing 71 is positive. Then (J;  b; ~1,-.., 7~) is 
realizable if and only if 2 - g < b < n - 2 .  It is then even realizable in all. 

We may now assume 

0 < ~ < 1  for i= 1  . . . .  ,n  

Under  this assumption we have (I 'EHN], see also Theorem 3.1): 
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Theorem 2. I f  (J; b; 71,..-, Y~) is realizable in I~ then 1 < b <_ n -  1. I f  2 <_ b < n -  2 
then (J; b; ~'1 . . . . .  7~) is realizable in G I. 

Thus only the cases b = 1 or b = n -  1 remain open. If b = n - 1 we may replace 
each 7i by 1 - y~ which replaces b = n -  1 by b = 1. Thus until further notice we will 
assume: 

b = l ,  0 < 7 i < 1  for i = l , . . . , n .  

Theorem 3. (J; 1;y 1 . . . . .  ~)  is realizable in some Gk if and only if the following 
condition (*) holds: 

For some integers 0 < a < m with gcd(a, m) = 1 and some permu- 

, . . . ,  , , ,..., , we have: 
m m 

ai for i ~ J ,  (*) 
7~< m 

ai 
7~<m for i s J .  

See Fig 1 for the case n = 3. 
In view of these results, Conjecture 1 is equivalent to: 

Conjecture 2. (J; 1;?l . . . . .  7,) is realizable in H if and only if  condition (*) holds. 

We shall show 

Theorem 4. Conjectures 1 and 2 hold for all n if they hold for n = 3. 

The non-realizability results which give Fig. 2 are rather ad hoc. They are 
described in Sects. 4 and 5. Given the naivety of the approach used in Sect. 4, we 
found it remarkable that it leads to results so close to a definitive answer. Section 6 
describes our pictures in more detail. Section 7 describes the application to 
transverse foliations of Seifert manifolds. 

2. Basic Material 

We first note the fact (which has already been used implicitly) that the realizability 
of (J; b; 71 . . . .  , ~n) is invariant under permutations of the index set {1,..., n}. 
Indeed, since Q1Q2=Q2(QzIQIQ2), a simple induction shows that one can 
permute the factors in a product Q1 . . . . .  Q~ without changing the value of the 
product if one replaces each factory by a conjugate as necessary. 

Another fact that we shall use with little comment in the following is that if 
~ ~  1 

Q G~ has Rot (Q) = 7 r  Z, then Q is conjugate to sh(7). This follows from the fact 
m 

that any element of PSL(2, R)  either has a fixed point on S 1 or is conjugate to a 
rotation. 

We shall use Knuth 's  "floor" and "ceiling" notation LTJ, [el for"integer part of 
~" and "least integer not smaller than 7". Moreover {7} will denote fractional part 
of ~. 
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For Q E/7 we denote 

Clearly 

m(Q) = min {Q ( x ) -  xlx E R} 

rh(Q) = max(Q ( x ) -  xlx E 1(}. 

0 < r ~ ( Q ) - m ( Q ) <  1. (2.1) 

If the interval [_m(Q), ~(Q)J contains an integer fl then there exists a point x with 
Q ( x ) -  x = fl, so Q'(x) = x + nfl by induction, so Rot(Q) = ft. Hence 

Rot (Q) ~ 7.=.-LRot(Q)l < _m (Q) < Rot(Q) < ha(Q) < I-Rot(Q)q. (2.2) 

Moreover, for any elements Q1, .--, Q, of /7  

~(Q,.. .Q,)>rh(Q1)+ ~ m(Q,) 
i=2 (2.3) 

m(Qt. . .a,)<m(Q1)+ k m(Qi). 
i = 2  

For these and other elementary properties of _m and r~ see Lemma 2.1 of IEHN]. 

Proof of Theorem 1. The necessity of the condition 2 - g < b < n -  2 in Theorem 1 is 
immediate from the inequalities (2.3) above. To see sufficiency, suppose 0 < Yi < 1 
for i= l  .. . . .  n - g  and y~=0 for i = n - g +  l .. . . .  n with g>0 .  Assume 2-g<b 
=< n - 2 .  These inequalities imply that there exists an r e R satisfying 

0 < r < n - g  (or r = 0  if n=g) (*) 

b -  r E (l - g ,  g -  1)u {0}. (**) 

By Theorem 2.5 of [EHN] inequalities (*) are equivalent to the existence of 
conjugates Q~ of sh(yi)for i= l, . . . , n - g  with r e  m_m(Q1...Q,_g), rh(Ql...Q,-g)]. 
Put X=(Q1...Q,_9) -1 sh(b), so b - r e  [-re(X), ~(X)] .  Then by Theorem 2.3 of 
[EHN], the fact that [_m (X), r~ (X)] n ((1 - g, g - 1)u {0}) is nonempty is equivalent 
to the existences of Q,_ o + ~ ..... Q, of rotation number 0 with X = Q,_g + 1... Q,' 
This proves Theorem 1; by Theorem 4.1 of [EHN] this proof can also be carried 
out in G, =PSL-'(2, R). 

The following lemma will be needed in Sect. 4. 

Lemma 2.1. Suppose QEH has Rot(Q)=y. Then for any 5>0 there exists a 
conjugate Q' of Q with 

~,-e<m(Q:) < rfi(Q') < y + ~ . 

Proof. We first observe that for any x E 1( 

Indeed, this follows from the inequalities m_(Qn)<Rot(Q")=n~,<~Q ~ and 
- _m(Q n) < L 
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1 
To prove the lemma choose n > - and put 

1 n--]. 
P(x) = n ,~o Qi(x)' x e R .  

Since/~ is a convex subset of R m we have P e H. Moreover, Q" = P Q P -  1 satisfies 
, I  

the lemma. Indeed, P Q ( x ) - P ( x ) = ~ ( Q ~ ( x ) - x ) ,  so putting y = P ( x )  we have 

PQP- ~(y) - y  = 1 (Qn(x) _ x) which is within 1 of 7. Since y is arbitrary this proves 
r /  n 

the lemma. 

Proposition 3.2. Suppose 
realizable in ~1. Then 
(7~ ..... ~n) ~ Rn(m; J). 

3. Realizability in r 

In [JN] the following is proved 

Theorem3.1. (J;b;~, t . . . . .  7,) with 0 < ] : i < l  for i=1  . . . . .  n is realizable in 
G1 = PSL(2,1() / f  and only if one of the following conditions is true 

(a) 2 < b < n - 2 ,  

(b) b = 1 and ~. ;:~ < 1, 
i = 1  

(c) b = n - 1  and ~ 7~>n-1 .  
i = l  

Note that an element of G~ of non-integral rotation number is always 
conjugate to a shift, so J plays no role in Theorem 3.1. 

Define for JC {1 . . . . .  n} and m a positive integer: 

R,(m; J) = {(~, ..., ~n) e (0, 1)nl3a~, ..., an e 7,, at +, . .  + a, 

= m + n - 2 , 7 ~ < a . ] m  for i~J ,7~<aJm for i~J} 

(~'1 . . . . .  ~ ' , )e(0,1)3-T,  that is, (J ;1 ;~l  . . . . .  "~,) is not 
(J; 1;~1 . . . .  ,~ )  is realizable in G,~ g and only if 

Proof. Let 

~Lmyd+l  for i e J ,  

a i=  [I-myil for i~ J .  

Then (71 .. . . .  ~,) ~ R(m; J) if and only if ~.a~ < n + m -  2. By permuting indices we 
raay assume m~:~ ~ Z for i = 1, . . . ,  k and m~:~ ~ Z for i = k + 1, .. . ,  n. We shall first 
Consider the case that {k+ 1, ..., n} C J,  so 

a i = L m T d + l  foral l  i. 
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(J ;  1 ; y ~ . . . .  , y.) is realizable in tTm if and only if ( J ;  m ;  m7 ~ . . . . .  m~,.) is realizable 
in all. We renormalize to get 

(Jo; m-  ~ Lmyd ; {m' ~ }' '''' {m'~} ) 

with Jo=J - {k+ 1, ..., n}. Thus we must show 

(Jo; m- ~ Lmyd; {mh}, ..., {m,k} ) 

conditions a), b), or c) of Theorem 3.1 if and only if satisfies one of the 
~_,a~rn + n-  2. 

If it satisfies 
n n k 

b) of Theorem 3.1 then m Z T i =  ] ~ [ m T J + ~ { m y i } =  
1 1 1 

- m -   trm'A + {mTi} +re<m, so (Yx . . . . .  7.)~ T, contradicting assumption. 

n n 

Cases a) and c) imply 2 __< m -  ~ [m~i ] and hence ~2 ai = ~ [m~d + n __< m + n -  2, as 
1 ! 1 

desired. 
n n ~ 

Conversely, assume ~ ai < m + n -  2. Since ~2 7i > 1 we get m + n -  2 > Z a~ 
1 I t 

k • n n 

= ~ [ . m T d +  ~ m?'i+n>~,,mTi+n-k>m+n-k, so k > 2 .  Moreover  ~lmT~J 
1 k + l  1 1 

= Y ~ a ~ - n < m - 2 ,  so m -  l i ned>2 .  Also Y' .[myd> my~-k>m-k, so 
1 1 1 1 

n 

m-Yl .  l m y ~ J < k - l .  Thus by part  a) of Theorem3.1 we are done unless 
1 

k n n 

m -  I.my~J = k -  1. But in this case Y. {mTi} = ~2 mTi-  Y~ Lm~iJ > m -  ( m -  k + 1) 
I I 1 I 

= k - 1 ,  so we are done by part  c) of Theorem 3.1. 
Now suppose {k + 1 . . . . .  n} ~ J,  in fact suppose {k + 1 . . . . .  n} - J has g elements. 

Then we must  show that 

(m-~[mT~J,{my,} 1 . . . . .  {m)~k}' 0' "" '  0)  

/ I  

(g zeros) is realizable in (~t if and only if ~2 a~ < m + n -  2. By Theorem 1 we have 

realizability if and only if 

2 - g < m -  ~ L m T d < g + k - 2 .  

i e {k + 1 . . . .  , n} - J a n d  al = Lm~qJ + 1 

(,) 

But at=LmTd for otherwise, so ~ai 
t 

= ~[m~d+n- #. The left hand inequality in (*) is thus equivalent to 
1 

~ ai N m + n - 2  while the right hand inequality in (,) holds automatically since 
1 

m -  I_myd_Nra- Y.m~q+n- 1 < n -  1 . The proof  is complete. 
I 1 
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Define 

Rn(J) = U Rn(m; J ) .  
m = 2  

Corollary 3.3. Assume 0 < 7~ < 1 for  i = 1 . . . .  , n. Then (J; 1 ; ~t . . . . .  ~.) is realizable in 
some G~ if and only if (71 .... ,7.)CR.(J).  

Proof This is immediate from the above Proposition once we know that TC R.(J), 
which is part of the following Proposition. 

Proposition 3.4. Denote R.=R.({1 . . . . .  n}) and tet R. be its closure in (0, 1)". Then 
(i) R, is open. R. ~= R,(J)~ R. for all J. 

(ii) TcR..  
(iii) R,(~) = R.. 

Proof Put R.(m)= R.(m; {1 . . . . .  n}). Then R.(m) is open and R. = ~ R.(m) and 
m = 2  

n 

R.(m, J) c= R., so (i) follows. For  (ii) suppose (71 . . . . .  7n) e Z If ~ 7i < 1 then we can 
! 

ai find rational aj with 0 < 7 i < - -  for i = l  . . . . .  n and ~ a i < l ,  so 
m m 1 m 

I1 

(?t, . . . ,~.)eR.(m)CR.. If ~2~i= 1 and the ;~ are all rational then we can write 
! 

1 
(~1 ..... ? .)= ~(al ,  . . . ,a.)  for some al . . . . .  a,, k ~ Z .  Put r e = k -  1. Then 7~< ai for 

m 

each i and ~a~=k<__m+n-2 so (;q . . . .  ,7.)~R.(m)CR.. Finally, if ~27~= 1 and 
1 1 

some 7~ is irrational then at least two 7~'s are rationally independent, say ~ 1 and 72. 
The set of(m~l, mTz) (rood I ~ Z ) ,  m a positive integer, is dense in (N/Z) 2, so we can 
find m with �89 < {m71 } < 1 and �89 < {m~z} < 1. Then I_mTi + 1] - mTi <�89 for i = 1,2, so, 

n n n 

putting a~ = LmTi + 1] for i = 1, ..., n, we have Z ai = ~ [mT~ + 1] < Y~ mT~ + n -  1 
1 t 1 

n 

= r n + n -  1, so Y' .ai<m+n-2,  so (71, ...,7.)eR.(m). 

To see statement (iii) of the Proposition, suppose (7~/? . . . . .  7o~), j = I, 2 . . . . .  is a 
sequence of points in R. which approaches a limit x e (0, 1)L If there exists m such 
that (~ot') .... ,7o~))e R.(m; ~) for all sufficiently large j then the limit is in R.(m; ~) 

since R.(m;q~) is closed. Otherwise ~)=<1-t-n-____ll where m j ~ ,  so x e T ,  
mj 

whence x e R, by part (ii). Thus k - ~  R.(~), so R'~= R.(~) by part (i). 

Define 

N,(J) = {(71 . . . . .  7.) ~ (0, 1)"1 condition (*) holds} 

where (.) is the condition: 
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ForsomeintegersO<a<mandsomepermutation(am, . . . ,~)  

o f ( a  m - a  1 1 )  
, , , . . . ,  we have 

< (*) 
71=--  for i ~ J ,  

m 

7i< ~ for i E J .  
m 

Note that if(.) holds with given a and m, then it also holds with a' = a/gcd (a, m) and 
m' = m/ocd(a, ra). Thus we could require Ocd(a, m) = 1 in (*), which is condition (,) 
of Theorem 3. 

Clearly S.(J) c= R.(J). To prove Theorem 3 we must show S.(J) = R.(J). Before 
we do so we define another subset of (0, 1)" relevant to Theorem 4. 

For  any subset J___ { 1 . . . .  , n} let 

J1 = J n ( 1  . . . .  , n - 2 )  

J 2 =  accordingasJc~{n-l,n)=| {n} |"  

L{2, 3}J ~ ( n -  1, n}j 

Define inductively 

T.(J )  = . . . . .  (0, 1)"13x, . . . . .  x )  T._ 1(J1) 

and (1 - x, 7,-  1,7. - 2) e T3(J2)} �9 

If, in this inductive definition, we replaced T3(J) by the (conjecturally equal) set 

{(~1, Y2, 73)10; 1 ; ~1, 72, ~3) is realizable in ~ } ,  

then we would have T~(J) = {(~1, ..., 7.)[(J; 1 ; 71,..., 7,) is realizable in/q} for all n 
and J. This is because Q1...Q. = sh (1) in H if and only if Q 1... Q, -  2x  = sit(l) and 
(sh(1)X- 1)Q._ IQ. = sh(1) with X =  Q._ 1Q,. Thus Theorem 4 of the Introduction 
is proved if we show always T. (J )=R.(J) .  Thus to complete the proofs of 
Theorems 3 and 4 we must show: 

Lemma 3.5. S.(J) = R,(J) = T.(J) for n > 3 and any J. 
Proof Clearly S.(J) ~ R,(J) ~ T.(J), so we must show T,(J) c= S.(J). We do this by 
induction. Our original proof of the induction start, n = 3, is superceded by the 
following much simpler proof due to Don Zagier. 

For  n = 3 the statement to be proved is Ra(J) c= S3(J). It is sufficient to show that 

t h e e x t e r n a l p o i n t s ( a , b , c , ) , m = a + b + c - l ,  ofR3(~)areinS3(~).W itb~ 

loss of generality a < b < c. Moreover, we may assume 2 < a since if a = 1 we are 
done. We consider two cases: 
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= m = 2 ' s ~  ' m '  < ' 2 '  " 

Case2. m>=2a+2b-1. Put  k = / b [  and let I =  U Iz where 
LaA / = 2 k + 1  l,j . + a  

i t= , - . These intervals overlap since l>2k+ 1=~ k 

(/+ 1)b l ( a - l ) - b  > ( 2 k + l ) ( a - 1 ) - ( k a + a - 1 )  
- k - k = k = a -  2 > 0. Hence 

I = [ ( 2 k k l ) b , -  - oo) .  But ( 2 k + k l ) b < 2 b + k a + a - l < 2 b + 2 a _ a < m , k  = _ so meI,  

thatismeI, forsomel>2k. T h e n ( a , b  c ) < ( 1  k l l k  ) 
\ m m '  = l ' l '  " 

We shall prove the induct ion step just  for J = 4. It will be clear that  the same 
proof works for any J if appropriate  inequalities are replaced by strict inequalities. 
Assume therefore that  Tk(J) = Sk(J) for k = 3 , . . . ,  n -  1 and any J.  Let  
(Yl .. . .  , Yn) e T~(~). Hence there exists x e (0, 1) such that  (~l . . . . .  ~n- z, x) e T~_ 1(4) 
and (1 - x ,  7~- 1, ~QeTa(O). By the induct ion hypothesis  we can find a, meTl. and a 

permutation (al . . . . .  a~_ 1) of (a, m - a ,  1, ..., 1) such that  Yl ~ at for i =  1 . . . . .  n - 2  
m 

and x < an- 1. We can also find b, 1 e T, and a permuta t ion  (b 1, b2, ha) of  (b, l - b, 1) 
m 

suchthat  1 - x _ < ~  y . _ l < ~  -~2 y.__<~_~a N o t e t h a t  l _ ~ _ L _ < x < a . - 1  _ , = , . _ = , whence 
m 

1 < ~ + a,_____L ( , )  
l t t l  

n - 1  

Since y. at = m + n--  3, this is equivalent to 

n -2a i  n - 3  bl 
Z - -  < -  (**)  

i = l m  nl  = l "  

We consider four cases: 

Case 1. an_ 1 = 1 and bl = 1. In this case (*) f o r c e s / = m = 2 ,  so y~<�89 for all i, so 
(h . . . .  ,7 . )  e Rn(2;  ~) C Rn(~). 

Case 2. an- 1 = 1 and bl > 1. Then wi thout  loss of  generality b2 = 1. By (*) we have 

l~_ m. In addition, since b l = l - b 3 ,  inequality (*) says 1-< l- lb3 + _1 and hence 
m 

~ Thus 

' " "  m ' l '  = ' " "  m ' ' m m/ 

(COmponent-wise inequality) so (? l, ..., ?n) e R~(m; q~) C R~(q~). 
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Case 3. a,_ 1 > 1 and b 1 = 1. Then without loss of generality a 1 . . . . .  a,_ 3 --- I. By 

- 2 a~ n - 3 a,_ 2 < - Then (*) we have m>_l. Since ~ - by (**) we have a ,-2 1 
- I m m m ' m = l "  

. . . .  ' m ' 1 '  = ' " " l '  I '  " 

Case 4. a,_ 1 > 1 and bl > 1. We again assume al . . . . .  a,_ a = 1 and bz = 1. By (**) 

we have an-2 < bl m = T ' I f l < m t h e n  

(_~ a,_3 a,_~ b2 ~ ) < ( ~  ' .,1 b I I b:) 
' " "  m ' m 'm '  = "" l' l ' l '  

If ! > m then 

( ~  a~-3 a , -2  bz ~ ) < ( 1 , . . . , 1  a,_z 1 m-a ,_2)  
" ' " "  m ' m ' m ' m '  m ' m "  m " 

The last inequality -~-b3<= m-a~_2m follows from a"-Z~m 1-b~ and the fact that 

b3 =l-b1.  

4 .  N o n r e a l i z a b i l i t y  

Theorem 4.1 below is our main nonrealizability result. It leaves undecided for n = 3 
only the region S of Fig. 2 (Sect. 1) together with six additional boxes, namely the 
following box of volume 0.001736... and all boxes obtained by permuting the 
coordinates: 

<! • <~ !< <..2_7 {(rl, r=,r3)l-  <7, 
In the next section we give a special argument to eliminate these boxes." 

Theorem 4.1. Suppose (fll,fl2 f l ~ a  with 0 <  ft._Z < 1 for each i and 

f l ,=l_(fl20tl  ~22+ f 1 3 )  - -  

Then (J; 1 ; 71,--., 7n) is not realizable in 1t if, after some permutation of indices, we 

fl~ for ieJc~{1,2,3}.  fli for ir and yi> -~i have 7~ > 

Remark. Exchanging indices 2 and 3 gives a weaker version of the theorem unless 

~ 2 _  1 = t ~ 3 _  1 " 

Proof. Suppose 71> fl~ for i = 1 , 2 , 3  and suppose we have Qi6/~ with 

Q1...Q, = sh(1) and Rot(Q) = 7i for i = 1 . . . .  , n. Choose any e > 0. By Lemma 2.1 we 
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may assume, by conjugating if necessary, that _m(Q 0 > 71 - e. Then 

re(Q2.-. Qn) = rfi(Qi- ~ sh(l)) =< 1 - Yl + e. (4.1) 

Write 6= 1 - y a  +e  and mi=m_(Qi) and M~=Ih(Qi) for i=2 ,3 .  Then (4.1) implies 

m2+M3=<6  } 
M: + m 3 =< 6. (4.2) 

On the other hand, the facts that Rot(Q~)> fll for i=  2, 3 imply Rot(QT' ) > fl~ and 
0ei 

hence, by inequalities (2.2) and (2.3), 

/h -< m~ + ( ~  - 1) M~ "[ 
(4.3) 

f13 < m3 + (0% -- 1) M 3 j 
f 

(actually with strict inequality, but we don't need this). Combining (4.2) and (4.3) 
gives 

fl2--6~ - M 3 + ( ~ 2 -  I ) M  2 

f l 3 - 6 <  - M 2  + ( ~ 3 -  I )M3.  

Adding (~3 - 1) times the first inequality to the second gives 

t3 3 - 6 + (g3 - 1) (//2 - 6) < ((g3 - 1) ( g 2 - 1 ) -  1) M 2 

On the other hand (4.2) implies M2 < 6, so 

f13 -- 6 + (~3 -- 1) (f12 - 6) < ((~3-- 1) (~2 -- 1)-- 1) 6, 

or 

SO 

,~> ~3P~+/h-t~ = t h  _~ /33 
�9 2~3-~2 ~2 ~2(~3-1)" 

This is equivalent to 

, ~ - e < l -  (fl~ + 

Since this holds for every e > 0 we have 

/~3 1)) 0~2(0~ 3 -- 

(~ t33 ) =< 1 -  132 + ~2(~--  l )  

contradicts the assumption that ~'1 > r which 
0t l 

If either of the Qi, i=  2, 3, is conjugate to sh(yi) with y~_>_ fli then we still get 

inequality (4.3) so the proof goes through with no change. If Q1 is conjugate to 

sh(yl) with Yl > O_A then by conjugating if necessary we may assume Q1 = sh(yO- 
~t 
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Then 

n~(Q2...Q,)=d,(Q; 1 sh(1)) = 1 -71 .  

By letting 6 = 1 - 7 , ,  inequality (4.2) remains valid, so as before we conclude 

t~ 7> f12 ~_ f13 i l l< ( f12 f13 ) 
~-2 ~2(~3-1)" This implies ~1 = 71 < 1 - ~-2 + a2(~a- 1) giving the de- 

sired contradiction in this case. 
Using a standard linear programming argument one can show that 

Theorem 4.1 is the best result that one can extract out of inequalities (4.2) and (4.3). 

5. A Special Nonrealizability Result 

Theorem 5.1. Let (0tl,r and let J be any subset of {1,2,3}. If 
(J; 1 ; ~1, 72, 73) satisfies 

1 
--=<71<1 for i ~ J ,  Ot i 
1 

-- <7 i<1  for i e J ,  

then (J; 1 ;71, 72,73) is not realizable. 

Proof. Suppose QxQ2Q3 = sh(1) is a realization. By assumption Q~ ~ sh(yl) with 

7~ > 1 if i ~ J and Rot(Qg) = 7~ > 1 ff i r J. Either way we have m(Q~') > 1. We shall 
gi gi 

show this leads to a contradiction. 

We write Q~' = sh(1)R; 1, so ~(Ri) < 0 for i = l, 2, 3. In Fig. 4 we have drawn the 
Cayley graph of the icosahedral group on the surface of a dodecahedron. Consider 
the following sequence of equations i n / ~  which correspond to a sequence of 
expanding polygonal paths on the Cayley graph: 

Fig. 4 

> ql 

>) q2 

~ q3 

q~ =q~ :qlq2q3 =1 

id = Q~ s h ( -  1)R3 = Q~Q~ 1Qi- 'R3 = Q~Q21Q1 s h ( -  1)R,R3 
4. 2 = QaQ2QI  s h ( -  2)RC21)R,R3 = Q~Q~ 1Q~ 1Q2Q1 s h ( -  1)RCzl)RtR3 

= Q~Q1Q3 IQ2QI s h ( -  2) R[I)Rt21)R1R3 . . . .  , 
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where Ri u) are suitable conjugates of Rt. Once the path in question has expanded 
over the dodecahedron and contracted back to a trivial path via the back side of 
the dodecahedron we have a relation 

id=sh(k)R 

with k e Z  and R a product of conjugates of the Ri. We claim k =  - 2 ;  since 
ih(R)<0 this gives 0 = n 3 ( i d ) = t h ( s h ( - 2 ) R ) < - 2 ,  which is the desired 
contradiction. 

As we deform the path as above, the relation Q] = sh(1)R~- 1 is used 12 times 
(once for each of the 12 faces of the dodecahedron), the relation Q3 = sh(1)R~ 1 is 
used 20 times (once for each vertex of the dodecahedron} and Q~ = sh(1)R~- 1 is 
used 30 times (once for each edge of the dodecahedron). This contributes 
- ( 1 2 + 2 0 + 3 0 ) = - 6 2  to k. The relation Q1QzQ3=sh(1) is used 60 times, 
contributing 60 to k, so k = - 6 2  + 6 0 = -  2, as claimed. 

6. Description of the Figures 

In this section we describe the numerical ingredients that go into drawing/~3 and S 
in Figs. 1 through 3. We shall not give detailed proofs. The only proof that is not 
easy to complete is that the domain S of Fig. 2 represents the best our results will 
give, namely, that no further part of S is excluded by Theorems 4.1 and 5.1. This 
proof is tedious and did not seem worth including. 

We shall need the following notation. Let a, b be integers satisfying 

a > 2 ,  b > 2 ,  ocd(a, b)= 1 (6.1) 

and define integers a* and b* by 

Define 

aa* = 1 (modb) 0 < a* < a "[ 
(6.2) bb*=l(moda) O < b * < b .  

A=b+b*-a*, B=a+a*-b* ~ 
A* = a*, B* =b* .  I (6.3) 

Fig, 5 

( 1 1 1 } _  / ~  

i 1 1 ,  / ~ / \ 

2 I 1 ~ / ~ / / N 
.,.<..<.. 

n=2 1 1 , " 

-h-.-g%- ) 
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Fig. 6 

Z 
YO 

i i 

l_emma 6.1. The correspondence (a, b, a*, b*)~(A, B, A*, B*) is a bijective invo. 
iution on the set of 4-tuples satisfying (6.1) and (6.2). Moreover (a + b, b, a*, A) and 
(a, a+b,B, b*) also satisfy (6.1) and (6.2). 

The easiest part of Fig. 1 is explicated in Fig. 5 above. A typical part of the 
remaining detail of Fig. 1 is pictured in Fig. 6 with coordinates given by the 
following formulae (notation as above). 

X=\.(  a+a*-b*a+b ' b+b*-a* ' = A ~ B' A ;  B' A Sc 

1) 
to= ' b ' a g - b  ' 

[ ( a + b ) - A , b - a *  1 ) 
Y t = \  a+b b ' (a+b)+b ' 

y2=(aab* (a+b)-B 1 ) 
' a+b 'a+(a+b) 

Z = ( _ a ? * , b - a *  1 )) 
b ' max(a, b 

For future reference Fig. 7 repeats a portion of Fig. 6 with some lengths shown. 

FiB. 7 

1 Yo b.{o+b) 

a.{a+b 

I 

a§ 

Thopo,n,  (a b" b a' 1)  b ' a+/~ ' and any point with a permutation of 

these coordinates, is at a "dimple" of/~3. In each such "dimple" there is a connected 
domain S(Yo) described below in which realizability is not excluded by Theorem 
4.1, However if Yo has coodinates a permutation 1 i • of(2,-~, 5) then S (Yo) is excluded by 
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Theorem 5.1. Thus S of Fig. 2 is the union of the remaining S(Yo)'S. By permuting 
coordinates if necessary, we may assume Yo has coordinates as above and a > b. 
Then S(Yo) is shown in Fig. 8 with coordinates given by the following formulae 
(the figure is schematic; vertical scale is compressed): 

j f  
f 

z J  

Vl~ I 

I 

�9 ' ~ 
" 0 

7 . . . . .  
f I 7 

.1 

. /  

Fig. 8 

,~ 

I I 
"" 

I 
I 

V~= (a-ab* i b-a* 1 ) 
-~ ab(a+i)' b ' a §  (a>b) 

/ a -b*  b-a* a - b + i  1 ) (a>b).  
Wi= L a ' ~ - - I - a b ( a + i ) ' a + - l + i  

A trivial calculation shows that (fl~, f12, f13 ~ = V, and (fl~, fl~, f13 ~ = W, (note the 
\0~  1 5 2  5 3 ]  \ 5 2  51  5 3 , /  

transposition of indices) are tuples satisfying the premiss of Theorem 4.1. 

7. Transverse Foliations 

The problem of which Seifert fibered 3-manifolds M admit a transverse foliation 
(that is a codimension one foliation transverse to all the fibers of the Seifert 
~br~.tion) was solved in [EHN] except in the case that M is orientable and Seifert 
fibered over the 2-sphere. The key to the solution was the following theorem. 

Theorem. M has a transverse foliation if and only if there exists a homomorphism 
r ~I(M)~/~ with O(Z)= sh(1), where Z ~ :h(M) is represented by a generic fiber 
of M. 
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If M has Seifert invariant (9 = 0; b; (ctl, ill) ..... (~t., ft.)) with 0 < fl~ < 1 then this 
0t i 

/ 

theorem says that M admits a transverse foliation if and only if ({1 ..... n};b; 
\ 

. . . . .  P_z.) is "realizable" in the sense of this paper. 

In the case left open by [EHN], namely b = 1, we therefore have conjecturally 
that a transverse foliation exists if and only if there exist integers 0 < a < m with 

+cd(a,m)=l and a permutation ( ~  ..... -~) ~ ( a + - a  l '  m ' m ' " " l )  with 

at 0 < fl__L < _  for i= 1, ..., n. Moreover, the foliation can then be chosen to be 

analytic (in fact, even transversely projective), as in the previously solved cases. As 
we have pointed out, this paper proves this conjecture in 99.9% of all cases. It also 
contradicts the result announced in [G], and shows that the answer is consider- 
ably more subtle than earlier results (see also [M, S, W] might have led one to 
expect. 

Appendix: Vohtme of Ra 

by Don Zagier 

From the description of R3 in Sect. 6 we see 

Vol(R3) = Vo+ 1/1 + 1/2 

where 

Vo_l x ! _ !  - - ~ ' ~ ' 2 - ~  

is the volume of the central cube, 

1 1 /n--1 n-i'X ~o 1 

is the volume of the part indicated in Fig. 5, and 

1 1 1 
1/2=62_<.<bZ a(a+b) b(a+b)'a+b 

(a,"b) = i 

is the sum of volumes of the rectangular blocks of Fig. 7. Now 

v, 1 
k(k+ 1) 3 ~) 

and 1 1 
V 2 = 6 2 ~ b  ~ ab(a+b)3 =3 ,,,b>2Z ab(a+b)3 

(a,-b)--- i (a,b)--= i 

.: =oi ab(a+b) 3 2k~  k(k+l) 3 t- �9 
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Thus 

where 

and 

VoI(Ra) = 3S 2 -  3S 1 -I-8 X , 

1 
S1= k>l ~ k(k+l) 3 

1 
S2=.,b>O~ ab(a+b) 3" 

(a, b)= 1 

To compute SI we note that 

1 1 1 1 
k(k+  1) a = k - k + l  ( k + l )  2 

whence 

For S 2 we use 

Thus 

(k+ 1) 3 

(~ ) 1 1 
S t = k ~  1 k l l  - - k~t (k+  1)2 kFt (k+  1) 3 

= l --(~(2)-- 1)--(~(3)-- 1) 

= 3 - ~ ( 2 ) -  ~ ( 3 ) .  

1 1 1 1 1 
kl(k+03 = k41 k4(k+D k3(k+/)  2 k2(k+/) 3" 

1 
C(5)S2 = a .~>  o dSab(a + b) 3 

( a , b )  = 1 

1 
= E kl(k+l)~ k , l > O  

1 5:. 1 + 1 

1 1 1 
= E Z n2m 3 + ,~o t~t>ok41 n,m>o 

=$3--~(2)ff(3)+~(5),  

where 

1 1 1 
S3= k=>~>o ~ =,,~o(l+m)4l +~'~" 
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But 

( (  1 1 ) 
2 S 3 =  ~ l+m)*l 4 + 2 ( ( 5 )  t,l>o ( l + m ) 4 m  

1 
= E +2((5) 

a,~>o (1 + m)alm 

= ((5)$2 + 2 ( ( 5 ) .  

Combin ing  the last two formulae,  one finds 

$2 = 4 -  2((2)~(3) 
~(5) ' 

and hence 

Vol(Ra) = ~ +  3((2) + 3((3) 
6((2)( (3)  

( (5 )  
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