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On the Zeros of the Weierstrass gp-Function

M. Eichler and D. Zagier
Department of Mathematics, University of Maryland, College Park, MD 20742, USA

The Weierstrass go-function, defined for e $ (upper half-plane) and ze € by

1 1 1
w*0
is the basic and most famous function of elliptic function theory. As is well known,
¢(z,7)is for fixed t doubly periodic in z and takes on each value in Cu{oo} exactly
twice (counting multiplicity) as z ranges over €/Z + Zz. In particular, since $(z, 1)
is an even function of z, there is for each 1€ 9 a number zy(1), well-defined up to
sign and translation by Z+ Zz, such that

@(z,7)=0<z= tz,(7) (mod Z + Z7).

The purpose of this note is to prove the following explicit formula for z,(t) which,
despite the long history of the function g, seems not to have been noticed earlier;

this formula arose out of the authors’ investigation of “Jacobi forms” |functions on

€ x $ satisfying a transformation law of a certain kind under the transformations

z+mtnt at+b\y .. fa b)
z,1T ——— ———| with eSL,(Z), m,neZ
( )—’( ct+d cr+d) (c d A2)
more general results, but in view of the special interest attaching to the g-func-
tion it seemed worthwhile to publish it separately.

and is a special case of

Theorem. The zeros of (z,7) (1€ 9, zeC) are given by

1 log(5+21/6) Lt A®) )
—ma - OER TV L 1447i)/6 | (1—1) =gz dt
z=m+ 2+n1:i( 5 +1447i /6 {( )E6(t)3/2

(m,neZ), where E(t) and A(t) (t€ ) denote the normalized Eisenstein series of
weight 6 and unique normalized cusp form of weight 12 on SL,(Z), respectively, and
the integral is to be taken over the vertical line t=1+iR, in §.
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. , . 1+i
For =i we know a priori that @(z, t) vanishes at the point z= — because

2
(%@_) =4p>—g,(1)p —g5(v) and g,(i)=0, so the zero of p(z,i) is a double one and
z

- . .. L+ 1 . . -
hence a 2-division point; that it is % rather than 3 or % is easily Venfled}.

Comparing this with the result of the theorem yields the integral identity

}O A(it) (1) de= "TIOEG+2V/6) 10g(5+2]/_)
Eqit)*'? 28872 /6

Expanding 4/E2'% in a Fourier series and integrating term by term, we obtain the
following amusing corollary, in which all mention of the g-function (or, for that
matter, of modular forms) has been suppressed:

Corollary. Define integers A, (n2=1) by the formal power series expansion

g [T—qm*
n=1

P18

A g =

) 3/2
! (1 -504 Y Y dSq")

n=1 din

1l

n

(A,=1, A, =732, A,=483336,...). Then
i é_e—Znn__ R—lOg(5+2 1/6).

S e

We remark that the series in the corollary converges very slowly since (as is not
hard to show) 4, satisfies the asymptotic formula

A,~Cnl2e2™  (C=1/216/2m).

First Proof (Modular Forms)

We begin by observing that the function g satisfies the transformation law

( z a1:+b/

) =(ct+d) p(z,1) ((Z

b
P\rrd cird )GSLZ(Z))’

d

as one casily checks from the definition. It follows that the function z,(t) satisfies
the transformation equation

2o(7) n (at +b

at+b
ct+d %o cr+d) (m dZ+2 )

ct+d

ie. zyf(t) is a (many-valued) modular form of weight —1 on SL,(Z). Now the
function z,() has infinitely many branches, but (except for sign) these differ from
each other by the linear functions t—m+ nt (m, ne Z), so the second derivative z(t)
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is well-defined up to sign and the function zj(t)? is single-valued. Writing the
transformation law of z, as

zo(t)=m+ntx(ct+d)z, (ar + b)

ct+d

and differentiating twice we obtain

at+b
zg(t)= *(ct+d) %z, (m) ,
Le. the function zy(r)* transforms under the action of SL,(Z) like a modular form
of weight 6.

At first sight it appears that z,, and hence z§?, is a holomorphic function of z,
since it (or each branch of it) is locally bounded and is defined implicitly by the
vanishing of a meromorphic function in two variables. However, since z, is many-
valued we also have to worry about ramification or coalescing of different
branches. The branches z,(7) +m+ nt (m, ne Z) can never meet, since m+nt+0 for
(m,n)*(0,0), but the branches z,(t) and —z,(t)+m+nt can meet. This happens
when (7, z) has a zero at one of the three 2-division points

T 1471 4Z+17
'3 (modZ +Zr)

[\
It
DO =

[the point z=0 also satisfies z= — z (modZ + Zz) but cannot be a zero of @ since it

. . . i T 141 .
is always a pole], i.e. whenever the function g 7 T 3 TP , T| vanishes

2
at 7. But this function is easily checked to be a holomorphic modular form of
weight 6 on SL,(Z) and hence a multiple (in fact —1/864) of E4(t). Thus

two branches of zy(t) meet<>(z, 1) has a double zero
<E (1)=0.

[This can also be seen from the equation p'(z)> =4(2)* — g,p(z)— g3, since g, is a
multiple of E,. Also, as is well-known, E(t) vanishes precisely when t is SL,(Z)-
equivalent to i, but we shall not need this fact.] At such a point z,, exactly two
branches of z,(t) coincide [since the function (-, 1) :C/Z+Zr—Cu{co} is exactly
2-to-1], so each branch of z, has the local form

o i om n
zo(t)=1 Y c(t—10) +2+E+§T (T—10)
r=0

with ¢, +0; differentiating twice and squaring we get

C<2) -3 3 -2
Zg(r)l_-:l_é(r-—ro) ——gcocl(r—to) + .

Thus z}(1)? is meromorphic with a triple pole at each 7 with Es(r):.O, so the
function E(t)3zs(r)%, which transforms like a modular form of weight 3x6
+2 x 3=24, is holomorphic in the whole upper half-plane. In 2 moment we shall
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see that it is also holomorphic at the cusp of $/SL,(Z) and in fact has a zero of
order 2 there, so it must be a constant multiple of A(7)?, i.e.

A7)
W (1€ H)

=+ Co(e®™ +732e4™ + ) (Im(r)>1)

zo(t1)= £ C,

for some C,+0; integrating twice, we obtain the final formula

zo(1)=C,+Cyt+C, lj E:%(t—t)dt (1€ )

Co . o A
=Cy+CrF L5 +183¢" + ) (Im(x)>1)

for (each branch of) zy(1).

To prove the last assertion and determine the values of the constants of
integration C,, C,, and C,, we investigate the asymptotic behaviour of z,(1) as
t—ico. Computing the Fourier development of @(z,1) in the same way as one
calculates the Fourier development of Eisenstein series, one finds

1
e R T

+QRP+L—6+L 1 +20 g%+ ...,

2mi) " *p(z,1)= ((—2+¢" ')

where we have set g=e?™" and (=e"* [the coefficient of g" for n>0 is

Zd(("—Z—kC‘"), but we shall not need more terms than those given]. The
din

ambiguity z— +z-+m+nt (m neZ) in z corresponds to the ambiguity {—¢"(*?
(neZ) in {. To ask whether some branch of z,(r) has a finite limit as t—ico is
equivalent to asking whether there is some finite value of { making the above
expansion vanish for g=0. Clearly, such a value is given by {—2+{ " '=—12 or

{=—¢*! where 8=5+2]/6 is the fundamental unit of (Q(]/E). In terms of

1 .
z= ——log{ this corresponds to
2mi

1 1
z=m+ - + —loge (meZ).
27 2mi

Thus z,(r) has a branch tending to each of these values of z as t—io0. To find the
Fourier expansion of this branch, we write

1

-(loge + Ae®™* + Be*™* + .. )
2mi

‘ 1
Zo(t)=m+ - +
2
with as yet unknown coefficients A4, B, ..., substitute the corresponding value

. A2 +1
C=e2mzo(f)=__etl<1+Aq+ (7 +B>q2+ )
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into the above expansion for @(z,1), and successively equate the coefficients of
each power of g to 0. This gives the values

A=1T2]/6, B==113176]/6=1834,...;

comparing this expansion of z,(r) with the one given above we obtain

1 1
Co== 1441ti]/8, C,=m+ 2 + E—Eloga, C,=n (mnelZ)
1
and hence the assertion of the theorem.
We observe that the same method can be applied to find the solutions of any
equation of the form

#(z,7)= (1)

where ¢ is a modular form of weight 2 [of course, since there are no holomorphic
modular forms of weight2 on SL,(Z) we must take ¢(t) to be either a
meromorphic modular form or else modular on a subgroup I' of SL,(Z)]: Again
the solutions are of the form

z=tz,(1) (modZ+Zx),

where z,, transforms up to sign and translation by Z+Zr like a modular form of
weight — 1 and hence z:;,(r)z like a modular form of weight 6 on I". By considering
the ramification points of z,(1), i.e. the points where z,(t) is a 2-division point on
C/Z +Zz, one sees that

2g(1) = £ p(0)/(49(7)° — g,(V(r) - 95(1) 2,

where y(7) is a modular form of weight 12 on I which is holomorphic wherever ¢
is. By substituting the Fourier expansions of g and ¢ into the defining equation
for z, we can compute as many terms as desired of the Fourier development of y
and hence identify this function entirely, after which z, is obtained by two-fold
integration.

Second Proof (Elliptic Integrals)

Following a suggestion of Hirzebruch, we can also prove the formulas for z, and
z, by using elliptic integrals rather than modular forms. Indeed, from
the formula for the derivative of @(z) we obtain

_dp(z) dp(2)

dz= =
T Vap(2)*—g,0(2)— g5

and hence
dX

ZO(T)= piwd2=i g m
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Here

4nt _ 8x°

T E,, g¢,=140x20(6)Eg=—E,.

g,=60x2{(4)E,= 3 =57

where

E,=1+240 ¥ o,(nq", E¢=1-504 ) o4n)q"

nz1 nz1

(o)=Y d",q=e*"") are the normalized Eisenstein series of weight 4 and 6; the

din
2
change of variables X = —n3—t gives
@ dt
zo(T) = K f - .
o |/t°—3E,t—2E¢

We now compute the second derivative of this by differentiating with respect to t
under the integral sign. The derivatives of E, and E; are given by

1 4 1 ld

— " E,=—(E,E,— E,E,—E?
2nidr 4 3“132 s o). 2mi dt ( &)

where E,=1-24 Z o,(n)g" (which is not a modular form). Hence

nz1
10 1 _ 1 (E;E,—Eg)i+E,Es—E}
2mi 0t (P —3E g —2E)Y? 2 (t*—3E t—2E)*?

To differentiate again we also need the derivative of E,, which is given by

1 d
E2 .
2mi d'L’ ( E);
we then find after some computation
1 o2 t
(2mi)? 012 (2 — 3E t—2E()/?

5
=(t>—3E,t—2Eg) ™ {54- (E2E,+E2—2E,E)t*
(E2E +E,Eq—2E,E)3 + < (EZEZ —2E,E E¢+6EX—5SE)?
+ —22(5E§E4E6 +6E,E3—16E,E2+5E2E )t

1
+ S QEE}—4E,EIE + 9} - 7E4Eg)}

_ 0 AC+Bt+C
T Ot (P —3E,t—2Eg)>3%’
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where

i 3 1 9,

A=— —(E3E,+E}— =3 e -
ppFafa B2k = =5 o g = 1M L o’

2 1 &E

B=— —(E3E¢+E,Eq—2E,E})=—=.—— "¢
12( 4 4 7 (2mi)? 012 144,.;1” 75"
1

C=+ ¢ (B}~ E)=2884=288¢ [] (1-¢")*

nz1

Integrating from t=0 to t=o0 gives

_V3 4a’+Bi+C |7 3611/ A7)
2n (83— 3E4t—2E6)3/2| n Eg1)¥?’

- 1 M
an Zy(7)

in accordance with the formula obtained earlier. To complete the proof we must
still compute zy(1) for t—ico. But at infinity the discriminant 4 of the cubic
—3E,t—2E, tends to 0, so the cubic degenerates into the product of a lincar
factor and the square of a linear factor and the elliptic integral defining z, becomes
elementary. More precisely, for t—=ico we have E,—1, E,~1 and hence

ﬁ

Z lOO
ol g —3t—
2 w©
-x) (s 3’)
T\o 2 (t+1)|/t—
making the substitution t =2~ 3x” in the first integral and t =2+ 3x? in the second
we find

and combining this with the result already obtained for zj(r) we recover the
formula of the theorem.

The same method applies to the solution z=z,(7) of the equation g(z, 1) = ¢(r),
where ¢(7) is any meromorphic function of t: we have

zy(1)= 5~ 27: 3 W) .’;E4t——2E6

(with the indeterminacy coming from the choice of square root and of path of
integration) and from this we can determine z,(ic0) and zg(t) in the same way as in
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the special case ¢ =0. Namely, if ¢(r) has a limit A as Im(7)~ co, then

1/5 vt 1 A2
zg(io0)= = — ;arctan R

2n 3/1 t+1)|/t— 3

As to the second derivative, we find

—1/2
z;(r)=—§ 2<i>()( d(z )3———E4¢(r) ZE)

v

g [(£*—3E,t—2E¢)~ Y*]dt,

* 30
v 3V/34d ¢’(r)
Z¢(T)
27 de|y o7 ¢3 E -2,
6 - 2 ta

31/3
T2

0y 9 B
5 (05 [(° = 3E,t—2E) "]

1= 260
1/:7; 0

| =5 [(t*=3E,t—2E)"” “2]dt.
iRz Zom o

Using the formulas given earlier for — T E, ; E,, and pres [(t3 3E,t—2E )~ Y7

we find after some computation the result

1
(0= % =554~ 9,6 —g5) {244’ — g,¢ — g, )p**

+(12¢2~gz)¢*2+(3693¢+2g§)¢*
+12g,¢* + 3950 + 69,9, — g3+ 27g3},
where we have set

1 0 1 10 1
* ] 2y -~ _ = k% 2y - - = *.
¢ 2n (21ri ot 6E2)¢’ ¢ 12 (27'ci ot 3E2>¢

This formula holds for any meromorphic function ¢(z); if ¢ is a (meromorphic)
modular form of weight 2 on a subgroup I' of SL,(Z) then, as is well-known, ¢*
and ¢** are modular forms on I of weight 4 and weight 6, respectively, so we have
obtained an explicit formula of the form

(1) = w(t)
S @91 ~ g, (D90~ g5 ()
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where y is a (meromorphic) modular form of weight 12 on I" and is a cusp form if
¢ is a holomorphic modular form. As a further corollary we observe that the
equation g(z, t)=¢(1) for the special function

o(1)=glat+b,7) (a,beC, not both €Z)

lwhich is a modular form of weight 2 on I'(N) if a, be —]{I—Z has the special solutior;

z=at+ b with z"(r)=0. Hence the form y must vanish identically in this case and
we have obtained a non-linear second order differential equation satisfied by
all the functions g{at+b, 7).



