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The Weierstrass go-function, defined for re ~ (upper half-plane) and z ~ ?  by 

fo (z , t )=  + 2 

~ o ~ 0  

is the basic and most famous function of elliptic function theory. As is well known, 
go(z, t) is for fixed t doubly periodic in z and takes on each value in tl?u{ oo} exactly 
twice (counting multiplicity) as z ranges over C/Z + Zt. In particular, since go(z, t) 
is an even function of z, there is for each te  5 a number zo(t), well-defined up to 
sign and translation by 7/+ Zt, such that 

go(z, t) = O<::.z =- + Zo(t) (modJE + Zt). 

The purpose of this note is to prove the following explicit formula for Zo(t) which, 
despite the long history of the function go, seems not to have been noticed earlier; 

F 

this formula arose out of the authors mvestlgatlon of Jacob1 forms" functions on 
t 

(? x .~ satisfying a transformation law of a certain kind under the transformations 

. [z+m+nt\ c ~ - d  'c-~d}ar+b~ (: ~) l (z,t)--~- with eSL2(2g),  m, neZ and is a special case of 

more general results, but in view of the special interest attaching to the go-func- 
tion it seemed worthwhile to publish it separately. 

Theorem. The zeros of go(z,t) (te ~, zer are given by 

z = m + ~ + n t + \ -  ~ i  +144rci1/6 ~ ( t - t ) ~ d t  

(m,n~7Z), where E6(t) and A(t) (tE ~) denote the normalized Eisenstein series of 
weight 6 and unique normalized cusp form of weight 12 on SL2(TY), respectively, and 
the integral is to be taken over the vertical line t = t + iN+ in ~. 
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1+i  [ 
For z = i we know a priori that ga(z, z) vanishes at the point z = ~ - -  because 

~z ] = 4go 3 _ g2(z)g O _ g3(z) and 03(0 = 0, so the zero of go(z,i) is a double one and 

1+ i  1 i ] 
hence a 2-division point; that it is ~ -  rather than ~ or ~ is easily verified.] 

Comparing this with the result of the theorem yields the integral identity 

J~ A(it) ( t -1 )  dt n - log(5+2[ /6)  
1 E 6 ( i t )  3 / 2  288n 2 [ /~  

Expanding A/E 3/2 in a Fourier series and integrating term by term, we obtain the 
following amusing corollary, in which all mention of the go-function (or, for that 
matter, of modular forms) has been suppressed: 

Corollary. Define inteoers A n (n>= 1) by the formal power series expansion 

q f i  ( 1 -  qn)24 
~ A,,qn n= 1 

\3/2 
.=1 1 - 5 0 4  ~ ~dSq ") 

n =  1 d i n  

(A 1 = 1, A2=732, A3 =483336, ...). Then 

oo A 1og(5+2 ]/'6) 
~'~ n -- 2 n n  1T, - -  

,--&l ~ - e  = 72~f6 

We remark that the series in the corollary converges very slowly since (as is not 
hard to show) A. satisfies the asymptotic formula 

A. ~ Cnl/Ze 2~" (C = 1/216 ~/fn). 

First Proof (Modular Forms) 

We begin by observing that the function go satisfies the transformation law 

as one easily checks from the definition. It follows that the function zo(z ) satisfies 
the transformation equation 

Zo(Z) [az + b~ ( az + b t 
cz+d = +Z~ m ~  

i.e. zo(z) is a (many-valued) modular form of weight - 1  on SL2(7l ). Now the 
function Zo(Z) has infinitely many branches, but (except for sign) these differ from 
each other by the linear functions z--*m + nz (m, n~77), so the second derivative z~(z) 
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is well-defined up to sign and the function z~(T) 2 is single-valued. Writ ing the 
t rans format ion  law of z o as 

(a~+b t Zo(Z ) = m + n'c ___ (c'c + d)z o \ c - -~]  

and differentiating twice we obtain 

\cz ~- a/ 

i.e. the function z~(z) 2 t ransforms under the action of SL2(Z ) like a modula r  form 
of weight 6. 

At first sight it appears  that  Zo, and hence ,,2 z o , is a holomorphic  function of r, 
since it (or each branch of it) is locally bounded and is defined implicitly by the 
vanishing of a meromorph ic  function in two variables. However,  since z o is many-  
valued we also have to worry about  ramification or coalescing of different 
branches.  The  branches Zo(~ ) + m + n~ (m, n ~ 7/) can never meet, since m + n~ 4:0 for 
(m, n)#:(0, 0), but  the branches Zo(r ) and - z o ( z  ) + m + nz can meet. This happens  
when ~(~, z) has a zero at  one of the three 2-division points 

1 z l + r  
z--- 2'  2 '  2 - -  (mod2~+ 7Zz) 

[the point  z = 0 also satisfies z-= - z (mod 7Z + Zr) but cannot  be a zero of gd since it 

is always a pole],  i.e. whenever the function gd 2 '  z gd 2 '  r ~ - -  r vanishes 

at r. But this function is easily checked to be a holomorphic  modular  form of 
weight 6 on SL2(Z) and hence a multiple (in fact - 1/864) of  E6(r ). Thus 

two branches of Zo(~) mee t~ :~(z ,  r) has a double zero 

�9 r  ) = O.  

[This can also be seen from the equat ion g~'(z): = 4~(z)  3 -  g2p(z)--g3, since g3 is a 
multiple of  E 6. Also, as is well-known, E6('r) vanishes precisely when z is SL2(7/)- 
equivalent  to i, but  we shall not need this fact.] At such a point Zo, exactly two 
branches of  Zo(Z ) coincide [since the function ~( . ,  r) :~F/Z + Zr  ~ Cw { ~ } is exactly 
2- to- l ] ,  so each branch of z o has the local form 

~, +1 m n 
Zo(,r)=___ c r ( r - r o )  r 2-+ ~- + ~z  ( r ~ o )  

r=0  

with c o 4: 0; differentiating twice and  squaring we get 

c 2 3 
z~(.c) 2 = ~ ( r  - ~ o ) -  3 _ -8 CoCl (~ - ~ o ) -  2 + . . . .  

Thus z~(r) 2 is meromorph ic  with a triple pole at each z with E6( 'c)=0 , SO the 
function E6(~:)37,~(T) 2, which t ransforms like a modular  form of weight 3 x 6 
+ 2 x 3 = 24, is ho lomorphic  in the whole upper  half-plane. In a momen t  we shall 
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see that it is also holomorphic at the cusp of ~ / S L 2 ( Z  ) and in fact has a zero of 
order 2 there, so it must be a constant multiple of A(z) 2, i.e. 

Za('C ) = -k C O E6(.C)3/2 ( ' ~  &) 

= +Co(e2'~+732e'*~i~+ ...) ( Im(z)>l )  

for some Co 4= O; integrating twice, we obtain the final formula 

Zo(z)=CI +C2r+C o ! ~ ( t - r ) d t  (ze.~) 

Co 2~iT =CI+C2T-T-~(e + 183e4~i*+ ...) (Im(z) > 1) 

for (each branch of) zo(z). 
To prove the last assertion and determine the values of the constants of 

integration C o, C1, and C> we investigate the asymptotic behaviour of Zo(Z ) as 
r~ i oe .  Computing the Fourier development of fo(z,r) in the same way as one 
calculates the Fourier development of Eisenstein series, one finds 

1 1 
(21ti)-2go(z,z) = ~ ._2+~_ ~ + ~ + ( ~ - 2 + ~ ' - * ) q  

+(2ff2 q- ~-- 6 q- ~-  1 + 2~-  2)q2 q - . . . ,  

where we have set q=e 2~I~ and (------e 2r~iz [the coefficient of qn for n > 0  is 
~ d ( ( a - 2 + ~ - a ) ,  but we shall not need more terms than those given]. The 
din 
ambiguity z ~  + z + m + nz (m, n~ Z) in z corresponds to the ambiguity (-~ qn~ • 1 
(n~Z) in (. To ask whether some branch of Zo(Z) has a finite limit as z ~ i ~  is 
equivalent to asking whether there is some finite value of ( making the above 
expansion vanish for q=0.  Clearly, such a value is given by ~ - 2 + ~ - ~  = - 1 2  or 

~ = - e  • where e = 5 + 2 V ~  is the fundamental unit of Q(I/6). In terms of 

z =  2~/logff this corresponds to 

z=m+~+_ .logg (meZ). 

Thus Zo(~ ) has a branch tending to each of these values of z as z--+ioo. To find the 
Fourier expansion of this branch, we write 

1 1 
Zo(~) = m + ~ ___ ~ (loge + Ae 2"i~ + Be '*'i~ + ...) 

with as yet unknown coefficients A, B,.. . ,  substitute the corresponding value 

~ =e2razo,O= _e• l ( l + Aq + (A~ + B) q2 + ...)• 
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into the above expansion for go(z, r), and successively equate the coefficients of 
each power of q to 0. This gives the values 

A =  + 7 2 ] / 6 ,  B = ___ 13176]/~= 183A, ... ; 

comparing this expansion of Zo(Z ) with the one given above we obtain 

1 2 @  / Co = -+_ 144niV6, Cl=m+~+ loge, C2=n (m, neT/) 

and hence the assertion of the theorem. 
We observe that the same method can be applied to find the solutions of any 

equation of the form 

~(z,~)= 4'(~) 

where q$ is a modular form of weight 2 [-of course, since there are no holomorphic 
modular forms of weight2 on SL2(7/) we must take q$(z) to be either a 
meromorphic modular form or else modular on a subgroup F of SLz(7/)] : Again 
the solutions are of the form 

z = + zq~(z) (mod 7/+ 7/T), 

where zo transforms up to sign and translation by Z + 77z like a modular form of 
weight - 1 and hence z~(z) 2 like a modular form of weight 6 on F. By considering 
the ramification points of z,(r), i.e. the points where z~(z) is a 2-division point on 
�9 /Z + 7lr, one sees that 

z~('r) = + ~p(z)/(4~(z) 3 - 9z('Oq$(z)- g3(Z'))  3/2 , 

where qJ(r) is a modular form of weight 12 on F which is holomorphic wherever ~b 
is. By substituting the Fourier expansions of go and 4b into the defining equation 
for zq~ we can compute as many terms as desired of the Fourier development of ~p 
and hence identify this function entirely, after which z~ is obtained by two-fold 
integration. 

Second Proof (Elliptic Integrals) 

Following a suggestion of Hirzebruch, we can also prove the formulas for z o and 
ze by using elliptic integrals rather than modular forms. Indeed, from 
the formula for the derivative of go(z) we obtain 

d~( z )  _ d~(z )  
d z = - -  

~a'(z) [/4go(z) 3 - 92 go(z) - 03 

and hence 
~=o ~ dX 

Zo( ) = dz = +_ o I / 4 x  g3 
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4 ~  4 
92 = 60 x 2((4)E 4 = ~ - E  4 , 

87~ 6 
93 = 140 x 2((6)E 6 = ~ - E 6 ,  

E 4 = 1 + 240 ~ a3(n)q", E 6 = 1 - 504 ~ as(n)q" 
n>l  n_>_l 

d v = e  2~i~) (o-v(n) = ~ , q are the normalized Eisenstein series of weight 4 and 6 ; the 
din 

/Z 2 
change of  variables X = ~ -  t gives 

+ dt 

- 2n ~ ]//t3 _ 3E4t_ 2E 6 

We now compute  the second derivative of  this by differentiating with respect to 
under the integral sign. The derivatives of  E 4 and E 6 are given by 

1 E 1 d 1 (E2E 6 -  El) ,  1 d E4 = ~ ( E 2  4 _ E 6 ) ,  2~i dr E 6 =  
2~i dz 

where E 2 = 1 - 2 4  ~ al(n)q" (which is not  a modular  form). Hence 
n_->l 

1 0 1 1 (E2E 4 -  E6)t + E2E 6 -  E 2 
2z~i 8~ (t 3 - 3E4t -  2E6) 1/2 2 (t 3 - 3E4t -  2E6) 3/2 

To differentiate again we also need the derivative of  E2, which is given by 

2~i dz E2 = (E~ - E4); 

we then find after some computa t ion  

1 0 2 1 

(2~i) 2 01~ 2 (t 3 -- 3E4t-- 2E6)1/2 

= ( t  3 -  3E4t-- 2E6) -5/2 { 5  (E2E, + E 2 -  2E2E6)t 4 

1 2 2 2 3 2 
-[- 7 ( E 2 E 6  -b E 4 E  6 - 2 E 2 E 2 ) t  3 q- ~ ( E 2 E  4 - 2 E 2 E 4 E 6  +6E6 - -  5E4) t  

+ 1 (5E2E4E6 + 6E2E 3 _ 16E2 E2 + 5E2E6)t 

+ l ( 2E~E~-4E2 E2E6  + 9 E : -  7E4E~) } 

At2 + Bt + C 
= Ot (t 3 -  3E4t -  2E6) 3/2' 
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where 

A=_I(E~E4+E2,_2E2E6)= 3 1 ~2E, lZ - ~ "(2ni)2 Oz ~ = - 144 ~ n2as(n)q ", 
n> t  

B=_~(E~E6+E4E6_2EzE])= 2 1 02E6=144Z n2as(n)q,, 
7 (2hi) 2 ~Z 2 n~ l  

1 s C= + g(E4-E2)=288A=288q H (l--q") 24' 
n>__l 

Integrating from t=O to t=  oo gives 

- 1  ,, ~ AtZ+Bt+C ~ 36ilf6 A(r) 
~5~ 2z~ 2n (t3-3E4t-2E6) s/z o = + rc E6(z) 3/2' 

in accordance with the formula obtained earlier. To complete the proof we must 
still compute Zo(Z) for z-qoo. But at infinity the discriminant A of the cubic 
t s -  3E4t- 2E 6 tends to 0, so the cubic degenerates into the product of a linear 
factor and the square of a linear factor and the elliptic integral defining z o becomes 
elementary. More precisely, for z--,ioo we have E4-~ 1, E6~ 1 and hence 

making the substitution t = 2 -  3x 2 in the first integral and t = 2 + 3x 2 in the second 
we find 

1 /~5  dx 1 ~ dx 
z~176176 ~ ~ 1--x--'-~--+x-! l + x  2 

1 1 l + x  2r 1 x ]  
= + _ ~ O g ~ o  +_--~arctan 

= + 2~/log(5 + 2 ~/6)+ ~, 

and combining this with the result already obtained for z~(r) we recover the 
formula of the theorem. 

The same method applies to the solution z = z,(z) of the equation ga(z, z) = ~b(z), 
where ~b(z) is any meromorphic function of z : we have 

z,(T)=_~3 ~ dt 
3_~(~) l/t 3 -- 3E#t- 2E6 

(with the indeterminacy coming from the choice of square root and of path of 
integration) and from this we can determine z,(ioo) and z~(z) in the same way as in 
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the special case ~b=0. Namely, if ~b(z) has a limit s as Im(z)-*~,  then 

- - arctan - 
,!a (t + 1)-  t ] / ~  2 n 
~2 

= 1 + 2 ~ / l o g  1 + ~2 
2 -  ~/~ 2 

1 -  7~ 2 

As to the second derivative, we find 

,_,,2 
z ; ( ' [ )  = ( i f (Z)  , - -  q~('C) 3 - -  EaC~(z  ) - -  2 E 6 )  

+ 27~ 3_~(o 

z;(z)= 31/3 d /. q~'(~ l 

\ V  g ~ i 

c~ 2 
J [(t  - ;E,t- 2E6)- "qdt. 

~3-~~ d d 02 
Using the formulas given earlier for --dz E4, & E6, and ~ [(t 3 - 3E J -  2E6)- 1/2] 

we find after some computation the result 

1 
z~,(z) = + ~ (403 - 92(~ - -  g3)- 3/2{  __ 2(4~b 3 _ g2q ~ _ 93)q~** 

+ (12~b 2 - 9z)q~ .2 + (36934 + 292)q~ * 

+ 1292~ b4 + 302q ~2 + 69293q~- 92 + 27932}, 

where we have set 

~2 i &  g E 2 ~b, qS**= 12zt a ~ i  Oz 3E2 ~a*. 

This formula holds for any meromorphic function ~b(z); if ~b is a (meromorphic) 
modular form of weight 2 on a subgroup F of SL2(2~ ) then, as is well-known, ~* 
and 4)** are modular forms on F of weight 4 and weight 6, respectively, so we have 
obtained an explicit formula of the form 

~,(~) 
Z ; ( T )  = (4 (~(T)3  - -  g2( 'L ' )~ (T)  - -  g3 (T) )312  , 
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where ~o is a (meromorphic)  modula r  form of weight 12 on F and is a cusp form if 
qb is a ho lomorph ic  modu la r  form. As a further corollary we observe that  the 
equat ion ~o(z, z ) =  qb(z) for the special function 

dp(z)=gd(az+b,z) ( a , b ~ ,  not  both  c7s 

which is a modu la r  form of weight 2 on F(N) if a, b e Z has the special solution 

z = a t  + b with z"(z) = 0. Hence the form lp must  vanish identically in this case and 
we have obta ined  a non-linear second order  differential equat ion satisfied by 
all the functions go(az + b, z). 


