On the Zeros of the Weierstrass \wp-Function

M. Eichler and D. Zagier
Department of Mathematics, University of Maryland, College Park, MD 20742, USA

The Weierstrass \wp-function, defined for $\tau \in \mathfrak{G}$ (upper half-plane) and $z \in \mathbb{C}$ by

$$
\wp(z, \tau)=\frac{1}{z^{2}}+\sum_{\substack{\omega \in \mathbb{Z}+\mathbb{Z}_{\tau} \\ \omega \neq 0}}\left(\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right),
$$

is the basic and most famous function of elliptic function theory. As is well known, $\wp(z, \tau)$ is for fixed τ doubly periodic in z and takes on each value in $\mathbb{C} \cup\{\infty\}$ exactly twice (counting multiplicity) as z ranges over $\mathbb{C} / \mathbb{Z}+\mathbb{Z} t$. In particular, since $\wp(z, \tau)$ is an even function of z, there is for each $\tau \in \mathfrak{F}$ a number $z_{0}(\tau)$, well-defined up to sign and translation by $\mathbb{Z}+\mathbb{Z} \tau$, such that

$$
\wp(z, \tau)=0 \Leftrightarrow z \equiv \pm z_{0}(\tau)(\bmod \mathbb{Z}+\mathbb{Z} \tau) .
$$

The purpose of this note is to prove the following explicit formula for $z_{0}(\tau)$ which, despite the long history of the function \wp, seems not to have been noticed earlier; this formula arose out of the authors' investigation of "Jacobi forms" [functions on $\mathbb{C} \times \mathfrak{G}$ satisfying a transformation law of a certain kind under the transformations $(z, \tau) \rightarrow\left(\frac{z+m+n \tau}{c \tau+d}, \frac{a \tau+b}{c \tau+d}\right)$ with $\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}), m, n \in \mathbb{Z}\right]$ and is a special case of more general results, but in view of the special interest attaching to the $\wp-$-function it seemed worthwhile to publish it separately.

Theorem. The zeros of $\wp(z, \tau)(\tau \in \mathfrak{Y}, z \in \mathbb{C})$ are given by

$$
z=m+\frac{1}{2}+n \tau \pm\left(\frac{\log (5+2 \sqrt{6})}{2 \pi i}+144 \pi i \sqrt{6} \int_{\tau}^{i \infty}(t-\tau) \frac{\Delta(t)}{E_{6}(t)^{3 / 2}} d t\right)
$$

($m, n \in \mathbb{Z}$), where $E_{6}(t)$ and $\Delta(t)(t \in \mathfrak{Y})$ denote the normalized Eisenstein series of weight 6 and unique normalized cusp form of weight 12 on $\mathrm{SL}_{2}(\mathbb{Z})$, respectively, and the integral is to be taken over the vertical line $t=\tau+i \mathbb{R}_{+}$in \mathfrak{H}.

For $\tau=i$ we know a priori that $\wp(z, \tau)$ vanishes at the point $z=\frac{1+i}{2}[$ because $\left(\frac{\partial \wp}{\partial z}\right)^{2}=4 \wp^{3}-g_{2}(\tau) \wp-g_{3}(\tau)$ and $g_{3}(i)=0$, so the zero of $\wp(z, i)$ is a double one and hence a 2 -division point; that it is $\frac{1+i}{2}$ rather than $\frac{1}{2}$ or $\frac{i}{2}$ is easily verified]. Comparing this with the result of the theorem yields the integral identity

$$
\int_{1}^{\infty} \frac{\Delta(i t)}{E_{6}(i t)^{3 / 2}}(t-1) d t=\frac{\pi-\log (5+2 \sqrt{6})}{288 \pi^{2} \sqrt{6}}
$$

Expanding $\Delta / E_{6}^{3 / 2}$ in a Fourier series and integrating term by term, we obtain the following amusing corollary, in which all mention of the $\wp-$-function (or, for that matter, of modular forms) has been suppressed:
Corollary. Define integers $A_{n}(n \geqq 1)$ by the formal power series expansion

$$
\sum_{n=1}^{\infty} A_{n} q^{n}=\frac{q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}}{\left(1-504 \sum_{n=1}^{\infty} \sum_{d \mid n} d^{5} q^{n}\right)^{3 / 2}}
$$

$\left(A_{1}=1, A_{2}=732, A_{3}=483336, \ldots\right)$. Then

$$
\sum_{n=1}^{\infty} \frac{A_{n}}{n^{2}} e^{-2 \pi n}=\frac{\pi-\log (5+2 \sqrt{6})}{72 \sqrt{6}}
$$

We remark that the series in the corollary converges very slowly since (as is not hard to show) A_{n} satisfies the asymptotic formula

$$
A_{n} \sim C n^{1 / 2} e^{2 \pi n} \quad(C=1 / 216 \sqrt{2 \pi})
$$

First Proof (Modular Forms)

We begin by observing that the function \wp satisfies the transformation law

$$
\wp\left(\frac{z}{c \tau+d}, \frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{2} \wp(z, \tau) \quad\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})\right)
$$

as one easily checks from the definition. It follows that the function $z_{0}(\tau)$ satisfies the transformation equation

$$
\frac{z_{0}(\tau)}{c \tau+d} \equiv \pm z_{0}\left(\frac{a \tau+b}{c \tau+d}\right) \quad\left(\bmod \mathbb{Z}+\mathbb{Z} \frac{a \tau+b}{c \tau+d}\right)
$$

i.e. $z_{0}(\tau)$ is a (many-valued) modular form of weight -1 on $\mathrm{SL}_{2}(\mathbb{Z})$. Now the function $z_{0}(\tau)$ has infinitely many branches, but (except for sign) these differ from each other by the linear functions $\tau \rightarrow m+n \tau(m, n \in \mathbb{Z})$, so the second derivative $z_{0}^{\prime \prime}(\tau)$
is well-defined up to sign and the function $z_{0}^{\prime \prime}(\tau)^{2}$ is single-valued. Writing the transformation law of z_{0} as

$$
z_{0}(\tau)=m+n \tau \pm(c \tau+d) z_{0}\left(\frac{a \tau+b}{c \tau+d}\right)
$$

and differentiating twice we obtain

$$
z_{0}^{\prime \prime}(\tau)= \pm(c \tau+d)^{-3} z_{0}^{\prime \prime}\left(\frac{a \tau+b}{c \tau+d}\right)
$$

i.e. the function $z_{0}^{\prime \prime}(\tau)^{2}$ transforms under the action of $\mathrm{SL}_{2}(\mathbb{Z})$ like a modular form of weight 6 .

At first sight it appears that z_{0}, and hence $z_{0}^{\prime \prime 2}$, is a holomorphic function of τ, since it (or each branch of it) is locally bounded and is defined implicitly by the vanishing of a meromorphic function in two variables. However, since z_{0} is manyvalued we also have to worry about ramification or coalescing of different branches. The branches $z_{0}(\tau)+m+n \tau(m, n \in \mathbb{Z})$ can never meet, since $m+n \tau \neq 0$ for ($m, n) \neq(0,0)$, but the branches $z_{0}(\tau)$ and $-z_{0}(\tau)+m+n \tau$ can meet. This happens when $\wp(\tau, z)$ has a zero at one of the three 2 -division points

$$
z \equiv \frac{1}{2}, \frac{\tau}{2}, \frac{1+\tau}{2}(\bmod \mathbb{Z}+\mathbb{Z} \tau)
$$

[the point $z=0$ also satisfies $z \equiv-z(\bmod \mathbb{Z}+\mathbb{Z} \tau)$ but cannot be a zero of \wp since it is always a pole], i.e. whenever the function $\wp\left(\frac{1}{2}, \tau\right) \wp\left(\frac{\tau}{2}, \tau\right) \wp\left(\frac{1+\tau}{2}, \tau\right)$ vanishes at τ. But this function is easily checked to be a holomorphic modular form of weight 6 on $\mathrm{SL}_{2}(\mathbb{Z})$ and hence a multiple (in fact $\left.-1 / 864\right)$ of $E_{6}(\tau)$. Thus

$$
\begin{aligned}
& \text { two branches of } z_{0}(\tau) \text { meet } \Leftrightarrow \wp(z, \tau) \text { has a double zero } \\
& \\
& \Leftrightarrow E_{6}(\tau)=0 .
\end{aligned}
$$

[This can also be seen from the equation $\wp^{\prime}(z)^{2}=4 \wp(z)^{3}-g_{2} p(z)-g_{3}$, since g_{3} is a multiple of E_{6}. Also, as is well-known, $E_{6}(\tau)$ vanishes precisely when τ is $\mathrm{SL}_{2}(\mathbb{Z})$ equivalent to i, but we shall not need this fact.] At such a point τ_{0}, exactly two branches of $z_{0}(\tau)$ coincide [since the function $\wp(\cdot, \tau): \mathbb{C} / \mathbb{Z}+\mathbb{Z} \tau \rightarrow \mathbb{C} \cup\{\infty\}$ is exactly 2-to-1], so each branch of z_{0} has the local form

$$
z_{0}(\tau)= \pm \sum_{r=0}^{\infty} c_{r}\left(\tau-\tau_{0}\right)^{r+\frac{1}{2}}+\frac{m}{2}+\frac{n}{2} \tau \quad\left(\tau \rightarrow \tau_{0}\right)
$$

with $c_{0} \neq 0$; differentiating twice and squaring we get

$$
z_{0}^{\prime \prime}(\tau)^{2}=\frac{c_{0}^{2}}{16}\left(\tau-\tau_{0}\right)^{-3}-\frac{3}{8} c_{0} c_{1}\left(\tau-\tau_{0}\right)^{-2}+\ldots
$$

Thus $z_{0}^{\prime \prime}(\tau)^{2}$ is meromorphic with a triple pole at each τ with $E_{6}(\tau)=0$, so the function $E_{6}(\tau)^{3} z_{0}^{\prime \prime}(\tau)^{2}$, which transforms like a modular form of weight 3×6 $+2 \times 3=24$, is holomorphic in the whole upper half-plane. In a moment we shall
see that it is also holomorphic at the cusp of $\mathfrak{G} / \mathrm{SL}_{2}(\mathbb{Z})$ and in fact has a zero of order 2 there, so it must be a constant multiple of $\Delta(\tau)^{2}$, i.e.

$$
\begin{aligned}
z_{0}^{\prime \prime}(\tau) & = \pm C_{0} \frac{\Delta(\tau)}{E_{6}(\tau)^{3 / 2}} \quad(\tau \in \mathfrak{H}) \\
& = \pm C_{0}\left(e^{2 \pi i \tau}+732 e^{4 \pi i \tau}+\ldots\right) \quad(\operatorname{Im}(\tau)>1)
\end{aligned}
$$

for some $C_{0} \neq 0$; integrating twice, we obtain the final formula

$$
\begin{aligned}
z_{0}(\tau) & =C_{1}+C_{2} \tau \pm C_{0} \int_{\tau}^{i \infty} \frac{\Delta(t)}{E_{6}(t)^{3 / 2}}(t-\tau) d t \quad(\tau \in \mathfrak{G}) \\
& =C_{1}+C_{2} \tau \mp \frac{C_{0}}{4 \pi^{2}}\left(e^{2 \pi i \tau}+183 e^{4 \pi i \tau}+\ldots\right) \quad(\operatorname{Im}(\tau)>1)
\end{aligned}
$$

for (each branch of $z_{0}(\tau)$.
To prove the last assertion and determine the values of the constants of integration C_{0}, C_{1}, and C_{2}, we investigate the asymptotic behaviour of $z_{0}(\tau)$ as $\tau \rightarrow i \infty$. Computing the Fourier development of $\wp(z, \tau)$ in the same way as one calculates the Fourier development of Eisenstein series, one finds

$$
\begin{aligned}
(2 \pi i)^{-2} \wp(z, \tau)= & \frac{1}{\zeta-2+\zeta^{-1}}+\frac{1}{12}+\left(\zeta-2+\zeta^{-1}\right) q \\
& +\left(2 \zeta^{2}+\zeta-6+\zeta^{-1}+2 \zeta^{-2}\right) q^{2}+\ldots,
\end{aligned}
$$

where we have set $q=e^{2 \pi i \tau}$ and $\zeta=e^{2 \pi i z}$ [the coefficient of q^{n} for $n>0$ is $\sum_{d \mid n} d\left(\zeta^{d}-2+\zeta^{-d}\right)$, but we shall not need more terms than those given]. The ambiguity $z \rightarrow \pm z+m+n \tau(m, n \in \mathbb{Z})$ in z corresponds to the ambiguity $\zeta \rightarrow q^{n} \zeta^{ \pm 1}$ $(n \in \mathbb{Z})$ in ζ. To ask whether some branch of $z_{0}(\tau)$ has a finite limit as $\tau \rightarrow i \infty 0$ is equivalent to asking whether there is some finite value of ζ making the above expansion vanish for $q=0$. Clearly, such a value is given by $\zeta-2+\zeta^{-1}=-12$ or $\zeta=-\varepsilon^{ \pm 1}$, where $\varepsilon=5+2 \sqrt{6}$ is the fundamental unit of $\mathbb{Q}(\sqrt{6})$. In terms of $z=\frac{1}{2 \pi i} \log \zeta$ this corresponds to

$$
z=m+\frac{1}{2} \pm \frac{1}{2 \pi i} \log \varepsilon \quad(m \in \mathbb{Z}) .
$$

Thus $z_{0}(\tau)$ has a branch tending to each of these values of z as $\tau \rightarrow i \infty 0$. To find the Fourier expansion of this branch, we write

$$
z_{0}(\tau)=m+\frac{1}{2} \pm \frac{1}{2 \pi i}\left(\log \varepsilon+A e^{2 \pi i \tau}+B e^{4 \pi i \tau}+\ldots\right)
$$

with as yet unknown coefficients A, B, \ldots, substitute the corresponding value

$$
\zeta=e^{2 \pi i z_{0}(t)}=-\varepsilon^{ \pm 1}\left(1+A q+\left(\frac{A^{2}}{2}+B\right) q^{2}+\ldots\right)^{ \pm 1}
$$

into the above expansion for $\wp(z, \tau)$, and successively equate the coefficients of each power of q to 0 . This gives the values

$$
A= \pm 72 \sqrt{6}, \quad B= \pm 13176 \sqrt{6}=183 A, \ldots ;
$$

comparing this expansion of $z_{0}(\tau)$ with the one given above we obtain

$$
C_{0}= \pm 144 \pi i \sqrt{6}, \quad C_{1}=m+\frac{1}{2} \pm \frac{1}{2 \pi i} \log \varepsilon, \quad C_{2}=n \quad(m, n \in \mathbb{Z})
$$

and hence the assertion of the theorem.
We observe that the same method can be applied to find the solutions of any equation of the form

$$
\wp(z, \tau)=\phi(\tau)
$$

where ϕ is a modular form of weight 2 [of course, since there are no holomorphic modular forms of weight 2 on $\mathrm{SL}_{2}(\mathbb{Z})$ we must take $\phi(\tau)$ to be either a meromorphic modular form or else modular on a subgroup Γ of $\left.\mathrm{SL}_{2}(\mathbb{Z})\right]$: Again the solutions are of the form

$$
z \equiv \pm z_{\phi}(\tau) \quad(\bmod \mathbb{Z}+\mathbb{Z} \tau),
$$

where z_{ϕ} transforms up to sign and translation by $\mathbb{Z}+\mathbb{Z} \tau$ like a modular form of weight -1 and hence $z_{\phi}^{\prime \prime}(\tau)^{2}$ like a modular form of weight 6 on Γ. By considering the ramification points of $z_{\phi}(\tau)$, i.e. the points where $z_{\phi}(\tau)$ is a 2 -division point on $\mathbb{C} / \mathbb{Z}+\mathbb{Z} \tau$, one sees that

$$
z_{\phi}^{\prime \prime}(\tau)= \pm \psi(\tau) /\left(4 \phi(\tau)^{3}-g_{2}(\tau) \phi(\tau)-g_{3}(\tau)\right)^{3 / 2}
$$

where $\psi(\tau)$ is a modular form of weight 12 on Γ which is holomorphic wherever ϕ is. By substituting the Fourier expansions of \wp and ϕ into the defining equation for z_{ϕ} we can compute as many terms as desired of the Fourier development of ψ and hence identify this function entirely, after which z_{ϕ} is obtained by two-fold integration.

Second Proof (Elliptic Integrals)

Following a suggestion of Hirzebruch, we can also prove the formulas for z_{0} and z_{ϕ} by using elliptic integrals rather than modular forms. Indeed, from the formula for the derivative of $\wp(z)$ we obtain

$$
d z=\frac{d \wp(z)}{\wp^{\prime}(z)}=\frac{d \wp(z)}{\sqrt{4 \wp(z)^{3}-g_{2} \wp(z)-g_{3}}}
$$

and hence

$$
z_{0}(\tau)=\int_{\wp=\infty}^{\wp=0} d z= \pm \int_{0}^{\infty} \frac{d X}{\sqrt{4 X^{3}-g_{2} X-g_{3}}}
$$

Here

$$
g_{2}=60 \times 2 \zeta(4) E_{4}=\frac{4 \pi^{4}}{3} E_{4}, \quad g_{3}=140 \times 2 \zeta(6) E_{6}=\frac{8 \pi^{6}}{27} E_{6},
$$

where

$$
E_{4}=1+240 \sum_{n \geqq 1} \sigma_{3}(n) q^{n}, \quad E_{6}=1-504 \sum_{n \geqq 1} \sigma_{5}(n) q^{n}
$$

$\left(\sigma_{v}(n)=\sum_{d \mid n} d^{v}, q=e^{2 \pi i t}\right)$ are the normalized Eisenstein series of weight 4 and 6 ; the change of variables $X=\frac{\pi^{2}}{3} t$ gives

$$
z_{0}(\tau)= \pm \frac{\sqrt{3}}{2 \pi} \int_{0}^{\infty} \frac{d t}{\sqrt{t^{3}-3 E_{4} t-2 E_{6}}}
$$

We now compute the second derivative of this by differentiating with respect to τ under the integral sign. The derivatives of E_{4} and E_{6} are given by

$$
\frac{1}{2 \pi i} \frac{d}{d \tau} E_{4}=\frac{1}{3}\left(E_{2} E_{4}-E_{6}\right), \quad \frac{1}{2 \pi i} \frac{d}{d \tau} E_{6}=\frac{1}{2}\left(E_{2} E_{6}-E_{4}^{2}\right),
$$

where $E_{2}=1-24 \sum_{n \geqq 1} \sigma_{1}(n) q^{n}$ (which is not a modular form). Hence

$$
\frac{1}{2 \pi i} \frac{\partial}{\partial \tau} \frac{1}{\left(t^{3}-3 E_{4} t-2 E_{6}\right)^{1 / 2}}=\frac{1}{2} \frac{\left(E_{2} E_{4}-E_{6}\right) t+E_{2} E_{6}-E_{4}^{2}}{\left(t^{3}-3 E_{4} t-2 E_{6}\right)^{3 / 2}}
$$

To differentiate again we also need the derivative of E_{2}, which is given by

$$
\frac{1}{2 \pi i} \frac{d}{d \tau} E_{2}=\frac{1}{12}\left(E_{2}^{2}-E_{4}\right)
$$

we then find after some computation

$$
\begin{aligned}
\frac{1}{(2 \pi i)^{2}} & \frac{\partial^{2}}{\partial \tau^{2}} \frac{1}{\left(t^{3}-3 E_{4} t-2 E_{6}\right)^{1 / 2}} \\
= & \left(t^{3}-3 E_{4} t-2 E_{6}\right)^{-5 / 2}\left\{\frac{5}{24}\left(E_{2}^{2} E_{4}+E_{4}^{2}-2 E_{2} E_{6}\right) t^{4}\right. \\
& +\frac{7}{24}\left(E_{2}^{2} E_{6}+E_{4} E_{6}-2 E_{2} E_{4}^{2}\right) t^{3}+\frac{1}{8}\left(E_{2}^{2} E_{4}^{2}-2 E_{2} E_{4} E_{6}+6 E_{6}^{2}-5 E_{4}^{3}\right) t^{2} \\
& +\frac{1}{24}\left(5 E_{2}^{2} E_{4} E_{6}+6 E_{2} E_{4}^{3}-16 E_{2} E_{6}^{2}+5 E_{4}^{2} E_{6}\right) t \\
& \left.+\frac{1}{12}\left(2 E_{2}^{2} E_{6}^{2}-4 E_{2} E_{4}^{2} E_{6}+9 E_{4}^{4}-7 E_{4} E_{6}^{2}\right)\right\} \\
& =\frac{\partial}{\partial t} \frac{A t^{2}+B t+C}{\left(t^{3}-3 E_{4} t-2 E_{6}\right)^{3 / 2}}
\end{aligned}
$$

where

$$
\begin{aligned}
& A=-\frac{1}{12}\left(E_{2}^{2} E_{4}+E_{4}^{2}-2 E_{2} E_{6}\right)=-\frac{3}{5} \cdot \frac{1}{(2 \pi i)^{2}} \frac{\partial^{2} E_{4}}{\partial \tau^{2}}=-144 \sum_{n \geqq 1} n^{2} \sigma_{3}(n) q^{n}, \\
& B=-\frac{1}{12}\left(E_{2}^{2} E_{6}+E_{4} E_{6}-2 E_{2} E_{4}^{2}\right)=-\frac{2}{7} \cdot \frac{1}{(2 \pi i)^{2}} \frac{\partial^{2} E_{6}}{\partial \tau^{2}}=144 \sum_{n \geqq 1} n^{2} \sigma_{5}(n) q^{n}, \\
& C=+\frac{1}{6}\left(E_{4}^{3}-E_{6}^{2}\right)=288 \Delta=288 q \prod_{n \geqq 1}\left(1-q^{n}\right)^{24} .
\end{aligned}
$$

Integrating from $t=0$ to $t=\infty$ gives

$$
\frac{-1}{4 \pi^{2}} z_{0}^{\prime \prime}(\tau)=\left.\frac{\sqrt{3}}{2 \pi} \frac{A t^{2}+B t+C}{\left(t^{3}-3 E_{4} t-2 E_{6}\right)^{3 / 2}}\right|_{0} ^{\infty}= \pm \frac{36 i \sqrt{6}}{\pi} \frac{\Delta(\tau)}{E_{6}(\tau)^{3 / 2}}
$$

in accordance with the formula obtained earlier. To complete the proof we must still compute $z_{0}(\tau)$ for $\tau \rightarrow i \infty$. But at infinity the discriminant Δ of the cubic $t^{3}-3 E_{4} t-2 E_{6}$ tends to 0 , so the cubic degenerates into the product of a lincar factor and the square of a linear factor and the elliptic integral defining z_{0} becomes elementary. More precisely, for $\tau \rightarrow i \infty$ we have $E_{4} \rightarrow 1, E_{6} \rightarrow 1$ and hence

$$
\begin{aligned}
z_{0}(i \infty) & = \pm \frac{\sqrt{3}}{2 \pi} \int_{0}^{\infty} \frac{d t}{\sqrt{t^{3}-3 t-2}} \\
& = \pm \frac{\sqrt{3}}{2 \pi}\left(\int_{0}^{2}+\int_{2}^{\infty}\right) \frac{d t}{(t+1) \sqrt{t-2}}
\end{aligned}
$$

making the substitution $t=2-3 x^{2}$ in the first integral and $t=2+3 x^{2}$ in the second we find

$$
\begin{aligned}
z_{0}(i \infty) & = \pm \frac{1}{\pi i} \int_{0}^{\sqrt{2 / 3}} \frac{d x}{1-x^{2}} \pm \frac{1}{\pi} \int_{0}^{\infty} \frac{d x}{1+x^{2}} \\
& = \pm\left.\frac{1}{2 \pi i} \log \frac{1+x}{1-x}\right|_{0} ^{\sqrt{2 / 3}} \pm\left.\frac{1}{\pi} \arctan x\right|_{0} ^{\infty} \\
& = \pm \frac{1}{2 \pi i} \log (5+2 \sqrt{6}) \pm \frac{1}{2}
\end{aligned}
$$

and combining this with the result already obtained for $z_{0}^{\prime \prime}(\tau)$ we recover the formula of the theorem.

The same method applies to the solution $z=z_{\phi}(\tau)$ of the equation $\wp(z, \tau)=\phi(\tau)$, where $\phi(\tau)$ is any meromorphic function of τ : we have

$$
z_{\phi}(\tau)=\frac{\sqrt{3}}{2 \pi} \int_{\frac{3}{\pi^{2}} \phi(\tau)}^{\infty} \frac{d t}{\sqrt{t^{3}-3 E_{4} t-2 E_{6}}}
$$

(with the indeterminacy coming from the choice of square root and of path of integration) and from this we can determine $z_{\phi}(i \infty)$ and $z_{\phi}^{\prime \prime}(\tau)$ in the same way as in
the special case $\phi=0$. Namely, if $\phi(\tau)$ has a limit λ as $\operatorname{Im}(\tau) \rightarrow \infty$, then

$$
\begin{aligned}
z_{\phi}(i \propto 0) & =\frac{\sqrt{3}}{2 \pi} \int_{\frac{3 \lambda}{\pi^{2}}}^{\infty} \frac{d t}{(t+1) \sqrt{t-2}}=\frac{1}{2}-\frac{1}{\pi} \arctan \left(\sqrt{\frac{\lambda}{\pi^{2}}-\frac{2}{3}}\right) \\
& =\frac{1}{2} \pm \frac{1}{2 \pi i} \log \frac{1+\sqrt{\frac{2}{3}-\frac{\lambda}{\pi^{2}}}}{1-\sqrt{\frac{2}{3}-\frac{\lambda}{\pi^{2}}}} .
\end{aligned}
$$

As to the second derivative, we find

$$
\begin{aligned}
& z_{\phi}^{\prime}(\tau)=-\frac{\sqrt{3}}{2 \pi} \cdot \frac{3}{\pi^{2}} \phi^{\prime}(\tau)\left(\frac{27}{\pi^{6}} \phi(\tau)^{3}-\frac{9}{\pi^{2}} E_{4} \phi(\tau)-2 E_{6}\right)^{-1 / 2} \\
&+\frac{\sqrt{3}}{2 \pi} \int_{\frac{3}{\pi^{2}} \phi(\tau)}^{\infty} \frac{\partial}{\partial \tau}\left[\left(t^{3}-3 E_{4} t-2 E_{6}\right)^{-1 / 2}\right] d t, \\
& z_{\phi}^{\prime \prime}(\tau)=-\frac{3 \sqrt{3}}{2 \pi^{3}} \frac{d}{d \tau}\left(\frac{\phi^{\prime}(\tau)}{\sqrt{\frac{27}{\pi^{6}} \phi^{3}-\frac{9}{\pi^{2}} E_{4} \phi-2 E_{6}}}\right) \\
&-\left.\frac{3 \sqrt{3}}{2 \pi^{3}} \phi^{\prime}(\tau) \frac{\partial}{\partial \tau}\left[\left(t^{3}-3 E_{4} t-2 E_{6}\right)^{-1 / 2}\right]\right|_{t=\frac{3}{\pi^{2}} \phi(\tau)} \\
&+\frac{\sqrt{3}}{2 \pi} \int_{\frac{3}{\pi^{2}} \phi(\tau)}^{\infty} \frac{\partial^{2}}{\tau^{2}}\left[\left(t^{3}-3 E_{4} t-2 E_{6}\right)^{-1 / 2}\right] d t . \\
& d
\end{aligned}
$$

Using the formulas given earlier for $\frac{d}{d \tau} E_{4}, \frac{d}{d \tau} E_{6}$, and $\frac{\partial^{2}}{\partial \tau^{2}}\left[\left(t^{3}-3 E_{4} t-2 E_{6}\right)^{-1 / 2}\right]$ we find after some computation the result

$$
\begin{aligned}
z_{\phi}^{\prime \prime}(\tau)= & \pm \frac{1}{72 \pi^{2}}\left(4 \phi^{3}-g_{2} \phi-g_{3}\right)^{-3 / 2}\left\{-2\left(4 \phi^{3}-g_{2} \phi-g_{3}\right) \phi^{* *}\right. \\
& +\left(12 \phi^{2}-g_{2}\right) \phi^{* 2}+\left(36 g_{3} \phi+2 g_{2}^{2}\right) \phi^{*} \\
& \left.+12 g_{2} \phi^{4}+3 g_{2}^{2} \phi^{2}+6 g_{2} g_{3} \phi-g_{2}^{3}+27 g_{3}^{2}\right\},
\end{aligned}
$$

where we have set

$$
\phi^{*}=12 \pi^{2}\left(\frac{1}{2 \pi i} \frac{\partial}{\partial \tau}-\frac{1}{6} E_{2}\right) \phi, \quad \phi^{* *}=12 \pi^{2}\left(\frac{1}{2 \pi i} \frac{\partial}{\partial \tau}-\frac{1}{3} E_{2}\right) \phi^{*} .
$$

This formula holds for any meromorphic function $\phi(\tau)$; if ϕ is a (meromorphic) modular form of weight 2 on a subgroup Γ of $\mathrm{SL}_{2}(\mathbb{Z})$ then, as is well-known, ϕ^{*} and $\phi^{* *}$ are modular forms on Γ of weight 4 and weight 6 , respectively, so we have obtained an explicit formula of the form

$$
z_{\phi}^{\prime \prime}(\tau)=\frac{\psi(\tau)}{\left(4 \phi(\tau)^{3}-g_{2}(\tau) \phi(\tau)-g_{3}(\tau)\right)^{3 / 2}}
$$

where ψ is a (meromorphic) modular form of weight 12 on Γ and is a cusp form if ϕ is a holomorphic modular form. As a further corollary we observe that the equation $\wp(z, \tau)=\phi(\tau)$ for the special function

$$
\phi(\tau)=\wp(a \tau+b, \tau) \quad(a, b \in \mathbb{C}, \text { not both } \in \mathbb{Z})
$$

[which is a modular form of weight 2 on $\Gamma(N)$ if $\left.a, b \in \frac{1}{N} \mathbb{Z}\right]$ has the special solution $z=a \tau+b$ with $z^{\prime \prime}(\tau)=0$. Hence the form ψ must vanish identically in this case and we have obtained a non-linear second order differential equation satisfied by all the functions $\wp(a \tau+b, \tau)$.

