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The polylogarithm function 

�9 co ~ n  

appears in many parts of mathematics and has an extensive literature [2]. It can be 
analytically extended to the cut plane ~ \ [1 ,  ~ )  by defining Lira(x) inductively as 
x 

[ Li m_ l (z)z- tdz  but then has a discontinuity as x crosses the cut. However, for 
0 

m = 2 the modified function 

O(x) = ~(Liz(x)) + arg(1 -- x) loglxl 

extends (real-) analytically to the entire complex plane except for the points x = 0  
and x =  1 where it is continuous but not analytic. This modified dilogarithm 
function, introduced by Wigner and Bloch [1], has many beautiful properties. In 
particular, its values at algebraic argument suffice to express in closed form the 
volumes of arbitrary hyperbolic 3-manifolds and the values at s =  2 of the 
Dedekind zeta functions of arbitrary number fields (cf. [6] and the expository 
article [7]). It is therefore natural to ask for similar real-analytic and single-valued 
modification of the higher polylogarithm functions Li, .  Such a function Dm was 
constructed, and shown to satisfy a functional equation relating D=(x-t)  and 
D~(x), by Ramakrishnan E3]. His construction, which involved monodromy 
arguments for certain nilpotent subgroups of GLm(C), is completely explicit, but he 
does not actually give a formula for Dm in terms of the polylogarithm. In this note 
we write down such a formula and give a direct proof of the one-valuedness and 
functional equation. We will also: 

i) prove a formula (generalizing a formula of Bloch for m =  2) expressing 
certain infinite sums of the D= as special values of Kronecker double series related 
to L-series of Hecke characters, 

ii) describe a relation between the D,~(x) and certain Green's functions for the 
unit disc, and 
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iii) discuss the conjecture that the values at s = m of the Dedekind zeta function 
~F(s) for an arbitrary number field F can be expressed in terms of values of D,.(x) 
with x ~ F. 

The last relationship, which seems to be the most interesting property of the 
higher polyiogarithm functions, is closely connected with algebraic K-theory and 
in fact leads to a conjectural description of higher K-groups of fields, as will be 
discussed in more detail in a later paper I-9]. 

1. Definition of the function D.,,(x) 

For m e N and x ~ • with Ixl ~ 1 define 

Lm(x)= ~ (- l~ 
= ~  (in-j)! 

3(Lm(x)) (m even), 
D,,,(x) I (loglxly" (m odd). [ ~lt(Lm(x)) + 

2ml 

Proposition L D,~(x) can be continued real-analytically to 113\{0,1 } and satisfies the 

functional equation Dm (1_~ = ( _  1) m_ 1Din(x)" 
\ x J  

Remarks. Ramakrishnan's D., is equal to ours for m even but is just 9t(L.(x)) for m 
odd. We have included the extra term (loglxl)m/2m! for m odd in order to make the 
functional equation as simple as possible (Ramakrishnan's function satisfies 
D~,,(I/x)=D=(x)+(loglxl)"/m! for m odd), but at the cost of making the function 
discontinuous at 0 in this case. (For m even, D m extends to a continuous function on 
the extended plane iEu{ oo }, vanishing on l l u  { oo }.) The definition of Dm here also 
differs by a factor ( - 1 )  w~+l)t21 from the normalization given in [7], which was 
chosen to give a simpler relation between OD,,/Oz and D,,_ 1. The functions D l(x) 
and D2(x ) are equal to - l og[x l /Z -x  - t/2l and D(x), respectively. 

Proof As mentioned in the introduction, we can continue Lira(x) analytically to the 
cut plane IE\[I,  oo) by successive integration along, say, radial paths from 0 to x. 
The two branches just below and just above the cut then continue across the cut. 
Write A for the difference of these two analytic functions in their common region of 

1 
definition (say, in the range la rg(x-  1)J <s,  where e is small). Since L/l(x) = log  1 - -x  

for Ix l< l ,  we have ALil=2ni, and it then follows from the formula xLi'm(X) 
= Li ,_ t(x) that 

ALira(x) = 2M(logx)"- 1/(m - 1)[ 

for each m>_ 1. (This is welt-defined in the region in question: we take the branch of 
logx which vanishes at x = 1.) Consequently, 

AL,,(x)=2rci ~. (-l~ ( l~  2hi ['1 x'~m-t 
S=, (w-j )[  (/ ' -1)[  = ( m - l ) [  ~ o g ~ )  . 

Since log x is pure imaginary, this is real for m even and pure imaginary for m odd. 
IXt 
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Hence ~(i  m+ ~Lm(x)) is one-valued, proving the first assertion of the proposition. 
To prove the second, it will be convenient to introduce the generating function 

L,e(x; t) = Y, L, . (x) t"-  1. For  Ixl < 1, Itl < 1 we have 
m = l  

( - log lx l )  k Lij{x)ti+,_ , = Ix[-t ~ Lij(x)t i -1  ~ ( x  ; t) = Y, k ! 
i>__Lk>__o j=l  

o~ oo t j -  1 oD X n 

o r  

r n - t  r u - t d t t  
~(rei~ t) = .~=t n - t ei'e -~e-ie--u- f (0 < r < 1 ), 

r r n - t  S u n - t -  where we have written as ldu and summed the geometric series under 
t l - - t  0 

the integral sign. The integral converges also for r>__ 1 and immediately gives the 
extension to the cut plane ]arg(1 -z ) l  < n. Since the integrand has a simple pole of 
residue - e ~t~ at u = e -  i0, we again see that the difference between the two branches 
of Lm(re i~ near the cut is 27zimom-1/(m - 1)!, giving the one-valuedness of Dm as 
before. In terms of ~'(x; t), the functional equation can be stated as the assertion 

iO iO l t that ~ ( r e  ; t) §  ; - t) + - r is unchanged when r is replaced by r -  1 But 
t 

for 0 < t < 1 we have 

r ~ _ , f  u- tdu  r vtdv 
L~(re~~ ~(re - i e ;  - t )  + t -oe-i~ J + !ei-~-v  + I u - t - l d u  

- -  r _  ! 

- -  

This makes the desired symmetry obvious. 

2. The functions Do, b(x ) and Kronecker double series 

It is clear from the definition that the Bloch-Wigner function D(x) goes to 0 like 
Ixl loglxl as x- ,0 ,  and from the functional equation that D(x)= O(Ixl-Xloglxl) as 
x ~  0o. Hence, for a complex number  q of absolute value strictly less than 1 and any 
complex number  x, the doubly infinite series 

O(q;x)= ~, D(q'x) 
l= -co  

converges with exponential rapidity. Clearly D(q; x) is invariant under x ~-~ qx, so 
it is in fact a function on the elliptic curve (E ~/qz. In other words, if we write q = e 2~' 
with z in the complex upper half-plane and x = e  2~u with u e • ,  then D(q;x) 
depends only on the image of u in the quotient of~E by the lattice L = Z~ + Z. In [1], 
Bloch computed the Fourier development of this non-holomorphic elliptic 
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function. Actually, he found that D(x) should be supplemented by adding an 
imaginary part -iJ(x),  where 

J(x)=loglxl logl l-xl  (x~C, x+0,1) .  

The function J(x) is small as Ixl~0 but large as Ix I--+ o% so we cannot form the series 
J(qtx) as we did with D. However, using the functional equation J(x-  1) = _ J(x) 

l e Z  

+log2[xl we find after a short calculation that the function 

J(q;x)= ~., J(q'x)- s J(qix-')+ log31xl log21xl loglxllog]ql 
~=0 t=l 31oglq[ 2 F 6 

(q,x~(E, Iql< 1) 

is invariant under x ~-* qx, so descends to the elliptic curve (E • as before. 
Bloch's result can then be written 

i ~,z, 2 ~, sin(2~z(nr 

where q = e 2~", x = e 2~i" with u = ~z + t/(4, r/~ R/Z) and the sum is over all pairs of 
integers (m,n)#:(O,O). This is a classical series studied by Kronecker (see for 
instance Weil's book 1"5]). The special case when z is quadratic over ~ and r and ~/ 
are rational numbers occurs in evaluating L-series of Hecke grossencharacters of 
type A o and weight 1 at s=2.  To get other weights and other special values, we 
have to study series of the same type but with other powers of mz + n and mf + n in 
the denominator. In this section we will prove the analogue of Bloch's formula for 
such series, the function D(x)--iJ(x) being replaced by a suitable linear combi- 
nation of the Ramakrishnan functions Din(x). 

To define these combinations, we will need combinatorial coefficients, and we 
begin by defining these. For integers a,m,r with 1 <a, m<=r let c~.) m denote the 
coefficients of x a- 1 in the polynomial (1 - x )  m- 1(1 + x)'-".  These coefficients are 
easily computed by the recursion ~(~ -~ ( ' - 1 )~  ~(,-1) ~ , ~ - ~  . . . . .  ~- 1,,~ or by the closed formula 

c (') = ~. ( - - j ) h - l ( m - l ~ ( r - - m ~  
a.m h=, \ h - l ] k a - h ] "  

They have the symmetry properties 

c ( r )  _ [ 11a -  l~(r) __~ l ~ m -  l . ( r )  
a , m - - [ - -  aI ~ a , r + l - - m - - � 8 2  ~ r + l - - a , m ,  

m - - l ]  ~"n- ( ; ~  1 ] - ' " '  

(i) 

the former being obvious and the latter a consequence of the identity 

�9 r - - I  
Z ( .~C~,: ) , ,x"- lY ' - I=(I+x+y-xy)  "-1. 

,,=I ~= tkm- - l J  ' 
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matrix 
bases 

C~= 

C 6 = 

1 1 1 1 

5 3 1 - 1  
10 2 - 2  - 2  
10 - 2  - 2  2 
5 - 3  1 1 
1 - 1  1 - 1  

1 1 1 1 1 

6 4 2 0 - 2  
15 5 --1 - 3  - 1  
20 0 - 4  0 4 
15 --5 --1 3 --1 
6 --4 2 0 --2 
1 - -1  1 - 1  1 

integers a, b -> 1 and x e C 

r = 6  and 7: 

We now define for 

1 

- 3  
2 
2 

- 3  
1 

1 

- 5  
10 

- 1 0  ' 

5 
- 1  

1 1 
- 4  - 6  
5 15 
0 - 2 0  

- 5  15 
4 - 6  

- 1  1 

(,) ~.,  , ( - log [  1)' (-21oglx[)" (r=a+b-1) ,  
D..~(x)=2.,=Y.c..,.v.,tx) ~ + 2rl 

where D*(x)= D=(x) for m odd, O*(x)= iDm(x ) =�89 for m even. 

The definition of c oo is equivalent to saying that the r x r  a ,m 
_ ( r )  C, -  (c..~) . . . .  t ...... gives the transition between the 

{ t r- 1, t'- 2u ..... tu'- 2, u ' -  1 } and 

{(t+u)r-t,(t+u)r-z(t--u) ..... (t+u)(t--u)r-2,(t--uf -1} 

of the space of homogeneous polynomials of degree r -  1 in two variables t and u. 

The fact that the matrix ( 1  1 11) has square 2 implies that 

Cr I =2-r+Ic,. (2) 

We will also need the formulas 

~ (_ l ) , . _ , ( r_kk )C: ,~ : (_ l ) ,_ . ( k r_ : )T_k  (l<a,k<r) (3) 

(the expressions on the right being 0 for k<a or k < r +  1 - a ,  respectively) and 

~ (rm) c~:~=2"-1 (1 < a < r ) .  (4) 
m = l  
modd 

We leave the proofs to the reader (hint: expand (1 - x )  t -  t{1 + x + ( l - x ) }  "-k for 
0 < k < r). As numerical examples to illustrate properties (1)-(4) we give the c~;~ for 
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Proposit ion 2. O) De, b is a one-valued real-analytic function on C\ [ I ,  oo) and satisfies 
the functional equation 

Da (L'~ = ( - - 1 ) ' - ' D .  b(x)+ (21og[xD" 
, ~ t , ~ )  . r !  

(it) D,,~ is given in terms of the polylogarithm by 

r k -  
1 a- 1 2"- k 1 Lik(x) Da'b=(--) k~=o ( a - - l )  (-l~ - k)! 

+ (-- 1 )b-1 ~ 2'- k (k -- 1 ~ ( -- log Ix l )"  - k  Lik(x), 
~=~ \ b - l )  (r-k)! 

(iii) The function defined for q, x e r with Iql < 1 by 

D~,b(q;x) = ~ D:,b(q'x)+(--1)'-' ~ D.,b(qlx -i) 
I = 0  l = t  

( - 2 log Iql)" flog lxl 
+ (r+l)!  Br+l \ log[ql /  

( B,+ l(x)= (r + 1)st Bernoulli polynomial) is invariant under x ~ qx. 

Proof Statement (i) follows immediately from Proposition I and statement (it) 
from equations (3) and (4). For (iii), we note first that the infinite sum converges 
absolutely for any x, because D~,b(x)= O(Ixl log~+blxl) as Ixl-,0. Hence D,,b(q; x) 
makes sense. Using (i) and the property B, + l(x + I ) - B ,  + l(x)= (r + 1)x', we find 

Da,~(q; x)-- D..b(q ; qx) = D.,b(x)--(-- 1)'- tDo,b(x- 1) 
�9 l r ( -  2 log Iql)' (r + 1) (log Ixi ~ _: o 

( r+l)!  \ loglqlJ ' 

This completes the proof of the proposition. 
Notice that we can use the inversion formula (2) to write 

D , ,  , ( -  loglxl)" 7.,txJ ~.. = Y~ d ' ) {2-q~"b(X)( - log lx ] ) '~  
o,b~_l "'~ 2r[ J 

a + b = r + I  

(m> l,n>O,r=m+n); 

in particular, the Ramakrishnan functions D m are linear combinations of the D,, b. 
We could therefore have equally well defined the functions D~, b directly by the 
formula in (it) and taken them rather than the functions D m as the primitive objects 
of study. The proof of the analytic continuation can be given directly from (it) by 
the same method as in the proof of Proposition 1 : using 

ALia(x) = 2zi(logx) k- ~ / ( k -  1)! 

and the binomial theorem, one finds easily that AD.,b=O. 
Part (iii) of the proposition says that the function D.,b(q;e 2"I') is a (non- 

holomorphic) elliptic function of u. Our goal is to compute the Fourier 
development of this function. 
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Theorem 1. Write q = e ~" ,  x = e 2~i~ with z in the complex upper half-plane and u = ~z 
+ ~ / e ~ ,  ~,~Te]R. Then 

D . __ (Z - -  Z-) r , e2~ i (n~-  r~,~) 

~,~(q, x)- ~ ~ ( m z ~  n) b" 

Proof. Since D., b(e2'~i'; e 2nt(r +'~)) is invariant under r ~ r + 1, we can develop it into 
a Fourier  series ~ ,l.e ~'~I~r with 

1 
,~ __ f ~ -  2n~n~13 (~2rtiz.  o2ni(~c+~)'lrl~ 

0 

oo 
_-- Jr e - 2 . i n ~ D a ,  btte2~i(r +'~)~'~:~'*~ a-~• - -  *i~xr-1 I e2rangDa,  b (e2~ i ( r176  

0 0 

where we have substituted for D~. b the expression defining it and then in the first 
two terms combined the sum over l and the integral from 0 to 1 into a single 
integral from 0 to oo by the substitution l_+ ~ ~ r It is well-known [and easily 
shown by repeated integration by parts, using B) =jB~_ 1 and B~(I) = B j(0) fo r j  4= 1 ] 
that  the last integral is equal to 0 for n = 0  and to - ( r  + l)!/(2nin) ~+~ for n ~= 0. 
Substituting for D~, b(X) from part  (ii) of the proposit ion,  we find 

o0 
2~=(-I) ~-' ~ 2" -k (k - - l~ (2~r ) ) ' - ' !~ ' - k [L ik (e2~ ' ( '~+") )e  -2~'~' 

k=~ \ a - l J  (r-k)! 

+(_l)._~Li~(e2.~r + ( a ~ b  "~ (-2i~(~))" _._~ 
\ z * - , - - f ]  2~i n 

where the second term denotes the result ofinterchanging a and b and replacing z 
by - ~in the first term and the last term is to be omitted if n = 0. The two arguments 
of Lik in the integrand are less than 1 in absolute value, so we can replace Lik by its 
definition as a power series, obtaining 

~'- ~[ Li~(e2~(r + ~))e- 2~i.~ + ( _  1)r- 1Li~(e2~(r ~))e 2~r 
0 

1 = m~__ 1 m-s o~ {e2ntttm, - n,r + m,fl _1_(_ 1)r- l-e2,at(m, + n)~-mnt)r162 

k 1 ( r -  k) t ( e 2~'~ e-  2~,.. ] 
=~--1 ~k ( _  2~zi),+ 1-k ~[(mz_ny.+l -k + ( - -  1) r -  1 (mz+n)  "+ 1-~? 

(-- 1)~(r- k)! e- 2~ 
(2~zi),+ i - k z~, o mk(m,r + n),+ i- k, 
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where we have used the formula 7 e-Zr =I!7`-~- 1 for 9t(2)>0. Hence 
0 

, / t ~ - l \  . e -2~m~ 
2ui2, = (-- 1)~k~ ~ t : _ l  )(2t~(~))r-~m~,o mk(r ~ ~; -+l -k  

+ k ~  i U n " + 1 

Applying the easily checked identity 

r 1 r - k  

k =.  \ a  i I 

( x -  Y)" 
- Xby~  (r=a+b-1) 

{ k _  l'~ (X_  y),-k 

to X=mz+n, Y=mf+n, we find 
e - 21tim~i 

2~i~.=(2i'~3('c)) r E 
. ,~z (m~ + n)~(mr + n) b" 

(re, n) 4=(0, 0) 

This proves the theorem. 

3. D .  and the Green's function of  the unit disc 

Let g3 = {z = x + iy ~ ~[y > O} denote the upper half-plane and for each positive 
integer k define a function G~ : .~ • ~\(diagonal)-+R'by 

, ( Iz-z'12"~ 
Gk(z,z)=--2Qk_l_l+ 2yy' ] (z=x+iy, z'=x' +iy' ~ ) .  

Here Qn(O (n~O) is the n th Legendre function of the second kind: 

Q .  1 t + l  t ,  t + l  3 t 2 - 1 ,  t + l  3 
o(t)= ~ l o g t - ~ ,  Qt(t)= ~ l o g t ~ l  - 1 ,  Q2(t)= ~ l o g  t ~  ~ - ~t  

and in general Qn(t)=Pn(t)Qo(t)-R.(t) where P.(t) and Rn(t) are the unique 
2nnt 2 

- - t  -n- I for polynomials of degree n and n -  1, respectively, making Qn(t)~ (2n + 1)! 

t~oo.  The function G~ is real-analytic on b x b\(diagonal), has a singularity of 
type 

G~(z, z') = log ] z -  z' 12 + continuous (z'--+ z) 

along the diagonal, and satisfies the partial differential equation A=G~=A=,G~ 

=~l-k)G~,  where A ~ = - y  2 --Ox 2 + ~ denotes the hyperbolic Laplace 

operator. Moreover, by virtue of the defining property of Qk-~, it is small 



The Bloch-Wigner-Ramakrishnan polylogarithm function 621 

enough at infinity that the series 

G~IZ(z,z') = ~ G~(z,z'+ n) 

converges and has properties similar to those of G~, but now with z and z' in ~/7.. 
This "Green's function" is studied [in connection with the analogously defined 
functions G~/r, where F is a subgroup of finite index in PSL(2, Z)] in [8] and is 
shown there to be closely related to Ramakrishnan's modified polylogarithm 
function. We content ourselves with stating the result, referring to 18] for the proof. 

Theorem 2. Let k e N ,  z = x + iy, z' = x'  + iy' e ~. Then 

k 

G~lZ(z, z') = ~ fk. ~(2z~y, 2ny') I-D2~_ l(q/q') - D2~- ~(q~)], 
n = l  

where q = e  2=~, q '=e  2~i~' and 

( 2 k -  2 -  2r)! ( 2 k -  2 -  2s) ! u2,v2," 
A,~(u,v)= 2 ' -  ~(uv)l -~ y. 

,.~=>o r ! ( k - l - r ) !  s ! ( k - l - s ) !  
r + s = k - - n  

Note that the symmetry of G~/z in its two arguments is reflected by the two 
symmetry properties D2~_ 1(x) = D2~_ l (x-  1)= D2 ~- 1(~). The map z ~ q  identifies 
~ / Z  with the punctured unit disc {q e tel 0 < Iql < 1 }, but the right-hand side of the 
formula in the theorem now makes sense for any q, q' e IE • (with 2ny, 2zry' replaced 
by - loglzl ,  - loglz ' l )  and represents some kind of Green's function on IE ~ x IE • 

4. D,. and special values of Dedekind zeta functions 

The Bloch-Wigner dilogarithm function D(x) is related in a very beautiful way to 
special values of Dedekind zeta functions. Specifically, we have the following 
theorem. 

Theorem 3. Let  F be an arbitrary algebraic number field, d r the discriminant of  F, r 1 
and r 2 the numbers o f  real and complex places (r I + 2r 2 = I-F:O_.]), and ~r(s) the 
Dedekind zeta function of  F. Then ~e(2) is equal to n2(,~ +,2)ldF[- 1/2 times a rational 
linear combination of  r2-fold products D(x (r~ + 1))... D(x(rt +,2)) with x e F. 

(Here x (1), ..., x (rl), x (rl + 1), ..., x(rl +~2), x(,t + x),..., x~r~ +r~) are the images of x 
under the various embeddings F c~ C.) 

This result was proved in I-5] in a somewhat weaker form (it was asserted only 
that the x could be chosen of degree < 4  over F, rather than in F itself} by a 
geometric method: the value of ~r(2) was related to the volume of a hyperbolic 3r 2- 
dimensional manifold (more precisely, a manifold locally isometric to ~2,  where 
�9 ~3 denotes hyperbolic 3-space) and this volume was then computed by triangulat- 
ing the manifold into a union of r2-fold products of hyperbolic tetrahedra whose 
volumes could be expressed in terms of the function D(x). The  more precise 
statement above comes from algebraic K-theory: the value of fie(2) is related by a 
result of Borel to a certain "regulator" attached to K3(F), and this is calculated 
using results of Bloch, Levine, Suslin, and Mercuriev in terms of the Bloch-Wigner 
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function. For details and references, see [4] or E7]. The K-theoretical proof in fact 
gives a somewhat stronger statement than the above theorem: the value of 
Idrl~/2~v(2)/~z" + 2,~ is equal to an r~ • r2 determinant of rational linear combina- 
tions of values D(x), rather than merely to a rational linear combinat ion of rz-fold 
combinations of such values. 

As examples of Theorem 3, we have for F = (I~(~-L7) (dr = - 7, r 1 = 0, r z = 1) 

22~ 2 / / / I " ~ ' ~  + D ( - - 1  

: . 4 % )  
and for F=r with 0 3 - 0 - 1  = 0  ( d e = - 2 3 ,  r I = r 2 =  1) 

23n* 22n a 
r = ~ D(O')= 3.23 a/2 D ( -  0'), 

{ O[ i]/~3~ ) 
where 0 ' [ =  ~ [ - 1  + 2--0-+-3]' if 0 is the real r o o t / d e n o t e s  the conjugate of 0 

with ~3(0') > O. 
We can now formulate 

Conjecture 1. Theorem 3 holds true for (e(m) for all positive even m with ~2(,1 +r~) 
replaced by n ~(rl +,21 and with the function D replaced by the function Dm. For m odd 
a similar statement is true but with ~mr: instead of  n "~(~'+'~) and 
D,,(x~l)) ... D~(xC,~ +,21) instead of  D~(x ~ + 1t... D=(x(,~ +,~)). 

The difference between the two cases m even and m odd is, on the one hand, that 
D,, satisfies D=(~) = (-- 1) m- XDm(x) [so in particular D~,(x) = 0 for x real and m even] 
and, on the other hand, that the order of vanishing of ~e(s) at s = 1 - m  for m > 1 
equals r 2 for m even but  r l +  q for m odd. Again we can make a more precise 
conjecture with an r x r determinant (r= r 2 or r~ + r2) instead of simply a linear 
combinat ion of r-fold products. Moreover, one can make a more general 
conjecture with Artin L-functions in place of Dedekind zeta functions. In 
particular, ~e(s)/~(s) (~ = ~ ) ,  which is a product of such L-series, should be a sum of 
( r -  1)-fold products of values D~. This statement makes sense also for m = 1 and is 
true by the Dirichlet regulator formula (recall that D~ is essentially the logarithm- 
of-the-absolute-value function), but  even when m =  1 the general conjecture for 
Artin L-series is unknown (Stark conjectures). 

As a special case, we make the very specific 

Conjecture 2. Let  F be a real quadratic field. Then Idrl 1/2~v(3)/~(3) is a rational linear 
combination o f  differences D3(x)-- Da(x'), x ~ F. 

Here x'  denotes the conjugate of x over Q. Note that ~(3)= D3(l ), so this is a 
strengthening of Conjecture 1 in this case. As numerical examples, we give 

25 

- Eo~(2 + I / 3 ) -  o ~ 2  - 1/3)1] 
./ 
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and 

~V2)(3) v 3 
~(3) -- 5.25~- ([D3(4 + 2~/~)- D3(4-  2V~)] 

-- 9[D3(2 + V'2)-  D3(2-  l/~)] 

- 6ED3(1 + ~ ) -  03~1-~) ]  + 9 E D 3 ~ ) - 0 3 ( - ~ ) ] ) ,  

both true to at least 25 decimals. (These relations were found empirically by using 
the Lenstra-Lenstra-Lovasz lattice reduction algorithm to search numerically for 
linear relations between Idrl~/2(r(3)/((3) and selected values of D3(x ) -  D3(x'), x e F.) 

That the quotient (F/(Q should be connected with the differences Din(x) 
- Dm(x') is a special case of a "Galois descent" property which we expect to hold in 
general, and which is known for the case m = 2 by the K-theoretical work already 
cited (cf. [4] for details). Roughly speaking, this property implies that the r 
space spanned by the x ~ F occurring in the conjecture should be invariant under 
the group of automorphisms of F over @ and that the value of an (abelian or Artin) 
L-function factor of (r  at s = m  should be the determinant of a matrix of 
combinations of D,~(x) with x in the corresponding subspace. An example of how 
this works is provided by the case when F is abelian over Q. Here the assertion of 
Conjecture I is easy if we allow the arguments x to be in the abelian closure 
N =1~((:) ( f =  conductor of F), rather than in F itself: (r  factors into a product of 
Dirichlet L-series L(s, Z) with rl + r2 even and r2 odd Dirichlet characters Z modulo 
f (of course, either rl or rz is zero), and the value of L(m, X) is an algebraic multiple 
of n'~ if X( -1 )=  ( - 1 )  m and an algebraic linear combination of values of Din(x), 
x :=  1, in the opposite case. This gives the statement with an algebraic rather than 
rational combination of products of D-values, but a little more work shows that 
the algebraic multiples occurring combine correctly to give a rational multiple of 
Ideal/2. The point is now that the set of x occurring, and the coefficients with which 
they occur, are invariant under the action of Gal(N/F). For instance, in the above 
case F real quadratic, m = 3, f =  d r, we have 

- dr Li e 2'~'~/f = : - 1  dr  D e 2 ~ i n t f  , d~/Z~F(3) /~(3)=f l /2L(3 , (d~e . ) )=~. i (n)  3( ) , ,~=~(n) 3( ) 

and the conjugates of e 2~/ :  ~ N over F are exactly the e 2~'/:  with = ~ -  . 

By analyzing the structure of the numerical examples of Conjectures 1 and 2, 
one can get a more precise conjecture which actually predicts which linear 
combinations of products of polylogarithm values must be used in order to get 
zeta-values. Using it, it is easy to produce as many (conjectural) formulas involving 
polylogarithms and zeta-values as desired. In many cases, these seem to be new 
even for F = ~ ,  e.g. 

~( (3)  ~ 6D3(~) + 3D 3(�88 - 3D3(�89 - D3(~) - 2D 3(�89 + D3(-  ~). 

We will discuss the various versions of this conjecture, and its relation to algebraic 
K-theory, in a later paper [9-1. 
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