Don Zagier

Max-Planck-Institut für Mathematik, Gottfried-Claren-Strasse 26, D-5300 Bonn 3, Federal Republic of Germany

To Hans Grauert

The polylogarithm function

$$Li_m(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^m} \quad (x \in \mathbb{C}, |x| \le 1, m \in \mathbb{N})$$

appears in many parts of mathematics and has an extensive literature [2]. It can be analytically extended to the cut plane $\mathbb{C}\setminus[1,\infty)$ by defining $Li_m(x)$ inductively as $\int_{0}^{x} Li_{m-1}(z)z^{-1}dz$ but then has a discontinuity as x crosses the cut. However, for m=2 the modified function

$$D(x) = \Im(Li_2(x)) + \arg(1-x)\log|x|$$

extends (real-) analytically to the entire complex plane except for the points x=0and x=1 where it is continuous but not analytic. This modified dilogarithm function, introduced by Wigner and Bloch [1], has many beautiful properties. In particular, its values at algebraic argument suffice to express in closed form the volumes of arbitrary hyperbolic 3-manifolds and the values at s=2 of the Dedekind zeta functions of arbitrary number fields (cf. [6] and the expository article [7]). It is therefore natural to ask for similar real-analytic and single-valued modification of the higher polylogarithm functions Li_m . Such a function D_m was constructed, and shown to satisfy a functional equation relating $D_m(x^{-1})$ and $D_m(x)$, by Ramakrishnan [3]. His construction, which involved monodromy arguments for certain nilpotent subgroups of $GL_m(\mathbb{C})$, is completely explicit, but he does not actually give a formula for D_m in terms of the polylogarithm. In this note we write down such a formula and give a direct proof of the one-valuedness and functional equation. We will also:

i) prove a formula (generalizing a formula of Bloch for m=2) expressing certain infinite sums of the D_m as special values of Kronecker double series related to *L*-series of Hecke characters,

ii) describe a relation between the $D_m(x)$ and certain Green's functions for the unit disc, and

iii) discuss the conjecture that the values at s = m of the Dedekind zeta function $\zeta_F(s)$ for an arbitrary number field F can be expressed in terms of values of $D_m(x)$ with $x \in F$.

The last relationship, which seems to be the most interesting property of the higher polylogarithm functions, is closely connected with algebraic K-theory and in fact leads to a conjectural description of higher K-groups of fields, as will be discussed in more detail in a later paper [9].

1. Definition of the function $D_m(x)$

For $m \in \mathbb{N}$ and $x \in \mathbb{C}$ with $|x| \leq 1$ define

$$L_{m}(x) = \sum_{j=1}^{m} \frac{(-\log|x|)^{m-j}}{(m-j)!} Li_{j}(x),$$
$$D_{m}(x) = \begin{cases} \Im(L_{m}(x)) & (m \text{ even}),\\ \Re(L_{m}(x)) + \frac{(\log|x|)^{m}}{2m!} & (m \text{ odd}). \end{cases}$$

Proposition 1. $D_m(x)$ can be continued real-analytically to $\mathbb{C}\setminus\{0,1\}$ and satisfies the functional equation $D_m\left(\frac{1}{x}\right) = (-1)^{m-1}D_m(x)$.

Remarks. Ramakrishnan's D_m is equal to ours for *m* even but is just $\Re(L_m(x))$ for *m* odd. We have included the extra term $(\log |x|)^m/2m!$ for *m* odd in order to make the functional equation as simple as possible (Ramakrishnan's function satisfies $D_m(1/x) = D_m(x) + (\log |x|)^m/m!$ for *m* odd), but at the cost of making the function discontinuous at 0 in this case. (For *m* even, D_m extends to a continuous function on the extended plane $\mathbb{C} \cup \{\infty\}$, vanishing on $\mathbb{R} \cup \{\infty\}$.) The definition of D_m here also differs by a factor $(-1)^{[(m+1)/2]}$ from the normalization given in [7], which was chosen to give a simpler relation between $\partial D_m/\partial z$ and D_{m-1} . The functions $D_1(x)$ and $D_2(x)$ are equal to $-\log |x^{1/2} - x^{-1/2}|$ and D(x), respectively.

Proof. As mentioned in the introduction, we can continue $Li_m(x)$ analytically to the cut plane $\mathbb{C}\setminus[1,\infty)$ by successive integration along, say, radial paths from 0 to x. The two branches just below and just above the cut then continue across the cut. Write Δ for the difference of these two analytic functions in their common region of

definition (say, in the range $|\arg(x-1)| < \varepsilon$, where ε is small). Since $Li_1(x) = \log \frac{1}{1-x}$ for |x| < 1, we have $\Delta Li_1 = 2\pi i$, and it then follows from the formula $xLi'_m(x) = Li_{m-1}(x)$ that

$$\Delta Li_{m}(x) = 2\pi i (\log x)^{m-1} / (m-1)!$$

for each $m \ge 1$. (This is well-defined in the region in question: we take the branch of log x which vanishes at x=1.) Consequently,

$$\Delta L_m(x) = 2\pi i \sum_{j=1}^m \frac{(-\log|x|)^{m-j}}{(m-j)!} \frac{(\log x)^{j-1}}{(j-1)!} = \frac{2\pi i}{(m-1)!} \left(\log \frac{x}{|x|}\right)^{m-1}.$$

Since $\log \frac{x}{|x|}$ is pure imaginary, this is real for *m* even and pure imaginary for *m* odd.

614

Hence $\Re(i^{m+1}L_m(x))$ is one-valued, proving the first assertion of the proposition. To prove the second, it will be convenient to introduce the generating function

$$\mathscr{L}(x;t) = \sum_{m=1}^{\infty} L_m(x)t^{m-1}$$
. For $|x| < 1$, $|t| < 1$ we have

$$\mathcal{L}(\mathbf{x};t) = \sum_{j \ge 1, k \ge 0} \frac{(-\log|\mathbf{x}|)^k}{k!} Li_j(\mathbf{x}) t^{j+k-1} = |\mathbf{x}|^{-t} \sum_{j=1}^{\infty} Li_j(\mathbf{x}) t^{j-1}$$
$$= |\mathbf{x}|^{-t} \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \frac{t^{j-1}}{n^j} x^n = |\mathbf{x}|^{-t} \sum_{n=1}^{\infty} \frac{x^n}{n-t}$$

or

$$\mathscr{L}(re^{i\theta};t) = \sum_{n=1}^{\infty} \frac{r^{n-t}}{n-t} e^{in\theta} = \int_{0}^{r} \frac{u^{-t} du}{e^{-t\theta} - u} \quad (0 \le r < 1),$$

where we have written $\frac{r^{n-t}}{n-t}$ as $\int_{0}^{r} u^{n-t-1} du$ and summed the geometric series under the integral sign. The integral converges also for $r \ge 1$ and immediately gives the extension to the cut plane $|\arg(1-z)| < \pi$. Since the integrand has a simple pole of residue $-e^{it\theta}$ at $u = e^{-i\theta}$, we again see that the difference between the two branches of $L_m(re^{i\theta})$ near the cut is $2\pi i^m \theta^{m-1}/(m-1)!$, giving the one-valuedness of D_m as before. In terms of $\mathscr{L}(x;t)$, the functional equation can be stated as the assertion that $\mathscr{L}(re^{i\theta};t) + \mathscr{L}(re^{-i\theta};-t) + \frac{1}{t}r^t$ is unchanged when r is replaced by r^{-1} . But

for
$$0 < t < 1$$
 we have

$$\mathcal{L}(re^{i\theta};t) + \mathcal{L}(re^{-i\theta};-t) + \frac{r^{t}}{t} = \int_{0}^{t} \frac{u^{-t}du}{e^{-i\theta}-u} + \int_{0}^{t} \frac{v^{t}dv}{e^{i\theta}-v} + \int_{r^{-1}}^{\infty} u^{-t-1}du$$
$$= \left(\int_{0}^{\infty} - \int_{r}^{\infty} - \int_{r^{-1}}^{\infty}\right) \frac{u^{-t}du}{e^{-i\theta}-u} \quad (v=u^{-1}).$$

This makes the desired symmetry obvious.

2. The functions $D_{a,b}(x)$ and Kronecker double series

It is clear from the definition that the Bloch-Wigner function D(x) goes to 0 like $|x|\log|x|$ as $x \to 0$, and from the functional equation that $D(x) = O(|x|^{-1}\log|x|)$ as $x \to \infty$. Hence, for a complex number q of absolute value strictly less than 1 and any complex number x, the doubly infinite series

$$D(q;x) = \sum_{l=-\infty}^{\infty} D(q^{l}x)$$

converges with exponential rapidity. Clearly D(q; x) is invariant under $x \mapsto qx$, so it is in fact a function on the elliptic curve $\mathbb{C}^{\times}/q^{\mathbb{Z}}$. In other words, if we write $q = e^{2\pi i t}$ with τ in the complex upper half-plane and $x = e^{2\pi i u}$ with $u \in \mathbb{C}$, then D(q; x)depends only on the image of u in the quotient of \mathbb{C} by the lattice $L = \mathbb{Z}\tau + \mathbb{Z}$. In [1], Bloch computed the Fourier development of this non-holomorphic elliptic function. Actually, he found that D(x) should be supplemented by adding an imaginary part -iJ(x), where

$$J(x) = \log |x| \log |1-x| \quad (x \in \mathbb{C}, x \neq 0, 1).$$

The function J(x) is small as $|x| \to 0$ but large as $|x| \to \infty$, so we cannot form the series $\sum_{\substack{I \in \mathbb{Z} \\ +\log^2 |x|}} J(q^I x)$ as we did with D. However, using the functional equation $J(x^{-1}) = -J(x)$

$$J(q;x) = \sum_{l=0}^{\infty} J(q^{l}x) - \sum_{l=1}^{\infty} J(q^{l}x^{-1}) + \frac{\log^{3}|x|}{3\log|q|} - \frac{\log^{2}|x|}{2} + \frac{\log|x|\log|q|}{6}$$
$$(q,x \in \mathbb{C}, |q| < 1)$$

is invariant under $x \mapsto qx$, so descends to the elliptic curve $\mathbb{C}^{\times}/q^{\mathbb{Z}} \simeq \mathbb{C}/L$ as before. Bloch's result can then be written

$$D(q;x) - iJ(q;x) = \frac{i}{\pi} \Im(\tau)^2 \sum_{m,n}' \frac{\sin(2\pi(n\xi - m\eta))}{(m\tau + n)^2(m\tau + n)},$$

where $q = e^{2\pi i t}$, $x = e^{2\pi i u}$ with $u = \xi \tau + \eta$ ($\xi, \eta \in \mathbb{R}/\mathbb{Z}$) and the sum is over all pairs of integers $(m, n) \neq (0, 0)$. This is a classical series studied by Kronecker (see for instance Weil's book [5]). The special case when τ is quadratic over \mathbb{Q} and ξ and η are rational numbers occurs in evaluating *L*-series of Hecke grossencharacters of type A_0 and weight 1 at s=2. To get other weights and other special values, we have to study series of the same type but with other powers of $m\tau + n$ and $m\overline{\tau} + n$ in the denominator. In this section we will prove the analogue of Bloch's formula for such series, the function D(x) - iJ(x) being replaced by a suitable linear combination of the Ramakrishnan functions $D_m(x)$.

To define these combinations, we will need combinatorial coefficients, and we begin by defining these. For integers a, m, r with $1 \le a, m \le r$ let $c_{a,m}^{(r)}$ denote the coefficients of x^{a-1} in the polynomial $(1-x)^{m-1}(1+x)^{r-m}$. These coefficients are easily computed by the recursion $c_{a,m}^{(r)} = c_{a,m}^{(r-1)} + c_{a-1,m}^{(r-1)}$ or by the closed formula

$$c_{a,m}^{(r)} = \sum_{h=1}^{a} (-1)^{h-1} \binom{m-1}{h-1} \binom{r-m}{a-h}.$$

They have the symmetry properties

$$\binom{r^{(r)}}{a,m} = (-1)^{a-1} c^{(r)}_{a,r+1-m} = (-1)^{m-1} c^{(r)}_{r+1-a,m},$$

$$\binom{r-1}{m-1} c^{(r)}_{a,m} = \binom{r-1}{a-1} c^{(r)}_{m,a},$$

$$(1)$$

the former being obvious and the latter a consequence of the identity

$$\sum_{a=1}^{r} \sum_{m=1}^{r} {\binom{r-1}{m-1}} c_{a,m}^{(r)} x^{a-1} y^{m-1} = (1+x+y-xy)^{r-1}.$$

The definition of $c_{a,m}^{(r)}$ is equivalent to saying that the $r \times r$ matrix $C_r = (c_{a,m}^{(r)})_{a,m=1,...,r}$ gives the transition between the bases $\{t^{r-1}, t^{r-2}u, ..., tu^{r-2}, u^{r-1}\}$ and

$$\{(t+u)^{r-1}, (t+u)^{r-2}(t-u), ..., (t+u)(t-u)^{r-2}, (t-u)^{r-1}\}$$

of the space of homogeneous polynomials of degree r-1 in two variables t and u. The fact that the matrix $\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$ has square 2 implies that

$$C_r^{-1} = 2^{-r+1} C_r. (2)$$

We will also need the formulas

,

$$\sum_{m=k}^{r} {\binom{r-k}{m-k}} c_{a,m}^{(r)} = (-1)^{a-1} {\binom{k-1}{a-1}} 2^{r-k}$$

$$\sum_{n=k}^{r} (-1)^{m-1} {\binom{r-k}{m-k}} c_{a,m}^{(r)} = (-1)^{r-a} {\binom{k-1}{r-a}} 2^{r-k}$$
(1 \le a, k \le r) (3)

(the expressions on the right being 0 for k < a or k < r+1-a, respectively) and

$$\sum_{\substack{m=1\\m \text{ odd}}}^{r} {\binom{r}{m}} c_{a,m}^{(r)} = 2^{r-1} \quad (1 \le a \le r).$$
(4)

We leave the proofs to the reader (hint: expand $(1-x)^{k-1}\{1+x\pm(1-x)\}^{r-k}$ for $0 \le k \le r$). As numerical examples to illustrate properties (1)-(4) we give the $c_{a,m}^{(r)}$ for r=6 and 7:

$$C_{6} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 5 & 3 & 1 & -1 & -3 & -5 \\ 10 & 2 & -2 & -2 & 2 & 10 \\ 10 & -2 & -2 & 2 & 2 & -10 \\ 5 & -3 & 1 & 1 & -3 & 5 \\ 1 & -1 & 1 & -1 & 1 & -1 \end{pmatrix},$$

$$C_{7} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 6 & 4 & 2 & 0 & -2 & -4 & -6 \\ 15 & 5 & -1 & -3 & -1 & 5 & 15 \\ 20 & 0 & -4 & 0 & 4 & 0 & -20 \\ 15 & -5 & -1 & 3 & -1 & -5 & 15 \\ 6 & -4 & 2 & 0 & -2 & 4 & -6 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 \end{pmatrix}.$$

We now define for integers $a, b \ge 1$ and $x \in \mathbb{C}$

$$D_{a,b}(x) = 2 \sum_{m=1}^{r} c_{a,m}^{(r)} D_m^*(x) \frac{(-\log|x|)^{r-m}}{(r-m)!} + \frac{(-2\log|x|)^r}{2r!} \quad (r=a+b-1),$$

where $D_m^*(x) = D_m(x)$ for m odd, $D_m^*(x) = iD_m(x) = \frac{1}{2}[L_m(x) - \overline{L_m(x)}]$ for m even.

Proposition 2. (i) $D_{a,b}$ is a one-valued real-analytic function on $\mathbb{C} \setminus [1, \infty)$ and satisfies the functional equation

$$D_{a,b}\left(\frac{1}{x}\right) = (-1)^{r-1}D_{a,b}(x) + \frac{(2\log|x|)^r}{r!}.$$

(ii) $D_{a,b}$ is given in terms of the polylogarithm by

$$D_{a,b} = (-1)^{a-1} \sum_{k=a}^{r} 2^{r-k} {\binom{k-1}{a-1}} \frac{(-\log|x|)^{r-k}}{(r-k)!} Li_k(x) + (-1)^{b-1} \sum_{k=b}^{r} 2^{r-k} {\binom{k-1}{b-1}} \frac{(-\log|x|)^{r-k}}{(r-k)!} \overline{Li_k(x)}.$$

(iii) The function defined for $q, x \in \mathbb{C}$ with |q| < 1 by

$$D_{a,b}(q;x) = \sum_{l=0}^{\infty} D_{a,b}(q^{l}x) + (-1)^{r-1} \sum_{l=1}^{\infty} D_{a,b}(q^{l}x^{-1}) + \frac{(-2\log|q|)^{r}}{(r+1)!} B_{r+1}\left(\frac{\log|x|}{\log|q|}\right)$$

 $(B_{r+1}(x)=(r+1)$ st Bernoulli polynomial) is invariant under $x \mapsto qx$.

Proof. Statement (i) follows immediately from Proposition 1 and statement (ii) from equations (3) and (4). For (iii), we note first that the infinite sum converges absolutely for any x, because $D_{a,b}(x) = O(|x| \log^{a+b} |x|)$ as $|x| \to 0$. Hence $D_{a,b}(q; x)$ makes sense. Using (i) and the property $B_{r+1}(x+1) - B_{r+1}(x) = (r+1)x^r$, we find

$$D_{a,b}(q;x) - D_{a,b}(q;qx) = D_{a,b}(x) - (-1)^{r-1} D_{a,b}(x^{-1}) - \frac{(-2\log|q|)^r}{(r+1)!} (r+1) \left(\frac{\log|x|}{\log|q|}\right)^r = 0.$$

This completes the proof of the proposition.

Notice that we can use the inversion formula (2) to write

$$D_{m}^{*}(x)\frac{(-\log|x|)^{n}}{n!} = \sum_{\substack{a,b \ge 1 \\ a+b=r+1 \\ (m \ge 1, n \ge 0, r=m+n);}} c_{m,a}^{(r)} \left\{ 2^{-r} D_{a,b}(x) - \frac{(-\log|x|)^{r}}{2r!} \right\}$$

in particular, the Ramakrishnan functions D_m are linear combinations of the $D_{a,b}$. We could therefore have equally well defined the functions $D_{a,b}$ directly by the formula in (ii) and taken them rather than the functions D_m as the primitive objects of study. The proof of the analytic continuation can be given directly from (ii) by the same method as in the proof of Proposition 1: using

$$\Delta Li_{k}(x) = 2\pi i (\log x)^{k-1} / (k-1)!$$

and the binomial theorem, one finds easily that $\Delta D_{a,b} = 0$.

Part (iii) of the proposition says that the function $D_{a,b}(q;e^{2\pi i u})$ is a (non-holomorphic) elliptic function of u. Our goal is to compute the Fourier development of this function.

Theorem 1. Write $q = e^{2\pi i \tau}$, $x = e^{2\pi i u}$ with τ in the complex upper half-plane and $u = \xi \tau + \eta \in \mathbb{C}$, $\xi, \eta \in \mathbb{R}$. Then

$$D_{a,b}(q;x) = \frac{(\tau - \bar{\tau})^r}{2\pi i} \sum_{m,n}' \frac{e^{2\pi i (n\xi - m\eta)}}{(m\tau + n)^a (m\bar{\tau} + n)^b}.$$

Proof. Since $D_{a,b}(e^{2\pi i t}; e^{2\pi i (\xi \tau + \eta)})$ is invariant under $\xi \mapsto \xi + 1$, we can develop it into a Fourier series $\sum_{n \in \mathbb{Z}} \lambda_n e^{2\pi i n \xi}$ with

$$\begin{split} \lambda_{n} &= \int_{0}^{1} e^{-2\pi i n\xi} D_{a,b}(e^{2\pi i t}; e^{2\pi i (\xi t + \eta)}) d\xi \\ &= \int_{0}^{\infty} e^{-2\pi i n\xi} D_{a,b}(e^{2\pi i (\xi t + \eta)}) d\xi + (-1)^{r-1} \int_{0}^{\infty} e^{2\pi i n\xi} D_{a,b}(e^{2\pi i (\xi t - \eta)}) d\xi \\ &+ \frac{(4\pi \Im(\tau))^{r}}{(r+1)!} \int_{0}^{1} e^{-2\pi i n\xi} B_{r+1}(\xi) d\xi \,, \end{split}$$

where we have substituted for $D_{a,b}$ the expression defining it and then in the first two terms combined the sum over l and the integral from 0 to 1 into a single integral from 0 to ∞ by the substitution $l\pm\xi\rightarrow\xi$. It is well-known [and easily shown by repeated integration by parts, using $B'_{j}=jB_{j-1}$ and $B_{j}(1)=B_{j}(0)$ for $j\pm1$] that the last integral is equal to 0 for n=0 and to $-(r+1)!/(2\pi i n)^{r+1}$ for $n\pm0$. Substituting for $D_{a,b}(x)$ from part (ii) of the proposition, we find

$$\begin{split} \lambda_{n} &= (-1)^{a-1} \sum_{k=a}^{r} 2^{r-k} \binom{k-1}{a-1} \frac{(2\pi\mathfrak{I}(\tau))^{r-k}}{(r-k)!} \int_{0}^{\infty} \xi^{r-k} [Li_{k}(e^{2\pi i(\xi\tau+\eta)})e^{-2\pi in\xi}] \\ &+ (-1)^{r-1} Li_{k}(e^{2\pi i(\xi\tau-\eta)})e^{2\pi in\xi}] d\xi + \binom{a \leftrightarrow b}{\tau \leftrightarrow -\bar{\tau}} - \frac{(-2i\mathfrak{I}(\tau))^{r}}{2\pi i} n^{-r-1}, \end{split}$$

where the second term denotes the result of interchanging a and b and replacing τ by $-\overline{\tau}$ in the first term and the last term is to be omitted if n=0. The two arguments of Li_k in the integrand are less than 1 in absolute value, so we can replace Li_k by its definition as a power series, obtaining

$$\int_{0}^{\infty} \xi^{r-k} [Li_{k}(e^{2\pi i(\xi\tau+\eta)})e^{-2\pi in\xi} + (-1)^{r-1}Li_{k}(e^{2\pi i(\xi\tau-\eta)})e^{2\pi in\xi}]d\xi$$

$$= \sum_{m=1}^{\infty} \frac{1}{m^{k}} \int_{0}^{\infty} \{e^{2\pi i[(m\tau-n)\xi+m\eta]} + (-1)^{r-1}e^{2\pi i[(m\tau+n)\xi-m\eta]}\}\xi^{r-k}d\xi$$

$$= \sum_{m=1}^{k} \frac{1}{m^{k}} \frac{(r-k)!}{(-2\pi i)^{r+1-k}} \left\{ \frac{e^{2\pi im\eta}}{(m\tau-n)^{r+1-k}} + (-1)^{r-1} \frac{e^{-2\pi im\eta}}{(m\tau+n)^{r+1-k}} \right\}$$

$$= \frac{(-1)^{k}(r-k)!}{(2\pi i)^{r+1-k}} \sum_{m\neq 0} \frac{e^{-2\pi im\eta}}{m^{k}(m\tau+n)^{r+1-k}},$$

where we have used the formula $\int_{0}^{\infty} e^{-\lambda\xi} \xi^{l} d\xi = l! \lambda^{-l-1}$ for $\Re(\lambda) > 0$. Hence

$$2\pi i\lambda_n = (-1)^b \sum_{k=a}^r {\binom{k-1}{a-1}} (2i\Im(\tau))^{r-k} \sum_{m\neq 0} \frac{e^{-2\pi i m\eta}}{m^k (m\tau+n)^{r+1-k}} + \binom{a \leftrightarrow b}{\tau \leftrightarrow -\overline{\tau}} - \frac{2(-2i\Im(\tau))^r}{n^{r+1}}.$$

Applying the easily checked identity

$$(-1)^{a} \sum_{k=a}^{r} \binom{k-1}{a-1} \frac{(X-Y)^{r-k}}{X^{r+1-k}} + \sum_{k=b}^{r} \binom{k-1}{b-1} \frac{(X-Y)^{r-k}}{Y^{r+1-k}}$$
$$= \frac{(X-Y)^{r}}{X^{b} Y^{a}} \quad (r=a+b-1)$$

to $X = m\tau + n$, $Y = m\bar{\tau} + n$, we find

$$2\pi i \lambda_n = (2i\Im(\tau))^r \sum_{\substack{m \in \mathbb{Z} \\ (m,n) \neq (0,0)}} \frac{e^{-2\pi i m \eta}}{(m\tau + n)^a (m\bar{\tau} + n)^b},$$

This proves the theorem.

3. D_m and the Green's function of the unit disc

Let $\mathfrak{H} = \{z = x + iy \in \mathbb{C} | y > 0\}$ denote the upper half-plane and for each positive integer k define a function $G_k^{\mathfrak{H}} : \mathfrak{H} \times \mathfrak{H} \setminus (\text{diagonal}) \to \mathbb{R}$ by

$$G_k^{\mathfrak{H}}(z,z') = -2Q_{k-1}\left(1 + \frac{|z-z'|^2}{2yy'}\right) \quad (z = x + iy, \ z' = x' + iy' \in \mathfrak{H}).$$

Here $Q_n(t)$ $(n \ge 0)$ is the nth Legendre function of the second kind:

$$Q_0(t) = \frac{1}{2}\log\frac{t+1}{t-1}, \quad Q_1(t) = \frac{t}{2}\log\frac{t+1}{t-1} - 1, \quad Q_2(t) = \frac{3t^2 - 1}{4}\log\frac{t+1}{t-1} - \frac{3}{2}t$$

and in general $Q_n(t) = P_n(t)Q_0(t) - R_n(t)$ where $P_n(t)$ and $R_n(t)$ are the unique polynomials of degree *n* and n-1, respectively, making $Q_n(t) \sim \frac{2^n n!^2}{(2n+1)!} t^{-n-1}$ for $t \to \infty$. The function $G_k^{\mathfrak{H}}$ is real-analytic on $\mathfrak{H} \times \mathfrak{H} \setminus \mathfrak{G}$ (diagonal), has a singularity of type

$$G_k^{\mathfrak{H}}(z, z') = \log |z - z'|^2 + \text{continuous} \quad (z' \to z)$$

along the diagonal, and satisfies the partial differential equation $\Delta_z G_k^5 = \Delta_z G_k^5$ = $k(1-k)G_k^5$, where $\Delta_z = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$ denotes the hyperbolic Laplace operator. Moreover, by virtue of the defining property of Q_{k-1} , it is small

620

enough at infinity that the series

$$G_k^{\mathfrak{H}/\mathbb{Z}}(z,z') = \sum_{n=-\infty}^{\infty} G_k^{\mathfrak{H}}(z,z'+n)$$

converges and has properties similar to those of $G_k^{\mathfrak{H}}$, but now with z and z' in \mathfrak{H}/\mathbb{Z} . This "Green's function" is studied [in connection with the analogously defined functions $G_k^{\mathfrak{H}/\Gamma}$, where Γ is a subgroup of finite index in $PSL(2,\mathbb{Z})$] in [8] and is shown there to be closely related to Ramakrishnan's modified polylogarithm function. We content ourselves with stating the result, referring to [8] for the proof.

Theorem 2. Let $k \in \mathbb{N}$, z = x + iy, $z' = x' + iy' \in \mathfrak{H}$. Then

$$G_{k}^{5/\mathbb{Z}}(z,z') = \sum_{n=1}^{k} f_{k,n}(2\pi y, 2\pi y') \left[D_{2n-1}(q/q') - D_{2n-1}(q\overline{q'}) \right],$$

where $q = e^{2\pi i z}$, $q' = e^{2\pi i z'}$ and

$$f_{k,n}(u,v) = 2^{1-2k}(uv)^{1-k} \sum_{\substack{r,s \ge 0\\r+s=k-n}} \frac{(2k-2-2r)!}{r!(k-1-r)!} \frac{(2k-2-2s)!}{s!(k-1-s)!} u^{2r} v^{2s}.$$

Note that the symmetry of $G_{k}^{5/\mathbb{Z}}$ in its two arguments is reflected by the two symmetry properties $D_{2n-1}(x) = D_{2n-1}(x^{-1}) = D_{2n-1}(\bar{x})$. The map $z \to q$ identifies \mathfrak{H}/\mathbb{Z} with the punctured unit disc $\{q \in \mathbb{C} \mid 0 < |q| < 1\}$, but the right-hand side of the formula in the theorem now makes sense for any $q, q' \in \mathbb{C}^{\times}$ (with $2\pi y, 2\pi y'$ replaced by $-\log|z|$, $-\log|z'|$) and represents some kind of Green's function on $\mathbb{C}^{\times} \times \mathbb{C}^{\times}$.

4. D_m and special values of Dedekind zeta functions

The Bloch-Wigner dilogarithm function D(x) is related in a very beautiful way to special values of Dedekind zeta functions. Specifically, we have the following theorem.

Theorem 3. Let F be an arbitrary algebraic number field, d_F the discriminant of F, r_1 and r_2 the numbers of real and complex places $(r_1 + 2r_2 = [F:\mathbf{Q}])$, and $\zeta_F(s)$ the Dedekind zeta function of F. Then $\zeta_F(2)$ is equal to $\pi^{2(r_1+r_2)}|d_F|^{-1/2}$ times a rational linear combination of r_2 -fold products $D(x^{(r_1+1)}) \dots D(x^{(r_1+r_2)})$ with $x \in F$.

(Here $x^{(1)}, \ldots, x^{(r_1)}, x^{(r_1+1)}, \ldots, x^{(r_1+r_2)}, \overline{x^{(r_1+1)}}, \ldots, \overline{x^{(r_1+r_2)}}$ are the images of x under the various embeddings $F \subseteq \mathbb{C}$.)

This result was proved in [5] in a somewhat weaker form (it was asserted only that the x could be chosen of degree ≤ 4 over F, rather than in F itself) by a geometric method: the value of $\zeta_F(2)$ was related to the volume of a hyperbolic $3r_2$ dimensional manifold (more precisely, a manifold locally isometric to $\mathfrak{H}_3^{r_2}$, where \mathfrak{H}_3 denotes hyperbolic 3-space) and this volume was then computed by triangulating the manifold into a union of r_2 -fold products of hyperbolic tetrahedra whose volumes could be expressed in terms of the function D(x). The more precise statement above comes from algebraic K-theory: the value of $\zeta_F(2)$ is related by a result of Borel to a certain "regulator" attached to $K_3(F)$, and this is calculated using results of Bloch, Levine, Suslin, and Mercuriev in terms of the Bloch-Wigner function. For details and references, see [4] or [7]. The K-theoretical proof in fact gives a somewhat stronger statement than the above theorem: the value of $|d_F|^{1/2}\zeta_F(2)/\pi^{2r_1+2r_2}$ is equal to an $r_2 \times r_2$ determinant of rational linear combinations of values D(x), rather than merely to a rational linear combination of r_2 -fold combinations of such values.

As examples of Theorem 3, we have for $F = \mathbb{Q}(\sqrt{-7})$ $(d_F = -7, r_1 = 0, r_2 = 1)$

$$\zeta_F(2) = \frac{2^2 \pi^2}{3 \cdot 7^{3/2}} \left(2D\left(\frac{1+\sqrt{-7}}{2}\right) + D\left(\frac{-1+\sqrt{-7}}{4}\right) \right)$$

and for $F = \mathbb{Q}(\theta)$ with $\theta^3 - \theta - 1 = 0$ $(d_F = -23, r_1 = r_2 = 1)$

$$\zeta_F(2) = \frac{2^3 \pi^4}{3 \cdot 23^{3/2}} D(\theta') = -\frac{2^2 \pi^4}{3 \cdot 23^{3/2}} D(-\theta'),$$

where $\theta'\left(=\frac{\theta}{2}\left(-1+\frac{i\sqrt{23}}{2\theta+3}\right)$, if θ is the real root) denotes the conjugate of θ with $\Im(\theta') > 0$.

We can now formulate

Conjecture 1. Theorem 3 holds true for $\zeta_F(m)$ for all positive even m with $\pi^{2(r_1+r_2)}$ replaced by $\pi^{m(r_1+r_2)}$ and with the function D replaced by the function D_m . For m odd a similar statement is true but with π^{mr_2} instead of $\pi^{m(r_1+r_2)}$ and $D_m(x^{(1)}) \dots D_m(x^{(r_1+r_2)})$ instead of $D_m(x^{(r_1+1)} \dots D_m(x^{(r_1+r_2)})$.

The difference between the two cases *m* even and *m* odd is, on the one hand, that D_m satisfies $D_m(\bar{x}) = (-1)^{m-1} D_m(x)$ [so in particular $D_m(x) = 0$ for *x* real and *m* even] and, on the other hand, that the order of vanishing of $\zeta_F(s)$ at s = 1 - m for m > 1 equals r_2 for *m* even but $r_1 + r_2$ for *m* odd. Again we can make a more precise conjecture with an $r \times r$ determinant $(r = r_2 \text{ or } r_1 + r_2)$ instead of simply a linear combination of *r*-fold products. Moreover, one can make a more general conjecture with Artin *L*-functions in place of Dedekind zeta functions. In particular, $\zeta_F(s)/\zeta(s)$ ($\zeta = \zeta_0$), which is a product of such *L*-series, should be a sum of (r-1)-fold products of values D_m . This statement makes sense also for m = 1 and is true by the Dirichlet regulator formula (recall that D_1 is essentially the logarithm-of-the-absolute-value function), but even when m = 1 the general conjecture for Artin *L*-series is unknown (Stark conjectures).

As a special case, we make the very specific

Conjecture 2. Let F be a real quadratic field. Then $|d_F|^{1/2}\zeta_F(3)/\zeta(3)$ is a rational linear combination of differences $D_3(x) - D_3(x')$, $x \in F$.

Here x' denotes the conjugate of x over \mathbb{Q} . Note that $\zeta(3) = D_3(1)$, so this is a strengthening of Conjecture 1 in this case. As numerical examples, we give

$$\frac{\zeta_{\mathbf{Q}(\sqrt{5})}(3)}{\zeta(3)} \stackrel{?}{=} \frac{2^5}{3 \cdot 5^{5/2}} \left(3 \left[D_3 \left(\frac{1 + \sqrt{5}}{2} \right) - D_3 \left(\frac{1 - \sqrt{5}}{2} \right) \right] - \left[D_3(2 + \sqrt{5}) - D_3(2 - \sqrt{5}) \right] \right)$$

and

$$\frac{\zeta_{\mathbb{Q}(1/2)}(3)}{\zeta(3)} \stackrel{?}{=} \frac{3}{5 \cdot 2^{5/2}} \left[\left[D_3(4+2\sqrt{2}) - D_3(4-2\sqrt{2}) \right] \right] \\ -9\left[D_3(2+\sqrt{2}) - D_3(2-\sqrt{2}) \right] \\ -6\left[D_3(1+\sqrt{2}) - D_3(1-\sqrt{2}) \right] + 9\left[D_3(\sqrt{2}) - D_3(-\sqrt{2}) \right] \right]$$

both true to at least 25 decimals. (These relations were found empirically by using the Lenstra-Lenstra-Lovasz lattice reduction algorithm to search numerically for linear relations between $|d_F|^{1/2}\zeta_F(3)/\zeta(3)$ and selected values of $D_3(x) - D_3(x')$, $x \in F$.)

That the quotient ζ_F/ζ_{\odot} should be connected with the differences $D_m(x)$ $-D_{m}(x')$ is a special case of a "Galois descent" property which we expect to hold in general, and which is known for the case m=2 by the K-theoretical work already cited (cf. [4] for details). Roughly speaking, this property implies that the O-vector space spanned by the $x \in F$ occurring in the conjecture should be invariant under the group of automorphisms of F over \mathbf{O} and that the value of an (abelian or Artin) L-function factor of ζ_F at s=m should be the determinant of a matrix of combinations of $D_m(x)$ with x in the corresponding subspace. An example of how this works is provided by the case when F is abelian over \mathbf{Q} . Here the assertion of Conjecture 1 is easy if we allow the arguments x to be in the abelian closure $N = \mathbb{Q}(\zeta_f)$ (f = conductor of F), rather than in F itself: ζ_F factors into a product of Dirichlet L-series $L(s, \chi)$ with $r_1 + r_2$ even and r_2 odd Dirichlet characters χ modulo f (of course, either r_1 or r_2 is zero), and the value of $L(m, \chi)$ is an algebraic multiple of π^m if $\chi(-1) = (-1)^m$ and an algebraic linear combination of values of $D_m(x)$, $x^{f} = 1$, in the opposite case. This gives the statement with an algebraic rather than rational combination of products of D-values, but a little more work shows that the algebraic multiples occurring combine correctly to give a rational multiple of $|d_{\rm F}|^{1/2}$. The point is now that the set of x occurring, and the coefficients with which they occur, are invariant under the action of Gal(N/F). For instance, in the above case F real quadratic, m=3, $f=d_F$, we have

$$d_{F}^{1/2}\zeta_{F}(3)/\zeta(3) = f^{1/2}L\left(3, \left(\frac{d_{F}}{\cdot}\right)\right) = \sum_{n=1}^{f-1} \left(\frac{d_{F}}{n}\right)Li_{3}(e^{2\pi i n/f}) = \sum_{n=1}^{f-1} \left(\frac{d_{F}}{n}\right)D_{3}(e^{2\pi i n/f}),$$

and the conjugates of $e^{2\pi i n/f} \in N$ over F are exactly the $e^{2\pi i n'/f}$ with $\left(\frac{d_F}{n}\right) = \left(\frac{d_F}{n'}\right)$.

By analyzing the structure of the numerical examples of Conjectures 1 and 2, one can get a more precise conjecture which actually predicts which linear combinations of products of polylogarithm values must be used in order to get zeta-values. Using it, it is easy to produce as many (conjectural) formulas involving polylogarithms and zeta-values as desired. In many cases, these seem to be new even for $F = \mathbb{Q}$, e.g.

$$\frac{67}{24}\zeta(3) \stackrel{\prime}{=} 6D_3(\frac{2}{3}) + 3D_3(\frac{3}{4}) - 3D_3(\frac{1}{2}) - D_3(\frac{8}{9}) - 2D_3(\frac{1}{3}) + D_3(-\frac{1}{3}).$$

We will discuss the various versions of this conjecture, and its relation to algebraic K-theory, in a later paper [9].

References

- 1. Bloch, S.: Higher regulators, algebraic K-theory, and zeta-functions of elliptic curves. Lecture Notes, U.C. Irvine, 1977
- 2. Lewin, L.: Polylogarithms and associated functions. New York: North-Holland 1981
- 3. Ramakrishnan, D.: Analogs of the Bloch-Wigner function for higher polylogarithms. Contemp. Math. 55, 371-376 (1986)
- Suslin, A.A.: Algebraic K-theory of fields, in: Proceedings of the International Congress of Mathematicians 1986. Am. Math. Soc., pp. 222-244 (1987)
- 5. Weil, A.: Elliptic functions according to Eisenstein and Kronecker. Ergebnisse der Mathematik 88. Berlin Heidelberg New York: Springer 1977
- 6. Zagier, D.: Hyperbolic manifolds and special values of Dedekind zeta functions. Invent. Math. 83, 285-302 (1986)
- 7. Zagier, D.: The remarkable dilogarithm. In: Number theory and related topics. Papers presented at the Ramanujan Colloquium, Bombay 1988, TIFR and Oxford University Press, pp. 231-249 (1989) and J. Math. Phys. Sci. 22, 131-145 (1988)
- 8. Zagier, D.: Green's functions for quotients of the upper half-plane. In preparation
- 9. Zagier, D.: Polylogarithms, Dedekind zeta functions, and the algebraic K-theory of fields. In preparation

Received March 3, 1989

624