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The polylogarithm function

Lim(x)=";1§f; (xeQ, [x|<1, meN)

appears in many parts of mathematics and has an extensive literature [ 2]. It can be
analytically extended to the cut plane €\[1, o) by defining Li,(x) inductively as

x
§ Li,, _ 1(z)z 'dz but then has a discontinuity as x crosses the cut. However, for
0

m=2 the modified function
D(x)=J(Li(x))+arg(l —x)log|x]

extends (real-) analytically to the entire complex plane except for the points x=0
and x=1 where it is continuous but not analytic. This modified dilogarithm
function, introduced by Wigner and Bloch [1], has many beautiful properties. In
particular, its values at algebraic argument suffice to express in closed form the
volumes of arbitrary hyperbolic 3-manifolds and the values at s=2 of the
Dedekind zeta functions of arbitrary number fields (cf. [6] and the expository
article [7]). It is therefore natural to ask for similar real-analytic and single-valued
modification of the higher polylogarithm functions Li,. Such a function D, was
constructed, and shown to satisfy a functional equation relating D,(x~') and
D,(x), by Ramakrishnan [3]. His construction, which involved monodromy
arguments for certain nilpotent subgroups of GL,,(€), is completely explicit, but he
does not actually give a formula for D,, in terms of the polylogarithm. In this note
we write down such a formula and give a direct proof of the one-valuedness and
functional equation. We will also:

i) prove a formula (generalizing a formula of Bloch for m=2) expressing
certain infinite sums of the D,, as special values of Kronecker double series related
to L-series of Hecke characters,

ii) describe a relation between the D,(x) and certain Green’s functions for the
unit disc, and
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iii) discuss the conjecture that the values at s =m of the Dedekind zeta function
{#(s) for an arbitrary number field F can be expressed in terms of values of D, (x)
with xe F.

The last relationship, which seems to be the most interesting property of the
higher polylogarithm functions, is closely connected with algebraic K-theory and
in fact leads to a conjectural description of higher K-groups of fields, as will be
discussed in more detail in a later paper [9].

1. Definition of the function D_(x)

For meN and xe € with |x|£1 define

m (..} m— j
L= 3 Oy,
I(Lx) {m even),

D, (x)=
R(L,.(x)+ (log| .D (m odd).

Proposition 1. D,,(x) can be continued real-analyticaily to €\{0,1} and satisfies the
functional equation D (1> (=1)""1D,(x).

Remarks. Ramakrishnan’s D, is equal to ours for m even but is just R(L,,(x)) for m
odd. We have included the extra term (log|x|)"/2m! for m odd in order to make the
functional equation as simple as possible (Ramakrishnan’s function satisfies
D, (1/x)=D,{x)+(log|x|y"/m! for m odd), but at the cost of making the function
discontinuous at 0 in this case. (For meven, D,, extends to a continuous function on
the extended plane €Cu{oo0}, vanishing on Ru{wo}.) The definition of D, here also
differs by a factor (—1)**1/2) from the normalization given in [7], which was
chosen to give a simpler relation between dD,,/0z and D,,_ ;. The functions D(x)
and D,(x) are equal to —logix*/>—x~ 2| and D(x), respectively.

Proof. As mentioned in the introduction, we can continue Li,(x) analytically to the
cut plane C\[1, c0) by successive integration along, say, radial paths from 0 to x.
The two branches just below and just above the cut then continue across the cut.
Write A for the difference of these two analytic functions in their common region of

1
definition (say, in the range |arg(x —1)| <&, where ¢ is small). Since Li,(x)=1log =

for |x] <1, we have ALi;=2ni, and it then follows from the formula xLi (x)
=ULi,,(x) that

ALi (x)=2milogxy"~/(m —1)!

for each m = 1. (This is well-defined in the region in question: we take the branch of
logx which vanishes at x=1.) Consequently,

(—logix" ! (logxy~*  2ai ( 1)”'“
AL, y=2m 3 e T = e %)

Since log-— is pure imaginary, this is real for m even and pure imaginary for m odd.

x|
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Hence R(G™*1L,(x)) is one-valued, proving the first assertion of the proposition.
To prove the second, it will be convenient to introduce the generating function

Lx;t)= ;Lm(x)t’"*‘. For |x|<1, |t| <1 we have

—loglx)¥ .. .. ® )
e?(x’t)—_- z g___g_IlLll{x)tJ‘H!“l:lx'_t Z Lij(x)tj_l
jizfk2o0 k! i=1
L © ]
=)™ —x"=|x] 7
n=1j=1 n n=1h—t
or
. o Tt Ty
L=y —e"=[— 0sr<1),
(re™ ) n§1n~t ge By (O=r<1)

n—t

,
where we have written as [ u"~""'du and summed the geometric series under
0

the integral sign. The integral converges also for r =1 and immediately gives the
extension to the cut plane |arg(1 —z)| < =. Since the integrand has a simple pole of
residue —e™® at u=e ", we again see that the difference between the two branches
of L,(re'®) near the cut is 2ri™0™~/(m—1)!, giving the one-valuedness of D,, as
before. In terms of .Z(x;t), the functional equation can be stated as the assertion

. . 1,. .
that L(re’;t)+ Lre % — 1)+ n r' is unchanged when r is replaced by r 1. But

for 0<t<1 we have

. . r' ot udu r o'dy ®
id. ~-ig. — _ . -t—1
L(re?; )+ Llre™™; —1) + ” (f)e""—u + ge"’—v +,—j.u du
© ® © u"du -1
=(§-1- 1) e

This makes the desired symmetry obvious.

2. The functions D, ,(x) and Kronecker double series

It is clear from the definition that the Bloch-Wigner function D(x) goes to 0 like
Ix|log}x| as x—0, and from the functional equation that D(x}=0{|x}~* log|x|) as
x— o0, Hence, for a complex number g of absolute value strictly less than 1 and any
complex number x, the doubly infinite series

Dig:x)= 3 Dig™)

converges with exponential rapidity. Clearly D(g; x) is invariant under x - gx, so
itis in fact a function on the elliptic curve €~ /¢%. In other words, if we write g = e>™*
with 7 in the complex upper half-plane and x=e*™ with ue T, then D{g;x)
depends only on the image of uin the quotient of € by thelattice L=Z1+Z.In[1],
Bloch computed the Fourier development of this non-holomorphic elliptic
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function. Actually, he found that D(x) should be supplemented by adding an
imaginary part —iJ(x), where
J(x)=log|x|log|t —x| (xeC, x=*0,1).
The function J(x)is small as |x|— 0 but largc as |x|— 00, 50 we cannot form the series
Z J(g'x) as we did with D. However, using the functional equation J(x ~ )= —J(x)
+log [x| we find after a short calculation that the function

Z s —1y, log?Ix|  log?[x|  log|x|loglq]
Jig;x)=Y Jg'x)~ ¥ J(g'x~! -
(g;:%) I=Zo (g'x) ,Zﬁ (g'x )+3loglql 5+ p

(g.xeC, gl <1)

is invariant under x + gx, so descends to the elliptic curve € * /g% ~C/L as before.
Bloch’s result can then be written

s x) = Ly o SR )
Dg;x)=Ulgsx)= 368 ¥ 2

where g =e>™", x=e?" with u= v +1 (¢, ¢ R/Z) and the sum is over all pairs of
integers (m,n)=+(0,0). This is a classical series studied by Kronecker (see for
instance Weil’s book [ 5]). The special case when 7 is quadratic over Q@ and & and 5
are rational numbers occurs in evaluating L-series of Hecke grossencharacters of
type A, and weight 1 at s=2. To get other weights and other special values, we
have to study series of the same type but with other powers of mr+nand mf+nin
the denominator. In this section we will prove the analogue of Bloch’s formula for
such series, the function D(x)—iJ(x) being replaced by a suitable linear combi-
nation of the Ramakrishnan functions D ,(x).

To define these combinations, we will need combinatorial coefficients, and we
begin by defining these. For integers a,m,r with 1<a, m<r let ¢, denote the
coefficients of x*~! in the polynomial (1—x)"~1(1 +x)""‘ These coefficients are
casily computed by the recursion ¢, =c¥ Y+~ }, or by the closed formula

9 _ fm=1\{r—m
u= 5, 0 (521 ) (077,

They have the symmetry properties

Cm=(— 1" == """ s

ty

the former being obvious and the latter a consequence of the identity

roLf(r—1
D) (m_l)cz'}mx“"lym—*=(1+x+y—xy)'-1.

a=1 m=1
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The definition of ¢, is equivalent to saying that the rxr matrix
C,=(c, gives the  transition  between  the  bases

a,mla,m=1,..., r

{4 ¢ 2y, w2 w1} and
{t+u)y~ Lt +uy =2 (t—u),...,¢ +w)E—u "3 —uy '}
of the space of homogeneous polynomials of degree r — 1 in two variables t and u.

The fact that the matrix (—11 :) has square 2 implies that

Cri=2"r%1¢,. )
We will also need the formulas

r fr—k k-1
Z (r )cg:)mz(__i)a—l( )Zr—k
wZx\m—k a—1 (1gakgr)  (3)

c _qym—1 r—k ") (1Y~ k-1 r—~k
mgk( b (m——k)ca‘m (=1 (r—a 2
(the expressions on the right being 0 for k <a or k<r+1—a, respectively} and
% (')cz.?m=2'-1 (1<asy). @
m=1 \M
modd

We leave the proofs to the reader (hint: expand (1 —x)" {1 +x+(1—x)}""* for
0=k <r). As numerical examples to illustrate properties (1)-(4) we give the ¢, for
r=6and 7:

1 1 1 1 1 1
5 3 1 -1 -3 -5
0 2 -2 -2 2 10
10 -2 -2 2 2 -10
5 -3 1 1 -3 5
1 -1 1 -1 1 —1

1 1 1 1 1 1

4 2 0 -2 -4 -6
15 5 -1 -3 -1 5 15

0 -4 0 4 0 -20
15 -5 -1t 3 -1 -5 15
6 —4 2 0 -2 4 -6
t -1 1 -1t 1 -1 1

We now define for integers ,b=1 and xe €

D.,,b(x)=2mi=1 cg’mD;(x)(—(lf_g_"’:));—m + (‘zécr’!glxly (r=a+b-1),

where D¥(x)=D,(x) for m odd, D}(x)=iD,(x)=3[L,(x)— L(x)] for m even.
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Proposition 2.(i) D, , is a one-valued real-analytic functionon C\[1, co) and satisfies
the functional equation

Dua (1) (=110, 01+ HEL

(ii) D, , is given in terms of the polylogarithm by

vt o (k=1 (=loglxly 7* .
Day=(=1) 1:‘;‘,2 k(a—l) (r—k)! Liy(x)
a1\ (loghly ™t
wyp f 2o (00 S e

(ili) The function defined for q,xe @ with |g| <1 by
D, lg; %)= l)_:o D, 4(g'x)+(=1)y"" ‘Z.l D, lg'x™Y)

(—2loglal” (loglxl)
(r+1)! T *\loglgl

(B, (x)=(r+1)st Bernoulli polynomial) is invariant under x — gx.

+

Proof. Statement (i) follows immediately from Proposition 1 and statement (ii)
from equations (3) and (4). For (iii), we note first that the infinite sum converges
absolutely for any x, because D, ,(x)=0(lx|log**?|x|) as |x|—0. Hence D, ,(g; x)
makes sense. Using (i) and the property B, , (x+ 1)— B, {(x)=(r+1)x", we find

D, (@5 %) — Dy y(q; 9%) =D, y(x) —(—1) 7'D, 4(x )
(=2loglgly, ., (loglx|\"
T T "“)(log|qt>‘

This completes the proof of the proposition.
Notice that we can use the inversion formula (2) to write

( IOglxl)" Z nga {Z—rDa‘b(x)__ (—_loglx')'}
a,bz1 2r!
at+b=r+1

mz21,n=20,r=m+n);

D(x)

in particular, the Ramakrishnan functions D,, are linear combinations of the D, .
We could therefore have equally well defined the functions D, , directly by the
formula in (i) and taken them rather than the functions D,, as the primitive objects
of study. The proof of the analytic continuation can be given directly from (ii) by
the same method as in the proof of Proposition 1: using

ALi(x)=2mi(logxy~*/(k— 1)!

and the binomial theorem, one finds easily that AD, ,=0.

Part (iii) of the proposition says that the functlon D, (g;e*™) is a (non-
holomorphic) elliptic function of w. Qur goal is to compute the Fourier
development of this function.
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Theorem 1. Write g =e*™, x = e*™* with 1 in the complex upper half-plane and u= &t
+ne@, & nelR. Then

(T — ’f)’ e2m’(n¢ —mn)
D, (q;:x)= ’ .
(4 %) 21ti o (Mt + 0)%(mT +n)®

Proof, Since D, j(e*™*;¢*™¢** ) js invariant under & — £ + 1, we can develop itinto

a Fourier series ¥ 4,62"™ with
neZ

1
}'n — !" e~ 2nin§Da,b(e2nir;e2ni({t +"))d6
0
— g e~ ZuinéDa, b(EZni(",‘t + "))df + ( — 1)7— t g eZnin.iDa' b(eZm‘(g: - "))dé

4 1 .
‘(—r’%’% ™ B, (),

where we have substituted for D, , the expression defining it and then in the first
two terms combined the sum over [ and the integral from 0 to 1 into a single
integral from 0 to oo by the substitution I4-&—¢. It is well-known [and easily
shown by repeated integration by parts, using B;=jB;_, and B{1)=B{0)for j+1]
that the last integral is equal to 0 for n=0 and to —(r+1)!/2ain) ** for n=0.
Substituting for D, ,(x) from part (i) of the proposition, we find

- k—1\@r3()y ~* = . .
inz(_l)a—lk;azr—k<a—.1)( 1(13—(2;‘ (j;é;r—k[Lik(ezm(gr+n))e—ané

>

+(___ 1))-- lLik(eZni(ét-q))eZninf]dé+ ( aHb_) _ (_Zi:s‘(‘[))rn_r_ 1
T T

“— 2mi

where the second term denotes the result of interchanging a and b and replacing ¢
by —7in the first term and the last term is to be omitted if n =0. The two arguments
of Li, in the integrand are less than 1 in absolute value, so we can replace Li; by its
definition as a power series, obtaining

oj? €r— k[Lik(eZni(§t+ r]))e — 2ning + ( _ 1)r~ lLik(eZKi(ﬁt —-n))ezm'ngjdé:
0

1mk

_ k 1 (T—k)! elnirm; +(__1)r~l e—21rimq
T mt (= 2miy PE e —ny R (mr+ny*tik
_ (== R ¢ 2ximn

TR Lo m(mrny TR

_1_ T 2nif(mr—n)& +mnl __ 4y~ 1 2xmi[(me + ) —mal\ gr—k
§ {e +(—1yle yErkdg
0

I
iMs
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where we have used the formula ?e”“f’dﬁ:l 12711 for R(A)>0. Hence
0

e—-men

2nid, =(—1) kéa (I; : ;) i)~ »

mEo mi(mr+n

N ( aHbf) _A-23Y

nr+1

)r+1—k

T —

Applying the easily checked identity

k—1\(X—-Y)* k—1\(X-Yy*
(*1)‘12( >(Xr+}1,)k +Z(b 1)(}"—%“1)}—

K=a\a—1
X_ 7
=(—-—————be1:) (r=a+b-1)

to X=mrt+n, Y=mi+n, we find
2 ',l 2 . e~ 2mimn

nid, = (2i3(r)y e,
(23 mze:l (mz +ny(mi+n)
(m,m) ¥(0,0)

This proves the theorem.

3. D,, and the Green’s function of the unit disc

Let $={z=x+iyeCly>0} denote the upper half-plane and for each positive
integer k define a function G?: $ x H\(diagonal) >R by

|z—2?

G¥(z,2")= ~ 20 1(1+ 3y ) GE=x+iy, 2’ =x"+iy'e D).

Here Q,(t) (nZO) is the n'* Legendre function of the second kind:

t+1 t, t+1 3:2 1., t+1 3
Qot)=5 log 1 Q1(t)-§1 ﬁ*l 2,(0)= Ogtt?—it
and in general Q,()=P,()Qo(t)—R,(t) where P,(f) and R,(t) are the unique
n '2
polynomials of degree n and n— 1, respectively, making Q,(t) ~ ont 1)'t “»~ 1 for

t—c0. The function GP is real-analytic on $ x $\(diagonal), has a singularity of
type

GE(z,z)=log|z— 2| + continuous  (z'—2)
along the diagonal, and satisfies the partial differential equation 4,G9=4,.G?
=k1—k)G?, where 4,=-—)* Eaxiz
operator. Moreover, by virtue of the defining property of Q,_,, it is small

2
+5;2—) denotes the hyperbolic Laplace
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enough at infinity that the series

GY¥(z,2)= =§_: G¥z,z +n)

converges and has properties similar to those of G2, but now with z and 2’ in $/Z.
This “Green’s function” is studied [in connection with the analogously defined
functions GPT, where I' is a subgroup of finite index in PSL(2,Z)] in [8] and is
shown there to be closely related to Ramakrishnan’s modified polylogarithm
function. We content ourselves with stating the result, referring to [8] for the proof.

Theorem 2. Let ke N, z=x+iy, 2’ =x"+iy' € 9. Then

GP™z, 2) =..§1 Sun2ry, 209) (D, - 1(q/q) — D3 1(d9)],

where =, q'=e*™* and

2r,2s

2 ik (2k—2—27)! (2k—2—2s)!

St )=2 7@l Y S RTTo A si—1—s)!
r+s=k—n

Note that the symmetry of G2Z in its two arguments is reflected by the two

symmetry properties D,,_,(x)=D,,_,(x~')=D,,_(X). The map z—q identifies

$/Z with the punctured unit disc {ge C|0<|q| <1}, but the right-hand side of the

formula in the theorem now makes sense for any q,q' e €* (with 2ny, 2y’ replaced

by —log|z|, —loglz]) and represents some kind of Green’s function on €C* x C*.

4. D,, and special values of Dedekind zeta functions

The Bloch-Wigner dilogarithm function D(x) is related in a very beautiful way to
special values of Dedekind zeta functions. Specifically, we have the following
theorem.

Theorem 3. Let F be an arbitrary algebraic number field, d the discriminant of F,r,
and r, the numbers of real and complex places (ry+2r,=[F:@Q]), and {{s) the
Dedekind zeta function of F. Then {(2) is equal to 12 **2|d |~ Y2 times a rational
linear combination of ro-fold products D(x"** V) ... D(x"+*") with xeF.

(Here xW, ..., x0) xrt) | Oxlebra () xi+r2) gre the images of x
under the various embeddings F ¢, C))

This result was proved in [ 5] in a somewhat weaker form (it was asserted only
that the x could be chosen of degree <4 over F, rather than in F itself) by a
geometric method: the value of {z(2) was related to the volume of a hyperbolic 3r,-
dimensional manifold (more precisely, a manifold locally isometric to $7, where
93 denotes hyperbolic 3-space) and this volume was then computed by triangulat-
ing the manifold into a union of r,-fold products of hyperbolic tetrahedra whose
volumes could be expressed in terms of the function D(x). The more precise
statement above comes from algebraic K-theory: the value of {(2) is related by a
result of Borel to a certain “regulator” attached to K4(F), and this is calculated
using results of Bloch, Levine, Suslin, and Mercuriev in terms of the Bloch-Wigner
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function. For details and references, see [4] or [7]. The K-theoretical proofin fact
gives a somewhat stronger statement than the above theorem: the value of
|dpl 2 (2)/m2 * 22 is equal to an r, X 7, determinant of rational linear combina-
tions of values D(x), rather than merely to a rational linear combination of r,-fold
combinations of such values.

As examples of Theorem 3, we have for F=Q()/ —7) (dp= —7,7,=0,r,=1)
2272 1+ -7 —1+)/ -7
cp(z)_3_73,2(21)( . >+D( i
and for F=Q(0) with *—0—-1=0 (dy=—23,r,=r,=1)

23p* , 2274 ’
3oz PO= 3 P,

Cp(z) =

where 0'(: g(—l—#— -21—10/——_%'3—3) if 8 is the real root) denotes the conjugate of §

with 3(6)>0.
We can now formulate

Conjecture 1. Theorem 3 holds true for {(m) for all positive even m with ¢+

replaced by n™"¥"? and with the function D replaced by the function D,,. For m odd
a similar statement is true but with TV instead of ™"t and
D, (xW) ... D (x"*"?) instead of D (x"**1 ... D, (x"1*).

The difference between the two cases m even and m odd is, on the one hand, that
D,, satisfies D,(%)=(—1)""!D,(x) [so in particular D,(x)=0 for x real and m even]
and, on the other hand, that the order of vanishing of {,(s) at s=1—mfor m>1
equals r; for m even but r,+r, for m odd. Again we can make a more precise
conjecture with an r x r determinant (r=r, or r, +r,) instead of simply a linear
combination of r-fold products. Moreover, one can make a more general
conjecture with Artin L-functions in place of Dedekind zeta functions. In
particular, {(s)/0(s) ({ = {g), which is a product of such L-series, should be a sum of
(r — 1)-fold products of values D,,. This statement makes sense also for m=1 and is
true by the Dirichlet regulator formula (recall that D, is essentially the logarithm-
of-the-absolute-value function), but even when m=1 the general conjecture for
Artin L-series is unknown (Stark conjectures).

As a special case, we make the very specific

Conjecture 2. Let F be areal quadratic field. Then |dg|""*(3)/{(3) is a rational linear
combination of differences Di(x)—D4(x"), xe F.

Here x’ denotes the conjugate of x over @. Note that {(3)=D,(1},so thisisa
strengthening of Conjecture 1 in this case. As numerical examples, we give

3 25 1 5 1—-V5
‘cq‘cg’)()%-s”Z(B[Da(Jrz )‘Da( 21[)]
—[D,(2+16)-Ds(2—1/§>])
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and
CQ(VZ)(3) r 3

{3 557 (D5(4+2)/D~ D42/

—9[D4(2+}/2)— D42~ )/2)]
~6[D5(1+]/2)— D31 —/2)1+9[D5(/2)— Do~ /2D,

both true to at least 25 decimals. (These relations were found empirically by using
the Lenstra-Lenstra-Lovasz lattice reduction algorithm to search numerically for
linear relations between |d|'{(3)/((3) and selected values of D 4(x) — D4(x"), x e F.)

That the quotient (g/{q should be connected with the differences D,f(x)
—D,(x")is a special case of a “Galois descent” property which we expect to hold in
general, and which is known for the case m=2 by the K-theoretical work already
cited (cf. [4] for details). Roughly speaking, this property implies that the Q-vector
space spanned by the x € F occurring in the conjecture should be invariant under
the group of automorphisms of F over @ and that the value of an (abelian or Artin)
L-function factor of {, at s=m should be the determinant of a matrix of
combinations of D, (x) with x in the corresponding subspace. An example of how
this works is provided by the case when F is abelian over @. Here the assertion of
Conjecture 1 is easy if we allow the arguments x to be in the abelian closure
N =Q,) (f=conductor of F), rather than in F itself: {r factors into a product of
Dirichlet L-series L(s, ) with r, +7, even and r, odd Dirichlet characters y modulo
f (of course, either r, or r, is zero), and the value of L{m, x) is an algebraic multiple
of ™ if y(—1)=(~—1)" and an algebraic linear combination of values of D,(x),
x/ =1, in the opposite case. This gives the statement with an algebraic rather than
rational combination of products of D-values, but a little more work shows that
the algebraic multiples occurring combine correctly to give a rational multiple of
[d¢|1/2. The point is now that the set of x occurring, and the coefficients with which
they occur, are invariant under the action of Gal(N/F). For instance, in the above
case F real quadratic, m=3, f=d,, we have

areoveer=rn(3(%)) <z (&) =g (%) pyeren,
. 1

n=1 n=

n

n
By analyzing the structure of the numerical examples of Conjectures 1 and 2,
one can get a more precise conjecture which actually predicts which linear
combinations of products of polylogarithm values must be used in order to get
zeta-values. Using it, it is easy to produce as many (conjectural) formulas involving
polylogarithms and zeta-values as desired. In many cases, these seem to be new
even for F=Q, e.g.

cor oy (8 d
and the conjugates of ¢*™™/ e N over F are exactly the 2™/ with (—r—f—) = (l)

S(3)=6D33)+ 3Dy — 3D — D3~ 2D;3) + Dy - ).

We will discuss the various versions of this conjecture, and its relation to algebraic
K-theory, in a later paper [9].
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