(C) Springer-Verlag 1990

The Bloch-Wigner-Ramakrishnan polylogarithm function

Don Zagier

Max-Planck-Institut für Mathematik, Gottfried-Claren-Strasse 26, D-5300 Bonn 3, Federal Republic of Germany

To Hans Grauert

The polylogarithm function

$$
L i_{m}(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{m}} \quad(x \in \mathbb{C},|x| \leqq 1, m \in \mathbb{N})
$$

appears in many parts of mathematics and has an extensive literature [2]. It can be analytically extended to the cut plane $\mathbb{C} \backslash[1, \infty)$ by defining $L i_{m}(x)$ inductively as $\int_{0}^{x} L i_{m-1}(z) z^{-1} d z$ but then has a discontinuity as x crosses the cut. However, for $m=2$ the modified function

$$
D(x)=\mathfrak{I}\left(L i_{2}(x)\right)+\arg (1-x) \log |x|
$$

extends (real-) analytically to the entire complex plane except for the points $x=0$ and $x=1$ where it is continuous but not analytic. This modified dilogarithm function, introduced by Wigner and Bloch [1], has many beautiful properties. In particular, its values at algebraic argument suffice to express in closed form the volumes of arbitrary hyperbolic 3-manifolds and the values at $s=2$ of the Dedekind zeta functions of arbitrary number fields (cf. [6] and the expository article [7]). It is therefore natural to ask for similar real-analytic and single-valued modification of the higher polylogarithm functions $L i_{m}$. Such a function D_{m} was constructed, and shown to satisfy a functional equation relating $D_{m}\left(x^{-1}\right)$ and $D_{m}(x)$, by Ramakrishnan [3]. His construction, which involved monodromy arguments for certain nilpotent subgroups of $G L_{m}(\mathbb{C})$, is completely explicit, but he does not actually give a formula for D_{m} in terms of the polylogarithm. In this note we write down such a formula and give a direct proof of the one-valuedness and functional equation. We will also:
i) prove a formula (generalizing a formula of Bloch for $m=2$) expressing certain infinite sums of the D_{m} as special values of Kronecker double series related to L-series of Hecke characters,
ii) describe a relation between the $D_{m}(x)$ and certain Green's functions for the unit disc, and
iii) discuss the conjecture that the values at $s=m$ of the Dedekind zeta function $\zeta_{F}(s)$ for an arbitrary number field F can be expressed in terms of values of $D_{m}(x)$ with $x \in F$.

The last relationship, which seems to be the most interesting property of the higher polylogarithm functions, is closely connected with algebraic K-theory and in fact leads to a conjectural description of higher K-groups of fields, as will be discussed in more detail in a later paper [9].

1. Definition of the function $D_{m}(x)$

For $m \in \mathbb{N}$ and $x \in \mathbb{C}$ with $|x| \leqq 1$ define

$$
\begin{gathered}
L_{m}(x)=\sum_{j=1}^{m} \frac{(-\log |x|)^{m-j}}{(m-j)!} L i_{j}(x), \\
D_{m}(x)= \begin{cases}\mathfrak{Y}\left(L_{m}(x)\right) & (m \text { even }), \\
\mathfrak{R}\left(L_{m}(x)\right)+\frac{(\log |x|)^{m}}{2 m!} & (m \text { odd })\end{cases}
\end{gathered}
$$

Proposition 1. $D_{m}(x)$ can be continued real-analytically to $\mathbb{C} \backslash\{0,1\}$ and satisfies the functional equation $D_{m}\left(\frac{1}{x}\right)=(-1)^{m-1} D_{m}(x)$.
Remarks. Ramakrishnan's D_{m} is equal to ours for m even but is just $\mathfrak{R}\left(L_{m}(x)\right)$ for m odd. We have included the extra term $(\log |x|)^{m} / 2 m$! for m odd in order to make the functional equation as simple as possible (Ramakrishnan's function satisfies $D_{m}(1 / x)=D_{m}(x)+(\log |x|)^{m} / m!$ for m odd), but at the cost of making the function discontinuous at 0 in this case. (For m even, D_{m} extends to a continuous function on the extended plane $\mathbb{C} \cup\{\infty\}$, vanishing on $\mathbb{R} \cup\{\infty\}$.) The definition of D_{m} here also differs by a factor $(-1)^{[m+1) / 2]}$ from the normalization given in [7], which was chosen to give a simpler relation between $\partial D_{m} / \partial z$ and D_{m-1}. The functions $D_{1}(x)$ and $D_{2}(x)$ are equal to $-\log \left|x^{1 / 2}-x^{-1 / 2}\right|$ and $D(x)$, respectively.
Proof. As mentioned in the introduction, we can continue $L i_{m}(x)$ analytically to the cut plane $\mathbb{C} \backslash[1, \infty)$ by successive integration along, say, radial paths from 0 to x. The two branches just below and just above the cut then continue across the cut. Write Δ for the difference of these two analytic functions in their common region of definition (say, in the range $|\arg (x-1)|<\varepsilon$, where ε is small). Since $L i_{1}(x)=\log \frac{1}{1-x}$ for $|x|<1$, we have $\Delta L i_{1}=2 \pi i$, and it then follows from the formula $x L i_{m}^{\prime}(x)$ $=L i_{m-1}(x)$ that

$$
\Delta L i_{m}(x)=2 \pi i(\log x)^{m-1} /(m-1)!
$$

for each $m \geqq 1$. (This is well-defined in the region in question: we take the branch of $\log x$ which vanishes at $x=1$.) Consequently,

$$
\Delta L_{m}(x)=2 \pi i \sum_{j=1}^{m} \frac{(-\log |x|)^{m-j}}{(m-j)!} \frac{(\log x)^{j-1}}{(j-1)!}=\frac{2 \pi i}{(m-1)!}\left(\log \frac{x}{|x|}\right)^{m-1}
$$

Since $\log \frac{x}{|x|}$ is pure imaginary, this is real for m even and pure imaginary for m odd.

Hence $\mathfrak{R}\left(i^{m+1} L_{m}(x)\right)$ is one-valued, proving the first assertion of the proposition.
To prove the second, it will be convenient to introduce the generating function $\mathscr{L}(x ; t)=\sum_{m=1}^{\infty} L_{m}(x) t^{m-1}$. For $|x|<1,|t|<1$ we have

$$
\begin{aligned}
\mathscr{L}(x ; t) & =\sum_{j \geq 1, k \geqq 0} \frac{(-\log |x|)^{k}}{k!} L i_{j}(x) t^{j+k-1}=|x|^{-t} \sum_{j=1}^{\infty} L i_{j}(x) t^{j-1} \\
& =|x|^{-t} \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \frac{t^{j-1}}{n^{j}} x^{n}=|x|^{-t} \sum_{n=1}^{\infty} \frac{x^{n}}{n-t}
\end{aligned}
$$

or

$$
\mathscr{L}\left(r e^{i \theta} ; t\right)=\sum_{n=1}^{\infty} \frac{r^{n-t}}{n-t} e^{i n \theta}=\int_{0}^{r} \frac{u^{-t} d u}{e^{-i \theta}-u} \quad(0 \leqq r<1),
$$

where we have written $\frac{r^{n-t}}{n-t}$ as $\int_{0}^{r} u^{n-t-1} d u$ and summed the geometric series under the integral sign. The integral converges also for $r \geqq 1$ and immediately gives the extension to the cut plane $|\arg (1-z)|<\pi$. Since the integrand has a simple pole of residue $-e^{i t \theta}$ at $u=e^{-i \theta}$, we again see that the difference between the two branches of $L_{m}\left(r e^{i \theta}\right)$ near the cut is $2 \pi i^{m} \theta^{m-1} /(m-1)$!, giving the one-valuedness of D_{m} as before. In terms of $\mathscr{L}(x ; t)$, the functional equation can be stated as the assertion that $\mathscr{L}\left(r e^{i \theta} ; t\right)+\mathscr{L}\left(r e^{-i \theta} ;-t\right)+\frac{1}{t} r^{t}$ is unchanged when r is replaced by r^{-1}. But for $0<t<1$ we have

$$
\begin{aligned}
\mathscr{L}\left(r e^{i \theta} ; t\right)+\mathscr{L}\left(r e^{-i \theta} ;-t\right)+\frac{r^{t}}{t} & =\int_{0}^{r} \frac{u^{-t} d u}{e^{-i \theta}-u}+\int_{0}^{r} \frac{v^{t} d v}{e^{i \theta}-v}+\int_{r^{-1}}^{\infty} u^{-t-1} d u \\
& =\left(\int_{0}^{\infty}-\int_{r}^{\infty}-\int_{-1}^{\infty}\right) \frac{u^{-t} d u}{e^{-i \theta}-u} \quad\left(v=u^{-1}\right)
\end{aligned}
$$

This makes the desired symmetry obvious.

2. The functions $\boldsymbol{D}_{a, b}(\boldsymbol{x})$ and Kronecker double series

It is clear from the definition that the Bloch-Wigner function $D(x)$ goes to 0 like $|x| \log |x|$ as $x \rightarrow 0$, and from the functional equation that $D(x)=O\left(|x|^{-1} \log |x|\right)$ as $x \rightarrow \infty$. Hence, for a complex number q of absolute value strictly less than 1 and any complex number x, the doubly infinite series

$$
D(q ; x)=\sum_{l=-\infty}^{\infty} D\left(q^{l} x\right)
$$

converges with exponential rapidity. Clearly $D(q ; x)$ is invariant under $x \mapsto q x$, so it is in fact a function on the elliptic curve $\mathbb{C}^{\times} / q^{\boldsymbol{Z}}$. In other words, if we write $q=e^{2 \pi i t}$ with τ in the complex upper half-plane and $x=e^{2 \pi i u}$ with $u \in \mathbb{C}$, then $D(q ; x)$ depends only on the image of u in the quotient of \mathbb{C} by the lattice $L=\mathbb{Z} \tau+\mathbb{Z}$. In [1], Bloch computed the Fourier development of this non-holomorphic elliptic
function. Actually, he found that $D(x)$ should be supplemented by adding an imaginary part $-i J(x)$, where

$$
J(x)=\log |x| \log |1-x| \quad(x \in \mathbb{C}, x \neq 0,1) .
$$

The function $J(x)$ is small as $|x| \rightarrow 0$ but large as $|x| \rightarrow \infty$, so we cannot form the series $\sum_{i \in \mathbf{z}} J\left(q^{l} x\right)$ as we did with D. However, using the functional equation $J\left(x^{-1}\right)=-J(x)$ $+\log ^{2}|x|$ we find after a short calculation that the function

$$
\begin{aligned}
J(q ; x)= & \sum_{l=0}^{\infty} J\left(q^{l} x\right)-\sum_{l=1}^{\infty} J\left(q^{i} x^{-1}\right)+\frac{\log ^{3}|x|}{3 \log |q|}-\frac{\log ^{2}|x|}{2}+\frac{\log |x| \log |q|}{6} \\
& (q, x \in \mathbb{C},|q|<1)
\end{aligned}
$$

is invariant under $x \mapsto q x$, so descends to the elliptic curve $\mathbb{C}^{\times} / q^{\boldsymbol{x}} \simeq \mathbb{C} / L$ as before. Bloch's result can then be written

$$
D(q ; x)-i J(q ; x)=\frac{i}{\pi} \mathfrak{I}(\tau)^{2} \sum_{m, n}^{\prime} \frac{\sin (2 \pi(n \xi-m \eta))}{(m \tau+n)^{2}(m \bar{\tau}+n)},
$$

where $q=e^{2 \pi i t}, x=e^{2 \pi i s}$ with $u=\xi \tau+\eta(\xi, \eta \in \mathbb{R} / \mathbb{Z})$ and the sum is over all pairs of integers $(m, n) \neq(0,0)$. This is a classical series studied by Kronecker (see for instance Weil's book [5]). The special case when τ is quadratic over \mathbb{Q} and ξ and η are rational numbers occurs in evaluating L-series of Hecke grossencharacters of type A_{0} and weight 1 at $s=2$. To get other weights and other special values, we have to study series of the same type but with other powers of $m \tau+n$ and $m \bar{\tau}+n$ in the denominator. In this section we will prove the analogue of Bloch's formula for such series, the function $D(x)-i J(x)$ being replaced by a suitable linear combination of the Ramakrishnan functions $D_{m}(x)$.

To define these combinations, we will need combinatorial coefficients, and we begin by defining these. For integers a, m, r with $1 \leqq a, m \leqq r$ let $c_{a, m}^{(r)}$ denote the coefficients of x^{a-1} in the polynomial $(1-x)^{m-1}(1+x)^{r-m}$. These coefficients are easily computed by the recursion $c_{a, m}^{(r)}=c_{a, m}^{(r-1)}+c_{a-1, m}^{(r-1)}$ or by the closed formula

$$
c_{a, m}^{(r)}=\sum_{h=1}^{a}(-1)^{h-1}\binom{m-1}{h-1}\binom{r-m}{a-h} .
$$

They have the symmetry properties

$$
\begin{gather*}
c_{a, m}^{(r)}=(-1)^{a-1} c_{a, r+1-m}^{(r)}=(-1)^{m-1} c_{r+1-a, m}^{(r)}, \\
\binom{r-1}{m-1} c_{a, m}^{(r)}=\binom{r-1}{a-1} c_{m, a}^{(r)}, \tag{1}
\end{gather*}
$$

the former being obvious and the latter a consequence of the identity

$$
\sum_{a=1}^{r} \sum_{m=1}^{r}\binom{r-1}{m-1} c_{a, m}^{r)} x^{a-1} y^{m-1}=(1+x+y-x y)^{r-1}
$$

The definition of $c_{a, m}^{(r)}$ is equivalent to saying that the $r \times r$ matrix $C_{r}=\left(c_{a, m}^{(r)}\right)_{a, m}=1, \ldots, r$ gives the transition between the bases $\left\{t^{r-1}, t^{r-2} u, \ldots, t u^{r-2}, u^{r-1}\right\}$ and

$$
\left\{(t+u)^{r-1},(t+u)^{r-2}(t-u), \ldots,(t+u)(t-u)^{r-2},(t-u)^{r-1}\right\}
$$

of the space of homogeneous polynomials of degree $r-1$ in two variables t and u. The fact that the matrix $\left(\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right)$ has square 2 implies that

$$
\begin{equation*}
C_{r}^{-1}=2^{-r+1} C_{r} \tag{2}
\end{equation*}
$$

We will also need the formulas

$$
\begin{align*}
& \sum_{m=k}^{r}\binom{r-k}{m-k} c_{a, m}^{(r)}=(-1)^{a-1}\binom{k-1}{a-1} 2^{r-k} \\
& \sum_{m=k}^{r}(-1)^{m-1}\binom{r-k}{m-k} c_{a, m}^{(r)}=(-1)^{r-a}\binom{k-1}{r-a} 2^{r-k} \quad(1 \leqq a, k \leqq r) \tag{3}
\end{align*}
$$

(the expressions on the right being 0 for $k<a$ or $k<r+1-a$, respectively) and

$$
\begin{equation*}
\sum_{\substack{m=1 \\ \text { modd }}}^{r}\binom{r}{m} c_{a, m}^{(r)}=2^{r-1} \quad(1 \leqq a \leqq r) \tag{4}
\end{equation*}
$$

We leave the proofs to the reader (hint: expand $(1-x)^{k-1}\{1+x \pm(1-x)\}^{-k}$ for $0 \leqq k \leqq r$). As numerical examples to illustrate properties (1)-(4) we give the $c_{a, m}^{(r)}$ for $r=6$ and 7 :

$$
\begin{gathered}
C_{6}=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
5 & 3 & 1 & -1 & -3 & -5 \\
10 & 2 & -2 & -2 & 2 & 10 \\
10 & -2 & -2 & 2 & 2 & -10 \\
5 & -3 & 1 & 1 & -3 & 5 \\
1 & -1 & 1 & -1 & 1 & -1
\end{array}\right], \\
C_{7}=\left(\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
6 & 4 & 2 & 0 & -2 & -4 & -6 \\
15 & 5 & -1 & -3 & -1 & 5 & 15 \\
20 & 0 & -4 & 0 & 4 & 0 & -20 \\
15 & -5 & -1 & 3 & -1 & -5 & 15 \\
6 & -4 & 2 & 0 & -2 & 4 & -6 \\
1 & -1 & 1 & -1 & 1 & -1 & 1
\end{array}\right] .
\end{gathered}
$$

We now define for integers $a, b \geqq 1$ and $x \in \mathbb{C}$

$$
D_{a, b}(x)=2 \sum_{m=1}^{r} c_{a, m}^{(r)} D_{m}^{*}(x) \frac{(-\log |x|)^{r-m}}{(r-m)!}+\frac{(-2 \log |x|)^{r}}{2 r!} \quad(r=a+b-1),
$$

where $D_{m}^{*}(x)=D_{m}(x)$ for m odd, $D_{m}^{*}(x)=i D_{m}(x)=\frac{1}{2}\left[L_{m}(x)-\overline{L_{m}(x)}\right]$ for m even.

Proposition 2. (i) $D_{a, b}$ is a one-valued real-analytic function on $\mathbb{C} \backslash[1, \infty)$ and satisfies the functional equation

$$
D_{a, b}\left(\frac{1}{x}\right)=(-1)^{r-1} D_{a, b}(x)+\frac{(2 \log |x|)^{r}}{r!} .
$$

(ii) $D_{a, b}$ is given in terms of the polylogarithm by

$$
\begin{aligned}
D_{a, b}= & (-1)^{a-1} \sum_{k=a}^{r} 2^{r-k}\binom{k-1}{a-1} \frac{(-\log |x|)^{r-k}}{(r-k)!} L i_{k}(x) \\
& +(-1)^{b-1} \sum_{k=b}^{r} 2^{r-k}\binom{k-1}{b-1} \frac{(-\log |x|)^{r-k}}{(r-k)!} \overline{L i_{k}(x)} .
\end{aligned}
$$

(iii) The function defined for $q, x \in \mathbb{C}$ with $|q|<1$ by

$$
\begin{aligned}
D_{a, b}(q ; x)= & \sum_{l=0}^{\infty} D_{a, b}\left(q^{l} x\right)+(-1)^{r-1} \sum_{l=1}^{\infty} D_{a, b}\left(q^{l} x^{-1}\right) \\
& +\frac{\left(-\left.2 \log |q|\right|^{r}\right.}{(r+1)!} B_{r+1}\left(\frac{\log |x|}{\log |q|}\right)
\end{aligned}
$$

($B_{r+1}(x)=(r+1)$ st Bernoulli polynomial) is invariant under $x \mapsto q x$.
Proof. Statement (i) follows immediately from Proposition 1 and statement (ii) from equations (3) and (4). For (iii), we note first that the infinite sum converges absolutely for any x, because $D_{a, b}(x)=\boldsymbol{O}\left(|x| \log ^{a+b}|x|\right)$ as $|x| \rightarrow 0$. Hence $D_{a . b}(q ; x)$ makes sense. Using (i) and the property $B_{r+1}(x+1)-B_{r+1}(x)=(r+1) x^{r}$, we find

$$
\begin{aligned}
D_{a, b}(q ; x)-D_{a, b}(q ; q x)= & D_{a, b}(x)-(-1)^{r-1} D_{a, b}\left(x^{-1}\right) \\
& -\frac{(-2 \log |q|)^{r}}{(r+1)!}(r+1)\left(\frac{\log |x|}{\log |q|}\right)^{r}=0 .
\end{aligned}
$$

This completes the proof of the proposition.
Notice that we can use the inversion formula (2) to write

$$
\begin{aligned}
& D_{m}^{*}(x) \frac{(-\log |x|)^{n}}{n!}= \sum_{\substack{a, b \geqq 1 \\
a+b=r+1}} c_{m, a}^{(r)}\left\{2^{-r} D_{a, b}(x)-\frac{(-\log |x|)^{r}}{2 r!}\right\} \\
&(m \geqq 1, n \geqq 0, r=m+n) ;
\end{aligned}
$$

in particular, the Ramakrishnan functions D_{m} are linear combinations of the $D_{a, b}$. We could therefore have equally well defined the functions $D_{a, b}$ directly by the formula in (ii) and taken them rather than the functions D_{m} as the primitive objects of study. The proof of the analytic continuation can be given directly from (ii) by the same method as in the proof of Proposition 1: using

$$
\Delta L i_{k}(x)=2 \pi i(\log x)^{k-1} /(k-1)!
$$

and the binomial theorem, one finds easily that $\Delta D_{a, b}=0$.
Part (iii) of the proposition says that the function $D_{a, b}\left(q ; e^{2 \pi i v}\right)$ is a (nonholomorphic) elliptic function of u. Our goal is to compute the Fourier development of this function.

Theorem 1. Write $q=e^{2 \pi i \tau}, x=e^{2 \pi i u}$ with τ in the complex upper half-plane and $u=\xi \tau$ $+\eta \in \mathbb{C}, \xi, \eta \in \mathbb{R}$. Then

$$
D_{a, b}(q ; x)=\frac{(\tau-\bar{\tau})^{r}}{2 \pi i} \sum_{m, n}^{\prime} \frac{e^{2 \pi i(n \xi \xi-m n)}}{(m \tau+n)^{a}(m \bar{\tau}+n)^{b}} .
$$

Proof. Since $D_{a, b}\left(e^{2 \pi i t} ; e^{2 \pi(\xi \xi+\eta}\right)$ is invariant under $\xi \mapsto \xi+1$, we can develop it into a Fourier series $\sum_{n \in \mathbb{Z}} \lambda_{n} n^{2 \pi i n \xi}$ with

$$
\begin{aligned}
\lambda_{n}= & \int_{0}^{1} e^{-2 \pi i n \xi} D_{a, b}\left(e^{2 \pi i \tau} ; e^{2 \pi i(\xi \tau+\eta)}\right) d \xi \\
= & \int_{0}^{\infty} e^{-2 \pi i n \xi} D_{a, b}\left(e^{2 \pi i u \xi \tau+\eta)} d \xi+(-1)^{r-1} \int_{0}^{\infty} e^{2 \pi i n \xi} D_{a, b}\left(e^{2 \pi i(\xi \tau-\eta)}\right) d \xi\right. \\
& +\frac{(4 \pi \mathfrak{I}(\tau))^{r}}{(r+1)!} \int_{0}^{1} e^{-2 \pi i n \xi} B_{r+1}(\xi) d \xi,
\end{aligned}
$$

where we have substituted for $D_{a, b}$ the expression defining it and then in the first two terms combined the sum over l and the integral from 0 to 1 into a single integral from 0 to ∞ by the substitution $l \pm \xi \rightarrow \xi$. It is well-known [and easily shown by repeated integration by parts, using $B_{j}^{\prime}=j B_{j-1}$ and $B_{j}(1)=B_{j}(0)$ for $\left.j \neq 1\right]$ that the last integral is equal to 0 for $n=0$ and to $-(r+1)!/(2 \pi i n)^{r+1}$ for $n \neq 0$. Substituting for $D_{a, b}(x)$ from part (ii) of the proposition, we find

$$
\begin{aligned}
\lambda_{n}= & (-1)^{a-1} \sum_{k=a}^{r} 2^{r-k}\binom{k-1}{a-1} \frac{(2 \pi \mathfrak{I}(\tau))^{r-k}}{(r-k)!} \int_{0}^{\infty} \xi^{r-k}\left[L i_{k}\left(e^{2 \pi i(\xi \tau+\pi)}\right) e^{-2 \pi i n \xi}\right. \\
& \left.+(-1)^{-1} L i_{k}\left(e^{2 \pi i(\xi \tau \tau-\eta)}\right) e^{2 \pi i n \xi}\right] d \xi+\binom{a \leftrightarrow b}{\tau \leftrightarrow-\bar{\tau}}-\frac{(-2 i \mathfrak{Y}(\tau))^{r}}{2 \pi i} n^{-r-1},
\end{aligned}
$$

where the second term denotes the result of interchanging a and b and replacing τ by $-\bar{\tau}$ in the first term and the last term is to be omitted if $n=0$. The two arguments of $L i_{k}$ in the integrand are less than 1 in absolute value, so we can replace $L i_{k}$ by its definition as a power series, obtaining

$$
\begin{aligned}
\int_{0}^{\infty} & \xi r-k\left[L i_{k}\left(e^{2 \pi i(\xi \tau+\eta)}\right) e^{-2 \pi i n \xi}+(-1)^{r-1} L i_{k}\left(e^{2 \pi i(\xi \tau-\eta)}\right) e^{2 \pi i n}\right] d \xi \\
& =\sum_{m=1}^{\infty} \frac{1}{m^{k}} \int_{0}^{\infty}\left\{e^{2 \pi i((m \tau-n) \xi+m \eta]}+(-1)^{r-1} e^{2 \pi i[(m \tau+n) \xi-m \eta]}\right\} \xi^{r-k} d \xi \\
& =\sum_{m=1}^{k} \frac{1}{m^{k}} \frac{(r-k)!}{(-2 \pi i)^{r+1-k}}\left\{\frac{e^{2 \pi i m \eta}}{(m \tau-n)^{r+1-k}}+(-1)^{r-1} \frac{e^{-2 \pi i m \eta}}{(m \tau+n)^{r+1-k}}\right\} \\
& =\frac{(-1)^{k}(r-k)!}{(2 \pi i)^{r+1-k}} \sum_{m \neq 0} \frac{e^{-2 \pi i m \eta}}{m^{k}(m \tau+n)^{r+1-k}},
\end{aligned}
$$

where we have used the formula $\int_{0}^{\infty} e^{-\lambda \xi \xi l} d \xi=l!\lambda^{-1-1}$ for $\mathfrak{R}(\lambda)>0$. Hence

$$
\begin{aligned}
2 \pi i \lambda_{n}= & (-1)^{b} \sum_{k=a}^{r}\binom{k-1}{a-1}(2 i \Im(\tau))^{r-k} \sum_{m \neq 0} \frac{e^{-2 \pi i m \eta}}{m^{k}(m \tau+n)^{r+1-k}} \\
& +\binom{a \leftrightarrow b}{\tau \leftrightarrow-\bar{\tau}}-\frac{2(-2 i \Im(\tau))^{r}}{n^{r+1}} .
\end{aligned}
$$

Applying the easily checked identity

$$
\begin{aligned}
& (-1)^{a} \sum_{k=a}^{r}\binom{k-1}{a-1} \frac{(X-Y)^{r-k}}{X^{r+1-k}}+\sum_{k=b}^{r}\binom{k-1}{b-1} \frac{(X-Y)^{r-k}}{Y^{r+1-k}} \\
& =\frac{(X-Y)^{r}}{X^{b} Y^{a}} \quad(r=a+b-1)
\end{aligned}
$$

to $X=m \tau+n, Y=m \bar{\tau}+n$, we find

$$
2 \pi i \lambda_{n}=(2 i \mathfrak{I}(\tau))^{r} \quad \sum_{\substack{m \in \mathbb{X} \\(m, n) \neq(0,0)}} \frac{e^{-2 \pi i m \eta}}{(m \tau+n)^{a}(m \bar{\tau}+n)^{b}} .
$$

This proves the theorem.

3. D_{m} and the Green's function of the unit disc

Let $\mathfrak{G}=\{z=x+i y \in \mathbb{C} \mid y>0\}$ denote the upper half-plane and for each positive integer k define a function $G_{k}^{\mathfrak{S}}: \mathfrak{S} \times \mathfrak{S} \backslash($ diagonal $) \rightarrow \mathbb{R}$ by

$$
G_{k}^{\mathfrak{S}}\left(z, z^{\prime}\right)=-2 Q_{k-1}\left(1+\frac{\left|z-z^{\prime}\right|^{2}}{2 y y^{\prime}}\right) \quad\left(z=x+i y, z^{\prime}=x^{\prime}+i y^{\prime} \in \mathfrak{S}\right) .
$$

Here $Q_{n}(t)(n \geqq 0)$ is the $n^{\text {th }}$ Legendre function of the second kind:

$$
Q_{0}(t)=\frac{1}{2} \log \frac{t+1}{t-1}, \quad Q_{1}(t)=\frac{t}{2} \log \frac{t+1}{t-1}-1, \quad Q_{2}(t)=\frac{3 t^{2}-1}{4} \log \frac{t+1}{t-1}-\frac{3}{2} t
$$

and in general $Q_{n}(t)=P_{n}(t) Q_{0}(t)-R_{n}(t)$ where $P_{n}(t)$ and $R_{n}(t)$ are the unique polynomials of degree n and $n-1$, respectively, making $Q_{n}(t) \sim \frac{2^{n} n!^{2}}{(2 n+1)!} t^{-n-1}$ for $t \rightarrow \infty$. The function G_{k}^{5} is real-analytic on $\mathfrak{S} \times \mathfrak{y} \backslash$ (diagonal), has a singularity of type

$$
G_{k}^{\mathscr{G}}\left(z, z^{\prime}\right)=\log \left|z-z^{\prime}\right|^{2}+\text { continuous } \quad\left(z^{\prime} \rightarrow z\right)
$$

along the diagonal, and satisfies the partial differential equation $\Delta_{z} G_{k}^{5}=\Delta_{z} G_{k}^{5}$ $=k(1-k) G_{k}^{\tilde{j}}$, where $\Delta_{z}=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$ denotes the hyperbolic Laplace operator. Moreover, by virtue of the defining property of Q_{k-1}, it is small
enough at infinity that the series

$$
G_{k}^{5 / z}\left(z, z^{\prime}\right)=\sum_{n=-\infty}^{\infty} G_{k}^{\mathfrak{F}}\left(z, z^{\prime}+n\right)
$$

converges and has properties similar to those of $G_{k}^{\mathfrak{5}}$, but now with z and z^{\prime} in $\mathfrak{H} / \mathbb{Z}$. This "Green's function" is studied [in connection with the analogously defined functions $G_{k}^{5 / \Gamma}$, where Γ is a subgroup of finite index in $\left.\operatorname{PSL}(2, \mathbb{Z})\right]$ in [8] and is shown there to be closely related to Ramakrishnan's modified polylogarithm function. We content ourselves with stating the result, referring to [8] for the proof.
Theorem 2. Let $k \in \mathbf{N}, z=x+i y, z^{\prime}=x^{\prime}+i y^{\prime} \in \mathfrak{5}$. Then

$$
G_{k}^{5 / /}\left(z, z^{\prime}\right)=\sum_{n=1}^{k} f_{k, n}\left(2 \pi y, 2 \pi y^{\prime}\right)\left[D_{2 n-1}\left(q / q^{\prime}\right)-D_{2 n-1}(q \vec{q})\right],
$$

where $q=e^{2 \pi i z}, q^{\prime}=e^{2 \pi i z^{\prime}}$ and

$$
f_{k, n}(u, v)=2^{1-2 k}(u v)^{1-k} \sum_{\substack{r, s \geq 0 \\ r+s=k-n}} \frac{(2 k-2-2 r)!}{r!(k-1-r)!} \frac{(2 k-2-2 s)!}{s!(k-1-s)!} u^{2 r} v^{2 s} .
$$

Note that the symmetry of $G_{k}^{5 / \mathbf{Z}}$ in its two arguments is reflected by the two symmetry properties $D_{2 n-1}(x)=D_{2 n-1}\left(x^{-1}\right)=D_{2 n-1}(\bar{x})$. The map $z \rightarrow q$ identifies $\mathfrak{G} / \mathbb{Z}$ with the punctured unit disc $\{q \in \mathbb{C}|0<|q|<1\}$, but the right-hand side of the formula in the theorem now makes sense for any $q, q^{\prime} \in \mathbb{C}^{\times}$(with $2 \pi y, 2 \pi y^{\prime}$ replaced by $\left.-\log |z|,-\log \left|z^{\prime}\right|\right)$ and represents some kind of Green's function on $\mathbb{C}^{\times} \times \mathbb{C}^{\times}$.

4. $D_{\mathbf{m}}$ and special values of Dedekind zeta functions

The Bloch-Wigner dilogarithm function $D(x)$ is related in a very beautiful way to special values of Dedekind zeta functions. Specifically, we have the following theorem.

Theorem 3. Let F be an arbitrary algebraic number field, d_{F} the discriminant of F, r_{1} and r_{2} the numbers of real and complex places $\left(r_{1}+2 r_{2}=[F: \mathbb{Q}]\right)$, and $\zeta_{F}(s)$ the Dedekind zeta function of F. Then $\zeta_{\mathcal{R}}(2)$ is equal to $\pi^{2\left(r_{1}+r_{2}\right)}\left|d_{F}\right|^{-1 / 2}$ times a rational linear combination of r_{2}-fold products $D\left(x^{\left(r_{1}+1\right)}\right) \ldots D\left(x^{\left(r_{1}+r_{2}\right)}\right)$ with $x \in F$.
(Here $x^{(1)}, \ldots, x^{\left(r_{1}\right)}, x^{\left(r_{1}+1\right)}, \ldots, x^{\left(r_{1}+r_{2}\right)}, \overline{x^{\left(r_{1}+1\right)}}, \ldots, \overline{x^{\left(r_{1}+r_{2}\right)}}$ are the images of x under the various embeddings $F \hookrightarrow \mathbb{C}$.)

This result was proved in [5] in a somewhat weaker form (it was asserted only that the x could be chosen of degree $\leqq 4$ over F, rather than in F itself) by a geometric method: the value of $\zeta_{F}(2)$ was related to the volume of a hyperbolic $3 r_{2^{-}}$ dimensional manifold (more precisely, a manifold locally isometric to $\mathfrak{S}_{3}^{r_{2}}$, where $\mathfrak{5}_{3}$ denotes hyperbolic 3 -space) and this volume was then computed by triangulating the manifold into a union of r_{2}-fold products of hyperbolic tetrahedra whose volumes could be expressed in terms of the function $D(x)$. The more precise statement above comes from algebraic K-theory: the value of $\zeta_{F}(2)$ is related by a result of Borel to a certain "regulator" attached to $K_{3}(F)$, and this is calculated using results of Bloch, Levine, Suslin, and Mercuriev in terms of the Bloch-Wigner
function. For details and references, see [4] or [7]. The K-theoretical proof in fact gives a somewhat stronger statement than the above theorem: the value of $\left|d_{F}\right|^{1 / 2} \zeta_{F}(2) / \pi^{2 r_{2}+2 r_{2}}$ is equal to an $r_{2} \times r_{2}$ determinant of rational linear combinations of values $D(x)$, rather than merely to a rational linear combination of r_{2}-fold combinations of such values.

As examples of Theorem 3, we have for $F=\mathbb{C}(\sqrt{-7})\left(d_{F}=-7, r_{1}=0, r_{2}=1\right)$

$$
\zeta_{F}(2)=\frac{2^{2} \pi^{2}}{3 \cdot 7^{3 / 2}}\left(2 D\left(\frac{1+\sqrt{-7}}{2}\right)+D\left(\frac{-1+\sqrt{-7}}{4}\right)\right)
$$

and for $F=\mathbb{Q}(\theta)$ with $\theta^{3}-\theta-1=0\left(d_{F}=-23, r_{1}=r_{2}=1\right)$

$$
\zeta_{F}(2)=\frac{2^{3} \pi^{4}}{3 \cdot 23^{3 / 2}} D\left(\theta^{\prime}\right)=-\frac{2^{2} \pi^{4}}{3 \cdot 23^{3 / 2}} D\left(-\theta^{\prime}\right)
$$

where $\theta^{\prime}\left(=\frac{\theta}{2}\left(-1+\frac{i \sqrt{23}}{2 \theta+3}\right)\right.$, if θ is the real root $)$ denotes the conjugate of θ with $\mathfrak{Y}\left(\theta^{\prime}\right)>0$.

We can now formulate
Conjecture 1. Theorem 3 holds true for $\zeta_{F}(m)$ for all positive even m with $\pi^{2\left(r_{1}+r_{2}\right)}$ replaced by $\pi^{m\left(r_{1}+r_{2}\right)}$ and with the function D replaced by the function D_{m}. For modd a similar statement is true but with $\pi^{m r_{2}}$ instead of $\pi^{m\left(r_{1}+r_{2}\right)}$ and $D_{m}\left(x^{(1)}\right) \ldots D_{m}\left(x^{\left(r_{1}+r_{2}\right)}\right)$ instead of $D_{m}\left(x^{\left(r_{1}+1\right)} \ldots D_{m}\left(x^{\left(r_{1}+r_{2}\right)}\right)\right.$.

The difference between the two cases m even and m odd is, on the one hand, that D_{m} satisfies $D_{m}(\bar{x})=(-1)^{m-1} D_{m}(x)$ [so in particular $D_{m}(x)=0$ for x real and m even] and, on the other hand, that the order of vanishing of $\zeta_{F}(s)$ at $s=1-m$ for $m>1$ equals r_{2} for m even but $r_{1}+r_{2}$ for m odd. Again we can make a more precise conjecture with an $r \times r$ determinant ($r=r_{2}$ or $r_{1}+r_{2}$) instead of simply a linear combination of r-fold products. Moreover, one can make a more general conjecture with Artin L-functions in place of Dedekind zeta functions. In particular, $\zeta_{F}(s) / \zeta(s)\left(\zeta=\zeta_{Q}\right)$, which is a product of such L-series, should be a sum of $(r-1)$-fold products of values D_{m}. This statement makes sense also for $m=1$ and is true by the Dirichlet regulator formula (recall that D_{1} is essentially the logarithm-of-the-absolute-value function), but even when $m=1$ the general conjecture for Artin L-series is unknown (Stark conjectures).

As a special case, we make the very specific
Conjecture 2. Let F be a real quadratic field. Then $\left|d_{F}\right|^{1 / 2} \zeta_{F}(3) / \zeta(3)$ is a rational linear combination of differences $D_{3}(x)-D_{3}\left(x^{\prime}\right), x \in F$.

Here x^{\prime} denotes the conjugate of x over \mathbb{Q}. Note that $\zeta(3)=D_{3}(1)$, so this is a strengthening of Conjecture 1 in this case. As numerical examples, we give

$$
\begin{aligned}
\frac{\zeta_{\operatorname{dr}(\sqrt{5})}(3)}{\zeta(3)} \stackrel{?}{=} & \frac{2^{5}}{3 \cdot 5^{5 / 2}}\left(3\left[D_{3}\left(\frac{1+\sqrt{5}}{2}\right)-D_{3}\left(\frac{1-\sqrt{5}}{2}\right)\right]\right. \\
& \left.-\left[D_{3}(2+\sqrt{5})-D_{3}(2-\sqrt{5})\right]\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\zeta_{\mathbb{Q}(V) 2}(3)}{\zeta(3)} \stackrel{?}{=} & \frac{3}{5 \cdot 2^{5 / 2}}\left(\left[D_{3}(4+2 \sqrt{2})-D_{3}(4-2 \sqrt{2})\right]\right. \\
& -9\left[D_{3}(2+\sqrt{2})-D_{3}(2-\sqrt{2})\right] \\
& \left.-6\left[D_{3}(1+\sqrt{2})-D_{3}(1-\sqrt{2})\right]+9\left[D_{3}(\sqrt{2})-D_{3}(-\sqrt{2})\right]\right)
\end{aligned}
$$

both true to at least 25 decimals. (These relations were found empirically by using the Lenstra-Lenstra-Lovasz lattice reduction algorithm to search numerically for linear relations between $\left|d_{F}\right|^{1 / 2} \zeta_{F}(3) / \zeta(3)$ and selected values of $D_{3}(x)-D_{3}\left(x^{\prime}\right), x \in F$.)

That the quotient ζ_{F} / ζ_{Q} should be connected with the differences $D_{m}(x)$ - $D_{m}\left(x^{\prime}\right)$ is a special case of a "Galois descent" property which we expect to hold in general, and which is known for the case $m=2$ by the K-theoretical work already cited (cf. [4] for details). Roughly speaking, this property implies that the Q-vector space spanned by the $x \in F$ occurring in the conjecture should be invariant under the group of automorphisms of F over \mathbb{Q} and that the value of an (abelian or Artin) L function factor of ζ_{F} at $s=m$ should be the determinant of a matrix of combinations of $D_{m}(x)$ with x in the corresponding subspace. An example of how this works is provided by the case when F is abelian over \mathbb{Q}. Here the assertion of Conjecture 1 is easy if we allow the arguments x to be in the abelian closure $N=\mathbb{Q}\left(\zeta_{f}\right)(f=$ conductor of $F)$, rather than in F itself: ζ_{F} factors into a product of Dirichlet L-series $L(s, \chi)$ with $r_{1}+r_{2}$ even and r_{2} odd Dirichlet characters χ modulo f (of course, either r_{1} or r_{2} is zero), and the value of $L(m, \chi)$ is an algebraic multiple of π^{m} if $\chi(-1)=(-1)^{m}$ and an algebraic linear combination of values of $D_{m}(x)$, $x^{f}=1$, in the opposite case. This gives the statement with an algebraic rather than rational combination of products of D-values, but a little more work shows that the algebraic multiples occurring combine correctly to give a rational multiple of $\left|d_{F}\right|^{1 / 2}$. The point is now that the set of x occurring, and the coefficients with which they occur, are invariant under the action of Gal (N / F). For instance, in the above case F real quadratic, $m=3, f=d_{F}$, we have

$$
d_{F}^{1 / 2} \zeta_{F}(3) / \zeta(3)=f^{1 / 2} L\left(3,\left(\frac{d_{F}}{.}\right)\right)=\sum_{n=1}^{f-1}\left(\frac{d_{F}}{n}\right) L i_{3}\left(e^{2 \pi i n / f}\right)=\sum_{n=1}^{f-1}\left(\frac{d_{F}}{n}\right) D_{3}\left(e^{2 \pi i n / f}\right),
$$

and the conjugates of $e^{2 \pi i n / f} \in N$ over F are exactly the $e^{2 \pi i n^{\prime} / \delta}$ with $\left(\frac{d_{F}}{n}\right)=\left(\frac{d_{F}}{n^{\prime}}\right)$.
By analyzing the structure of the numerical examples of Conjectures 1 and 2, one can get a more precise conjecture which actually predicts which linear combinations of products of polylogarithm values must be used in order to get zeta-values. Using it, it is easy to produce as many (conjectural) formulas involving polylogarithms and zeta-values as desired. In many cases, these seem to be new even for $F=\mathbb{Q}$, e.g.

$$
\frac{67}{24} \zeta(3) \stackrel{?}{=} 6 D_{3}\left(\frac{2}{3}\right)+3 D_{3}\left(\frac{3}{4}\right)-3 D_{3}\left(\frac{1}{2}\right)-D_{3}\left(\frac{8}{9}\right)-2 D_{3}\left(\frac{1}{3}\right)+D_{3}\left(-\frac{1}{3}\right) .
$$

We will discuss the various versions of this conjecture, and its relation to algebraic K-theory, in a later paper [9].

References

1. Bloch, S.: Higher regulators, algebraic K-theory, and zeta-functions of elliptic curves. Lecture Notes, U.C. Irvine, 1977
2. Lewin, L.: Polylogarithms and associated functions. New York: North-Holland 1981
3. Ramakrishnan, D.: Analogs of the Bloch-Wigner function for higher polylogarithms. Contemp. Math. 55, 371-376 (1986)
4. Suslin, A.A.: Algebraic K-theory of fields, in: Proceedings of the International Congress of Mathematicians 1986. Am. Math. Soc., pp. 222-244 (1987)
5. Weil, A.: Elliptic functions according to Eisenstein and Kronecker. Ergebnisse der Mathematik 88. Berlin Heidelberg New York: Springer 1977
6. Zagier, D.: Hyperbolic manifolds and special values of Dedekind zeta functions. Invent. Math. 83, 285-302 (1986)
7. Zagier, D.: The remarkable dilogarithm. In: Number theory and related topics. Papers presented at the Ramanujan Colloquium, Bombay 1988, TIFR and Oxford University Press, pp. 231-249 (1989) and J. Math. Phys. Sci. 22, 131-145 (1988)
8. Zagier, D.: Green's functions for quotients of the upper half-plane. In preparation
9. Zagier, D.: Polylogarithms, Dedekind zeta functions, and the algebraic K-theory of fields. In preparation
