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Introduction and description of the ‘‘certain space”

Jacobi forms are a mixture of modular forms and elliptic functions. Examples of
such functions are very classical — the Jacobi theta functions and the Fourier
coefficients of Siegel modular forms of genus two — but it is a relatively recent
observation that the Jacobi forms have an arithmetic theory very analogous to the
usual theory of modular forms: this began with Maass’s proof of the Saito-
Kurokawa conjecture [M] and was developed systematically in [E-Z].

Because they have two variables, Jacobi forms have associated to them two
characteristic integers — the weight, which describes the transformation properties
of the form with respect to the modular group, and the index, which describes the
transformation properties in the elliptic variable. The main result of this paper is a
relationship between Jacobi forms (on the full Jacobi modular group) of weight &
and index m on the one hand and ordinary modular forms of weight 2k —2 and level
m on the other. This relationship in the special case m =1 already played a key role in
IM] (cf. also [E-Z], § 6). A surprising aspect of the general result is that, while on the
Jacobi side the numbers k and m affect only the automorphy factor and the group
never changes, on the other side the group itself varies. In particular, the Jacobi
forms of all weights and indices form a bigraded ring, the product of Jacobi forms of
index m, and index m, having index m, +m,, but there is (presumably) no natural
way to produce a modular form on, say, I',(7) from modular forms on I',(2) and
IL,(5).
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We will now be a little more specific. Let J, ,, denote the space of Jacobi forms
on SL,(Z) of weight k and index m (see [E-Z] or §0 for the exact definition). One
can define in J,_,, a subspace of oldforms (coming from J,_,,, for proper divisors m’
of m) and a complementary space (for cusp forms, the orthogonal complement)
Jisy of newforms; one also has for all />0 prime to m Hecke operators T(/) on
Ji.m Preserving JRo (cf. §4 of [E-Z]). For M,,_,(m), the space of holomorphic
modular forms of weight 2k —2 on I;(m), the analogous notions are, of course,
standard. Let M, _,(m) denote the space of all forms fe M,,_,(m) satisfying
f<m—11_>=(—1)km"‘112"_2f(r) (the “—"" in the notation refers to the fact that
the L-series of such an f satisfies a functional equation under s—»2k —2 —s with
root number —1 and, in particular, vanishes at s=k—1), and MY, (m)

— new

=M}, (m)ynM,,_,(m). Then we have:
Main Theorem. Let k,m, and [ be positive integers with (I, m)=1. Then
tr (T(), J5) =t (T (1), M3%, (m)).

The relationship between old and new Jacobi forms is not the same as between
old and new modular forms: a newform in J; . (m’|m) occurs in J,_,, with smaller
multiplicity (i.e., has fewer lifts to J, ,,) than a newform in M,,_,(m’) does in
M, _,(m). Thus the above theorem does not say that the full space J, , is
isomorphic as a Hecke-module to M, _,(m). Instead, it turns out that there is a
canonical subspace M, _, (m) = M, _,(m), containing the space of newforms, for
which one has:

Main Theorem (2nd version). The space J,, Is isomorphic to My, _,(m)
=M, _,(mMyn M5, _,(m) as modules over the Hecke algebra.

We will explain the definition of the space 9, ,_,(m) in a moment.

The proof of the main theorem proceeds in three stages. In § 1 we apply the main
theorem of our previous paper [S-Z], which gave a general trace formula for double-
coset operators on spaces of Jacobi forms, to compute explicitly the trace of T(/) -
or, more generally, of T(/) times an Atkin-Lehner involution—on J, ,, (Theorem 1).
The computation is quite technical but includes some pretty results, such as a
formula expressing a certain class number as a linear combination of Gauss sums
associated to binary quadratic forms (Appendix, Proposition A.1). In §2 we
transform the usual Eichler-Selberg trace formula for Hecke operators as given in
the literature into a form suitable for comparison with this and express the trace of
T(/) on J,,, as a linear combination of the traces of T(/) on M7};%, (m'), m'im
(Theorem 2). This is then used in §3 to establish the main properties of Jacobi
newforms and to prove the main theorem as given above. The result actually
proved, Theorem 3, not only asserts the isomorphism of J, , and M, _,(m) but
gives a collection of explicit lifting maps % ; (indexed by discriminants of
imaginary quadratic fields D and residue classes s (mod 2m) with s* = D (mod 4m))
between these spaces.

The main application so far of the resulit of the present paper is the theorem
proved in [G-K-Z], which asserts that the classes of Heegner points on a modular
curve X,(m) in the Mordell-Weil group of its Jacobian are the coefficients of a
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Jacobi form (of weight 2 and index m). Also, in Chap. II of [G-K-Z] a kernel
function for the lifting maps %) ; is constructed and its Fourier coefficients
computed. (Note that both Heegner points on X,(m) and coefficients of Jacobi
forms of index m are naturally indexed by pairs D, s as above.)

We devote the rest of this introduction to a discussion of the space i, (m)
(k,m>0, keven), which we think are of interest independently of the theory of
Jacobi forms. The most natural definition is as follows. The full space of modular
forms M, (m)= M, (I';(m)) has a basis (not unique) of forms f whose L-series

o

L(f.9)=Y, ay(mn"* (ay(m)=nt Fourier coefficient of f) has an Euler

n=1

product. Any such f'is an eigenform of all Hecke operators T'(/) with (/, m)=1 and
“comes from” (i.e., has the same eigenvalues for all such 7(/) as) a unique form g
which is a newform on I, (m’) for some m’ dividing m." The quotient L(f, s)/L(g, s)
is a finite Dirichlet series with an Euler product I1Q,(s), where p runs over the prime
divisors of m/m’ and Q,(s) is a polynomial in p~°. The L-series L(g,s) has a
functional equation under s—k —s, and L(f,s) can be assumed also to have one
(this is equivalent to requiring f to be an eigenform of all Atkin-Lehner involutions
on M, (m)); under these assumptions, each of the Euler factors of L(f, s)/L(g, s) will
have a functional equation

0,k —s)=xp "0, 8y

The space M, (m) is then the space spanned by all f for which the signin (1) is *“ +
for all p. Notice that it is only under this condition that the order of vanishing of
L(f,s)at s=k/2 can be the same as that of L(g, s): as soon as even one sign in one of
the equations (1) is *“ —", L(f, s) vanishes at s=k/2 to a higher order than L(g, s)
and the leading term of its Taylor expansion at this point is the product of the
corresponding quantity for g with some extraneous factorslog p. It is thus natural to
expect M, (m) to be the relevant space of modular forms in any context like the
Birch-Swinnerton-Dyer conjecture where the leading term in question is supposed
to have a natural interpretation as the regulator of some height pairing. It also
explains why 9, (m) is the space occurring in the result about Heeger points
mentioned above, since the heights of Heegner points are related to the derivatives
of L-series of cusp forms of weight 2 having an odd functional equation.

Apart from the naturalness of its definition and its occurrence in connection
with Jacobi forms, the strongest indication that the space 9, (m) is important is that
the trace formula for Hecke operators is actually simpler for 3, (m) than for either
M, (m) or M (m). This can already be seen on the level of dimensions (i.e. the trace
of the operator T'(1)), as we now discuss. The well-known formula for dim M, (m) is

dim M, (m)=Y c;(k)fi(m), 2)
i=1

! This statement is not quite true for the case that k=2, m>1, and f is an Eisenstein series having
eigenvalues o,(/)=7Y. d. Here it has to be interpreted in the sense that g(r) is the non-holomorphic
dt

1 1
Eisenstein series _271 Y- (1)+ Z o, (m)e*™™ and f(7)= d%cdg(df) with ¥4
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where

k—1 1 1 1
Q)= k=3, =3 1k=1, ®)=—7nk=1)

(x5 and y, the primitive Dirichlet characters of conductor 3 and 4) and the f;(m) are
the multiplicative functions given on prime powers by

f)=p+p 7,
£,(pY)=pt21 4 plev=bi2)
L) =1+,
FACUETAVMES A

It is very striking that each f;( p*) has the form g;(p*) +¢;(p*~ ') with a much simpler
multiplicative function g;, namely:

g (my=m, g,(m)=a where m=a’b with b squarefree,

gs(m)=y3(m), ga(m)=y,(m).

Using Atkin-Lehner theory to relate M, (m) to M7¥(m), we find an analogous
statement for the latter space: the dimension of M7 (i) is given by a formula like
(2) but with f;(m) replaced by the multiplicative function f*°*(m) given on prime
powers by

2P =9p)—9:(p>" ) ~g,(p" "N +9:(p7?)

(with the convention g,(p*)=0 for p<0). Thus " (m) <g,(m)<f,(m) and g, is a
much simpler function than either f; or f"*. This alone already suggests the

existence of a natural intermediate space M, (m) between MP¥ (m) and M, (m) with

dimension given by
4

dim WMy (m)= 3. ¢,0k)g,(m) 3

i=1

and such that there is a natural decomposition

M,m= @  B(m) “
m'\m
m/m’ squarefree
corresponding to the formula f;(p*)=g,(p")+9;(p*~"). Equations (3) and (4) are
indeed true for the space M, (m) defined above. Equation (3) can be written in the
even simpler form

dim M (m)=d(mk —1))+%a (a as above), &)

where d(n) is the linear-plus-periodic functlon x3 (n)— 1 x4 (n). For cusp forms

123
the situation is similar : dim S, (m) is given by a formula like (2) but with ¢, = —1and
an extra contribution 1 if k=2, and the dimension of &, (m) =M, (M) S,(m) is
given by (5) buth with areplaced by —1 a and an extra contribution 1 ifk =2 and m
is a perfect square. (Compare [E-Z], §10.)
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As already mentioned, the simplification occurring for the dimensions on
passing from M to 9 occurs also — indeed, even more strikingly — for the traces of
Hecke operators. The trace formula for SL,(Z) (cf. [Z]) has the relatively simple
form

1
tr(T(l),Sk(i))=—5 Y s, H(s* —41)
s2241
1 -1 o) i k=2,
2 ,Z“ min (. /]I") +{0 otherwise, ©)

(here p, (s, ) is a certain Gegenbauer polynomial and H(4) a certain class number;
cf. §1), but the trace formula for I';(m) for m > 1 as usually given in the literature is
very much more complicated. In contrast to this, the formula for the trace of T(/) on
S, (m) for m>1is hardly any worse than (6): one simply replaces H(4) by a slightly
modified class number H,(4) (for the definition, see §1), multiplies the term
min (/',{/l")~! by the g.c.d. of @and /' —//I’, and omits the third term in (6) unless m
is a perfect square. (This is s/, ,(/, 1) in the notation of Theorem 1, §1.)

Finally we would like to point out that the trace formulas occuring in this paper
are given in a form which can immediately be put on a computer. Although it is not
the main object of this paper to enrich the variety of explicit trace formulas existing
in the literature by our versions some readers may nevertheless wish to use our
formulas for explicit computations, and thus may find it useful to have a short guide
to these formulas. Here it is:

For (I,m)=1 and n|m with <n, T~>=1 let 7(/) and W, denote the /-th
n

Heckeoperator and n-th Atkin Lehner-involution on J, ,, and M,, _,(m) (a precise
definition is given in (3)—(5), (7)—(9) of paragraph 0 und (1), (2) of paragraph 2); let
Sy.m denote the subspace of cusp forms in J, ,, and &, (m) =M, (m) S, (m) (=cusp
forms in 9, (m)). Finally s, ,.(/, n) is the quantity described in Theorem 1. Then

tr(T(D)o W, Sy _2(m)) =53 (1, 1),

(T o Wy, Sap—a(m) =} Sem (1, (n, M),
m'lm
m/m’ squarefree

tr (T () W,, ST, (m))= 3, a(%)‘gk,m'(l’ (n,m")

m'|m

(where o(m) denotes the multiplicative arithmetic function such that a(p)
=a(p?)= —1, a(p*)= +1 and a(p*)=0 (s=4) for any prime p),

5 {sk,,,.(l, n)+(—1>"sk,m(l, %)}

tr (T(l) ° I/Vn’ SIZ?.V):% Z (X(%) {sk,m’(l’ (n’m/))+( _I)ksk,m’ <l’ (%a Wﬂ))}

m’|m

tr(T(D)o W, Sy )=
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(with a(m) as above). The case (I, m) greater than 1 must be excluded since the space
S, (m) i1s not invariant under the T(p) with pjm. Via results from [S] the above
formulas also yield ready-to-compute formulas for traces of Hecke-operators
acting on spaces of modular forms of half-integral weight.

§0. Notations and basic definitions

Asmain reference for the basic facts and definitions from the theory of Jacobi forms
we refer to {E-Z]. Here we briefly summarize those items that we shall need in the
following.

#(R) denotes the Jacobi group SL,(R)x R?-S*. A typical element of #(R)
has the form ¢ = A [x]s with 4 € SL,(IR), xe R?, se S' (the multiplicative group of
complex numbers of modulus 1) and the product of £ and an element &' =A4"{x]s"is
given by &- &' =(44")[xA’ +x'](ss'e2mI¥l). Here xA4' is the result of applying the
matrix A’ to the row vector x and |2} is the determinant of the matrix built from the
row vectors x4’ and x'. For subsets G, L, K of SL,(R), R?, S! respectively we use
Gx L - K for the subset {4 [x]s|4eG,xe L,se K} of #(R). For k,meZ thereis an
action of ¢ (R) on functions on $ x € (H=upper half-plane) given by

—c(z+At+p)?
ct+d

” at+b z+At+pu
ct+d’  ct+d

(¢|k,m£)(r,z)=(cr+d)"‘e’"< +,121+2,1:+/1,u>s"‘

b
-<§=[i d][l,u]-sej(]l{), (T,Z)ES5X¢>,

where e™(x) denotes e2mimx, We shall always use I' to denote the full modular group
SL,(Z), I'’ for the corresponding Jacobi group SL,(Z)x Z?, and J, ,, for the space
of Jacobi forms of weight k and index m on I, i.e., holomorphic functions
¢ : 9 x C-C satisfying @, ,,£=¢ for all e I'" and having a Fourier development
of the form

p(,2)= )  cmng’l” (9=, (=), €))
s 20

The subspace of cusp forms (i.¢., ¢ with ¢(n,r) =0 unless 4mn—r>>0) is denoted
Sy.m- As a simple consequence of the invariance of ¢ with respect to Z> < I'’, one has
that ¢(n, r) depends only on r* —4mn and on r (mod 2m), so we can also write (1) in
the form
r2—A
d(r,2)= 3, C(4,r)g *"™ [ )

A,reZ, AL0
A=r*(mod 4m)

where C(4,r) depends only on 4 and on r (mod 2m).
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For a positive integer / with (/,m)=1 we have a Hecke operator T(/) on J, ,,
defined by

1
ZAOLT D YD) ¢|k,m<7M-[x1> ¢ehm. O
xeZXIZ> MeT\M,(Z)
det (M)=1*
ged (M) =3

where “gcd (M) =] means that the greatest common divisor of the entries of M is
a square. In the notation of [S-Z] this can be written

T k-4 r AT 0]
(h=I ,Z;: THk,m,r r 0o I r’j, €3}
T

where H, ,, r(4) for any I'’-double coset 4 (or finite union of such sets) in
F(@Q):=SL,(Q)x Q*- S" is the operator ¢— Y ¢l »& In [E-Z] it was shown

i
that the Fourier coefficients C*(4,r) of ¢|T(!) é?e r\elated to the Fourier coefficients
C(4,r) of ¢ by

C*(A,r):a%jz @2y, C<ii2 A,r’), (5)
the sum being over those al/? with a?|i?4, > 4/a* =0,1 mod 4, with ' determined
by lr=ar'mod2m(a,!) and r’zzi—zz Amod4m, and with y,(a@) =f<§%22—> if
(a, 4)=f? with 4/f?=0,1mod4 and y,(a)=0 otherwise.
Also it was shown that
TOTA)=Y d** 3T l'ld%). (6)

a1

For n|m (i.e. njm and n and m/n are coprime) we define
1
Wn:n—sz,m,F(FD(<; ZZ)'#n) (N

where y, denotes the group of the n-th roots of unity. (Note that I'x (& Z?) - p,, is
invariant with respect to right and left multiplication with elements of I'’.) One
easily verifies that
pW=nt Y ¢1k,m[ﬂ- ®)
xeZ*nZ?
Also it is not hard to verify that

r2—4

GIW,=Y C(4,2,)q *™ {" (C(4,r) as in (2)), ©)
A, r

where A, is the modulo 2m uniquely determined integer which satisfies
A= —1mod2n and A,= +1mod2m/n (cf. [S]). Thus the W, form a group of
involutions.

Finally note that the W, and 7(/) commute, as is easily seen by (3) and (8) or (5)
and (9).
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§1. The trace formula for Jacobi forms on SL,(Z)

The object of this paragraph is to apply the results of [S-Z] to obtain a formula for
the trace of T(/)o W, on S, ,,

We need some definitions.

We define a function H,(4) for integers n>1, 4 £0. The function H,(4) equals
H(|4]), where H( ) is the Hurwitz-Kronecker class number, i.e.

H, (0 :
(0=~

and H,(4) for 4<0 is the number of equivalence classes with respect to I' of
integral, positive definite, binary quadratic forms of discriminant 4, counting forms
equivalent to a multiple of x? +)? (resp. x* +xy + y?) with multiplicity % (resp. §).
Note that H,(4)=0 unless 4=0 or 1 (mod 4). For n=2 we write (1, 4)=a?b with
squarefree b and put

o, (Ala*b?
a’b 3
H(A)= nja*h

0 otherwise .

>H1(A/a2b2) if 2?4

Furthermore, for numbers s,/ and integers k=2 we define p,(s,/) as the
coefficient of x*~2 in the power series development of (1 ~sx+/x?)71, i.e.

POV RS
(s, D= — (g, ¢’ the roots of X2 —sX+/=0) if s* —4/%0
—¢

s k-2
pk(s,1>=<k—1)<§> i —4i=0.

Finally 6,(n)=)_ 1, o,(n)=)_ d (as usual), Q(n) denotes the greatest integer
din dln

whose square divides n (i.e. Q(n) =[] p'¥?), and §(2) =1 or 0 accordingly as the
statement £ is true or false. #l

Theorem 1. Let k,m, [, n be positive integers, k=2, ({,m)=1 and n”m Then

C(TO W, S = {sk,ma, n)+(—1)’°sk,m<l, %)}

where s, (I, n) for any n”m is given by

Smln)=—= szk 2( >H£(SZ —4in’)

Ins

| , ) ) m L
"?3.,“““(’ ,-) (Q("“ *f) (Q(ﬁ)” —-,—,)

+o(k=2)6 (’g=m) oMoy (0),
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2
. . o sV n
the sum over s being over all integers s satisfying s*<d4ln',n'ls, ((—) ,)

! n I
squarefree.

The rest of this paragraph will be devoted to the proof of this formula, and will
presuppose familiarity with the paper [S-Z], whose notations we will not repeat.

Proof. Let M e SL,(Q). Then by (7) of §0 and by standard computations in the
theory of Hecke algebras

1
Hk*m*r(rJMrl)o Wn:n_2I-Ih:,m,I‘(FJ]‘4I_'J)OI‘Ik,m,l‘([‘I>< (; ZZ> H")

=n"? ) (&) Hyp, (L7 ET7)

1
cer’\rJM(rlx (‘ zl)- u,,)/r’
where "

c(§)= #{HEFJ\FK<% Zz>-unléeF’MF1n}.

To the right hand side of this we can apply Theorem 1 and the supplementary
formulas (3.10), (3.11) of [S-Z] to obtain

tr(ILIk,m,I‘(I-‘JMIﬂJ)O Wn’Sk,m)

=den.(M) Y I ,r(A)g(4) (1)
AeTMI|~, ;

+8(k=2)tr(H},, ((T'MI'7)o WX, J¥ )
where den. (M) denotes the smallest integer /' such that /M is integral, where W*

1 .
and J¥,, are used for H,, <FD< <— ZZ> ‘/4,,) and J§¥ . (') respectively, and where
\ \m, n \

g(A)=den.(M) 'n2 Y c(O)#(ZNLEZ?) - G()
g'ezZ\zZAG 12>-,1"/1z2 )
=den.(M) 'n? y c(€)G,(8).

CeINTP A (% zz) thy

For the definitions of I, ,, (4), G,(¢) and ~,  see §1 of [S-Z], for the definitions
of H*(') and J¥ () see §3 of [S-Z]. In (2) Z? has to be considered as subgroup of
#(R),i.e. Z* has to be identified with {1} x Z* - gl };in particular & runs over a set of
representatives for the Z2-double cosets (or Z*-left cosets in the second sum) of

7’4 (1 ZZ> ., the latter denoting the product of the complexes {1} x Z* - {1} and
n

{4)x G ZZ>-;¢,, in #(R).
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For a ¢ on the right hand side of (2) we can write
1
c(é)= #{nelz\<; ZZ)'M,.IEGZZAZZn} :

Also, consulting the definition of G,,(¢) in [S-Z], it is easily seen that G,,(£) =G,,(4n)
for L€ Z? AZ*y with ne (1 Zz> - i, Hence (2) becomes
n

g(d)=den.(M) ‘a2 > > G, (4n)
(T A (:, zz)-un nezl\C; 12)-;4"
EeZ?A4Z%

=den.(M) 'n"2 Y #(ZN\Z*AZ°,) - G, (An).
nezl\(}l 12)44"

=n"t ) Gu,4[y)
ye% z/7?
where in the last equation we used #(Z\Z2AZ’n)= #(Z7\Z?AZ?)=den.(A4)
=den.(M). Now we apply Theorem 2 of [S-Z] to obtain

nsign(t——2)(t—2)”2&/vxe( 27-2) Qa(x )> if t=tr(4)%2
g(d)=

2

m .
W &(Q,) sign (t+2)(t+2)”2&/vxe< i 2)

QA(Y)) if 1=tr(d)+ -2
(3)

Here we have used the obvious identies

S 2 et g 040)

ye% 737
2
) oa g 240,

For the definition of the functional .7+, (which assigns to a periodic function of
xeZ' its average value) see §4 of [S-Z] or the Appendix; O, stands for the binary

b
quadratic form Qy(4, p)=bA%+(d —a)ip—cp? (A = I:‘cl J

Finally, combining (4) of §0 and (1), we arrive at the explicit formula
tr(T()e Wy, Sy m)

=2 ¥ Lim r(A)g(A)+ k=)t (TU)*- WF,JT,) (4

AeSLy(Q)/ ~pr
/4 integral

ged.(4)=0

and

) ﬂvx( ) L@+

ye1 z3(7?
n
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the sum being over a complete set of representatives of ~, . —equivalence classes
contained in {4€SL,(Q)|/A integral, g.c.d.(I4)=}, with I, ,, (4) as in Theo-
rem 1 of [S-Z], g(A) as in (3), and T(/)* given by a formula like (4) of § 0 but with k
=1and H, , , replaced by H¥,, .

We shall now investigate the first sumin (4). For this purpose we decompose it as

Sell. + Shyp. + Spar. + Sscal. H
where S, , Sy, etc. denote the contribution of the elliptic 4, hyperbolic 4 etc.

The elliptic contribution

For an elliptic 4 one has

sign (c) ¢**7*

Ve

" RPN *

o +sign(c)( ) ,I=tr(4), A= ’
2 <"

Thus I ,, ((=A)= =1, ,, r(4). Also, by (3), one has g(—A4)= ~g(A4). Hence
Sen, =202 Z Re (L, r(4)g(A4))
A

[k,m,r(A):

where

=252 % Re(fy ,r (AN Re(g(4)) =2072 3 Im (T}, r(A) Im(g(4)), (5)
A A

the sums being over those (elliptic) 4 mod ~ , - with positive left entry.
Let us consider the first sum on the right hand side of (5).
Here one has

1 1
[ 2Re Uy, r(A))= — Pax—2 (/11 +2), f)'T,
2)/t+2 1
2 Yt+2+)t-2 2
usingt+]/2[ 4=< b ; ),and

2 2
" 12 N N
2Reg(A) =" (1+2) {mxe (m([ 3 QA(x>)+e : xe<m(t+2) 0 o™}t
by the second formula in (3), using —Q ,=Q _,. Thus, the first sum on the right
hand side of (5) equals Ls, ,,(/, n)ey.» Where s, ,, (/7). is defined for any nHm by

m 1 n?
= —) — A4 ] . 6
Sl e, - o<§<41 Pu-z(l/a h) n }A: T Uxe<ma QA) (6)
The first sum is over all integers a with 0 <a <4/, and the second sum is over all (1)
elliptic 4 modulo I'-conjugacy such that /4 isintegral, tr(4)+2=a/l,and g.c.d.(I4)
1s a square in Z.

A similar calculation for the second sum on the right hand side of (5) (using now

. —1k m
the first formula for g(4) in(3)) shows that it equals ( 5 ) skym(l, ;) .
ell
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As is well-known, the map 4 —1- Q , defines a bijection between {4 € SL,(Q)|/4
integral, tr(4)+2=a//} and integral binary quadratic forms with discriminant
a(a—41), such that I'-conjugacy classes on the one side correspond to equivalence
classes with respect to I" on the other side. Furthermore, |I'| corresponds to |1, |
(I'y, =T the automorphism group of Q,), and, as is easily checked, g.c.d.(I4)=0
corresponds to (c(Q), /)=01, where c(Q) denotes the g.c.d. of the coefficients of Q.
Hence the inner sum in (6) equals

n?
v, e Q(x ), )
Qngdl‘ lFQI < ma )
d(Q)=a(a—41)

c(@.h=0

where the sum is over all integral, binary quadratic forms Q modulo I' with
discriminant d(Q)=a(a —41) and (¢(Q),)=0.

To get rid of the condition “(¢(Q), /)=0", we use Liouville’s function A(n). It
has the characteristic property Y A(d)=4J(n=0). We can therefore rewrite (7) as

din
1 n?
t%ﬂ A0 Q,,%dp [—1—_—8 szvxe"(—rh; t- Q(x)) 8)

d(Q)=a(a—41)/t2

Now, by Proposition A.1, the inner sum equals
-1
ma H ma (4la—40])
n(n, ayt n(n,ayt 12

(to apply this proposition, note that (ﬂ a, nt>=(a, n)t, since n”m and (m,)=1).
n

Thus (8) becomes
- aa—41)
Y A (n(n a)t) Hn_(:_nle (_——tz ) )

til,a

We shall show in a moment that (9) equals

n

m\ n /s \?
(——) Hm(s? —4In") if a=s*/n’ with n'|(n,5) and <;, <?) ):squarefree
0 otherwise . ' (10)

Note that »n’ and s are uniquely determined by a. Thus, summing in (6) over n’, s
instead of a, we shall end with the formulas

sk,m(L n)e1L= - zl: Z ka—Z(S/I/ n/sl)H%(sz —4[71’),
nin s>0
st<4in’

n'is (11)

(2 (2] ) - st
{ (l,n)eu.+<—1)ksk,m<l, ’—”-) }
n Jen.

I\)IH
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To show that (9) und (10) are equal we note first of all the following simple
property of our function H: let r, s be positive integers, let 4 <0 with 7|4, write
r=x*/y with squarefree y and assume (y, s)=1; then H,(4) equals rH,(4/x?) if x*

divides A4 as discriminant { i.e. x*|4, —=0,1mod4 | and 0 otherwise.
x

Now write a =bc with (b,/)=1 and c¢}/®. Then, since (m, [)=1, we have for any
¢ mb

. . b . . .
t|({, a) the decomposition n(:ffz)t =7 n(1.b) with % and Wl:,b_) being relative prime

and with— ’M Hence H_ma u equals mb a_(a—jl) f— ﬁ
n(n,a)t t n(n b) x%t y

with squarefree y and x? dividing a(a —4{)/ t? as discriminant and 0 otherwise. Note
that the condition **x? divides a(a —4/)/t? as discriminant” is equivalent to x*£?|c/
since clearly xt|c and (b, xt)=1. Substituting this into (9) gives

b —
Z,{()"(n ) H o (M) (12)

n(n b) xZ [2

2
with ¢ running through all divisors of (/,a) such that %:i with squarefree y
y

and x2t2|cl. We split this sum into two sums, one over X(=x¢) and one over ¢,

where X runs through all divisors of ¢ with ¢|X?, X?|c/ and where ¢ runs through all
2

tl— with X?/ct squarefree. By well-known properties of Liouville’s A the sum over ¢
c
equals 1 if X?/c=1 and 0 otherwise. Hence (12) becomes

n(n, b)
m

Hmv (b(a—41]) if c=0O
nin,b)

(13)

0 otherwise .

b
To further simplify (13) let now
Py (et oG )

~—, y squarefree. We shall show in a moment that {13)is 0

play the role of r in the above formula for

b
H,(A4). Write =
(n,b)
unless y divides (n, b). The latter implies in particular (y, )- 1. Thus (13) becomes

%H@@E%ﬂ§ if c=0, yi(n, ), x2lb(a—41)

X
0 otherwise .

. b ~
But this can now be written in the form (10) with n’=(ny ) and s=(n,b) % ]/c.
So assume now that (13)is different from 0. Then x? clearly divides b(a —4/) and

furthermore

bla—4Dh _ 241) mod 4. (14)
X
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Since

M—-{(n byx*c—4l(n,b)y}/y* with y|x

and since ¢ =0 by assumption we see that (14} implies y|/(n, b). Since (y, /) =1 (note
yib and (b,/)=1) we finally deduce y|(n, b) as was to be shown.

The hyperbolic contribution

Using the second formula for g(A4) in (3) one finds that the contribution of the
hyperbolic matrices with positive trace is given by ¥ s, ,,(/, n)y,,. where for any n|m
the expression s, ,(/,n)y,, is given by

2__4 32~k 2
) (” : ) =277 S e s 0t ))
(15)

Here ¢ turns through all positive rational numbers with denominator / such that
t* —4 is a square in Q\{0}, and A through all matrices with tr(4) =1, /4 integral,
g.c.d.(l4) a square.

Using the first formula for g (4) in (3) one easily verifies that the contribution of

. ‘ : . L —1) m
the hyperbolic matrices with negative trace is given by ( > ) sk,,,,<l, ;) .
hyp

By exactly the same arguments as in the foregoing section and by the remark
following Proposition A.1 we deduce that the inner sum in (15} is different from zero
if and only if there exist positive integers n” and s satisfying

2
n'in, n'ls, ((t+2)=8*/n’, (1,, <i,> ) is squarefree,
n’ \n

and that it then equals (-nl, 52 ——4ln’> times the class number of binary quadratic
n
o 5 nia (M, AN .
forms of discriminant (s* —4in’)/x —, 8 —4ln’ |=—, y squarefree}, i.c.
n

(s*—4imY?Q ',:_,52 —~4in' > (Note that r2—4=square in Q\{0} implies

s* —4In'=1*(t* —4)n"*[s* =square in Z\{0}.)
Inserting all this in (15) yields
le“3nlk"1 m
Spom (s Wy = — Q(<~, 52 A4ln’>>, (16)
* e n’zlir Zs: {s+|fs2 —4ln’}2"~3 h

2

where s runs through all positive integers such that

2
s* —4iIn’ =square in Z\{0}, n’ls, and ( -, (i> > is squarefree .
n'’\n
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t

.. . . l .
Now the condition s* —4/n'=square (£0) is equivalent to s:d+% with a

14

suitable positive integer d satisfying d|in’, d* < in'. Butn'ls,i.e. n'| d-l-%), together
with (/,n") =1 (since ([, n) = 1) then implies that n' is a square, say n’ =n"?, and that d

. .
=n"l' for some ['|l, I’ <I. Thus, setting n’'=n"?, s=n" <l’+l,> in (16), we obtain

Siom(b Wy = = 3, 2 0" 73 Qmfn), " (I = 1]1))

n2n T

l/

1 2
and (n, <l I+f> >/n”2 is squarefree. Finally, noticing that (Q (ﬁ) n"(l’ —;))
n
[
=<Q <T> (1’—7>> (since (m,n”)z 1> and that the sum Zn”, where n” runs
n n

o . 1 '\
through all positive integers with n"?jn, n”|<l/ + f)’ (n, (l’ +7> )/n”2 =squarefree,

equals <Q(n), (1 ’+7>> we arrive at the formulas

it ) o)
i

r2<y
1 m
Shyp. :E {Sk,m(la n)hyp. +(- 1)k5k,m <l, ;)h }
yp.

The parabolic contribution

. . . /
the sum with respect to !’ being over all divisors I’ of [ such that /" </, n”l(l’ +)

amn

A complete set of representatives with respect to ~, - of the parabolic matrices 4
such that /4 is integral and g.c.d.(/4)=[11s given by

i[(l) ]ﬂ (1=b=4ml, (b,1)=0).

Thus, using

if 4mllb

P R A Vi 1 b v

kA Sl 1 V)T 1em 1 —icotw —— otherwise
4ml

and the formulas (3) for g(A4), we may write

. m
Spar, ZE {sk,m(l, n)par- +(= 1)kSk’m (L ;>Pa" } ’
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where for any n||m the expression s, ,(/, n),,,. is defined by

_[k—Z 1 nZ

N pmodaml

(b, =0
(=1 : b M
T b zd:4 I icot{m o v,e Py bi* ;.

Amik, (b, =00
To simplify the first sum in (18) we note that
n? n? A1)
el — bi2 =Y At e(—b/12>=4ml =7
bm(§4ml (4’"1 ) g;' ® bm(§4ml 4dml % t
b,h=0 tib Aml|n1a2

so the first sum in (18) equals

# {Amod4ml| #4mi|n*1i} 4m!
;Z“ A1) ; -—% A(t)n(4, n)Q<(4’ n)nt)

=5(I=L1)-2n)/1- Q((4,m) Q (%)

Here we used that / and m are relatively prime, so that

4ml 4 m i 4
ol o) emel s

i
Y A(z)Q@:&(l:D)W.

et

and

The second sum in (18) can be written as
) b min®
Z A0) Z lcot<n w4ml/t>ﬂv’le<—~4ml/t bA* ),
1|l bmod4mijt
b&0mod 4mi/t

and here by Proposition A.2 (and (nl, ﬂ)-—— 1) the inner sum equals
n

m m
o <4’ 37) 2 o,y (D)
n 4<0,4=0,1mod4 " 'n
4nl,
4 Anlj il is squarefree

(43) (o)

which can be simiplified to

m
Y y Hn(4).
B 4<0,420,1mod4 "

4nift
Mdnijt, —';—/ squarefree

(18)

(19)



A certain space 129

Now for a 4 from this sum one easily verfies

ami 0 otherwise

y A= { if A= —4In’ for some n'|ln with n/n’ squarefree
t, —
4

4mi
o squarefree
(use again (/,m)=1), and in view of this (19) becomes

m
~22 Y He(—4ln).
n 3 n
w'in
nin’ squarefree

Putting this all together, we find

(_1)k1k—2

Sl My = =3 SU=D)P 20, 4) ~

Z Hm(—4n"y.
n'ln "
njn’ squarefree

(20)

S =t ds m + (=1 (1™

par,—2 k.m\" " Jpar. Yk.m\ b " sar. ‘
The scalar contribution
Here we find

2k —
S, =0(/=0) 23 k2 (ﬂ+(—1)"n>. (1)
12 n

If we now compare (11), (17), (20), and (21) with the formula for s, (7, n) given
in Theorem 1, we see that the theorem is proved for k #2: the terms in the first sum

in Theorem 1 with 0 <|s| <1/4!;; equal (11); the terms with s=0 equal the second
term of (20) (since p,, _,(0,)=(—1)*/*"2); the terms with s= +V4ln equal (21)

since this occurs only if / is a square and either ' =1, s:2]/1 and 4jn or n’' =4,

- - 2k -3 .
s=4]/I, and 4jn, and ka_2(21/l,1)Hm(0)— _le g n> the terms with
I =1=]/l in the second sum in Theorem 1 equal (17) (replace /" by //I" if I >1/[) and

the terms with /'= l/l equal the first term of (20).
It remains to treat:

The correction term for k=2

First of all we note that by definition
dim J*,, =dim Homp(M, ,(I'(4m), Th,,) , 22)

-~ g . a—
where I'c SL, (R) is the inverse image of I' by the canonical map SL,(R)—SL,(R),
and where M, ,(I(4m)), Th, are considered as [-modules via the action
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hi(A, w(t))=w(t) " h(A7) of T on M, ,(I'(4m)) and Th,,. (For the notations see
[S-Z].) By the theorem of Serre-Stark [S-S] one knows that M, ,(I'(4m)) is con-
tained in the space spanned by the “Nullwerte” 0(z, 0) with 6(z,z) e U Th,, . Thus

m >0
the computation of dim J3*,, is reduced to an analysis of the [-modules Th,,. This
has been done in [S] (Satz 5.2 and Satz 1.8), and we only cite the result:

dim J,, = {00 (m) + 3(m=L1)} .

(The reader may also work out this formula using orthogonality relations for group
characters and the formulae for trU, (4) (4el') from Theorem 2 of [S-Z];
however, this would be essentially equivalent to the procedure in [S].)

Now it is easy to compute the correction term tr(T(/)*o W}* J¥ ).

Namely, let m’ run through all divisors m'|m with m/m’ a square, and for
each such m’ let A run through a complete set of representative in Z for
{Amod2m’|A*=1mod4m’}/{ +1} =(Z/2m'Z)*/{ +1}. Note that the number of
such pairs m’, A equals 5 {a,(m) + d(m=0)}, i.e. dim J¢,, . For each such pair m’, 1
define

2m'
b (5= L Oy (50000 ( %)

=1

r’ s m
= Z e Iﬂ;f—ml"*'r m -z,

rseZ
r=Asmod2m’

2
where 0, , is the theta-series Z e(r—r+rz) (cf. [S-Z]). Obviously
m

r=¢(2m)

11
G alf '"[0 1] (1,2)=p (1 +1,2)=9,, ,(r,2), and using the well-known

-z T 1/2 . 22 2m
() a) (7)) E encemvane

it is easily checked that ¢, A|;",m[(1) (1)}=¢m,, 2~ The matrices [(1) i:|, [(1) (1):‘
generate I'=SL,(Z), and hence the ¢, , lie in JF¥ . Noticing that the ¢, , are
linearly independent we thus have a basis for Jj¥ .

Finally it is easily verified that

l¢m',ziT(l)*=l_2 Z Z Z ¢m AF m( [‘CZ I;:D[x]=01(l)¢m',z,

2,72 a,d>0 bmodd
xeZ*T w12 (@bd)=0

formulas

and that
¢m',l|Wn*=n_l Z ¢m 1|1 m[ ] ¢m Al

xeZ?/nZ?
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where 1’= —Amod2(m’, n), 1’= + Amod 2m’'/(m’, n). Note that ¢,,. ,|W¥=¢,, ,if
and only if A= —Amod2(m’,n) or A= —Amod2m’/(m’', n), i.e. if and only if (m’, n)
=1 or m'/(m’',n)=1. Hence

It (T o Wik, J¥ ) =0,() - mzlm {5((m’,n):1)+5<(mn'1,n)=1>}
m/m’' =01

- #({Amod2m'|i*=1mod4m}/{ +1})

1
=5 a, (D) {5(n =)o, (?)-Fé (%:D) ao(n)} R

as was to be shown.

§2. Comparison with the trace formula for ordinary modular forms

For integers k, m, k even and m > 0, denote by M, (m) the space of modular forms of
weight k on I'y(m). Forintegers,n>0,(/,m)=1andn Hm, denote by T'({yand W, the
I-th Hecke operator and the n-th Atkin-Lehner involution on M, (m), respectively.
Thus, for any fe M, (m) one has

o=y ¥ d’”la,(é’;)q' ()
and r20 di(,r
[1W.(2) =2 (crmr + nd) ¥ f (%) . @)

Here a,(r) denotes the r-th Fourier coefficient of f and a, b, ¢, d are any integers
satisfying adn* —bcm=n. (We are using here the same symbols T(/) and W, as for
the corresponding operators on J, ,,. Since it will be clear from the context which
operator is meant there should be no confusion.)

Finally, let M?*¥ (m) denote the space of new forms in M, (m) and let MP<™ * (m)
be the subspace of modular forms fe MP"(m) satisfying

W=+ (=1f.

Unfortunately in the literature the notion “new forms” is usually applied to cusp
forms only. Thus some remarks seem to be indispensable. We define more precisely

M= (m): = 61" (m) @ S7° (m)

where SP¢¥(m) is the subspace of new forms in the sense of Atkin-Lehner in S, (m),
the space of cusp forms of weight k on I, (m). £ (m) is defined to be zero if mis not
a square, while if m is a square then &% (m) is defined to be the span of the series

EP0= Y o2, (04

120
where y runs through all primitive Dirichlet characters modulo W (aside from the
principal character if m=1and k=2),6{2  ([)=) d* "' y(d) x(/d) for 121, 5}? , (0)

dii
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=0 or =4{(1 —k) according as m>1 or m=1. (For more details concerning
Eisenstein series on I, (m) cf. [H], pp. 461-468 and 689-693.)

By comparing the trace formulae from the foregoing paragraph with the well-
known trace formulae for Hecke operators on spaces of modular forms we shall
derive the following

Theorem 2. Let k,m, I, n be positive integers, k22, (m,1)=1 and n|m. Then

(Tl W, 0y )= Y ( ¥ 1) (T o Wiy, oy MBS (1))

m'|m dzl;"%
Moreover the same equation holds if one restricts on both sides to Eisenstein series or
to cusp forms.

Remark. The above Theorem remains true for all & in the trivial sense that
Je.m= M2, (m'y={0} for all k <2. However, the fact that J, ,, = {0} seems to be
not at all trivial. For a proof, depending on the work of Serre-Stark about modular
forms of weight 1/2, see [S].

Proof of Theorem d. First of all we treat the case of cusp forms.

The projection of S3§¥ ,(m) onto the subspace S5, (m) of forms fe S73%, (m)
satisfying f|W,, =(—1)*f which commutes with all 7(/)((/,m)=1) is given by
LW, +(—1)*W,,). Thus

e (T(1) o Wy ST () =3 {tr (T() o Wy, S35 (m)
HDHET (D W SE2 ()]

and hence the formula to be proved can be rewritten as

w00 W, 5,0=3 Jro - (-0,

where #(n) for any n|m is given by

(=Y ¥ { y 1} (T o W, SI 3 (1) 3)

nyln m m
"Zln d2lnm

Ini fact, we shall show that

sk,m(l’ n) = l(n)

with s, ,(/,n) as in Theorem 1.

To apply the trace formulas occurring in the literature we need to express the
traces on the right hand side of (3) in terms of corresponding traces on the total
spaces S, ;o1 n,).

Now for any pair of relative prime, positive integers n, n, one has by Atkin-
Lehner theory

Syk-2(mn))= @ S2ke2(a1a)\Uy )

arbyln;
azbz|n;
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with U, : f(t)=f1U,(t) =f(Ir). Choose in each of S3;¥,(a,a,) a basis consisting of
simultaneous eigenfunctions with respect to all 7(/) (({, nyn,)=1)and W, (n Nalaz).
Via (4) this gives a basis for S, _,(n;n,) and we compute tr (T'(l)o W, , S, _,(n,n,)
with respect to this basis:

Let g be such a basis element, say g=/1U, ,, with fe§,, _,(a,a,),f1W,, =¢f Itis
easily seen that

f|Ub1bz ° Wn=8(”1/a1bf)k_1 'fIUnlbz/albl

Thus the contribution of g to tr(T(l)- W,, S,,_,(n,n,)) is equal to ¢ if n, /a;b? =1
and is zero otherwise since then f|U,,,,+(n/a,b3) ™" flU, 4,0, are both
eigenfunctions of W, with opposite eigenvalues +¢. Hence

tr(T(l)e Wn,sSZk-z(nxnz)): Z Z tr(T({)o WanS;lecviZ(alaZ))‘ (5)
ailny asbsiny
"1/'11[ =0 ’
Combining (3) and (5) by using some elementary theory of multiplicative
functions gives

t(n)= 21: Z /1<n:’:lz>tr(T(l)° Wy Sai—2(nynz)) (6)
nyin "2|%

where 4 is Liouville’s function, i.e. the unique multiplicative function such that
A(p")=(—-1) for all prime powers p*.

Now we can insert the following formula for the traces occuring on the right
hand side of (6):

tr(7(/)~ W, s Sax-2(n1y))
1

=—3 ¥ m/min) T punll/mDh T H(S—4in)

nllnx 2 <4l n
S l/n-n_'|s n,/t squarefree
1 o ] 2k-3 /
—5 0 =D)o()/n;) IZI min <1r, 7,) 2 (Q(t), <1' _f>>
) tln,
[/ni- <l’+1~{) n,/t squarefree
+8(k=2)a,(]). o

Here u and ¢ are the Mébius and Euler function respectively and the other
notations are as in Theorem 1. Using the elementary identities

~ < (n'(s,n) and
; H(l/m =0 <((s/n’)2, njn"))= squarefree)

(n, running through all positive integers with n'|n;, nyln, ny/n’=01 and ‘/nln’ls),

m
e
"ZI% t|n,

n,/t squarefree
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(for any arithmetical function 4),
l
Y 0()/n)=(Q(n), (1’+7))

/
(n1 running through all positive integers with n, = and /n i(l I+F>)

it is then immediately clear that #(n) coincides with s, ,(/, n), as defined in Theo-
rem 1. Thus, in the case of cusp forms, Theorem 2 is proved.

Unfortunately the formula (7) is not exactly the formula which can be found in
the literature, so we have to add some remarks.

First of all a corresponding formula (7) for n, =1 can be found in [O]. Aside
from some slight differences in the statement, which can be easily worked out by the
reader, the main difference concerns the elliptic contribution. This is stated in [O] as

1 2
—5 2 P z(sl)Zh< 7 >/1(Sfl)

s2<4l FIF

l
is a fundamental discriminant,

where F is that positive integer such that

h'(A) denotes the number of equivalence classes (mod SL,(Z)) of primitive, positive
definite, binary quadratic forms of discriminant 4 if A< —4, h'(—4)=1%,
h'(—3)=1%, and where

o (et
N— 285 . R ~ -
uis, 1) 0, ()13, 1)) r((nz,f)z (ny,1)

Here ¢,(n)=n [] <1 +%) and r(D,n)= % {r mod2n|r* =D mod4n}. Now it is
pln
easily checked that

r(D,my= Y @ (p()asin§l).

tin
nft squarefree

Using this one can write (after some obvious modifications)

H(S’ Z, l)z Z (t f) st 4-l <(t f))

tin,
n,/t squarefree

and then the equality of the corresponding terms in our formula (7) and in Oesterlé’s
results from the identity

5 h’(sz f‘z‘”> () pea ((l f)) H(s* ~41) ®)

SIF

(cf. the proof of Proposition A.1).
Secondly, a corresponding formula (7) for n; >1 is given in [Y]. Aside from
some mistakes in the statement of that formula (which can be corrected by carefully
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reading [Y]), the main difference again concerns the elliptic contribution. It is stated
in [Y] as

1 s 2 —4in §* —4n,
—= Pax- ——J) 3l ey r(———,! ,
2 32<Z41m 2 2(}/@ ffZIf . ( f2 ) ,)Z,,z fz(ﬂz/f)z
(f.m)=

nyls n,/t squarefree
n, |F

"y ©)

2
. e §s*—4ln, . -
where F is the positive integer such that ——Fz—i is a fundamental discrimant.

Here the equality of the corresponding terms in (7) and (9) results from the identity

(8 =4\ (s —4in )
5L ()G

(f:m)=1 g, /1 squarefree

ny |F
iy
2
s*—4in,
= )Y ud ) Ht<‘T>’
d|(F,ny) tny
n,/t squarefree

which must be proved similarly to (8). Inserting this in (9), replacing s by ds and
summing over n’ =n, /d* (note that d|(F,n,), n,|s and (/,n,)=1 implies d?|n,) then
leads to our formula (7).

It remains to consider the case of Eisenstein series.

On the side of Jacobi forms the space of Eisenstein series inJ, , is spanned by the

series
Ek,m,z,x= Z X(S)Ek,m,ts' (10)

smod Q(m)/t
Here ¢ runs through all divisors of Q (m) and for each such ¢ the index y runs through

Q( ) and y(—1)=(-1Dk

all primitive Dirichlet characters modulo F with F|=——

Furthermore for any integer s the series E, ,, , is deﬁned by

Ek,,,.,s% Y (@ om (11)

ceriv

with '] = {[ 1O, ulin, pe Z} < I'’ and m=ab?, asquarefree. This is not quite true
for k=2 since then the series E, ,, ; asin (11) fail to converge. Here E, ,, ; has to be
defined by the same type of methods as are used for modular forms (“Hecke’s
convergence trick”) and for y# principal character (i.e. F+1) the series E, ,, , .
given by (10) then defines an element of J, ,,.

We shall prove in a moment that

Ek,m,t,x'T(Z)=O-(2112—3(1)Ek,m,t,1 ((l7m)=1) (12)
Ek,m,t,xIWnZX(A)Ek,m,t,x (nHm) (1 3)

m
where 1 denotes any integer such that A= —1modn and A= +1 mod~’—1~.
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Comparing this with the description of Eisenstein series in M35Y ,(m) given at
the beginning of this paragraph, and using that any F®_, e MIY,(F?) satisfies
ER LT =09 s(DER, and ER) ,|W,=x(A)EF_,((/, F*)=1, n|F* and with

= —1modn and A= + 1 mod F?/n), the reader can now easily verify the assertion
of Theorem 2.

To prove (12) and (13) we recall that J,_,, =& ,, ® % m> 6. m being the space
spanned by the Eisenstein series E, , , . as above. Hence any Eisenstein seriesin J, ,,
is uniquely determined by its “constant terms” (sum of terms ¢"{" with 4mn —r? =0)
or, equivalently, by its Fourier coefficients C(0, r) (r* =0 mod 4m). Moreover &, ,, is
invariant under all T()(({, m)=1) and all W, (nHm), since &, ,, ts the orthogonal
complement of S, _,,inJ, , with respect to the Petersson scalar product and the T(/),
W, are hermitian (cf. [E-Z]).

Thus to verify (12) and (13) it suffices to compute the Fourier coefficients
C@O,r), C*0,r) and C**0,r) (*=0mod4m) of E, Ey . T(l) and
Ey .. 1| W, respectively.

Now it is easily checked that the constant term of E,, , is equal to

1{ Y g1k Y q“’zcz“b’}. Thus C(0,r)=yx(r/2abt), and then

2 r=s(b) r=—s(b)
C*0,r)=c¥_5(1) C0,r), C**0,r)=x(A)C(0,1) by (5) and (9) of §0. This
completes the proof of Theorem 2.

m,t, X3

§ 3. The lifting from J, , to M,, _,(m)

In this paragraph we shall give an interpretation of the theorem proved in the last
paragraph in terms of liftings from Jacobi forms to modular forms.

Let M, () be the subspace of M, (m) defined in the introduction. Recall that this
is the space spanned by forms f whose L-series has the form

L(f.5)=L(g,9) " TT Q,(s)
Pl
where g is a newform on I,(m’) for some m’ dividing m and the Q,(s) are

polynomialsin p~* of degree <¢:=ord, <~”i,> satisfying the additional requirement
m

Q,(5)=p'*2790 (k—s) for all pl%. 1)

Here we may assume that the newform g is a simultaneous eigenform of all T(/) with
(I, my=1;then it is also an eigenform of the Fricke-Atkin-Lehner involution W, on
M, (m'), i.e.

gIW,=(—=1)"eg

with ¢e { £1}, and then L(g, s) has the functional equation L*(g, s) =eL*(g, k —s),
where L*(g,s)=Q2n) " *m’*I'(s)L(g,s). Equation (1) says that L(f,s) not only
satisfies a functional equation L*(f,s)=¢L*(f,k—s) with the same sign as its
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progenitor L(g,s), but that each Euler factor of the finite Euler product

L*(f,s)
L*(g,s)

=(mim)"* T1 Q,()

pla
is invariant under s—k —s. Another description, easily seen to be equivalent, is the
following: Suppose the newform g has eigenvalues A, for T(/) (/ prime, /4'm) and
e,e{+1} for W,.(p’|m’). Then f has the eigenvalues 4, for T(/) (I4m), &, for
W,.(p*|m,pim’y and +1 for W,.(p'|m,p¥m").

By M (m) we denote the subspace of M, (m) spanned by all f as above with
e=+1. Since M**(m') is the sum of MP*™ *(m’) and M}*™ ~(m’), we have
M, (m) =M, (m) @M, (m). The spaces M (m) are invariant under all T(/)
((l,m)=1) and under all Atkin-Lehner involutions W, (n||m).

As a consequence of the theorem in the foregoing paragraph we shall show:

Theorem 5. Let k, m be integers, m>0. Then J,_,, is Hecke-equivariantly isomorphic
to My, _,(m). More precisely, for any fixed fundamental discriminant D <0 and any
fixed integer s with D=s* mod4m there is a map

Lpos Tem=> M2 (m)
given by

— D\ (P I
Z C(Avr)q am Cr'—)z zak—Z — C 7D,—S ql
450,r 120 {all a a a

A=r2mod4m

(with the convention Y a*~? (—aD~> C(0,0): =—12- C(0,0)L (2 —k, <2>>, L (s, (9»
ajo

D
being the usual L-series which for Re(s)>1 equals Z ;)n“‘). The maps %
nz1

commute with all Hecke operators T(I) (I, m)=1) and involutions W, (n ||m) and map
Eisenstein series to Eisenstein series and cusp forms to cusp forms, and some linear
combination of them is an isomorphism.

Proof. Recall the operators U,, ¥, on J, ,, (/ a positive integer) as defined in [E-Z]:

-4
(¢IUI)(T’Z):¢(T312): Z Cd)(A’r)q o (rl’
= At
r2—A
@V)@r= ¥ Y a4 D)y
AZ0,r r2—4 a a
a=rimodam adCamrort)

The space J, ,, is mapped under U, V, to J; ... and J ,, respectively, U, V,
commute with all T(!") (({', Im)=1), and one has

Uyo W,=W, mo U, (a|mi?),
I/l ° an I/I/(n,m)o I/l (n“ml) -
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For /,d21 we define an operator B, ;: M;(m)—M,(mld*) by
(f1B) (0): =} "2 f(drr).
tl

It is easily checked that B, , is injective, commutes with all (/") (I, mld*)=1) and
satisfies B, ;o0 W, =W, B, 4 (n||mld?). Using these operators one immediately
obtains by Atkin-Lehner theory:

m
WM, (m)= @ My (s
k (m) z,go k <ld2>
1d2)m

B4 @

In view of this decomposition and the properties of B, , listed above, Theorem 2
can now be read as

(T e Wy Ji ) =tr (T e W, My, (m)) . 3)

Since J; , and M, _,(m) are semisimple as modules with respect to the rings
generated by the operators T'(/) and W, on J, , and M, _,(m) respectively, and
since the same relations (namely, (6) of § 0) hold for the T(/) considered as operators
on J, , or on My, _,(m) one deduces from (3) that there exists an isomorphism
between J, ,, and M;, _, (m) which commutes with all T(/) and all W,. This proves
the first statement of the theorem.

One of the main steps in the proof of the statements about the maps &, ; is to
show that a decomposition like (2) holds also for Jacobi forms.

More precisely, define Si5% to be the orthogonal complement of

Y Sk_mfano V, in S, ,, (with respect to the Petersson scalar product)
1d
Wl 1

and &5, as the span of the functions E, , ; , as in (10) of §2 (y a primitive
Dirichlet character modulo f) if m=f2 and k=2, m=1if k=2, and 0 otherwise.
Let JR =0 @Sy

Clearly Jg%v is invariant under all 7(/) and W, and

Jem=Tim @ Z Jrm |Uye V). 4
1,d>0 k.37
1d2|m, 1d2> 1

We shall prove by induction over m the following:
(1) The decomposition (4) is direct.
(ii) There exists an isomorphism between Ji5y and MJ7Y," (m) which com-
mutes with all 7(/) ((/,m)=1) and all W, (n|m).
(iii) For each pair of simultaneous eigenforms ¢eJi5y and fe MY, (m)
with a,(1)=1 having the same eigenvalues with respect to all T'(!) (({, m)=1) and all
W, (nH[m) one has

F,s(@)=Cy(D,5)"f.

Note that this implies all statements of Theorem 3 except for the last one,
because we have the easily checked formal power series identity

Fp,s(@NBLa=p (DU V) (Pe]yp,ld21). &)
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To begin with let m= 1. Here (i) is obvious and (ii} follows from the remark follow-
ing (3). (Note that JJ'¢" =J; , and M}~ (1)=M7, -, (1).) For (iii) simply note that
the /-th Fourier coefficient of %, (¢) is nothing else than the (D, s)-th Fourier
coefficient of ¢|T'(/), (cf. (5) of §0) and hence equal to a (/) C4(D, s).

For the induction step and the remaining assertion of the theorem we need three
lemmas.

Lemma 3.1. Let ¢eJ,,, and m'\m. Assume that C,(4,r)=0 for all A,;r with
(r,m)=1. Then

& J m
¢ aZ'x a2
d2\m,d|m’
In particular, ¢ =0 if (m’,Q(m))=1.
Lemma 3.2. Let ¢eJi5 be a simultaneous eigenform with respect to all
T()((I,m)=1), and let N> 0 be an arbitrary integer. Then there exists a fundamental
discriminant D <0 and an integer s with D=s* mod4mN such that C4(D, s)*0.

To formulate the third lemma we need an auxiliary operator.
For a positive integer / with /2jm define an operator y, on J, ,, by

@) (2):=1"" ¥ (""H)(’g ©)
xeZ*IT?

Obviously u, is well-defined, i.e. does not depend on the choice of representatives x

for Z°/1Z*. We leave it to the reader to verify that u, maps J, ,, t0 J, m, that
12
Cop(4,1)= Z C¢(12A, Ir") (7

r’mod 2 m/l
r'=rmod2m/l?

(for all A=r>moddm/l?, 4<0), and that u, commutes with all T(!") (I, m)=1).
Lemma 3.3. Let ¢ € Jy ,, and let p be a prime dividing m. Assume that |V, o u,=0 and

that ¢lu, =0 if p*\m. Then for any pair of integers A, r with A <0, A=r> mod4m and
any a=0 one has

k-2 psz gz _ pa(k_Z)'(—l)a'CqSl%a(Aar) 1fp“m
> Cd’(az 4, a0 if pm

alp*
{a,4)=1
The proof of Lemma 3.3 is straighforward (using (7) and the definition of ¥}) and
will be left to the reader. The proofs of Lemma 3.1 and 3.2 are postponed to the end
of the paragraph. We show first of all how the theorem now follows.
To complete the induction assume that (i) to (iii) are true for all m’ <m.
Let m’ run through all divisors of m, and for each such m' let f run through a
basis of normalized Hecke eigenforms in M}§*,” (m’) and /, d through all pairs of

positive integers with /d? =1mn-,. Then f|B, ,runs through a basis of M, _, (m). For

each such f let ¢ denote a non-zero Hecke eigenform in JJ having the same
eigenvalues with respect to all 7'(/) ((/, m)=1) as f. The existence of such ¢ follows
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from (ii) for m’ < m, i.e. the induction hypothesis. (If f is on I'y(m) then there exists
at least one ¢ +0 in J,_,, having the same eigenvalues as f. If ¢ could not be chosen
to be in JP¢¥ then — by the Hecke invariance of the decomposition (4) — it could be
chosen to be in JP5% with a m’ <m. But this implies the existence of a g+0 in
MEY, (m’) having the same eigenvalues as f, in contradiction to well-known
Atkin-Lehner theory.)

Consider now the map f|B, 4+~ ¢|U;° V, from M;, _,(m) to J; ,,. The asser-
tions (i) and (ii) will follow immediately as soon as we can show that this map is
an isomorphism, i.e., in view of (3), that the kernel of this map is 0. Since this
map commutes with all Hecke operators the kernel is also invariant under all
T({) (I, m)=1). Thus, if the kernel were #0, there would exist by Atkin-Lehner
theory an m'|m and an f on I,(m") as above such that a linear combination of the

flU;o v, <1d2 - > is mapped to zero, i.e. such that a linear combination of the

o|U, oV, is zero (¢ associated to f as above). Clearly m'<m. By induction
hypothesis and Eq. (5) we have &) (U, V))=C4(D,s)f|B, ;- By Lemma 3.2
we can choose D,s so that Cy(D,s)=+0. Thus the ¢|U,- ¥, must be linearly
independent.

It remains to prove (iii) for a pair, ¢, f with ¢ in J{5" and fin M3Y (m). We
have to show that

Y ak" 2( ) (12 D, ls) Cy(D, 5)a, () (®)

all
for all /=0.

First of all we consider the case /> 0. For simplicity we assume /=p® for a prime
p, leaving the general case as an exercise.

If pA'm then the left hand side of (8) is nothing else than Cyiry(Ds 5), the (D, s)-th
Fourier coefficient of ¢|T(/) (recall that D is a fundamental discriminant). Thus it
equals C,(D, s) times the eigenvalue of ¢, and hence £, with respect to T(/), i.e. it
equals the right hand side of (8).

If plm then ¢ satisfies the hypothesis of Lemma 3.3 : ¢|V,u, (and ¢|u,, if p*|m)is a

Hecke eigenform in J m (and J m) having the same eigenvalues as ¢, and hence

*p? m
must be zero (0therw1se there would be a Hecke eigenform in M, _ 2( ) <0r in
p

m . . . . S
M, ., (p_ ) having the same eigenvalues as fe MJ:¥,(m), in contradiction to

Atkin-Lehner theory) Hence the left hand side equals C,(D, 5) times /%~ 2. (=1)-¢
if p”m and 0 if p?jm, where g, is the eigenvalue of ¢, and hence of f, with respect to
W,. Thus (8) is also true for pim.
Now let /=0. Then ¢ (and hence f) must be an Eisenstein series, say
¢=E; .1 (and hence f=E{})_, with a primitive Dirichlet character y mod F,
=F?). But then (8) becomes

—;—L(Z —k, <2>>-C¢(0,0)=C¢(D, 5) o _5(0). &)

For F#1 (and hence C,(0,0) = (0)=0=0%_,(0)) there is nothing to show. For
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m=1 (and hence C4(0,0)=1) (9) becomes

; (2 —k, <D)>/5(3 —2k)=C,(D,s),

an identity which was proved in {E-Z].

It remains only to prove the existence of a linear combination in the % ,
defining an isomorphism. Let ¥,, ..., ¥, run through a basis of simultaneous
Hecke eigenforms of @ J"eWIV, Using Lemma 3.2 it is easily verified that for

Iim
each ¥, there exist a funddmental discriminant D; and an integer s; with
D;=s? mod4m such that Cy (D;,s;)#0. Choosing constants a;, ..., «, such that

r

Y @;Cy (D;,5)#0 for all i=1,...,r yields £(¥)+0 for all i where
j=1
$= Z ‘ij)D,,sj-
j=1

But then ¢ is surjective (and hence an isomorphism): let m'|m, fe M3, (m') a
Hecke-eigenform. Choose a non-zero eigenform in Ji% having the same eigen-
values as f. Clearly ¢ can be chosen so that ¢|V,,,, =¥, for a suitable /. Then
L(PNB oy 1 =L (V)= [|B,,.; With a constant ¢+0, hence L (¢)=cf, and

finally £(¢|U, - V))=c-f|B, , for all ld*=—;
We have still to prove Lemmas 3.1 and 3.2.

Proof of Lemma 3.1. Using Y p(1) [] e r)zO for all integers r whith

tlm’ pit

(r,m')y%1 (p(-) denoting the Mobius function) one easily deduces from the

assumption that
Z;wn¢uw{r1kx§]}=o (10)

tim’ plt
for all integers g.

k  k
Applying suitable matrices [ d]ef to (10) and summing up one obtains
c

m'/g d
3 ¥ uosf e l-3 w0 3 o> |
glm’ (z,:)==11 tim’ pit P tlm* xmodm’ ple P

=Z, (1)

i

—Z Z“(dn)dzz Z IT Y ¢

dim' nlm’ zmodd pln z’modp
d2|lm nl|m

plt ymodp

z ||z (11
dilp ) )
Here we used the easily proved equation

¢ [ ] ygds mzd ¢ <[ ][—]) (for all s, ¢ with st|m).

x mod st
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Consulting the definition of u, (cf. (6)) and W, (cf. (5.6)) one can rewrite (11) as

1 1
(00w (1 (-L)

m plim

0=¢

1 . .
But the operator [] <1 5 WP> is invertible. Hence

plm’
plim

1
0= ¥ u(d) - @)Uy,
i

which immediately yields the assertion.

Proof of Lemma 3.2. Let I= [] p. We shall show that ¢|V,+0. Assuming this
p|N, pAm
for the moment we then deduce from Lemma 3.1 that there exists a pair

A=r*mod4ml, 4<0, with (r,m/)=1 and C,,,(4,r)+0. Note that (r,m/)=1
implies Cyy,(4,r)= C4(4,r), hence Cy(4,r)=+0. Write 4 = F2D with a fundamen-
tal discriminant D and r = Fs’ mod 4ml for a suitable s’ with D = s> mod 4ml. In view
of formulas (5) of §0 for the action of Hecke operators on Fourier coefficients it
is then clear that Cy(4,r)+0 implies Cy(D,s)+0 (use again (r,m/)=1, hence
(F,ml)=1). Again using (r,m/)=1, and hence (s, m/) =1, it is then clear that there
exists an s=s'mod 2m/ such that s>=Dmod4mN. But Cy(D,5)=Cy(D,s)+0.

To prove ¢|V;#0 let p be a prime, p|/, and let ¥:=¢|V),,. We show that ¥ 40
implies ¥|V,#+0, so that by induction ¢=+0 implies ¢|V,+0. (Note that / is
squarefree and hence V=V, o ¥}, for all I',!” with [I'l" =1.)

So assume ¥ +0 and ¥|V,=0. First of all note that ¥ is an eigenform of T(p).
Hence in view of Eq. (5) of §0,

4y Cy (D, 5)=Cy(p*D, ps)+ (%)P"_Z Co(D,s) (12)

for any D=s* mod4ml/p, D fundamental, and with 1, being the eigenvalue of ¥
with respect to T(p). Now ¥|V,=0 means

0=Cyy, (P> D, ps)=Cyu(p*D, ps)+p* ' Cu(D,5).
Combining this with (12) yields

APC,,(D,S)=<~pk_1+<§>pk'2> Cy(D,s). (13)

But by Lemma 3.1 there exists a A=r*mod4ml/p with (r,mi/p)=1 and
Cy(4,r)+0 and as above we see that then there also exists a pair D =s*> mod4mi/t,
D fundamental, such that Cy(D,s)=+0. Note that this implies in particular

D
<;>=—1 (otherwise D=s?mod4ml with an s'=smod2mlifp and

Co,(D,5)=Cy(D,s")=Cy(D,s)*0). Thus we obtain from (13)
Ay=—p* 2 (p+1).
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Now 4, is also eigenvalue of T(p) on M,,_,(ml/p). Clearly it cannot be an
eigenvalue of T'(p) on the space of Eisenstein series in M, , _, (ml/p). Also it cannot
be an eigenvalue of 7'(p) on the space of cusp forms in M,, _,(ml/p) since then it
must satisfy

ol <P "2 (p+1)

by an elementary estimate. (Of course, one can also apply the deeper Ramanujan-
Petersson conjecture.) Thus, in each case we have a contradiction.

Appendix. Some formulas involving class numbers

For a negative discriminant 4,4+ —3, —4 denote by h'(4) the number of
equivalence classes with respect to SL,(Z) of primitive, integral, negative definite,
binary quadratic forms of discriminant 4, and set #'( —3) =%, #'(—4) =4. Recall the
well-known formulas

1 A
h(dg)=— ¥ <7°)L

Ao 0<i<)40]

Ao\ F 1
WP =K (40 750(F). 74, (F)=Y, () (72) ) )

t|F t

4, being a fundamental discriminant, F a positive integer. Also recall the function
H,(A) as defined in §1:

Hy(4)=3, h'(4lf*
SIF
if A=A4,F?, A, a fundamental discriminant, and H,(4)=0 otherwise and

Aja?b? 5, if (n,4)=a?b with squarefree b
H,(4)= a2b<n/a2b )Hl(A/a 5% such that ¢*b?%4

0 otherwise .

Finally, recall the notation .o/, (§4 of [S-Z]) for the operator which replaces a
periodic function of x (x in Z') by its average value. More precisely, /v, f(x)
=[Z":L]7" Y f(x) for any periodic function f(x) on Z", where L is any

xeZ'/L
sublattice of Z" such that f(x+y)=f(x) for all xeZ’, ye L.

Proposition A.1. Let A be a negative discrimiant, n a positive integer. Then

1 x%e(w)# H,(4), @
n n

Qmod I |FQ|
disc(Q)=4

where the sum is over a complete set of representatives for the equivalence classes with
respect to I' =SL,(Z) of all integral binary quadratic forms of discriminant A, where
I’y denotes the group of automorphisms (ST') of Q.
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Proof. The sum on the left hand side of (2) is clearly invariant with respect to
replacing Q by —Q. Hence it must be real, and we can sum as well over all positive
. . 1 1
definite Q if we replace — v, e (Q(x)) by Re <,52/1}xe <g(fl>>
Lol n [Tl/2 n
Now, if Q is primitive, then by Theorem 3 of {S-Z]

Re (&/ vy € (g@»: " a n/(n,4) ) are both congruent to 0
n or 1mod4

0 otherwise
3)
Here a denotes any integer represented by Q and prime to N.

By composition theory the set of equivaience classes modulo I' of primitive
positive definite forms of discriminant 4 forms a group. By the theory of genera the

(n, 4)
n

map Q+—

> is a character of this group which is trivial if and only if (n, 4) is a

square (or if 4/(n, 4) is a square, which here is impossible since 4 <0). Thus,
summing over primitive Q mod I’, we obtain

1 Q(X)) 1

— Aol = ==y, (mh'(4). 4
er%dr lrQl ’ (n n "
Qprimitive
disc(Q)=4

2

A .
Here, as in §0, XA(n)=a<n//%> if (n,4)=a*, A/a*=0,1mod4, and y,(n)=0

otherwise. Also here we used {Ip|=2,4,61if 4 < —4, A= —4, 4= —3 respectively.
Q(x)> on the left

Note that (4) remains valid if we replace each term dvxe(

hand side by v, e aQn(x)

modify (3)).
Hence, setting 4 =4, F?, 4, a fundamental discriminant, writing the left hand

side of (2) as
1 fox)
T ””xe<T>’

SIF Qmodl
Qprimitive

disc(Q)=4/f?
and applying (4) we obtain

), where a is any integer prime to # (use Galois theory or

LS Dl R,

fIF
Finally, applying the second formula in (1), we notice that the claimed formula
(2) is reduced to the elementary identity
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(
Ala?b? . .
@b (S ) T ralh) i 0= it

7 nEk squarefree b such
() Ly 20/, 1)) 7 4, <_> = that a*b?|4 and
fTF f Aja?b*=0,1mod 4.

L0 otherwise

®)

which we leave as an exercise to the reader.

Remarks. (1) Obviously (2) remains valid if we replace each summand on the left

1 h . . .
hand side by T A vy (aQ(Q) a being an integer prime to .
0 n

(ii) Note that a similar formula to (2) holds for 4 being a square if one omits
1

the factors 1/|Iy| on the left hand side, and, of course, replaces — H,(4) by
n

2
[ A
El—é p where (n, 4)=a?b, b squarefree (recall that l/Z for a square 4 equals
n a

the number of equivalence classes mod I" of integral quadratic forms of discriminant
A). The proof for this is the same as for (2). However, here everything can be done in

a completely elementary way using Q(4, y)=ai? +1/le (0=a< ]/Z) as a
complete set of representatives mod I' for forms of discriminant 4. We leave it to the
reader to work this out.

Proposition A.2. Let a,n be positive integers. Then

b
y icot (n ;)'ﬂvle <g b22)= —2(a,n) %: Heyam(4),
bmodn

nAb
where the sum on the right hand side is over all discriminants A<0Q such that

A[—n—

n X
@ and W is squarefree.

Proof. The asserted formula is a simple consequence of the easily proved identity

(el oo

bmodn
nXb

where ((x)) for any real number x is defined by

e 1
W jé—7 i xel+Z,0<<1
)= {0 otherwise ,

and the formula

2
z ((ﬂ))z - y H,(4) (for relative prime, positive integers a, n).
Amodn n Aln, 4<0
n/4 squarefree
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The latter can be proved by writing

B I R——

inserting the identity

#{Amodn|i*=vmodn} = y 124"

Ajn, A=0,1mod 4
o) v)=1
(e}
n

<x 4(Masin§0, 0 (m) the greatest integer whose square divides %), and applying,

after some obvious manipulations, the first formula in (1). (With respect to this
application of (1) note that for any fundamental discriminant A4, any integers a, n
with (a,n)=1, Aln one has

Z ((ﬂ)) (v)__Ol ) if 4>0
vmodn h ta - Z v((;;) if A<O)

|4} 0<¥Z)4)

Again, the details are left to the reader (or else cf. [S], Lemma 6.5).
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