
Invent. math. 94, 113-146 (1988) 
Inventione$ 
mathematicae 
�9 Springer-Verlag 1988 

Jacobi forms and a certain space of modular forms 

Nils-Peter Skoruppa ~ und Don Zagier 2 

1 Max-Planck-lnsti tut  ftir Mathematik,  Gottfried-Claren-Stral3e 26, D-5300 Bonn 3, 
Federal Republic of  Germany 
2 Max-Planck-Institut f/ir Mathematik,  Gottfried-Claren-Strage 26, D-5300 Bonn 3, 
Federal Republic of  Germany,  and 
Department of  Mathematics,  University of Maryland, College Park, MD 20742, USA 

Contents 

Introduction and description of  the "certain space" .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113 
0. Notations and basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 18 
1. The trace formula for Jacobi forms on S L z ( Z  ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120 
2. Comparison with the trace formula for ordinary modular  forms . . . . . . . . . . . . . . . . . . . . . . .  131 
3. The lifting from Jk,,, to ~012k_2(m ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136 
Appendix: Some formulas involving class numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  146 

Introduction and description of the "certain space" 

Jacobi forms are a mixture of  modular forms and elliptic functions. Examples of 
such functions are very classical - the Jacobi theta functions and the Fourier 
coefficients of Siegel modular forms of genus two - but it is a relatively recent 
observation that the Jacobi forms have an arithmetic theory very analogous to the 
usual theory of modular  forms: this began with Maass 's  proof  of the Saito- 
Kurokawa conjecture [M] and was developed systematically in [E-Z]. 

Because they have two variables, Jacobi forms have associated to them two 
characteristic integers - the weight, which describes the transformation properties 
of  the form with respect to the modular  group, and the index, which describes the 
transformation properties in the elliptic variable. The main result of this paper is a 
relationship between Jacobi forms (on the full Jacobi modular group) of  weight k 
and index m on the one hand and ordinary modular forms of weight 2k - 2 and level 
m on the other. This relationship in the special case m = 1 already played a key role in 
[M] (cf. also [E-Z], w 6). A surprising aspect of the general result is that, while on the 
Jacobi side the numbers k and m affect only the automorphy factor and the group 
never changes, on the other side the group itself varies. In particular, the Jacobi 
forms of all weights and indices form a bigraded ring, the product of  Jacobi forms of 
index m 1 and index m z having index mt + m  z, but there is (presumably) no natural 
way to produce a modular form on, say, F0(7 ) from modular forms on/ 'o(2  ) and 
ro(5). 



114 N.-P .  S k o r u p p a  a n d  D.  Z a g i e r  

We will now be a little more specific. Let Jk,m denote the space of Jacobi forms 
on SL 2 (7/) of weight k and index m (see [E-Z] or w 0 for the exact definition). One 
can define in Jk,,, a subspace of oldforms (coming from Jk.,,, for proper divisors m'  
of  m) and a complementary space (for cusp forms, the orthogonal complement) 
jffw of newforms; one also has for all l>  0 prime to m Hecke operators T(l) on 
Jk,m preserving Jff~ (cf. w of [E-Z]). For mzk_z(m), the space of  holomorphic 
modular forms of weight 2k - 2  on Fo(m), the analogous notions are, of course, 
standard. Let M2k-2(m) denote the space of all forms fEMzk_z(m ) satisfying 

mrr =( - -1)kmk- l r2k-2f (~)  (the " - - "  in the notation refers to the fact that 

the L-series of  such an f satisfies a functional equation under s ~ 2 k  - 2  - s  with 
root number - 1  and, in particular, vanishes at s = k - 1 ) ,  and M ~ ' Z ( m  ) 
= M~, ~- 2 (m) c~ M[k_ 2 (m). Then we have : 

Main Theorem. Let k, m, and l be positive integers with (l, m) = 1. Then 

new m 2 k _  2 tr (T(l), J[,, ,) = tr (T(l), ,ew, - (m)). 

The relationship between old and new Jacobi forms is not the same as between 
old and new modular forms: a newform in Jk,,,' (m'lm) occurs in Jk.., with smaller 
multiplicity (i.e., has fewer lifts to Jk,m) than a newform in M2k_2(m' ) does in 
M2k_2(m ). Thus the above theorem does not say that the full space Jk,r, is 
isomorphic as a Hecke-module to Mfk_2(m ). Instead, it turns out that there is a 
canonical subspace 93l 2 k- 2 (m) C M 2 k- 2 (m), containing the space of newforms, for 
which one has: 

Main Theorem (2nd version). The space Jk,.~ is isomorphic to ~12k_z(m ) 
~ Z  k - 2 (m ) C~ Mzk-  2 (m) as modules over the Hecke algebra. 

We will explain the definition of  the space 9J/2k_2(m ) in a moment.  
The proof  of  the main theorem proceeds in three stages. In w 1 we apply the main 

theorem of our previous paper [S-Z], which gave a general trace formula for double- 
coset operators on spaces of  Jacobi forms, to compute explicitly the trace of T(l) - 
or, more generally, of  T(l) times an Atkin-Lehner involu t ion-  on Jk,= (Theorem 1). 
The computation is quite technical but includes some pretty results, such as a 
formula expressing a certain class number as a linear combination of  Gauss sums 
associated to binary quadratic forms (Appendix, Proposition A.1). In w we 
transform the usual Eichler-Selberg trace formula for Hecke operators as given in 
the literature into a form suitable for comparison with this and express the trace of  

new, -- t T(I) on Jk,m as a linear combination of the traces of  T(I) on M2k_ 2 (m) ,  m'[m 
(Theorem 2). This is then used in w 3 to establish the main properties of  Jacobi 
newforms and to prove the main theorem as given above. The result actually 
proved, Theorem 3, not only asserts the isomorphism of Jk,,, and 9J/~-k_2(m ) but 
gives a collection of explicit lifting maps 6eD,~ (indexed by discriminants of  
imaginary quadratic fields D and residue classes s (mod 2m) with s 2 = D (mod 4m)) 
between these spaces. 

The main application so far of  the result of  the present paper is the theorem 
proved in [G-K-Z], which asserts that the classes of  Heegner points on a modular 
curve Xo(m ) in the Mordell-Weil group of  its Jacobian are the coefficients of  a 
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Jacobi form (of  weight 2 and index m). Also, in Chap. II o f  [G-K-Z] a kernel 
function for the lifting maps ,9"o. S is constructed and its Fourier  coefficients 
computed.  (Note that both Heegner points on Xo(m) and coefficients o f  Jacobi 
forms of  index m are naturally indexed by pairs D, s as above.) 

We devote the rest o f  this introduction to a discussion of  the space ~Jik(m ) 
(k, m > 0, k even), which we think are o f  interest independently o f  the theory o f  
Jacobi forms. The most  natural definition is as follows. The full space o f  modular  
forms Mk(m)=Mk(Fo(m)) has a basis (not unique) of  forms f whose L-series 

L(J~s)= ~ ay(n)n "~ (ay(n)=n th Fourier coefficient o f  f )  has an Euler 
n = l  

product.  Any such f is an eigenform of  all Hecke operators T(l) with (l, m) = 1 and 
"comes f rom"  (i.e., has the same eigenvalues for all such T(l) as) a unique form 9 
which is a newform on Fo(m') for some m'  dividing m. a The quotient L(f, s)/L(9, s) 
is a finite Dirichlet series with an Euler product  IIQp(s), wherep runs over the prime 
divisors of  m/m' and Qp(s) is a polynomial  in p-S. The L-series L(g,s) has a 
functional equat ion under s ~ k - s ,  and L(f ,  s) can be assumed also to have one 
(this is equivalent to r equ i r i ng f  to be an eigenform of  all Atkin-Lehner  involutions 
on Mk(m)) ; under these assumptions, each of  the Euler factors of  L( f ,  s)/L(g, s) will 
have a functional equat ion 

Qp(k-s)= +p ~k-2~)Qp(s ) (pVltm/m'). (1) 

The space 9Jlk(m ) is then the space spanned by all f for which the sign in (1) is " + "  
for all p. Notice that it is only under this condit ion that the order o f  vanishing of  
L(J~ s) at s = k/2 can be the same as that o f  L(9,  s) : as soon as even one sign in one o f  
the equations (1) is " - " ,  L(J~ s) vanishes at s=k/2 to a higher order than L(9, s) 
and the leading term of  its Taylor expansion at this point is the product  o f  the 
corresponding quanti ty for 9 with some extraneous factors logp. It is thus natural to 
expect 9Jlk(m ) to be the relevant space o f  modular  forms in any context like the 
Birch-Swinnerton-Dyer conjecture where the leading term in question is supposed 
to have a natural interpretation as the regulator o f  some height pairing. It also 
explains why 9~- (m)  is the space occurring in the result about  Heeger points 
mentioned above, since the heights o f  Heegner points are related to the derivatives 
o f  L-series o f  cusp forms of  weight 2 having an odd functional equation. 

Apar t  f rom the naturalness of  its definition and its occurrence in connect ion 
with Jacobi forms, the strongest indication that the space 9Jl k (m) is impor tant  is that  
the trace formula for Hecke operators is actually simpler for fglk(m ) than for either 
M R (m) or M~ ~w (m). This can already be seen on the level of  dimensions (i. e. the trace 
o f  the operator  T(I)),  as we now discuss. The well-known formula for dim M k (m) is 

4 

dim Mk(m ) = ~ ci(k)fi(rn), (2) 
i = 1  

This statement is not quite true for the case that k=2, m> 1, and f is an Eisenstein series having 
eigenvalues a~(/)=~ d. Here it has to be interpreted in the sense that g(z) is the non-holomorphic 

rill 
1 1 t - - - +  ~ ~rt(n)e 2~"~ andf(T)= ~ cdo(dz) with ~d-lc,l=O. Eisenstein series 

-2-4- 8~lm(Q , 1 hi,, 
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where 

k - -  1 1 1 1 
r (k) , c2(k)=~, c 3 ( k ) = - ~ Z a ( k - 1 ) ,  c 4 ( k ) = - ~ z 4 ( k - 1 )  

(Z3 and Z4 the primitive Dirichlet characters of conductor 3 and 4) and the f~(m) are 
the multiplicative functions given on prime powers by 

f ,(p~)=p~+p~-l, 

f2 (pV) ___p[v/2] +pttv- 1)/21, 

f3 (P~) = Z3 (P~) + Z3 (P~- 1), 

f4(pV)=Z4(pV)+ Z4(p~-l). 

It is very striking that each f~(p ~) has the form gi(p ~) + gi(p~- 1) with a much simpler 
multiplicative function 9~, namely: 

gl(m)=rn, gz(m)=a where m=aZb with b squarefree, 

g3(m)=z3(m), 94(m)=z4(m). 

Using Atkin-Lehner theory to relate Mk(m) to M"~Wtm ~ k ~ j, we find an analogous 
statement for the latter space: the dimension of  M~~ is given by a formula like 
(2) but with f~(m) replaced by the multiplicative function f?eW(m) given on prime 
powers by 

f .,~W (p~) =gi(p~) _gi(p~- l) _gi(p~- Z) + gi(p,,-z) 

(with the convention 9i(P u) = 0 for # < 0). Thus f/"r g i (m)~(m)  and 91 is a 
much simpler function than either f~ or f,~w. This alone already suggests the 
existence of a natural intermediate space OJl k (m) between M~ ~ (m) and M k (m) with 
dimension given by 

4- 
dim ?Olk(m ) = ~ ci(k)gi(m ) (3) 

i=1 

and such that there is a natural decomposition 

Mk(m ) = (~ 9Ytk(m' ) (4) 
m'[m 

m/m' squarefree 

corresponding to the formula f i (p  v) = 91(p ~) +gi(p ~- 1). Equations (3) and (4) are 
indeed true for the space 9Jlk(m ) defined above. Equation (3) can be written in the 
even simpler form 

dimgJlk(m)=d(m(k-1))+�89 (a as above), (5) 

�9 n 1 1 
where d(n) is the hnear-plus-periodic function-~ - ~ Z3 (n) - ~ Z4 (n). For  cusp forms 

the situation is similar: dim Sk(m ) is given by a formula like (2) but with c I = - �89 and 
an extra contribution 1 if k = 2, and the dimension of ~k(m)= 9Y~k(m ) C~ Sk(m ) is 
given by (5) buth with �89 a replaced by 1 - ~ a  and an extra contribution 1 ifk = 2 and m 
is a perfect square. (Compare [E-Z], w 10.) 
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As already mentioned, the simplification occurring for the dimensions on 
passing from M to 99/occurs also - indeed, even more strikingly - for the traces of  
Hecke operators. The trace formula for SL 2 (Z) (cf. [Z]) has the relatively simple 
form 

1 ~ Pk(S,l)H(s z - 4 l )  tr (T(I), Sk(I)) = -- ~ s2 ~4t 

1 ~min( l , , l / l , ) , _ l+{01( l  ) if k = 2 ,  
2 ~'lt otherwise, (6) 

(here Pk (S, l) is a certain Gegenbauer polynomial and H(A) a certain class number;  
cf. w 1), but the trace formula for Fo(m ) for m > 1 as usually given in the literature is 
very much more complicated. In contrast to this, the formula for the trace of T(I) on 
~k(m) for m > 1 is hardly any worse than (6): one simply replaces H(A) by a slightly 
modified class number H,,(A) (for the definition, see w multiplies the term 
min (l', I/l')k-1 by the g.c.d, of a and l' -I l l ' ,  and omits the third term in (6) unless m 
is a perfect square. (This is Sk/2+l,,,(I, 1) in the notation of Theorem 1, w 1.) 

Finally we would like to point out that the trace formulas occuring in this paper 
are given in a form which can immediately be put on a computer. Although it is not 
the main object of  this paper to enrich the variety of explicit trace formulas existing 
in the literature by our versions some readers may nevertheless wish to use our 
formulas for explicit computations, and thus may find it useful to have a short guide 
to these formulas. Here it is: 

For ( l , m ) = l  and nlm with ( n , m ) = l  let T ( / ) a n d  W, denote the l-th 

/ % 

\ / 

Heckeoperator and n-th Atkin Lehner-involution on Jk,,, and M2,_z(m ) (a precise 
definition is given in (3)-(5), (7)-(9) of  paragraph 0 und (1), (2) of  paragraph 2); let 
Sk, m denote the subspace of cusp forms in Jk,m and ~k(m) = 9Jlk(m ) c~ Sk(m ) ( =  cusp 
forms in 9Jlk(m)). Finally Sk.~(1, n) is the quantity described in Theorem 1. Then 

tr (T(I) o W,, ~2k_z(m)) =Sk,,,(l, n), 

tr (T(I) o W.,Szk_2(m))= ~ Sk,m,(l,(n,m')), 
? ? / ' [ m  

re~m" squarefree 

 new (m) Sk, ~, (l, (n, m')) t r (T(l)o , ,Szk_z(m))= ~" 
mqm ~7 

(where c~(m) denotes the multiplicative arithmetic function such that c~(p) 
= e(p2)= _ 1, e (p3)= + 1 and e(pS)= 0 (s > 4) for any prime p), 

 'kskm('m)} tr (T(I) o IV,, Sk,m) =~ 

tr (T(l) o W., Sk"~) = ~ , ~7 
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(with e(m) as above). The case (/, m) greater than 1 must be excluded since the space 
~k(m) is not invariant under the T(p) with plm. Via results from IS] the above 
formulas also yield ready-to-compute formulas for traces of Hecke-operators 
acting on spaces of modular forms of half-integral weight. 

w O. Notations and basic definitions 

As main reference for the basic facts and definitions from the theory of Jacobi forms 
we refer to [E-Z]. Here we briefly summarize those items that we shall need in the 
following. 

~(IR) denotes the Jacobi group SL2(IR)~( IR 2- S 1. A typical element of J ( IR)  
has the form ~ = A [x]s with A ~ SL 2 (lR), x ~ IR 2, s ~ S 1 (the multiplicative group of 
complex numbers of modulus 1) and the product of r and an element ~ '=  A'[x']s' is 
given by ~ . ~ ' =  (AA ' ) [xA '+x ' ]  (ss'eZgil~fl). Here x A ' i s  the result of applying the 
matrix A' to the row vector x and [~'[ is the determinant of the matrix built from the 
row vectors xA'  and x'. For subsets G, L, K of SL2 (IR), ]R 2, S 1 respectively we use 
G ~ L .  K for the subset {A [x]s]A E G, x ~ L, s ~ K} of J (IR). For k, m ~ Z there is an 
action of  J(1R) on functions on .~ x ~; (19 = upper half-plane) given by 

- em( ) (4)[k"~) (z ' z )=(cz+d)  \ cv+d  t -22z+22z+2# s" 

( a z + b  z + 2 z + g )  

" 4 \ c z + d '  e z + d  

where e=(x) denotes e 2~imx. We shall always use F to denote the full modular group 
s g  2 (7~), F J for the corresponding Jacobi group SL2(TZ)x 7/2, and Jk,~ for the space 
of Jacobi forms of weight k and index m on F, i.e., holomorphic functions 
~b : .~ x 117~11~ satisfying q~lk, ,~ = 4~ for all ~ e F  s and having a Fourier development 
of the form 

qS(z,z)= ~ c(n,r)q"~ ~ (q=e  2~I~, ~=e2~iz). (1) 
n , r ~ Z  

4mn --rZ > O 

The subspace of  cusp forms (i.e., q~ with c(n, r) = 0  unless 4mn - r  2 > 0) is denoted 
Sk, m. As a simple consequence of the invariance ofq~ with respect to 7/2 c F s, one has 
that c(n, r) depends only on r 2 - 4 m n  and on r (mod 2m), so we can also write (1) in 
the form 

r 2 - A  

,~(~,z)= y~ C(~,r)q " ~" (21 
A,r~Z ,A<O 

A -= r z (rood 4m) 

where C(A, r) depends only on A and on r (rood 2m). 
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For a positive integer I with ( / ,m)= 1 we have a Hecke operator T(l) on Jk,,, 
defined by 

4)IT(l) =/k-4 ~ ~ 4)lk,,, ~ M.[x] (4)eJk,,,), (3) 
x e Z 2 / I Z  2 M e F \ M 2 ( Z )  

det (M) = l 2 
gcd(M) ~ 

where "gcd (M) = D "  means that the greatest common divisor of the entries of M is 
a square. In the notation of [S-Z] this can be written 

V(l)=l k-'* ~ ~, Hk,,,,r F' t" F" , (4) 
1'1l 

I/V = [] 

where Hk,m,r(A ) for any / 'J-double coset A (or finite union of such sets) in 
j ( Q ) :  =SL2(Q)~ < Q2 .S t is the operator 4>--+ ~ 4)]k,m~- In [E-Z] it was shown 

cer'\A 
that the Fourier coefficients C*(A, r) of4)IT(l) are related to the Fourier coefficients 
C(A, r) of 4) by 

(,2 t C*(A,r)= ~ ak-2)~a(a)C A,r' 
<,2 7~ , ( s)  

the sum being over those all 2 with a21lZA, 12A/a z - 0 ,  1 rood4, with r' determined 
__12 (A/f 2 )_.,. ,  

by lr=-ar'mod2m(a,l) and r'Z=~2Amod4m, and with za(a)=f a~ T if 

(a, A ) = f  2 with A~f2-O, l mod4 and za (a )=0  otherwise. 
Also it was shown that 

T(1)T(l')= ~ d2k-aT(ll'/d2). (6) 
dl~,r 

For nllm (i.e. nlm and n and m/n are coprime) we define 

where p, denotes the group of the n-th roots of unity. (Note that F ~ (~ Z2) -/~, is 
invariant with respect to right and left multiplication with elements of FJ.) One 
easily verifies that 

x e 7s / n Z  2 

Also it is not hard to verify that 

r2 --~ 

4)[W, = ~ C(A, 2,r) q 4" (~ (C(A, r) as in (2)), (9) 
A , r  

where 2, is the modulo 2m uniquely determined integer which satisfies 
2 , - - - -1  mod2n and 2,---+1 mod2m/n (cf. [S]). Thus the IV. form a group of 
involutions. 

Finally note that the IV, and T(l) commute, as is easily seen by (3) and (8) or (5) 
and (9). 
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w 1. The trace formula for Jacobi forms on SLz(2E ) 

The object of this paragraph is to apply the results of IS-Z] to obtain a formula for 
the trace of T(1)o W, on Sk,, .. 

We need some definitions. 
We define a function H.(A) for integers n > 1, A < 0. The function H 1 (A) equals 

H(iA[), where H(  ) is the Hurwitz-Kronecker class number, i.e. 

1 
H 1(0)-  12 

and HI(A ) for A <0  is the number of equivalence classes with respect to F of 
integral, positive definite, binary quadratic forms ofdiscriminant A, counting forms 
equivalent to a multiple of x 2 +y2 (resp. x 2 + xy +y2) with multiplicity �89 (resp. �89 
Note that H i ( A ) = 0  unless A -=-0 or 1 (mod4). For  n > 2  we write (n, A)=a2b with 
squarefree b and put 

H,(A) = 
otherwise. 

Furthermore, for numbers s,l  and integers k > 2  we define pk(S,l) as the 
coefficient of x k-2 in the power series development of (1 - s x  + lx2) - ~, i.e. 

Qk-1 _Q,k-1 
pk(s, l)-- (0, O' the roots of X 2 - s X + l = O )  if S 2 - 4 l + 0  

Q- i f '  
/s\~-2 

Pk(S , l )=(k -1 )~5  ) if s 2 - 4 / = 0 .  

Finally ~0(n)= ~ l, e l (n )=  ~ d (as usual), Q(n) denotes the greatest integer 
dln din 

whose square divides n (i.e. Q(n)= f I  p[;~/21), and 6(~ ' )=  1 or 0 accordingly as the 
p~lE. 

statement ~ is true or false. 

Theorem 1. Let k, m, l, n be positive integers, k > 2, (l, m) = 1 and n IIm. Then 

tr l {Sk , , ( l , n )+( - -1 ) kSk , , ( l ,m) } ,  (T(0o W., S~,.,)=~ , 

where Sk,m(l, n)for any n[I m is given by 

Sk,m(l,n)=---2 ~ ~P2k-2  - - ,  l __ --4ln') 
n'[n 
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the sum over s bein9 over all integers s satisfying s2<=4ln',n'ls, n 
squarefree. ~7 'n '  

The rest of this paragraph will be devoted to the proof of this formula, and will 
presuppose familiarity with the paper [S-Z], whose notations we will not repeat. 

Proof. Let M~SLz(Q). Then by (7) of w and by standard computations in the 
theory of Hecke algebras 

=n- 2 Z * r ' )  

where 

To the right hand side of this we can apply Theorem I and the supplementary 
formulas (3.10), (3.1 l) of [S-Z] to obtain 

tr (Hk,m,r(CJMCJ) o W~, &,,~) 

=den.(M) ~ I~,m,r(A)9(A ) (1) 
A~FMF/~.r 

+c3(k=2). tr(H~,, , , r(FJMFJ)o W*, * J1, ~) 

where den. (M) denotes the smallest integer l' such that I'M is integral, where W* 

andJ~,m are used for H~,m,r(F~< ( !  7Z2)./~,)and J~,,(F)respectively, and where 

9(A)=den.(M)-ln -2 ~ c(~)4e(7lz\Zz~z z) "Gm(~) 

=den . (M)-an  -2 ~ c(~)Gm(~). 

For the definitions of Ik,,,,r(A), G,,(~) and "~,,,r see w 1 of [S-Z], for the definitions 
of H*( ) and Jl,, ,( ) see w 3 of [S-Z]. In (2) 7/. 2 has to be considered as subgroup of 
J ( ~ ) ,  i.e. 7/. 2 has to be identified with {1 } ~< 7/, 2. (1 } ; in particular ~ runs over a set of 
representatives for the 7/Z-double cosets (or 7/~-left cosets in the second sum) of 

712 A (~ 7lz) " p,, the latter denoting the product of the complexes {1} ~< TZZ " {1} and 
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For a ~ on the right hand side of (2) we can write 

c(~)= #6 {q~ T]2\(! ~2 )  " [2.[~ e TZ2 A T]2r]} . 

Also, consulting the definition of G,,(~) in [S-Z], it is easily seen that G,,(~) = G,,(Aq) 
for ~eZ2AZat l  with qe  n 7z2 "P"" Hence (2) becomes 

9 (A) = den. (M) - 1 n - 2 Gm (A r/) E Y 

and 

1 Y~n Z2/Z2 

For  the definition of the functional ~ ' ~  (which assigns to a periodic function of 
x ~ 77 r its average value) see w 4 of [S-Z] or the Appendix; Qa stands for the binary 

quadraticformQM(2,1~)=b22+(d_a))~#_cp2(A=[a c b]). 
Finally, combining (4) of  w 0 and (1), we arrive at the explicit formula 

tr (T(l) o IV., Sk, m) 
= / k - 2 .  ~ Ik, m,r(A)9(A)+f(k=2)ltr(T(l)*o W.*. , J*l,m, ~ (4) 

A E SLz(~)/~ ,,.r 
lA integral 

g.c.d.(/A) --C] 

=den.(M)-ln -2 ~, :~ (7Z2\~2A Z2r/)"G,,,(A~I). 

= n-1 ~, Gm(A [y]) 
ys~ Z2/Z 2 

where in the last equation we used #(7/2\2UAZ2q)= •(7/2\Z2AZ2)=den.(A) 
= den.(M). Now we apply Theorem 2 of [S-Z] to obtain 

0(A)= - , )  2 
| .~e(QA)slgn(t+2)(t+2)'/2~vxe 0A(X) if t = t r ( A ) +  --2 

(3) 
Here we have used the obvious identies 

dv~e(t ~ Qa(x+Y)):nZ~e(n2~tm-_2) Qa(x)) 
I Z2/Z z 

Y~n 
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the sum being over a complete  set of  representatives of  ~ , , , r  - equ iva l ence  classes 
contained in {A 6SLz(II~)llA integral, g.c.d. ( /A)=D},  with Ik,,,,r(A ) as in Theo-  
rein I o f  [S-Z], 9(A) as in (3), and T(l)* given by a formula  like (4) o f w  but  with k 
= 1 and Hk,,, ,r replaced by H~, , , r .  

We shall now investigate the first sum in (4). For  this purpose  we decompose  it as 

Sell. -~- Shyp. + Spar. -{- Sscal. , 

where Sell, Shyp. etc. denote the contr ibut ion of  the elliptic A, hyperbolic A etc. 

The elliptic contribution 

For  an elliptic A one has 

where 

sign (c) ~312-k 
lk"'r(A)-- Ir~l e - o "  

O= t+sign(c)(t2-4)l/22 ' t= t r (A ) 'A=I ;  :]" 

Thus Ik.,,,r ( - A ) =  -l~,m,r(A ). Also, by (3), one has 9 ( - A ) =  -9(A).  Hence 

Seu.=21 k 2 ~ Re(ik,m,r(A)9(A) ) 
A 

=21k 2 ~ Re(ik,,,,r(A))Re(9(A))_2lk-2 ~ im(ik,m,r(A))im(9(A)), (5) 
A A 

the sums being over those (elliptic) A mod  ~m,r  with positive left entry. 
Let us consider the first sum on the right hand side of  (5). 
Here one has 

1 pzk_2( l[//~2),l)" 1 lk-2Re(Ik'"r(A))= 2 ] / t  + 2 IF~AI ' 

and using 
2 \ 2 / 

{(m:5 ,) (m:/+ ,)} 2 R e 0 ( A )  m (t+2)1/2 d v ~ e  QA(X +~r Q~-m(x 
n 2) 2) 

by the second formula  in (3), using --QA=Q_A . Thus, the first sum on the right 
hand side of  (5) equals �89 n),ll., where Sk,m(l, n)ell ' is defined for any n jim by 

o<,<41 n f~A~ Avxe ~aa.lQA . (6) 

The first sum is over  all integers a with 0 < a < 41, and the second sum is over  all (!) 
elliptic A modu lo  F-conjugacy  such that  lA is integral, tr (A) + 2 = a/l, and g.c.d. (lA) 
is a square in 7/. 

A similar calculat ion for the second sum on the right hand side of(5)  (using now 

U (~ the first formula  for 9(A) in(3)) shows that  it equals Sk, m l, ~ ell.' 
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As is well-known, the map A ~1- QA defines a bijection between {A e SL2 (Q)I/A 
integral, tr(A)+2=a/l} and integral binary quadratic forms with discriminant 
a(a - 4 l ) ,  such that F-conjugacy classes on the one side correspond to equivalence 
classes with respect to F on the other side. Furthermore, [Fa[ corresponds to [FQA [ 
(ira,, c F the automorphism group of Qa), and, as is easily checked, g.c.d. (IA) = [] 
corresponds to (c(Q), l) =F1, where c(Q) denotes the g.c.d, of the coefficients of Q. 
Hence the inner sum in (6) equals 

e . ,o~  Ire- ~ dvxe  maa Q(x) , (7) 
d(Q) =a(a - 4 0  

(c(Q),/)= [] 

where the sum is over all integral, binary quadratic forms Q modulo F with 
discriminant d(Q )=a(a-4 / )  and (c(Q ),l)=[]. 

To get rid of  the condition "(c(Q), l)=1--1", we use Liouville's function 2(n). It 
has the characteristic property ~ 2(d)=  6(n = D). We can therefore rewrite (7) as 

din 

tll,a Qmod/" [rQI dvxe  ma t 'Q(x) . (8) 
d(Q) =a(a-41) / t  2 

Now, by Proposition A.1, the inner sum equals 

ma ~-1 (_a(a~241)) 
n(n,a)tJ H ma n(n,a)t 

(to apply this proposition, note that (-~ a, n t ) : (a ,n)  t, since n llm and (m,l)=l ). 
Thus (8) becomes 

t[l,a~ 2(t)(\n(n,a)tjma ,]-t (a(at ~ 4 0 )  H ma ~ . (9) 
n(n,a)t 

We shall show in a moment that (9) equals I(m) ((s;) 
-1H~_(sZ-4ln') if a=s2/n ' with n'l(n,s) and ~ ,  ~ =squarefree 

i1 
0 otherwise. (10) 

Note that n' and s are uniquely determined by a. Thus, summing in (6) over n', s 
instead of a, we shall end with the formulas 

Sk,m(l, n)r = -- ~. 
n'[n 

p2k_2(s/ n',l)Hm 2 .~,~ Z ~ ~(s -41n ,, 
s>O 

sZ < 41n ' 
n'ls 

(n~, (n~,)2) =sq uarefree 
(11) 
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To show that (9) und (10) are equal we note first of all the following simple 
property of our function H:  let r,s be positive integers, let A <0  with rlA, write 
r=xa/y with squarefree y and assume (y, s)= 1 ; then Hr~(A ) equals rH~(A/x 2) i fx  2 

divides A as discriminant i.e. x2lA, ~ - - 0 ,  I m o d 4  and 0 otherwise. 

Now write a =bc with (b, l) = 1 and cll ~. Then, since (m, l )=  1, we have for any 

t[(l, a) the decomposition ma c mb c mb - with ~ and ~ being relative prime 
n(n,a)t t n(n,b) t ntn, o) 

andwith 4 l ) . H e n c e H  ,., equals H , ,b  

with squarefree y and x 2 dividing a(a - 4 l ) / t  2 as discriminant and 0 otherwise. Note 
that the condition "x 2 divides a(a -4 l ) / t  z as discriminant" is equivalent to x2t2]cl 
since clearly xt[c and (b, x t)= 1. Substituting this into (9) gives 

.(.,b) ?(a-41)) 
H ,,b (12) E, \ x2t2 } 

C X 2 
with t running through all divisors of (l,a) such that - = - -  with squarefree y 

t y 
and x2t2[cl. We split this sum into two sums, one over X ( = x t )  and one over t, 
where X runs through all divisors of c with clX 2, X2lcl and where t runs through all 

X 2 
t I -  with XZ/ct squarefree. By well-known properties of Liouville's 2 the sum over t 

d 

equals 1 if X2/c= 1 and 0 otherwise, Hence (12) becomes 

n(n, b) 
- -  H mb (b(a-41)) if c = D  

mb .(.,b) (13) 
0 otherwise. 

b 
To further simplify (13) let now ~ play the role o f r  in the above formula for 

( n ,  o )  
b x 2 

Hr,(A). Write - -  , y squarefree. We shall show in a moment that (13) is 0 
(n,b) y 

unless y divides (n, b ). The latter implies in particular (y, m ) =  1. Thus (13) becomes 

(b(a-41)  
n Hm \- ~ j if c=l-'l, yl(n,b), x2lb(a-4l)  

0 otherwise. 

But this can now be written in the form (10)with n'=(n'l  b) and s = ( n , b ) x  ]/~. 
J J 

So assume now that (13) is different from 0. Then x 2 clearly divides b(a - 4 l )  and 
furthermore 

b(a -41)  
=0,  1 mod4 .  (14) 

X 2 
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b(a -41)  
x2 -{(n,b)2x2c-4l(n,b)y}/y z with ylx 

and since c = [] by assumption we see that (14) implies yfl(n, b). Since (y, I) = t (note 
ylb and (b, l) = 1) we finally deduce y}(n, b) as was to be shown. 

The hyperbolic contribution 

Using the second formula for g(A) in (3) one finds that the contribution of the 
hyperbolic matrices with positive trace is given by �89 re(l, n)hyp, where for any n Hm 
the expression sk,,,(l, n)hyp, is given by 

(15) 

Here t turns through all positive rational numbers with denominator 1 such that 
t 2 - 4  is a square in Q\{0}, and A through all matrices with t r (A)=t ,  lA integral, 
g.c.d, (lA) a square. 

Using the first formula for g (A) in (3) one easily verifies that the contribution of 

the hyperbolic matrices with negative trace is given by sk, m l, n hyp. 

By exactly the same arguments as in the foregoing section and by the remark 
following Proposition A. 1 we deduce that the inner sum in (I 5) is different from zero 
if and only if there exist positive integers n' and s satisfying 

n'ln, n'[s, l(t + 2)=sZ/n ', ~;, ~ is squarefree, 

andthati t thenequals(~,s2-4ln ') t imestheclassnumberofbinaryquadratic  

forms of discriminant//._. (s2 -4ln')/x 2 \ \  ( ( m ,  s2 -4ln ' )  x2 e) = y ,  y squarefre , i.e. 

(sZ-4ln') 1/a Q ( ( ~ ,  s2-4ln ' ) ) .  (Note that t 2 - 4 = s q u a r e  in I1~\{0} implies 
\ \ - -  / /  

s 2 - 4 ln' = 12 (t 2 - 4) n'2/sZ = square in Z\{0}.) 
Inserting all this in (15) yields 

Skm(l'n)hyp ~- -- E E Q m, s2 41n , , (16) 
' " .. i .  , t s + ] ~ S ~ _ 4 1 n , t Z k - 3  \ \ n  

k ~ J 

where s runs through all positive integers such that 

s 2-4ln'=square in 7Z\{0}, n'ls, and n~, is squarefree. 
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/n' 
Now the condition S 2 - 4 tn '= squa r e  (+0)  is equivalent to s = d + ~  with a 

, /  l n " ~  . 
suitable positive integer d satisfying dlln', d 2 < ln'. But n'[s, i. e. n [ t d + ~ ), t oget,er 

\ / 
with (l, n') = 1 (since (l, n) = 1 ) then implies that n' is a square, say n' ,,z =n  , a n d t h a t d  

/ 

=n"l' for some I'll, l'2<l. Thus, setting n '=  n"2, s=n"(l' +~,] in (16), we obtain 
\ l j  

Sk.,,(l, n)hyp. = -- ~' ~ n"l'2k-3(Q(m/n), n"(l' -l/l')), n"21n I' 
the sum with respect to l' being over all divisors l' o f / such  that l'2<l, n"l(l' + f,) 

l' n "2 a n d ( n , (  + / ) 2 ) /  is squarefree. Finally, no t i c ing tha t (Q(m) ,n ' ( l ' - l ) )  

=(Q(m) , ( l ' - l ) ) ( s ince (m,n" )=l )and tha t thesum~n" ,wheren"runs  

I r n -2 through all positive integers with n,,2ln, n,,l(l, +l), (n, ( + / ) 2 ) /  = squarefree, 

equals (Q(n), (l' + l ) )  we arrive at the formulas 

t'Lt �9 l '  1 m Sk,m(l,n)hyp.~- 2 l ' 2 k - 3  ( Q ( n ) ,  q-~)'(Q(I-H),I'-I ) 
1'2<1 

(17) 

The parabolic contribution 
A complete set of representatives with respect to ~, , , r  of the parabolic matrices A 
such that lA is integral and g.c.d.(lA)=l-q is given by 

Thus, using 

- -  - -  b 
Ik'm'r --+ 0 16m --icotrC--4ml 

if 4mllb 

otherwise 

and the formulas (3) for 9(A), we may write 

 par n'par l'kSkm(' m) art 
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where for any nllm the expression Sk,m(l ,/'/)par. is defined by 

sk.,1 (l, n)p,r. - 4 ~" d v ' z e  4 - ~  hA'2 
b m o d 4 m l  
(b, l) = [] 

( - 1 )  k 

m/n E 
b mod 4ml 

4ml,~b, (b, l) = [] 

To simplify the first sum in (18) we note that 

e 4 - ~ b 2  2 =22(t)  ~, e ~mlb~. 2 =4ml 
b m o d 4 m l  /I t[l b m o d 4 m l  
(b,l) = [] t[b 

so the first sum in (18) equals 

;~(t) 
tbt t 

4mlln2tA 2 

2( 0 ~{2mod4mllt  ~4ml[nZt2} _ ( 4ml 
- ~ 2(t) n(4, n) O \ ~ ]  

=6(l=(]).2n~/l.Q((4, n))Q(~). 

Here we used that l and m are relatively prime, so that 

Q ( ~ ) = Q  ((4,4n))Q (nm~)Q (~), (4, n) Q ((4~n~)= 2 Q((4, n), 

and 

The second sum in (18) can be written as 

2(0 2 /cot rt ~ ~ % e ~ - ~  b2 2 , 
b m o d 4 m l / t  

b ~ O m o d 4 m l / t  

and here by Proposition A.2 (and (nl, m) = 1) the inner sum equals 

n A <O,A-----O, 1 mod4 
A 4nl/t , 4~,/t is squarefree 

(4, m) (4, m) A 

(18) 

(19) 

which can be simiplified to 

m 
- 2 - -  

n 
y H_.(A). 

/1<0, A-=0, I mod4 n 
4nl/t  

A[4nl/t, ~ -  squarefree 
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Now for a A from this sum one easily verfies 

Z 4ml 2(t) = {10 
ttL 

A 
4ml 
-At- squarefree 

if A = - 4 / n '  for some n'ln with n/n' squarefree 

otherwise 

(use again (/, m)=  l), and in view of this (19) becomes 

- 2 t_n ~. H ~ _ ( - 4 l n ' ) .  
n n 

11'17t 
n'n" squarefree 

Putting this all together, we find 

l ( __ ])k/k-2 
Sk'm(l'n)par'-- 2 O(l=N)lk-3/2O((n'4)) 2 H,._(- 41n'). 

n']n n 
n/n' squarefree 

(20) 

The scalar contribution 

Here we find 

(20 

If we now compare (11), (17), (20), and (21) with the formula for sk, m (/, n) given 
in Theorem 1, we see that the theorem is proved for k 4= 2 : the terms in the first sum 

in Theorem I with 0 < Is] < ]/41n' equal (1 I); the terms with s = 0 equal the second 

term of (20) (since pzk_2(0, l )=(--1)k/k-z) ;  the terms with s=  +_V41n' equal (21) 

since this i f / i s  and either n '=  l, s = 2  I/l,  and 4In or n '=4 ,  o c c u r s  o n l y  a square 

2 k - 3  lk 2 m~ s=4] / i ,  and 4Ln, and p2k-2(2]/l,l)H~(O)-- 12 n / ;  the terms with 
n 

l' 4= ]//1 in the second sum in Theorem I equal (17) (replace l' by/ / l '  i f / ' >  I / l ) ;  and 

the terms with l '  =] /7  equal the first term of (20). 
It remains to treat: 

The correction term Jar k = 2 

First of all we note that by definition 

dim J~, m = dim HomF(M1/2 (F(4m), Thin), (22) 

where •_  S L Y )  is the inverse image o f f  by the canonical map SL 2 (IR) ~ S L 2  (~), 
and where M1/z(l'(4m)),Thm are considered as F-modules via the action 
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hi(A, w(z))=w(z)-lh(Az) of P on M1/2(F(4m)) and Th,,. (For the notations see 
[S-Z].) By the theorem of Serre-Stark [S-S] one knows that M~/2(F(4m)) is con- 
tained in the space spanned by the "Nullwerte" 0(z, 0) with O(r, z) ~ ~ Th,,,. Thus 

m'>0 
the computation of dim J~,m is reduced to an analysis of the F-modules Th,,. This 
has been done in [S] (Satz 5.2 and Satz 1.8), and we only cite the result" 

dim J~,~ =�89 {ao(m ) + 6(m =Vl)}. 

(The reader may also work out this formula using orthogonality relations for group 
characters and the formulae for trUm(A) (AeF) from Theorem 2 of IS-Z]; 
however, this would be essentially equivalent to the procedure in [S].) 

Now it is easy to compute the correction term tr(T(l)* o W*, JL,.)- 
Namely, let rn' run through all divisors m'lrn with m/m' a square, and for 

each such m' let 2 run through a complete set of representative in 7/ for 
{2mod 2m'12 2 = 1 mod4m'}/{ + 1} c (Z/2m'7/)*/{ +_ 1}. Note that the number of  
such pairs m', 2 equals �89 {% (m) + 6 (m = D)}, i.e. dim J~,,,. For each such pair m', 2 
define 

4~.,,A~,z):= Y~ 0.,, ~o(~,0)0,.,,o ~, 
0=1 

= ~ e U m m r - ~ m f + r  z , 
r ,s~Z 

r=_2smod2m ' 

where 0r.,0 is the theta-series ~ e ~mZ+rz (cf. [S-Z]). 
r=-o(2m) 

Om,~]l,,.O (z,z)=(bm,,~(z+l,z)=4a,.,~(r,z), and using the 

formulas 

e2,.( -~,7)0,., o(~, z) 

Obviously 

well-known 

i t iseasi lycheckedthatq~, . ,~l~, , . [~-101=qS, . ,a .  The matrices [10 i 1 , [ ~ - 1 0 1  

generate F=SL2(7Z), and hence the qS,., ~ lie in J*x,m. Noticing that the qS,..,~ are 
linearly independent we thus have a basis for J~,,.. 

Finally it is easily verified that 

x~712/IZ2 a,d>O bmodd 
ad=l 2 (a ,b ,d )=O 

and that 

q~.,~l w.* = .  -~ E 
x e Z 2 / n Z  2 

* X 
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where 2 '  ~ - 2 mod  2 (m', n), 2 '  - + 2 mod 2 m'l(m',  n). Note that  era,, h l W* = ~b,,, a if 
and only if 2 -= - 2 mod  2 (m', n) or  2 = - 2 mod 2m'/(m' ,  n), i.e. if and only if (m', n) 
= 1 or m'l(m', n) = 1. Hence 

( (o)} 
Itr(T(l)*o IV*, , J*l,m,~=ch(/) " ~ 6((m',n)=l)+6 =1 

- , '1, .  (m', n) 
m / m '  = [] 

�9 4t: ({2 mod 2m'122 -- 1 mod 4m}/{ -I- 1 }) 

as was to be shown. 

w 2. Comparison with the trace formula for ordinary modular forms 

For  integers k, m, k even and m > 0, denote by Mk(m ) the space o f  modular  forms of  
weight k on F o (m). For  integers l, n > 0, (l, m) = 1 and n l[m, denote by T(l) and IV, the 
/-th Hecke operator  and the n-th Atkin-Lehner  involution on Mk(m ), respectively. 
Thus, for any f eMk(m ) one has 

/ b - ~  , 
.fiT(")= Z Z] dk-iaf|~jq\/ (1) 

r->_O d](l,r) 

and 

Here a~.(r) denotes the r-th Fourier  coefficient o f f  and a, b, c, d are any integers 
satisfying adn 2 -bcm =n. (We are using here the same symbols T(l) and IV. as for 
the corresponding operators  on Jk,m. Since it will be clear f rom the context which 
operator  is meant  there should be no confusion.) 

Finally, let M~'eW(m) denote the space o f  new forms in Mk(m ) and let M~ 'ew' +- (m) 
be the subspace o f  modular  forms feM~eW(m) satisfying 

f l  w , .  = + ( - l ) k l 2 f  . 

Unfortunately in the literature the not ion "new forms" is usually applied to cusp 
forms only. Thus some remarks seem to be indispensable. We define more  precisely 

new new m~ 'ew(m)'=6~k (m) OSk (m), 

where S~<W(m) is the subspace o f  new forms in the sense of  Atkin-Lehner  in Sk(m), 
the space o f  cusp forms of  weight k on Fo(m ). g~W(m) is defined to be zero ifm is not  
a square, while i fm  is a square then g~eW(m) is defined to be the span of  the series 

E l ( r ) =  ~ a~xi_i(l)q' 
t->_O 

where Z runs through all primitive Oirichlet characters modulo  l f m  (aside from the 

principal character i fm = 1 and k = 2), a ~  1 (l) = ~, d k - 1 ~(d) )~(l/d) for l => 1, ~"(x)- 1 (0) 
dll 
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= 0  or = ~ - ( ( 1 - k )  according as m > l  or m = l .  (For more details concerning 
Eisenstein series on Fo(m ) cf. [HI, pp. 461-468 and 689-693.) 

By comparing the trace formulae from the foregoing paragraph with the well- 
known trace formulae for Hecke operators on spaces of modular forms we shall 
derive the following 

Theorem 2. Let k, m, l, n be positive integers, k > 2, (m, l) = l and n II m. Then 

tr(T(l)~ W"'Jk'm)= ~ ( ~ 1) tr(T(l)~ a .... ""M~k~-'2 (m'))" 

Moreover the same equation holds i f  one restricts on both sides to Eisenstein series or 
to cusp forms. 

Remark. The above Theorem remains true for all k in the trivial sense that 
Jk,,, = M~,~-'2 (m') = {0} for all k < 2. However, the fact that Jt,,,  = {0} seems to be 
not at all trivial. For a proof, depending on the work of Serre-Stark about modular 
forms of weight 1/2, see IS]. 

Proof o f  Theorem ii. First of all we treat the case of  cusp forms. 

The projection of S~, w _ 2 (m) onto the subspace S~W_'2 (m) of forms f e  S~,w 2 (m) 
satisfying f] Wm= ( -  l ) k f  which commutes with all T(l)((l, m) = 1) is given by 
�89 i +(--l)kWm). Thus 

. . . .  - - -  t n ,  S z k -  2 ( m ) )  t r(T(l)  o W., $2k-2 (m))--3 {tr(T(l) o W. ~ 

+(--l)ktr(T(1) W,,, ,~w o _ S 2 k - z ( m ) ) )  , 
n 

and hence the formula to be proved can be rewritten as 

1{ (m)} 
t r (T(l)o W.,Sk,m)=~ t(n)+(--1)kt , 

where t(n) for any nllm is given by 

t(n)-- ~ ~ ! t r(T(l)  o .,,SEk_Z(nln2)) (3) 

In fact, we shall show that 

Sk,m(l, n) = t(n) 

with Sk,m(l,n) as in Theorem 1. 
To apply the trace formulas occurring in the literature we need to express the 

traces on the right hand side of  (3) in terms of corresponding traces on the total 
spaces S2 k_ 2 (n l n2). 

Now for any pair of  relative prime, positive integers n 1, n 2 one has by Atkin- 
Lehner theory 

S2k-z(nln2) = G S~,~-e(alaz)lUb~b2 (4) 
alb~lna 
azb2ln2 
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with Ut :j(~)~--~Jl Ul(z) =f(/O. Choose in each of S~,E 2 (a 1 a2) a basis consisting of 
simultaneous eigenfunctions with respect to all T(l) ((1, nln2)= 1) and IV. (n llala2). 
Via (4) this gives a basis for Szk_2(nln2) and we compute tr (T(I) o W.,, S2k_2(nln 2) 
with respect to this basis: 

Let 9 be such a basis element, say 9 =f]  Ub,b2 with f e  $2 ~- 2 ( a l a z ) , f l  Wa, = ef It is 
easily seen that 

fl  Ub, b~,~ IV. = e (n~/al b~) k-1 "fl U. ~b=/o,b, 

Thus the contribution of 9 to tr (T(/) o IV., Szk_2(nln2)) is equal to e i fnl/alb 2 = 1 
and is zero otherwise since then .['lUb,b~+(nl/alb~) k-1 "fiU.,b~/.~b ~ are both 
eigenfunctions of IV., with opposite eigenvalues +e. Hence 

tr(T(/)~ W.,,S2k_2(nln2))= ~ ~ tr(T(/)o W.~,S~,Ez(ala2) ). (5) 
ailn 1 a262{n2 

Combining (3) and (5) by using some elementary theory of multiplicative 
functions gives 

t ( n ) = ~  ~ 2( z~ t r (T ( l )oW.~ ,S2k_2(n~nz ) )  (6) 
\ r ' l r ' 2  / 

where 2 is Liouville's function, i.e. the unique multiplicative function such that 
2 ( p ) = ( -  1) ~ for all prime powers p=. 

Now we can insert the following formula for the traces occuring on the right 
hand side of (6)" 

tr (T(/) o IV.,, $2k-2 (nln2)) 

1 
p ( ~ n ' )  Z Pzk-z(s/]/-~7,l) ~ Ht(s2-4ln') 

2 n'[n~ g < 4 1 n '  tin2 
n l/n' = [] ~n~n.i  s n2/t squarefree 

| 
_ ( . ,  = [ ] )  

2 Z min l ' , -  2 (t), l ' -  
rlt l ' )  tln2 i/n~-i (/, + ;;) n2/t squarefree 

+6(k=2)al ( l  ) . (7) 

Here /t and ~o are the M6bius and Euler function respectively and the other 
notations are as in Theorem 1. Using the elementary identities 

S'~ l~(]/n,/n')=6 \((s/n,)Z,n/n )) = squarefree) 

(nl running through all positive integers with n'ln 1, nlln, nl/n'=V1 and l/n~n'ls),  

.21~ ,1., 
n2/t squarefree 
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(for any arithmetical function h), 

(nirunningthroughallpositiveintegerswithnl=rland~[(l'+~)) 

it is then immediately clear that t(n) coincides with Sk, m(l, n), as defined in Theo- 
rem 1. Thus, in the case of cusp forms, Theorem 2 is proved. 

Unfortunately the formula (7) is not exactly the formula which can be found in 
the literature, so we have to add some remarks. 

First of all a corresponding formula (7) for nl = 1 can be found in [O]. Aside 
from some slight differences in the statement, which can be easily worked out by the 
reader, the main difference concerns the elliptic contribution. This is stated in [O] as 

1 h'/s2 - 4 l \  
2 X Pzk-2(s,l) X 

s2<4/  f I F  

t 2 - 4 1  . 
where F is that positive integer such that ~ -  is a fundamental discriminant, 

h'(A) denotes the number of equivalence classes (mod SL2(7Z)) of primitive, positive 
definite, binary quadratic forms of  discriminant A if A < - 4 ,  h ' ( - 4 ) = � 8 9  
h ' ( - 3 ) = ~ ,  and where 

/x(s ,f , l )= qgi(nz) �9 ( s2-4l nz ) 
q~ (n2/(n 2,f)) r \ (n2,f )2 ,  (n~,)") " 

Here ~o~(n)=n 1-[ 1+=  and r (D ,n )=  ~{r  mod2nlr2-Dmod4n}. Now it is 
pin 

easily checked that 

r(D,n)= ~ Zo(t)  (Xo(') as in w 
tin 

n/t squarefree 

Using this one can write (after some obvious modifications) 

/x(s, t, l) = ~ (t, f) "Zs~-41 , 
t In 2 f 2 

n2 / t squarefree 

and then the equality of  the corresponding terms in our formula (7) and in Oesterl6's 
results from the identity 

h ' (S~) ' ( t , f ) ' x s2 -4 t ( ,  t..)=H~(s2-4l) 
sip s2 \(t, TU 

(8) 

(cf. the proof  of  Proposition A.1). 
Secondly, a corresponding formula (7) for n 1 > 1 is given in [Y]. Aside from 

some mistakes in the statement of  that formula (which can be corrected by carefully 
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reading [Y]), the main difference again concerns the elliptic contr ibution.  It is stated 
in [YI as 

1 ( ~ 1 ' )  ( ['sZ-4lnL ) 
? ,I.2 

n 1Is I f ,  n D = 1 nz/t squarefree 

n 2 F 
T y (9) 

where F is the positive integer such that  - -  
s 2 - 4 / n  1 

F 2 is a fundamenta l  discrimant.  

Here the equality o f  the corresponding terms in (7) and (9) results f rom the identity 

2 2 
f IF tin 2 

( f  ,n~)= 1 n2/t squarefree 

n 2 F 

4'n1  . 2 4 , ,  t) 
~ -  j . r  ~ , ~ ,  

dI(F,nD tin2 d2 ' 
n 2/t squarefree 

which must  be proved similarly to (8). Inserting this in (9), replacing s by ds and 
summing  over  n ' =  n,/d 2 (note that  d](F, nl), nl[s and (l, n 0 =  l implies d21n0 then 
leads to our  formula  (7). 

It remains to consider the case of  Eisenstein series. 
On the side of  Jacobi forms  the space of  Eisenstein series in Jk, m is spanned by the 

series 
&,~,,,~= ~ z(s)G,~,,,. (1o) 

s rood Q (m)/t 

Here t runs through all divisors of  Q (m) and for each such t the index Z runs th rough  

all primitive Dirichlet characters  modulo  F with F[ Q(m) and X ( - 1 ) = ( - 1 )  k. 
t 

Fur the rmore  for any integer s the series E k . . . .  is defined by 

1 (q ~ )lk,.,~ (11) E k  . . . .  = 2  2 as 2 2abs 

CeG\r J 

with F s = { [o t r l[0, g]ln, g e 71.} c F J and m = ab 2, a squarefree. This is not quite true 
for k = 2 since then the series E k . . . .  as in (I 1) fail to converge. Here E k . . . .  has to be  
defined by the same type of  methods  as are used for modula r  forms ( "Hecke ' s  
convergence t r ick")  and for )~e principal character  (i.e. F4= 1) the series Ek,,,a, x 
given by (10) then defines an element of  Jk,,,. 

We shall p rove  in a m o m e n t  that  

Ek, m ,  t ,  x IT(l) = a(z)2k_3ttl~) E k , m , t , z  ((I, m) = 1 ) (12)  

E k , m , t , z [ W = z ( X ) E k ,  m , t , z  (nllm) (13) 

where 2 denotes any integer such that  2 = - 1 m o d  n and 2 ~ + 1 m o d  m-m-. 
n 
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Comparing this with the description of Eisenstein series in M~,Wz(m) given at 
the beginning of this paragraph, and using that any E 2 ~  2 ~ M~,w_2 (F z) satisfies 
EW2k-2 Tr'~--'tX)k'I--~'2k--3~.'lL'2k--2t'~r'tX' and b~(x)~2k_21'W.=z(2)E~2Xk)_2((I, F2) =1, n}[ rz  and with 
2 -  - 1  rood n and 2 = + 1 rood FZ/n), the reader can now easily verify the assertion 
of Theorem 2. 

To prove (12) and (13) we recall that Jk, m=gk,r. GS~k,,., gk,,. being the space 
spanned by the Eisenstein series Ek,.,, t, x as above. Hence any Eisenstein series in Jk, ,. 
is uniquely determined by its "constant terms" (sum of terms q"(~ with 4mn -~  r 2 = O )  

or, equivalently, by its Fourier coefficients C(O, r) (r z =-0 mod 4m). Moreover r is 
invariant under all T(l)((l, m)= 1) and all IV. (n lira), since gk,., is the orthogonal 
complement of Sk,m in Jk.., with respect to the Petersson scalar product and the T(l), 
IV. are hermitian (cf. [E-Z]). 

Thus to verify (12) and (13) it suffices to compute the Fourier coefficients 
C(O,r), C*(O,r) and C**(O,r) ( r2 -0mod4m)  of Ek,,.,,,x, Ek,m,,,xlT(l ) and 
Ek,m,t,Zl W n respectively. 

Now it is easily checked that the constant term of E k .. . .  is equal to 

l { E q a r E ( 2 a b r - t " ( - - l ) k  E q"'~(2"b~} " T h u s C ( O , r ) = Z ( r / 2 a b t ) , a n d t b e n  
r=_s(b) r = _ -s(b) 

C*(O,r)=aCEX)k_a(l)C(O,r), C**(O,r)=x(2)C(0,2) by (5) and (9) of w This 
completes the proof of Theorem 2. 

w The lifting from J~,~, to ~)J~2k_2(m) 

In this paragraph we shall give an interpretation of the theorem proved in the last 
paragraph in terms of liftings from Jacobi forms to modular forms. 

Let 9Jlk(m ) be the subspace OfMk(m ) defined in the introduction. Recall that this 
is the space spanned by forms f whose L-series has the form 

L(f ,  s) = L(g, s)" 1-I Qp(S) 

where g is a newform on Fo(m' ) for some m' dividing m and the Qp(s) are 

polynomials inp-S of degree < t"  = ordp (m~) satisfying the additionalrequirement 

Qp(s)=p'~k/2-S)Qp(k-s) for all pimp. (1) 

Here we may assume that the newform g is a simultaneous eigenform of all T(l) with 
(l, m) = 1 ; then it is also an eigenform of the Fricke-Atkin-Lehner involution W m, on 
Mk(m'), i.e. 

g l W,  n, = ( -- l )k/2 ~g 

with e ~ { • 1}, and then L(g, s) has the functional equation L*(g, s) = eL*(g, k -s) ,  
where L*(g,s)=(2g)-~m'S/ZF(s)L(g,s). Equation (1) says that L(f ,s)  not only 
satisfies a functional equation L * ( f , s ) = e L * ( f , k - s )  with the same sign as its 
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progenitor L(g, s), but that each Euler factor of the finite Euler product 

L*(f,s) (m/m') s/2 I~ Qp(s) 
L*(g, s) Pt~ 

is invariant under s ~ k  - s .  Another description, easily seen to be equivalent, is the 
following: Suppose the newform g has eigenvalues 21 for T(l) (l prime, lXm) and 
ep~{+l} for Wp~(p ~ m'). Then f has the eigenvalues 2 z for T(l) (lXm), % for 
Wv~(p~[]m, plm ') and +1 for W~,,(pt]]m,p,~m'). 

By 9")l[ (m) we denote the subspace of 9Jlk(m ) spanned by all f as above with 
e= ___1. Since M~W(m ') is the sum of M~W'+(m ') and M~'r we have 
9Jlk(m)=gJl[(m)@gJl;(m ). The spaces 9J/[(m) are invariant under all T(l) 
((l, m)= 1) and under all Atkin-Lehner involutions W, (n[Im). 

As a consequence of the theorem in the foregoing paragraph we shall show: 

Theorem 5. Let k, m be integers, m > O. Then Jk,,, is Hecke-equivariantly isomorphic 
to 9Jl;k_ 2 (m). More precisely,for any f ixed fundamental discriminant D < 0 and any 
f ixed integer s with D - s  2 mod4m there is a map 

given by 
~D,s : Jk.m-* ~ 2 k -  2 (m) 

C(d,r)q 4" ~%--~ ~ a k-2 C ~ D , -  s q' 
A<O,r  l>O a 

A=_r2mod4m 

being the usual L-series which for Re(s )> l  equals ~ ( D ] n - ~  I. The ~,~ m a p s  

n>=l V'  / / 
commute with all Hecke operators T( l) ( ( l, m) = 1) and involutions W, (n Ilm) and map 
Eisenstein series to Eisenstein series and cusp forms to cusp jbrms, and some linear 
combination o f  them is an isomorphism. 

Proof. Recall the operators Ul, Vt on Jk,m (l a positive integer) as defined in [E-Z]: 

r 2 - d  

(r lz) = ~, Co(A,r)q 4~ ~l,  
A<_O,r 

r2 ~ A (4 m) 

(qSIVt)(z,z) = ~, ak-lC~ ~ '  q ~ f  ~r 
d_<O,r r 2 

~_--r2mo~.m, . l ( ~ , r , ~ )  

The space Jk.,, is mapped under Ut, Vl to Jk, mt2 and Jk,,,l respectively, Ut, V l 
commute with all T(l') ((l' ,lm)= 1), and one has 

u,o ui (nllml ), 
vlo Iv.= w .,m)o vi (nllml). 
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For l, d >  1 we define an operator Bt,d: Mk(m)--~Mk(mld 2) by 

(fTBl,a) (z): = ~ tk/Zf(dtz). 
tit 

It is easily checked that Bt, a is injective, commutes with all T(l') ((/', mld 2) = 1) and 
satisfies Bt,ao I4I,= IV(,,,,)o Bt, d (n]Jmld2). Using these operators one immediately 
obtains by Atkin-Lehner theory: 

93l; (m) = (~ M~ 'r Bl, ~ (2) 
l,d>O 
ld2]m 

In view of this decomposition and the properties ofBt, d listed above, Theorem 2 
can now be read as 

tr (T(l) o IV., J,,,,) = tr (T(l) o W,, 9Jl2k_ 2 (m)). (3) 

Since Jk,m and 9Jtzk_2(m) are semisimple as modules with respect to the rings 
generated by the operators T(l) and IV. on Jk,,, and 9312,_2(m) respectively, and 
since the same relations (namely, (6) ofw 0) hold for the T(l) considered as operators 
on Jk,m or on 9312,_2(m ) one deduces from (3) that there exists an isomorphism 
between JR,,, and YJI2,_2 (m) which commutes with all T(l) and all IV,. This proves 
the first statement of the theorem. 

One of the main steps in the proof of the statements about the maps 5~o,~ is to 
show that a decomposition like (2) holds also for Jacobi forms. 

More precisely, define Skn~ w to be the orthogonal complement of 

E Sk ,~{Udo  V l in Sk, m (with respect to the Petersson scalar product) 
l,d>O 

ld2[m,ld2> 

and d'k;~ w as the span of the functions Ek,m,1 ,  z a s  in (10) of w (Z a primitive 
Dirichlet character modulo f )  if m =f2  and k > 2, m + 1 if k = 2, and 0 otherwise. 

new __ new new Let JL,, "--~k,m ask , , , .  
Clearly j~w is invariant under all T(I) and IV, and 

Jk,m=Ji"?m w • Z J~ ~.,>0 k . ~  Ud ~ V~. (4) 
[d2]m,ld2> l 

We shall prove by induction over m the following: 
(i) The decomposition (4) is direct. 

(ii) There exists an isomorphism between j~,~w and M~,w_'z - (m) which com- 
mutes with all T(1) ((l, m)--1) and all W, (nl]m). 

(iii) For  each pair of simultaneous eigenforms ~b~J~,~ w and fEM~W~-(m)  
with a f(1) = 1 having the same eigenvalues with respect to all T(l) ((l, m) = 1) and all 
IV, (nIlm) one has 

5r ) = C~(D, s) "f . 

Note that this implies all statements of Theorem 3 except for the last one, 
because we have the easily checked formal power series identity 

5eo,s(q~)iB~,a=Seo,~(g~lUao Vz) (r  l).  (5) 



A certain space 139 

To begin with let m = 1. Here (i) is obvious  and (ii) follows f rom the r emark  follow- 
n e w  n e w  -- -- 1 . . . .  ing (3). (Note that  J~, x = Jk, t and m 2 k-'2 ( 1 )  ~ ~ 2  k- 2 ( ) ' )  For  ( U l )  simply note that  

t h e / - t h  Fourier  coefficient o f  5~D,~(4)) is nothing else than the (D,s)- th  Fourier  
coefficient of  4)IT(/), (cf. (5) o f  w and hence equal to af(1) 'C~(D,s) .  

For  the induction step and the remaining assertion of  the theorem we need three 
lemmas.  

L e m m a  3.1. Let 4)~Jk,,, and m']m. Assume that C 0 ( A , r ) = 0  for all A,r  with 
(r, m') = 1. Then 

d > l  
d21m,d [m ' 

In particular, 4) =0 ~(m', Q(m)) = 1. 

Lemma 3.2. Let ~J~nemW be a simultaneous eigenform with respect to all 
T(1) ((/, m) = 1), and let N > 0 be an arbitrary integer. Then there exists a fundamental 
discriminant D < 0 and an integer s with D - s  2 m o d 4 m N  such that Co(D, s) ~e O. 

To formulate  the third l emma we need an auxiliary operator .  
For  a positive integer l with 12[m define an opera to r  u I on Jk,,, by 

(4)]u,)( z , z ) ' = l - 1  Z 4)]k,m 7 z, . (6) 
x e Z : / l Z  2 

Obviously u t is well-defined, i. e. does not depend on the choice of  representatives x 

for 7Z2/17/2. We leave it to the reader  to verify that  ut maps  Jk,m to Jk ,~ '  that  

Col,, (A, r) = ~, Co(12A, lr') (7) 
r'  m o d  2 m/  ! 

r '  = _ r m o d 2 m / l  2 

(for all A -- r 2 rood 4m/l  2, A < 0), and tha t  u l commutes  with all T(l') ((l ' ,  m) -- 1). 

L e m m a  3.3. Let 4) ~ Jk ,  ,n and let p be a prime dividing m. Assume that 4) ] Vp o u v = 0 and 
that 4)lup=O if  p2lm. Then for any pair o f  integers A, r with d <0,  A ~ r  2 m o d 4 m  and 
any ~ > 0 one has 

fp2~ p~ ~ (p~tk-2).(_l)~.C~lw~,(A,r)  i f p l ] m  
~,, ak -2C~[ -~ -  A, ~ r ) = ]  0 if p2[m 
a[p ~ 

(~,A)=1 

The p r o o f  of  L e m m a  3.3 is s t ra ighforward (using (7) and the definition of  Vt) and 
will be left to the reader. The proofs  of  L e m m a  3.1 and 3.2 are pos tponed  to the end 
of  the paragraph .  We show first o f  all how the theorem now follows. 

To  complete  the induction assume that  (i) to (iii) are true for  all m ' <  m. 
Let m '  run through all divisors of  m, and for  each such m '  let f run through a 

basis o f  normalized Hecke eigenforms in M~,w_'z - (m') and l, d through all pairs o f  

m Then f i B  z a runs th rough  a basis o f  ~fJ~fk_2(m ). For  positive integers with Id z = ~ .  
m 

each such f let 4) denote  a non-zero Hecke eigenform in j~;~w having the same 
eigenvalues with respect to all T(l) ((l, m) = I) a s f  The existence of  such 4) follows 
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from (ii) for m' < m, i.e. the induction hypothesis. ( I f f  is on Fo(m ) then there exists 
at least one q5 4= 0 in Jk,,, having the same eigenvalues as f If ~b could not be chosen 
to be in j~ew then - by the Hecke invariance of the decomposition (4) - it could be 
chosen to be in j~e~ with a m ' <  m. But this implies the existence of a g + 0 in 

n e w ,  - t Mzk_ z (m)  having the same eigenvalues as f ,  in contradiction to well-known 
Atkin-Lehner theory.) 

Consider now the map f]Bz,a~---,4)lU a o V I from 9J~2k_z(m ) to Jk,m. The asser- 
tions (i) and (ii) will follow immediately as soon as we can show that this map is 
an isomorphism, i.e., in view of (3), that the kernel of this map is 0. Since this 
map commutes with all Hecke operators the kernel is also invariant under all 
T(1) ((l, m)= 1). Thus, if the kernel were ~e0, there would exist by Atkin-Lehner 
theory an m']m and an/" on Fo(m' ) as above such that a linear combination of the 

flUao Vt ( l d 2 = ~ , )  is mapped to zero, i.e. such that a linear combination of the 

OIUdo V t is zero (4~ associated to f as above). Clearly m'<m. By induction 
hypothesis and Eq. (5) we have 5Pn,s(q~tUa o Vl)=Co(D,s)flBl, d. By Lemma 3.2 
we can choose D,s so that Co(D,s)+O. Thus the ~blUdo V~ must be linearly 
independent. 

It remains to prove (iii) for a pair, q~,fwith q~ in j~w and f in M~,w_'f (m). We 
have to show that 

a k-2 C o j ,  D , -  S =Co(D,s)az(1) (8) 

for all l=>0. 
First of all we consider the case l>  0. For simplicity we assume l=p ~ for a prime 

p, leaving the general case as an exercise. 
Ifp~/m then the left hand side of(8) is nothing else than Colrm(D, s), the (D, s)-th 

Fourier coefficient of d?lT(l ) (recall that D is a fundamental discriminant). Thus it 
equals Co(D, s) times the eigenvalue of ~b, and hence f,  with respect to T(l), i.e. it 
equals the right hand side of (8). 

Ifplm then 4) satisfies the hypothesis of Lemma 3.3 : qSI Vpup (and ~bpup ifp21m) is a 

Hecke eigenform in Jk~_ p (and J , m )  having the same eigenvalues as 4~, and hence 

must be zero (otherwise there would be a Hecke eigenform in M2k_2 ( p )  (o r  i n ~ p 2  

M2k_ 2 having the same eigenvalues as J em2k_2(m), in contradiction to 

Atkin-Lehner theory). Hence the left hand side equals C o (D, s) times l k- 2. ( _ 1)~. e; 
i fp [tm and 0 ifp2lm, where ep is the eigenvalue of  ~b, and hence o f f ,  with respect to 
Wp. Thus (8) is also true for plm. 

Now let l=0 .  Then 4~ (and hence f )  must be an Eisenstein series, say 
q~ = Ek,,,, x, 1 (and hence f =  ~2k-ZF~X) with a primitive Dirichlet character Z mod F, 
m =F2). But then (8) becomes 

- -  0"2 k- 3 (0). (9) 2 L 2 - k ,  �9 C o(0, 0) = C o(D, s) '  ~x) 

- a2 k- 3 (0)) there is nothing to show. For For F4= 1 (and hence Co(0,0 ) = X ( 0 ) = 0 -  (x) 
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m =  1 (and hence Cr 1) (9) becomes 

an identity which was proved in [E-Z]. 
It remains only to prove the existence of a linear combination in the ~D,s 

defining an isomorphism�9 Let ~1 . . . . .  ~P,, run through a basis of simultaneous 

Hecke eigenforms of (~ new Vt" Using Lemma 3.2 it is easily verified that for ,m Jk'~ ] 
each 7' i there exist a fundamental discriminant Di and an integer si with 
D i =s  2 mod4m such that C%(D~, si) 4=0. Choosing constants cq . . . . .  ~r such that 

~ ~jC~,(Dj,sj),O for all i=1 .. . .  , r  yields ~L~(~i)=l=0 for all i where 
j=x 

j = l  

But then ~ is surjective (and hence an isomorphism)" letm[m,JE' �9 M2k_2- (m)a' �9 
Hecke-eigenform. Choose a non-zero eigenform in J~Z having the same eigen- 
values as )'~ Clearly ~b can be chosen so that ~b]V,~/m,--~Pi for a suitable i. Then 
~ ( ~ ) ) [ B m / m , l - - = - . ~ ~  = c ..flBm/~,l with a constant c # 0 ,  hence ~(~b)=c  .J; and 

m 
finally ~(c~[Ud ~' Vl)=c "fiB m for all ldZ= - . 

m '  

We have still to prove Lemmas 3.1 and 3.2. 

Lemma 3.1. Using ~ p ( t ) I ~  e ( r ]  = 0  for all integers r whith Proof of 
t[m' pit V'/ 

( r , m ' ) # l  (#(.)  denoting the M6bius function) one easily deduces from the 
assumption that 

tl~m p(t)qb'k,m{~pl~ [0,~]}=0 (10) 

for all integers g. 

Applying suitable matrices [~ d ]  ~ F to (10) and summing up one obtains 

0=Y  Z = Z 
glm' c , d = l  tim' ' xmodm'  

(r = 1 

tim' p[t y m o d p  

m,2 

d2[m nllm 

Here we used the easily proved equation 

I x ] 2 q~ ~ = • 2 ~b (for alls,  tw i ths t lm) .  
x mod st y rood s z rood t 

(11) 
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Consulting the definition of u d (cf. (6)) and IV, (cf. (5.6)) one can rewrite (11) as 

d2lm prim 

B u t t h e o p e r a t o r  I-I (1 1 ) plm' --p I'Vp is invertible. Hence 

prim 
1 

O= ~ #(d) 3 ((aJua)lUa, 
dim' 
aZlm 

which immediately yields the assertion. 

Proof of  Lemma 3.2. L e t / =  I-I p. We shall show that ~blVt+0. Assuming this 
plN, p.~rn 

for the moment we then deduce from Lemma 3.1 that there exists a pair 
A=r2mod4ml ,  A<0,  with (r, m l )= l  and C~,lv,(A,r)~O. Note that (r, m l )= l  
implies Cr r) = C4,(A, r), hence C~(A, r)+O. Write A =F2D with a fundamen- 
tal discriminant D and r =- Fs' mod 4ml for a suitable s' with D = s 'z mod 4ml. In view 
of formulas (5) of w 0 for the action of Hecke operators on Fourier coefficients it 
is then clear that C4,(A,r)+O implies C4,(D,s')+O (use again (r, m l ) = l ,  hence 
(F, rnl) = I). Again using (r, ml) = 1, and hence (s', ml) = 1, it is then clear that there 
exists an s - s ' m o d 2 m l  such that s2=-Dmod4mN. But C~(D,s)=C4,(D,s')#:O. 

To prove q51V t + 0 let p be a prime, pll, and let ~ : = ~bl V~/p. We show that 7 j 4:0 
implies ~lVp~=0, so that by induction q54:0 implies ~blV~+0. (Note that I is 
squarefree and hence V t = V r o V~q for all 1', l" with 17" = l.) 

So assume ~u#:0 and tPlVp =0.  First of all note that 7 j is an eigenform of T(p). 
Hence in view of Eq. (5) of w 0, 

2p C~,(D, s) = C~,(p2 D, ps) + ( D  )pk-  2 C~,( D, s) (12) 

for any D = s  z mod4ml/p,  D fundamental, and with 2p being the eigenvalue of 
with respect to T(p). Now 7~lVp =0  means 

0 = C~,lvv(pED, ps) = C~,(pZD,ps) +pk- ,  C~,(D, s). 

Combining this with (12) yields 

But by Lemma 3.1 there exists a A - r 2 m o d 4 m l / p  with (r, ml /p)=l  and 
C~(A, r) ~ 0 and as above we see that then there also exists a pair D - s  2 mod 4ml/t, 
D fundamental, such that C~(D,s)~O. Note that this implies in particular 

( ~ - ) = - 1  (otherwise D - s ' a m o d 4 m l  with an s'=--smod2ml/p and 
\ r /  

C~,Iv,(D, s') = C~,(D, s') = C~(D, s) * 0). Thus we obtain from (13) 

,~p = __pk-2 (p + 1). 
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Now 2p is also eigenvalue of T(p) on Mzk_2(ml/p ). Clearly it cannot be an 
eigenvalue of T(p) on the space of Eisenstein series in M z k-2 (ml/p). Also it cannot 
be an eigenvalue of T(p) on the space of cusp forms in M z k-2 (ml/p) since then it 
must satisfy 

[,~p[ < p k -  Z ( p  + 1) 

by an elementary estimate. (Of course, one can also apply the deeper Ramanujan- 
Petersson conjecture.) Thus, in each case we have a contradiction. 

Appendix. Some formulas involving class numbers 

For a negative discriminant A, A 4 = - 3 , - 4  denote by h'(A) the number of  
equivalence classes with respect to SLz(Z ) of primitive, integral, negative definite, 
binary quadratic forms ofdiscriminant A, and set h ' ( - 3 )  = �89 h ' ( - 4 )  = �89 Recall the 
well-known formulas 

h'(~o)=~ o<~<t~ol 

h,(AoF2)=h,(Ao)7ao(F), 7do(F)=~ p(t) (A~) F (1) 
tlF t ' 

A o being a fundamental discriminant, F a positive integer. Also recall the function 
H.(A) as defined in w 1 : 

H , ( A ) =  ~ h'(A/f 2) 
f[F 

if A = Ao F2, A 0 a fundamental discriminant, and HI(A ) = 0  otherwise and 

2 [A/aZb2\ if (n, A)=a2b with squarefree b 
H , (A)=  a b~ n ~ ) H , ( A / a 2 b 2 )  such that a2b2lA 

0 otherwise. 

Finally, recall the notation ~%x (w 4 of [S-Z]) for the operator which replaces a 
periodic function of x (x in 7Z r) by its average value. More precisely, sgvxf(x) 
=[;gr :L]  -1 ~ f(x)  for any periodic function f (x)  on Z r, where L is any 

x ~ Zr/L 
sublattice of 7/r such that f ( x + y ) = f ( x )  for all x ~ Z  r, y~L.  

Proposition A.1. Let A be a negative discrimiant, n a positive integer. Then 

Qmoar I F Q I  - - , - n  ' 
disc(Q)=A 

where the sum is over a complete set of representatives for the equivalence classes with 
respect to F = SL z (TZ) o fa l l  integral binary quadratic forms of  discriminant A, where 
F 0 denotes the group of automorphisms (~_ F) of  Q. 
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Proof The sum on the left hand side of (2) is clearly invariant with respect to 
replacing Q by - Q. Hence it must be real, and we can sum as well over all positive 

definite Q if we replace ~ . ~ e  by IF ~ Re . ~ e  . 

Now, if Q is primitive, then by Theorem 3 of [S-Z] 

Re 

k0 n 

if (n, A) and A/(n, A) 
are both congruent to 0 
or 1 rood 4 

otherwise 

(3) 

Here a denotes any integer represented by Q and prime to N. 
By composition theory the set of equivalence classes modulo F of primitive 

positive definite forms of discriminant A forms a group. By the theory of genera the 

map Q ~ - , ( ~ ) i s  a character of this group which is trivial if and only if (n, A)isa 
\ / 

square (or if A/(n,A) is a square, which here is impossible since A <0). Thus, 
summing over primitive Q mod F, we obtain 

E 
QmodF 

Qprimitive 
disc (Q) = A 

1 dv~e(Q~)=_lzd(n)h,(A)" 
Ir~l n 

(4) 

, , / A / . 2 h  
Here, as in w zatn)=a~n~ar) if (n,A)=a 2, A/a2=-O, lmod4, and z~(n)=0 

otherwise. Also here we used IFQI =2,4 ,6  ifA < - 4 ,  A = - 4 ,  A = - 3  respectively. 

Note that (4)remains valid if we replace each term ~r ) - ) "  " "  on the left 
\ - - /  

hand side by ~ r  e ( ~ ) ,  where a is any integer prime ton  (use Galois theory o r  
\ - - /  

modify (3)). 
Hence, setting A = A0 F2, A o a fundamental discriminant, writing the left hand 

side of (2) as 

E E 
f i E  QmodF 

Q primitive 
disc(Q) = A/f  z 

and applying (4) we obtain 

1 
- ~ (n,f)z~/.r2(n/(n,f))h'(A/f2) . 
12 f I F  

Finally, applying the second formula in (1), we notice that the claimed formula 
(2) is reduced to the elementary identity 
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.{A/aZbZ~ 
a2b \ n/a2b ] 

(;) l (n,f)7~A/i2(n/(n,f))YAo = 
f lF 

0 

which we leave as an exercise to the reader. 

YAo(f) if (n,A)=a2b with 
I[.~ squarefree b such 

that aZb2lA and 
A/a2b 2 =0, 1 mod4. 

otherwise 
(5) 

Remarks. (i) Obviously (2) remains valid if we replace each summand on the left 

l J / a Q ( x ) \  hand side by T e l  ~162 ~ [ ~ - ) , a  being an integer prime to n. 
\ / 

(ii) Note that a similar formula to (2) holds for A being a square if one omits 
1 

the factors 1/]FQ[ on the left hand side, and, of course, replaces - H , ( A )  by 
n 

aZ b 
F ~  

. / ~ ,  where (n, A)=a2b, b squarefree (recall that ~ for a square A equals 
n xl a-o- 

the number of equivalence classes mod F of integral quadratic forms ofdiscriminant 
A). The proof  for this is the same as for (2). However, here everything can be done in 

a completely elementary way using Q(2, g)=a22+]/A-2/~ (0<a<l / /A -) as a 
complete set of representatives rood F for forms of discriminant A. We leave it to the 
reader to work this out. 

Proposition A.2. Let a, n be positive integers. Then 

b m o d n  A 
nXb 

where the sum on the right hand side is over all discriminants A < 0 such that 

A n n a n d -  is squarefree. 
[(~,n~ (a,n)A 

Proof. The asserted formula is a simple consequence of the easily proved identity 

b m o d n  
nXb 

where ((x)) for any real number x is defined by 

((x)) = - ~  otherwise, 

and the formula 

,~ rood n AIn, A < 0  
n/ A squarefree 

/-/.(A) (for relative prime, positive integers a, n). 
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The latter can be proved by writing 

( ( ~ - ~ ) ) =  ~, ((a~)) '~{2m~176 
2modn ~modn 

inserting the identity 

4~ {2modn]22= vmodn} = Z,j(v) 
AIn, A=-O, lmod4 

Z~ (v) as in w 0, Q n the greatest integer whose square divides ~ , and applying, 

after some obvious manipulations, the first formula in (1). (With respect to this 
application of (1) note that for any fundamental discriminant A, any integers a, n 
with (a, n )=  1, A In one has 

v A 
vmodn \ \ H / /  ~ O<v<]A]Z " i f  a < 0 . )  

Again, the details are left to the reader (or else cf. IS], Lemma 6.5). 
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