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The Euler characteristic of the moduli space of curves 
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Let Fg 1, g>  1, be the mapping class group consisting of all isotopy classes of 
base-point and orientation preserving homeomorphisms of a closed, oriented 
surface F of genus g. Let )~(~1) be its Euler characteristic in the sense of Wall, 
that is Z(F~I)= [Fgl: F] l z(E/F), where F is any torsion free subgroup of finite 
index in F~ 1 and E is a contractible space on which F acts freely and properly 
discontinuously. An example of such a space is the Teichmiiller space ~-~1, and 
g(F~ ~) can be interpreted as the orbifold Euler characteristic of ~-~'/F~I =JOin, 
the moduli space of curves of genus g with base point. 

The purpose of this paper is to prove the following formula for )~(F~I): 

M a i n  t h e o r e m ,  z(F~ l) = ~(1 - 2g) .  

Here ~(s) is the Riemann zeta function; its value at s=  1 - 2 g  is a rational 
number, given by the well-known formula ~ ( 1 - 2 g ) = - B 2 j 2 g ,  where B2g is 
the 2 g  th Bernoulli number. 

If F~ denotes the mapping class group of a surface without base point, then 
if g > 1, F~ is related to F~ 1 by an exact sequence 

1 ---~ X 1 (F )  ---~ Fgl --* Fg --* 1 

(for g =  t we have/'1 ~ F  1 ~ S L z ( T Z ) )  , so  there is an equivalent formulation 

1 B2g 
X(F~)- 2 _  2g ~(1 - 2g)=4g~g_ 1 ) (g > 1). 

Again this may be interpreted as the Euler characteristic of ~/F~ = J/~, thought 
of as an orbifold. ( 2 g -  1) ! 

Note that ~ ( 1 - 2 g ) ~ ( - 1 )  ~ 22g 1 rc2~, SO that )~(Fg 1) grows very rapidly in 

absolute value and alternately takes on positive and negative values. This 
implies that the Betti numbers of any torsion-free subgroup of finite index in 
F~ ~ grow very rapidly with g (more than exponentially). To make a similar 
statement about F~ 1 itself, we would like to know its true Euler characteristic, 
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i.e. the number e{Fgl)=~(-1)'dimH,(F~l;ll~). We will show in w how to 
deduce a formula for e(~ 1) from the formula for Z(F~I), tabulate these numbers 
for small g, and show that e(Fg 1) and Z(Fg ~) are asymptotically equal; we will 
also give analogous results for Fg. However, the formulas for e(Fg ~) and e(Fg) are 
much more complicated than those for Z(F~ ~) and Z(~) and will not be stated 
here. The fact that e(Fg)~Z(F~) implies that the Betti numbers of F~ grow more 
than exponentially and that Fg has a lot of homology in dimensions congruent 
to g -  1 modulo 2. The known constructions of homology classes for Fg [9, 10] 
yield only even-dimensional classes and give far fewer than our theorem 
indicates must be present. Analogy with the situation for Sp(2g;Z), where 
z(Sp(2g; Z))= ~ ( -  1) ~ ( -  3)... {(1 - 2 g )  [6] and yet the stable cohomology is 
small (H*(Sp; ( [~ )~ [Y2 ,Y6  . . . .  ], where Y41+z is a polynomial generator in 
H 4i+ 2(Sp; (~) [2"]) suggests that the contribution to the large Euler characteris- 
tic from the stable part of the cohomology may be relatively small. 

The formula for Z(Fg 1) will follow from two other theorems, which we now 
state. 

For every positive integer n > 0  let ~,  denote a fixed 2n-gon with its sides 
labeled S~ . . . . .  $2, consecutively around its boundary. For g > 0  denote by eg(n) 
the number of ways of grouping the sides S~ . . . . .  $2, into n pairs (each Si 
occuring in one and only one pair) so that if each side is identified to the side 
it is paired to in such a way that the resulting surface is orientable, then that 
surface has genus g. Also define 2g(n) to be the number of such groupings 
which do not contain a configuration of the form 

*** ) 
O o r  (1 

* *o  * * .  

Fig. 1 
The number eg(n) is non-zero only for n>2g,  while 2,(n) is non-zero only for 
2 g < n < 6 g - 3 .  We will prove: 

6,- 3 ( _  1)"- 1 2g(n). 
Theorem 1. g(Fgl)= Z 2~n~- 

n=2g 

( x/2 
Theorem 2. eg(n) = (n + 1) ! (n - 2g) ! • Coeff ic ient  o f  x 2g in \tanh x /21  " 

Since it is not hard to express ~,g(n) in terms of e,(n), these two results 
permit one to calculate x(F~I); the result is the formula given above. 

The proof of Theorem 1 is topological: it makes use of a contractible CW 
complex Y on which Fg I acts cellularly and virtually freely; the number 
(-1)"-' 

2n 2g(n) is the contribution to x(Fg 1) of the cells of Y of dimension 6 g - 3  

- n .  The proof of Theorem 2 is combinatorial and rather indirect: We express 
the sum 
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Table 1 

459 

n g e~(n) n g e,(n) n g e,(n) 

1 0 1 7 0 429 10 2 31039008 
1 12012 3 211083730 2 0 2 
2 66066 4 351683046 

1 1 
3 56628 5 59520825 

3 0 5 
8 0 1430 11 0 58786 

1 10 
1 60060 1 6466460 

4 0 14 2 570570 2 205633428 
1 70 3 1169740 3 2198596400 
2 21 4 225225 4 7034538511 

5 4304016990 5 0 42 9 0 4862 
1 420 1 291720 12 0 208012 
2 483 2 4390386 1 29745716 

6 0 132 3 17454580 2 1293938646 
1 2310 4 12317877 3 20465052608 
2 6468 10 0 16796 4 111159740692 
3 1485 1 1385670 5 158959754226 

6 24325703325 

The numbers eg(n). 0 < g < n / 2  

n ;tg('0 n 2g(n) 

g = l  

g = 2  

g=3  

2 1 g=  3 13 1069068 
3 l 14 350350 
4 21 15 50050 

5 168 g = 4  8 225225 
6 483 9 6236802 
7 651 10 71110611 
8 420 11 456842386 
9 105 12 1882237357 
6 1485 13 5321436120 

14 10718815107 7 25443 
15 15679314651 8 173008 

9 635470 16 16740147996 
17 12934346997 10 1418835 
18 7051674630 11 2023505 

12 1859858 19 2575267695 
20 565815250 
21 56581525 

The numbers .~(n). 2g__<n<6g-3 

C(n,k)= ~ ~(n)k ~ 
O=<g=<n/2 

as  a n  i n t e g r a l  o v e r  t h e  k 2 - d i m e n s i o n a l  s p a c e  o f  k • k h e r m i t i a n  m a t r i c e s  a n d  

use  s o m e  i n v a r i a n c e  p r o p e r t i e s  o f  t h i s  i n t e g r a l  t o  s h o w  t h a t  C(n, k) e q u a l s  (2n  

- 1 ) . ( 2 n - 3 ) . . . . . 5 . 3 . 1  t i m e s  a p o l y n o m i a l  o f  d e g r e e  k - 1  in  n;  t h i s  p o l y -  

n o m i a l  is t h e n  i d e n t i f i e d  f r o m  c e r t a i n  q u a l i t a t i v e  p r o p e r t i e s  o f  t h e  n u m b e r s  
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eg(n). It would be nice to have a direct proof of Theorem 2. In particular, the 
formula of Theorem 2 implies, and is implied by, the recursion 

(n+ 1) ~(n)=(4n - 2) ~g(n- 1)+ ( 2 n -  1)(n-  1) (2n-  3) ~_ 1 ( n - 2 )  

Oust differentiate with respect to x in Theorem 2); if one could give a direct 
geometrical proof of this recursion, one could circumvent many of the calcu- 
lations in this paper. 

A table of the values eg(n) (n< 12) and 2g(n) (g<4) is given on page 3. 

w 1. Construction of the CW-complex Y 

Let F be a closed, oriented surface of genus g with basepoint p. The set of 
isotopy classes of orientation preserving homeomorphisms of F which fix p is a 
group under composition called the mapping class group and is denoted F~ 1. The 
Teichmfiller space ~1 is the space of all conformal equivalence classes of 
marked Riemann surfaces with basepoint or, equivalently, the space of all 
isometry classes of marked hyperbolic surfaces with basepoint. F I acts properly 
discontinuously on ~-~gl; the quotient is denoted ~r and called the moduli 
space of curves with basepoint. ~'2 is a V-manifold or orbifold: every point in 
~/ I  has a neighborhood modeled o n  ]R 6 g - 4  modulo a finite group. In addition, 
Fg I is virtually torsion free (the subgroup Fg 1 [n] of all classes of maps which 
induce the identity on H~(F;TZ./n7/) is of finite index and torsion free for n>3), 
so .///1 has a finite orbifold covering which is a manifold. 

The orbifold Euler characteristic of Fg J is defined to be 

z ~ ' )  = [r , ' :  r ] - ' .  z(r), 

where F is a torsion-free subgroup of finite index and z(F) is the usual Euler 
characteristic of any K(F, 1) [14]. This is defined because ~1 has finite ho- 
mological type (see, e.g. [8]). Suppose that Y is a CW-complex of dimension n 
on which Fg I acts cellularly such that the stabilizer of each cell of Y is a finite 
group (Y is then called a proper Fg~-complex). Suppose further that the number 
of orbits of p-cells is finite for each p and that {aip} is a set of representatives 
for these orbits. Then we have the following formula of Quillen ([13], 

Prop. 11): )~(Fgl)=2 (-1)P Z [G~,I -~, (1) 
p i 

i where IGi~l denotes the order of the stabilizer of ap. 
We now define one such complex Y. Fix the surface F and the basepoint p. 

Let cq . . . . .  e be a family of simple closed curves in F which intersect at p and 
nowhere else. Suppose that no e~ is null-homotopic and no two e~ are homo- 
topic rel p (this implies that n < 6 g - 3 ) .  The isotopy class of e 1 . . . . .  e, is called 
an arc-system of rank n - 1  in F. Define a simplicial complex A of dimension 
6 g - 4  by taking an n - 1  simplex (e l  . . . .  , e , )  for each rank n - 1  arc-system 
and identifying ( e l ,  ..., e , )  as a face of (fl~ . . . .  ,/3,.) if there are representatives 
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{c~i}, {flj} of the isotopy classes with {e~} ~ {flj}. A cellular act ion of the group 
F~ ~ is defined by setting 

I ' f ] "  (o~ 1 . . . . .  ~ . )  = ( f ( c q )  . . . .  , f ( % ) ) .  

A family of curves ~1 . . . . .  c% represent ing a rank  n - 1  arc-system is said to fill 
up F if each c o m p o n e n t  of F-{cti} is a 2-cell. Let A s, c A  be the subcomplex  of 
all simplices <cq . . . . .  e , )  such that  cq . . . .  , c~ do not fill up F. The  act ion of F~ 1 
on A preserves A~,  so F~ 1 acts on A - A ~ .  

In 117] it is p roved  that  the simplicial complex A is contractible,  and the 
a rgument  applies directly to show that  A - A ~  is also contractible.  Another  
p roof  follows from the beautiful fact that  A-A~ ,  is actually Fg~-equivariantly 
homeomorphic to ~1.  A proof  of this due to Mumford ,  based on a result of 
Strebel concerning quadra t ic  differentials, is given in [8]. Another  proof,  based 
on an idea of Thurs ton  and using hyperbol ic  geometry,  is given in [3] (see also 
1111]). 

The complex  Y we need is the "dua l "  to A; its existence is based on the 
fact that  A - A ~  is a manifold.  Explicitly, Y has a 6 g - 3 - n  cell for each n - 1  
cell <el . . . .  ,c%) of A such that  the cs fill up F, and <~1 . . . . .  ~ , )  is a face of 
<[~1 . . . . .  [Jm) when there are representat ives {flj} ~ {c~i}. The reason that  the arc- 
systems which define Y must  fill up F is explained in [8];  the point  is that  the 
link in A of a cell in A~ is contract ible  while that  of a cell in A - A ~  is 
spherical. Since it takes at least 2g curves to fill up F, Y has dimension 4 g - 3 .  
The contract ibi l i ty of Y follows f rom that  of A - A ~ .  

We now apply  formula  (1) to Y to prove  Theo rem 1. The  dual to an arc- 
system cq . . . . .  % which fills up F is a graph ~ c F  with one vertex in each 
componen t  of F - { c ~ }  and one edge transverse to each ~ .  Split t ing F along f2 
gives a 2n-gon ~ ,  with its center at p. F is then identified with ~ ' , / ~  where 
is an identification of the edges of ~ ,  in pairs;  the family e~ . . . . .  % is easily 
recovered as in the example  of Fig. 2. 

Q O~ 1 

C if3 

4 

O 
Fig. 2 

It is easy to see that  the only restrictions on the identifications which may  
arise are: 

Condition A: no edge may  be identified with its neighbor,  

Condition B: no adjacent  pair  of  edges may  be identified to another  such pair  
in reverse order. 
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In A the dual edge would be null-homotopic and in B the dual edges would 
be homotopic rel p. These conditions are illustrated in Fig. 1. 

As in the introduction, let 2g(n) be the number of ways of identifying the 
edges of a fixed 2n-gon ~,  in pairs so that the resulting surface is orientable of 
genus g and A and B are satisfied. We now prove Theorem 1. 

The pairings of the edges of ~,  occuring in the count for 2g(n) may be 
partitioned into equivalence classes, two pairings being equivalent if they differ 
by a rotation of ~',. For example, 22(4)=21 and there are four classes, two of 
eight elements, one of four and one of one (Fig. 3). 

o Q a Q 

d b d b 

b c d b c a c c 

a d c a 

8 of these 8 of these /, of these 1 of these 

Fig. 3 

Choose a representative for each equivalence class, pair the sides of ~,  and 
identify the result with F so that the center of r is matched with p. This picks 
out a 6 g - 3 - n  cell a i for each class and {a i} is a set of representatives for the 
action of Fg 1 on Y. If there are m elements in the equivalence class, the 

2n 
identification will have a cyclic symmetry of order - -  and the corresponding 

m 
cell a i will have isotropy group which is cyclic of order --.2n Counting (2hi  -~ 

m \ m !  
for each a i gives the same answer as counting each of the m elements in each 
equivalence class with weight 1/2n. Thus 

i - I  
IG6g_3  nl =2g(n)/2n. 

i 

Theorem 1 now follows immediately from formula (1). 

w Evaluation of y . ( - 1 )  "-1 gg(n)12n 

In this section we assume Theorem 2 giving e,g(n) and deduce the main 
theorem. We have two tasks: 

(i) to find the relationship between eg(n) and 2g(n), 
(ii) to calculate ~ ( -  1)"- 1 2g(n)/2n. 

Part (i) will be done in two steps: Define pg(n) to be the number of identifi- 
cations of ~,  which give a surface of genus g and satisfy condition A; then we 
will relate eg(n) to #g(n) and #g(n) to 2g(n). Specifically, we have: 
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Lem m a 1. 
i > 0  

i>O 

Proof Let ~ be an edge-pairing of N, which does not satisfy A. Orient the 
boundary of ~ ,  and number its vertices consecutively. Identifying a pair of 
adjacent edges which are paired by z gives a map of ~ ,  onto ~',_~ (think of 
folding the identified edges inward, so that the vertex of ~ ,  between the 
identified edges maps to an interior point of ~ ,_  1) and induces an edge pairing 
z 1 on ~,_~ with the genus of ~,/z equal to that of ~ , _ l / z  1. Continuing this 
process eventually gives an edge-pairing ~i of ~,_~ which satisfies condition A 
for some i < n - 2 g .  Let (p: ~,---,~, ~be the quotient map;  z ~ and ~o determine z 
and conversely. The intersection of ~0 (vertices of ~,) with the interior of ~,_~ is 
a finite set {w 1 . . . . .  w~}. For 1 <j<i ,  let v i be the lowest numbered vertex of ~ ,  
for which q~(vj)=wj. We claim that any collection of i vertices v~ . . . .  , v~ may 
occur in this way, and that {v j} and z ~ determine z. This will prove the first 

formula, since there are choices for {v j}. 

Select i vertices of ~, ,  O<-i<-n-2g, and label them vl, .. . ,  v~; also label the 
edges which proceed them a 1 . . . . .  a~ respectively. Each aj must be identified 
with another edge b j, defined as follows. If the edge after vj is not labeled, pick 
it for bj; do this for all possible j. If any b~ remain unchosen, proceed to the 
edge third after v~ and if it is unlabeled, call it b j; again this should be done for 
all possible cases. Continue, selecting the fifth edge, seventh edge, etc. until all 
the bj are chosen. An example is given in Fig. 4. Pairing aj to b~ for each j, we 
have reversed the process above and established the claim. 

bl 

b 4 ~ o  1 

Q5 ~ b2 
Fig. 4 

For the second formula we proceed differently. Let z be an edge-pairing of 
2~', which satisfies condition A but not condition B. Orient (?J/, and number its 
edges consecutively. If el, ei+ 1, ej and e j+ t (indexed mod 2n) are chosen so that 

pairs e~ to e~+ a and e~+ 1 to ej, we may amalgamate e~ and e~+ 1 into one edge 
and ej and e j+l into another to get a new edge pairing rl  on ~ ,_  ~ which still 
satisfies A. The genus of N./r and that of ~,_1/~ 1 are the same. Continuing 
eventually gives a pairing T ~ on ~,_~ which satisfies both A and B. 
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To work backwards, orient &~,-i and number its edges f l  . . . .  , f2n-2i con- 
secutively. Let a be an edge pairing of g/,-i and choose the lowest indexed 
edge in each pair as representative to get f~,fi2, .... f~,_,, l < j 2  < . . .  <Jn-i" For 
any non-negative integers m 1 . . . . .  m,_ i which sum to i, divide j)~ and a(fi~) into 
mk+ 1 edges by inserting m k new vertices, and pair these in reverse order to 
agree with a. We may identify the resulting 2n-gon with ~, to give an edge- 
pairing z with zi=a. There are m1+1 choices of which edge to call el, but 
otherwise cr determines z. It is easy to check that 

/'r + . . .  + / ? l n  - t = i 

m j ~ > 0  

so the lemma is proved. [] 

For task (ii) we use: 

Lemma 2. Let {e(n)},> o, {/~(n)},_> o, {2(n)},>_0 be three sequences related by 

z(n)=i~0 ( 2 ; ) p ( n - i ) ,  i~(n)=i~ ~ (~) 2(n- i ) ,  (2) 

and suppose that e(n) has the form 

( 2n ) F(n) (3) 
a(n)= n + l  

for some polynomial F with F ( - 1 ) = 0 .  Then the sum X = ~  (-1)"  1 2n 2(n) is 
n 

finite (i.e. 2(n) is zero for n = 0 or n sufficiently large) and equals F(O). 

For the sequences e=eg, ~t=gg, 2=2g (g>l) ,  the equations (2) are the 
content of Lemma 1. Here the conclusion that 2(n)=0 for n = 0  or n sufficiently 
large is uninteresting since we know for geometric reasons that 2g(n)=0 unless 
2 g < n < 6 g - 3 .  On the other hand, the number Z of the lemma equals )~(F~ 1) by 
Theorem 1, and Theorem 2 gives (3) with 

F(n) = ( n -  1). ( n -  2) . . . . .  ( n -  2g + 1). C,,g 

( x/2 ]"+' 
where C,,~ denotes the coefficient of x 2g in \ ~ l  . Clearly F(n) is a 

polynomial (of degree 3 g - 1 )  in n with F ( - 1 ) = 0 ;  the lemma then gives 

B2g 
z(ql )=F(O)= - ( 2 g -  1)!" C~  2g 

as desired. Thus it only remains to prove the lemma. 
Clearly (3) implies e(0)=0, and the relations (2) show that #(0)=2(0)=0 

also. (More generally, if e(n) vanishes for n=0,  1, ..., no, i.e., if F(n) is divisible 
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by ( n - 1 ) . ( n - 2 ) . . . . . ( n - n o ) ,  then p and 2 also vanish for n < n o ;  this is the 
case for e=eg with n o = 2 g - 1 . )  To see that the sequence {2(n)} terminates and 
to compute Z, we introduce a fourth sequence of numbers {~c(n)} as follows: 
Since F ( n ) / ( n + l )  is a polynomial, say of degree d - l ,  it can be written as a 
linear combination of the polynomials 1, n - l ,  ( n - 1 ) ( n - 2 ) ,  . . . , ( n - 1 ) ( n - 2 )  

r! 
�9 . . . - ( n - d + l ) .  Write the coefficient of ( n - 1 ) . . . . . ( n - r + l )  as ~;U~v ~c(r) 
( r, ) 
the factor ~-r~. is included for convenience . Thus 

a r! 
F(n) = ( n +  1).~=,~ (2~r) v. •(r). (,1-1)(n - 2 ) . . . . .  (n - r +  1), 

(2n)! ~ r! ~c(r) 
g(n)  L n! (2r)! ( n - r ) '  

r = l  �9 

1 
with the usual convention =0  for n < r. The relationships between t( and 

(n - -  r)  ! 

~:, z and It, and / t  and 2 can be expressed most conveniently by introducing the 
generating functions 

Indeed, 

K(x)= F, ~(n)x", E(x)= y~ ~(,,)x", 
n>__O n>__O 

M(x)=  ~ #(n)x", L(x)= ~ 2(n)x". 
n>O n>O 

a r ! (2 n) ! x" 
E(X)=rE * ~ ~(r) Z ,~i (n-r) '  

= n > ~ r  . 

=r=l  ~ ~(r)" xr - -  x~ d Xr n= \ 11 ] 

= ~=1 (~r)~. ~(r) .  x r --dx ~ 

" 1 
= E ~(r)~r ~= 1 (1 - 4 x y  + 1,'2 

_ l  ( x )  
I1/V--_ K - 4 x  ~ ' 

n>O i->O 

t (.1 - l / i -  4x ]1~ 

= j>_Z ~ ~U) ~J I / ~  Ys ! 
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we have used the standard identity 

z ,~o 1 ~  \- Tx 

whichismosteasilyverifiedbynotingthatfk=~(2i+k) 
i>O 

1 , f _ l  ) f O = ~ x  1 - 2 x  ( fo -1 )  and f k = l ( f k  1--fk-2) for k > 2  

_ 1 M ( 1 - 2 x - ] / ~ - 4 x ) .  
Ill - 4x  2x ' 

n>O i>O 

j>O i>O 

X j 

-- Z ,~(J)(1 _~)j+l 
j_->O 

1 
- - - -  ~ 

1 - - X  

Combining these three formulas gives 

1 ( l ~ x )  - 1 /x ( l+x)  1K(x(l+x)). 
L ( x ) = ~  x M (1 +x)(1 +2x)  E \ ~  2-x~ 2 = 1 + - -x  

Since K is a polynomial (of degree d) with constant term 0, this shows that L is 
also a polynomial (of degree 2 d - l )  with constant term 0, proving the first 
assertion of the lemma. As to the value of Z, we find 

2~,__(_1),-1 = 1}L(-x)_ dx 
Z= 2n 2(n) - 2  o n = l  X 

1 if K(-x(1-x) )  dx 
2 J o x ( 1 - x )  

1 d 1 
=~ E ( -  IY -1 ~(~) S x~- 1( 1 -~) ' - '  dx 

r=  0 

a r ! ( r - 1 ) !  
= ~ ( _  1)r-1 ~(r) (beta integral) 

r= l (2r)! 

=F(0), 

as desired. This completes the proof of Lemma 2. 
Note that the •'s give the best coding of the information contained in the 

four equivalent series ~, #, 2 and ~, since the d numbers K(r) determine the 2d 
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- 1  values 2(n) and the infinitely many values /~(n) and e(n). In the case of 
interest to us, namely e=eg, #=/~g, 2=2~, all four sequences vanish for n<2g ,  
and d = 3 g -  1, so that the g numbers ~c(2g) . . . . .  ~c(3g- l )  suffice to describe the 
4 g - 2  numbers 2g(2g) . . . . .  2g (6g-3)  and all the eg(n), n>2g .  We give a small 
table of the numbers ~%(n): 

g = l  2 3 4 5 

n -2g =0 
1 
2 
3 
4 

1 21 1485 225225 
105 18018 4660227 

50050 29099070 
56581525 

59520825 
1804142340 

18472089636 
78082504500 

117123756750 

w 3. Coloring the polygon 

For fixed n, the numbers eg(n) are non-zero only for O<g<n/2. We take these 
as the coefficients of a polynomial 

C(n,k)= ~ eg(n) k "+1 2g 
O<g<n/2 

Thus the table in the introduction gives 

c (o ,  k) = k 

C(1,  k) = k 2 

C(2, k ) = 2 k  3 + k  

C(3, k) = 5 k 4 + 10k 2 

C(4, k) = t4k 5 + 70k 3 + 21k, 

while in another direction we have 

C(n, 1 ) = ( 2 n - 1 ) ! ! ~ f ( 2 n - 1 ) . ( 2 n - 3 ) . . . . .  5 .3 -  1, 

because C(n, 1)=~s~(n)  counts all ways of identifying sides of ~ ,  in pairs, 
g 

irrespective of the genus of the resulting surface. The number C(n, k) can be 
interpreted as the number of pairs (~b, ~) consisting of a k-coloring 4, of the 
vertices of ~ ,  (i.e. a map from the set of vertices of ~.  into a fixed set of 
cardinality k, called the set of colors) and an identification r of the edges of 5~, 
compatible with 4~ (i.e. two edges may be identified only if the left end of each 
has the same color as the right end of the other). Indeed, if we first do the 
identification z, the number of inequivalent vertices is n +  1 - 2 g ,  where g is the 
genus of the resulting surface (because the surface has a cell-decomposition 
with one 2-cell and n 1-cells) and these can be colored in k n+l-zg ways. 

The functions C(n, k) and eg(n) clearly determine each other. We will prove 
the following result. 

Theorem 3. C(n, k ) = ( 2 n -  1)!! c(n, k), where c(n, k) (n, k>O) is defined by the 
generating function 
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1 + 2 ~  c(n,k)x "+l ( l + x ]  k = 

or by the recursion 

c ( n , k ) = c ( n , k - 1 ) + c ( n - l , k ) + c ( n - l , k - 1 )  (n, k>0) 

with boundary conditions c(O, k)= k, c(n, O)= 0 (n, k >=0). 

The recursion makes it easy to compute a table of values of c(n, k): 

n = 0  1 2 3 4 5 

k=O 
1 
2 
3 
4 
5 

0 0 0 0 0 0 
1 1 1 1 1 1 
2 4 6 8 l0  12 
3 9 19 33 51 73 
4 16 44 96 180 304 
5 25 85 225 501 985 

(4) 

We can also use (4) to get closed formulae for c(n, k), either by multiplying 
(l +x~ k 

the binomial expansions of (1 +x) k and (1-x)  -k or by writing \ ~ !  as 
2x \k 

1 + ~ )  and expanding by the binomial theorem: 

To see the equivalence of the two definitions of c(n, k) in the theorem, note 
that the coefficients defined by (4) clearly satisfy the given boundary con- 
ditions, while the recursion follows from 

il -t-x~k ) l l * x ~ k - '  
~ l ~ x l - - (  l + 2 x + 2 x 2 + ' ' "  \ l ~ x l  ' 

n--1 

c(n ,k)=c(n ,k-1)+2 ~ c (m ,k -1 )+ l ,  
m = O  

c(n, k ) - c ( n - 1 ,  k)=c(n, k -  1 ) - c (n -1 ,  k -  1)+2c(n-  1, k -  1). 

Theorem 3 will be proved in w Here we show how it implies Theorem 2. 
Differentiating (4) gives 

o r  
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t 
Making the substitution x = tanh ~ gives 

(n+l)c(n,k)=�89 Res t : o [  ( ~ ) 1  -,+lek, dt]  

=2"k .  Coefficient of t" in e k' i t/2 ~,+1  tYnnh57 f 
k" [ t/2 ]"+' 

= 2"k.r :o  ~ 7~.~'. Coefficient of t n-r in \ tanht72! 

Since t/2 ( t/2 ,~,+1 tanh t/2 is an even power series, the coefficient of t "-r in \ ~ 1  is 

zero unless n - r  is an even number, n - r = 2 g .  Hence the last equality (multi- 

plied by ( 2 n - l ) ! !  (2n)! ) n + ~  -2"(n + 1) ! can be written 

( 2 n - l ) ! !  c(n, k) 
k,+, 2g ( t/2 ],+1 

_ (2n)! 2 (n-~ig-)! "C~176 \ ~ I  " 
(n+ 1)! o<~_<,/2 

The equivalence of Theorems 2 and 3 is now obvious. 

w 4. An integral formula for C(n, k) 

In this section we carry out the heart of the combinatorial part of this paper, 
the evaluation of the numbers C(n, k). Recall that C(n, k) counts pairs (q~, ~) 
consisting of a k-coloring ~b of the vertices of ~,  and a compatible edge- 
identification ~. Performing first T and then q~ gave the formula y'  e~(n)k "+t 2g 

g 
for C(n,k). Performing q~ first gives a different expression. There are k 2" 
possible k-colorings of the vertices of ~,.  Let ~ be one of them, and for each 
i,j~{1 . . . . .  k} let nij be the number of edges of ~,  whose left and right ends are 

k 

colored with colors i and j, respectively. Thus nij>O, ~ nu=2n. The number 
i , j - - 1  

of edge identifications ~ compatible with ~b depends only on the nlj and not on 
the order in which the edges with coloring i - j  occur: If for some i+j the 
numbers n~j and nj~ are different, or if for some i the number n~i is odd, then 
there are no identifications (because an edge colored i - j  must be identified 
with an edge j - i ) .  If nij=nji and 21nii for all i and j, i.e. if X=(nij)i<i,j<k is 
an even symmetric matrix, then a moments's reflection shows that the number 
of edge identifications compatible with q~ is l~ no!" l] (n~i- 1) !!, where ( n -  1) !! 

i < i  i 

(n even) has the same meaning as in w 3. Thus 

C(n, k)= ~, c ( ~ )  s(JV'), (6) 
X 
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where the sum is over  all k x k matr ices  JV =(n~fl of non-negat ives  integers with 
~nij=2n, c(.#') is the number  of  k-colorings of  ~a having n o edges colored 
i - j  for each i and j, and 

{o ifn,j4=%'~.fi{O ifn. isodd'~ g( , /~)  
[ J  ,. I if nlj=llji ) (nii--1)VT if nii is even)" I < = i < j < = k  i j  �9 i =  1 " " 

The number  c(JV) is given by the generat ing function 

tr (Z 2") = ~ c (A/') Z ~ (7) 
w 

where Z=(zifll<=i,j<=k is a k x k  matrix of independent  variables and  Z '~" 

denotes [ l  zi~'. This follows directly f rom the definition of mat r ix  mult ipl ica-  
I , j  

tion and of the trace, since 

k k 

t r(Z2") = Z "" Z zi,i2zi2i3""zi2, l,2. zi~.i, 
i l  = 1 i 2 n  = 1 

and we can think of each term of the summat ion  as corresponding to the 
coloring of the vertices of ~'. by colors i I . . . .  , i2.. 

T o  proceed further we express the function e.(dV') as a mult iple  integral. For  
two integers n, m > 0 we have 

6 _ 1 2iei~" ,.,o - -  dO,  n ! =  t"e tdt 
n m  2 ~  0 0 

and therefore, setting t = r 2 and shifting to polar  coordinates,  

a.mn ! =--1 25= ~r. ei.Or,.e_i,.Ordrd 0 
o o 

=1 ~' ~ (x+iy).(x_iy)me_X2 Y2dxdy" 
- o o  - o o  

Similarly the function ( n - 1 ) ! !  (n even) can be represented by 

n 1 

2 n / 2  oo n -  1 

- - / ;  ! t 2 e-tdt 

= 1 ~  Sxne-'2/2dx (t=x2/2) 
o 

so we have the integral representa t ion 

r(n; 1)  
r(�89 
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Hence 

1 ( odd, n 
X n e x212 d x  = 

~o 0 

1 / ~  _'~, ( ( n -  l) !! n even. 
(8) 

g(jl/ ')=2-k/2g-k2/2 H ( x + i y ) , , , ( x _ i y ) , , , e - ~ 2 - V 2 d x d y  
t<.J 

[1 (~  xn"e x2/id ) �9 x 

i = i  - - o c  

=2-k/2 ~-k2/2 ~ ZW e-ktr(z2}dfl H, 
lfk 

where H k is the k2-dimensional euclidean space with variables xi;(i<j),  
yij(i <j),  Z the hermitian (Z '=  Z,) matrix 

I xil i =j, 

Z=(zij), Z i j = ] X i j + r  i< j ,  

�9 [ X o - - r  i>j ,  

and d # n =  l-Idx,jI-ldy,j the euclidean volume. (Note that t r ( Z 2 ) = ~  [z,y[ z > 0  
i<j  i<j  i,j 

because Z is hermitian.) Combining this formula with (6) and (7), we obtain: 

Proposition 1. 
C(n, k)=2 k/2 7~-k2/2 ~ tr(Z2~) e-~tr(Za)d#u. 

H k  

We now apply the following general result: 

Proposition 2. Let F be an integrable function on H~ which is invariant under the 
action of  the unitary group 

U k = { u e G L ( k ,  ~ ) l u ' ~ =  1}, 

i.e. F ( u -  ' Z u ) = F ( Z )  for u e U  k. Then 

(,1~ I 
\ / 

7~k(k - 1 ) / 2  

where c k = k ! ( k _  1)! ... 1 !" 

Proof Let T k be the set of diagonal matrices of size k with real entries. Any 
matrix in H k is conjugate under Ug to an element of T k, say Z = u - * t u .  For 
almost all t (namely, those with distinct non-zero entries), the choice of u in 
this formula is unique up to left multiplication with an element of A k �9 W, where 

A k is the set of diagonal elements of U k .e. elements �9 with Oi~ 
e i0 
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and W is the group of k x k permutation matrices. Hence the map 

T k • A k \ U  k ~ H k 

(t,u) ~--~ Z = u  1 tu 

is generically a covering of degree k!. Differentiating the formula Z = u - l t u  
= t~tu gives 

d Z  =tdu . tu + u -1 .  dt  . u + u - I t . d u = u -  l (dt + tf2 + ~(2t) u 

where dt, du and d Z  are k x k matrices of differentials and g2=du,  u 1. Differ- 
entiating the equation utfi=l  shows that f2 is skew-hermitian, i.e. O=(co~i) with 
eS~i= -ogji. Hence the matrix d t + t f 2 + t O t = d t + t f 2 - f 2 t  has diagonal entries dti 
and off-diagonal entries (t~- t~)e)~j, so 

d~H= ~ (ti--tj)  2 d # ~ \ e ' d #  r 
i< j  

where d~n is the Euclidean volume element on H k introduced above, d/~ 7, 
= d t ~ . . . d t  k is the Euclidian volume element on Tk_=~ k, and dp~\t, 
=I~012/X&~2/X.../XCOk_lk/X&k_~k I. (Since f2 is clearly invariant under right 
translation by U k, dpa\ v is the measure on d k \ U  k induced by Haar measure). 
We have proved the formula 

1 
F ( Z ) d # u = ~ .  ~ ~ F ( u - l t u ) H ( t i - - t j ) 2 d P A \ v d l ~ T  

Hk Tk dk\Uk i<j  

for any integrable function F on Hk; the proposition follows by specializing to 
the case where F is Uk-invariant, with 

1 1 

Ak\Uk 

This volume can be computed by integrating e ~t"xtx) over M k ( ~  ) and observ- 
ing that any X z M k ( ~  ) can be uniquely decomposed as the product of a 
unitary and an upper triangular matrix. Alternatively, we can obtain c a by 
taking F ( Z ) = e  �89 in Proposi t ion2 and evaluating on the right by a 
formula of Selberg. The result is as given in the proposition. 

Combining Propositions 1 and 2 we get 

C(n,k)=c'k  ~ ( t~+ . . .+ t~" )e -~ (q+ ' "+ '~ )  [ I  ( t i - t y  d t l . . . d t  k 
R k l <i <j<k 

with Ck=2 -k/2 rC -k2/2 C k. Since the function e--~t, ~ H ( t i - t j )  2 is symmetric in all 
the tl, we can replace 2. 2, 2, t x + . . . + t g  by ktx without changing the value of the 
integral. Expand ~ I ( t ~ - t )  z as a monic polynomial in tl, say 
2k-2 i<j  

E at(t2 . . . . .  tk)t ~ w i t h  a 2 k _ 2  = 1--I ( t i - - t j )  2, a n d  perform the integration 
r=O 2<i< j<k  

over t 1 using (8). This gives 
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with 

k - 1  

C(n, k)= ~ % , , ( 2 n + 2 r - 1 ) ! !  
r = 0  

-- oc: .-  oo 

For r = k - 1 ,  c~k, r can be evaluated by Proposition 2: 

I l k  1 

k k 2 k 1 (k 1)  2 

=k.2 ~ V q . 1 / 2 s  2 rc 2 

1 

(k-~)~" 

Since (2n + 2 r - 1 ) ! !  equals ( 2 n - 1 ) ! !  times a monic polynomial in 2n of degree 
r, this proves 

C(n, k ) = ( 2 n -  1)!! c'(n, k) (9) 

(2 n) k-- 1 
where c'(n,k) is a polynomial in n of degree k - 1  with leading term - -  It 
remains only to identify this polynomial as c(n, k). ( k - l ) ! "  

To do this, we let Co(n,k) be the number of pairs (~,z) consisting of a 
surjective k-coloring ~b and a compatible edge coloring z of ~, ,  i,e. Co(n, k) is 
defined like C(n, k) but with the extra requirement that all k colors are used. 
Since any k-coloring uses exactly 1 colors for some I< k, and these colors may 

be chosen in exactly (kl) ways, wehave  

C(n, k)= ~ (kl) Co(n, 1). (10) 
1 = 0  

This can be inverted to give 

Co(n , k)= ~ ( -  l) k ' C(n, l). 
/ = 0  

Hence (9) gives 

Co(n, k ) = ( 2 n -  1)!! C'o(n, k) (11) 

/k\ 
whereco(n,k)=~(-1)k- l{ i}c ' (n , l  ) is again a polynomial of degree k - 1  i n n  

\ l !  

(2n)k 1 
with leading term (k -1)~ '  But Co(n, k) vanishes for k < n + l  since no identifi- 

cation z of ~,  has more than n + l  inequivalent vertices (the number of 
inequivalent vertices was n+  1 - 2 g ,  where g is the genus of ~ and hence no 
coloring compatible with r can involve more than n +  1 colors). Therefore 
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(2n)k 1 
c~(n,k) is a polynomial with leading term - - -  which has zeros at n 

(k-1)~ / \ 
=0 ,1  . . . . .  k - 2 ,  i.e. C ' o ( n , k ) = 2 k - l |  \ " ] ~. Substituting this into (10)and  (11) 
gives k 1 

P=l I 1 ' 

which (by (5)) is equivalent to the assertion of Theorem 3. This completes the 
proof of Theorem 3 and hence of Theorem 2 and the Main Theorem. 

Note that if we had used Proposition 2 without knowing the constant 
before the integral, then the same argument would have proved the formula 

with some constants 7z depending only on I. This formula with n fixed and k 
variable gives 

kn+ 1 
C(n, k ) = ( 2 n - 1 ) ! !  7,+1 (n+ 1 ) - - !  +O(k"); 

( 2 n - l ) ! !  
in view of the definition of C(n,k) ,  this means that Co(n ) - ( n + l ) !  )',+1; and 

the proof  that 7, + ~ = 2" (and consequently that C (n, k) = (2 n - 1) ! ! c (n, k)) could 
have been completed by using the direct computat ion of eo(n ) which we will 
give in w 5. 

w 5. Interlude: Recursions for %(n) 

In this section we discuss some recursion formulas which have a geometric 
origin. In principle these recursions determine eg(n); unfortunately we were not 
able to solve them in closed form. 

Let Fo ~ be a compact  surface of genus 0 with k boundary components and 
divide the ith boundary component  into n i edges. We define f ~ ( n  I . . . .  , nk) to be 
the number  of ways of identifying these edges to obtain a closed, orientable, 
connected surface of genus g. Clearly fg(n 1 . . . . .  nk) is symmetric in the variables, 
f~(n I . . . .  , nk)=0 unless n 1 + ... + n  k is even, and fg(2n)=eg(n).  

Let ~1 be the first boundary component  of F and let e~ be a fixed edge in 
(?i. If el is identified to another edge ej of ~1 which is separated from it by j 
- 1  other edges the result is a surface of genus 0 with k +  1 boundary com- 
ponents having j -  1, n~ - j -  1, n 2 . . . . .  n k edges respectively. If e 1 is identified to 
an edge on the ith boundary component,  i>  1, the result has genus 1 and k - 1  
boundary components with n~ + n g - 2 ,  n 2 . . . . .  fig . . . . .  n k edges. In either case the 
identifications can be continued until a closed surface is obtained. This gives 
the recursive formula 
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f ~ ( n  1 . . . .  , nk)= ~ fg(a, b,/12 . . . .  , nk) 
a+b~nl 2 

k 
+ ~ n l f g - , ( n , + n i - 2 ,  n2 . . . . .  fil . . . .  ,nk). 

i=2 

For g=O this reduces to 

fo(n, . . . . .  ng)= ~_, fo(a, b, n2, ... , nk) 
a+b=nl- 2 

and one sees by induction (or geometrically) that fo(nl . . . . .  nk)=0 unless the n i 
are even and in that case 

k k 

i=1 i=1 

The recursion then implies 

eo(n ) = ~ eo(a) r (b). 
a+b-n-1 

Using the initial condition co(0)= 1, this may be solved to show eo(n ) is the n th 

Catalan number C ( n ) = ( z n n ) / ( n + l ) ;  indeed, the recursion translates im- 

mediately to the formula e ( x ) = l  +xe(x )  2 for the generating frunction e(x) 

= 2 eo(n) x~, so e ( x ) -  l - l / i - 4 x  _ 2 C(n)x" by the binomial theorem. 
,~o 2x ,~0 

More generally, one sees by induction that s  1 . . . . .  rig) vanishes if more 
than 2g of the n i are odd. Thus for g = l  there are two cases, according as 
none or two of the n i are odd, for g = 2  there are three cases, etc. For genus 
one we find 

(_~  l ( n / + l )  n i ( n i + l ) n i ( n j + l ) )  [ I  
f l (2n l  . . . .  ' 2 n 0 =  2 \  3 + ~  C(n3' 

i i<.j Hi-~Hj i= l  

J)(2n 1 +1,  2n2+1,  2n 3 . . . . .  2n~) =(2n l  + l ) ( n 1 + l ) ( 2 n z + l ) ( n 2 + l )  [ I  C(ni)" 
n ~ + n 2 + l  i=1 

The formulas for higher genus are considerably more complicated and we were 
not able to give a direct proof of Theorem 2 in this way. 

w 6. The true Euler characteristic of Fg and/'7 

Let F "~ be the mapping class group defined like F~ 1 but with s points q l, qs g ,,.~ 
fixed (individually) rather than just one; F~~ For 2g-2+s_<_0 we have ~ 
- -  s+ l  -F~ , while for 2 g - 2 + s > 0  we have an exact sequence 

1 ~ 7"C 1 ( f  - -  { q l  . . . . .  qs}) ~ ~ g S + l  ._..). ~gs _+  1 



476 J. Hater and D. Zagier 

so that z(F~ ~+ l)=Z(F~s). ( 2 - 2 g - s ) .  This gives the formulas 

{1 s_<3 
z ( r o )  = ( -1 )"  3 (s -3) !  s>3 ,  

- 1 ~  s__<l 

z( /7)  = - 1 ) ' ( s -  1), 
�9 s > l ,  

12 = 

z(FS)=(_l)~ ( 2 g + s - 3 ) !  Bzg g>2 ,  s>0 .  
2 g ( 2 g - 2 ) !  = - 

In this section we explain how to get the values for the ordinary, as opposed to 
orbifold, Euler characteristics e(Fg ~ and e(F~ 1) in terms of the numbers z(Fd~). 

Define a group F to be geometrically WFL if there is a contractible, finite 
dimensional, proper F-complex Y such that there are only finitely many cells of 
Y modF. Such a group is automatically WFL (virtually torsion-free such that 
for any torsion-free subgroup r < F  of finite index there is a free resolution of 
Z over Z F ;  see [4], p. 226). Suppose that (i) F has finitely many conjugacy 
classes of elements of finite order and (ii) for every element a of finite order in 
F the centralizer Z~ of a is geometrically WFL (including F = Z  O. A theorem 
of Brown [5] then says that 

e(c) = Y~ x(z~), 

where the sum is taken over all conjugacy classes ( a )  of elements of finite 
order in F. 

The mapping class groups Fg s are well-known to be virtually torsion-free 
(see, e.g. [8])�9 Furthermore it is shown in [8] that F S for s>  1 is geometrically 
WFL (when s=  1 an example of a Fgl-complex is the complex Y of section 1). 
An alternative proof of this which works for all s > 0 goes as follows. 

Let JC/j be the moduli space of all isometry classes of hyperbolic metrics 
(complete, finite area) on a surface F of genus g with s punctures�9 Also let 3~ S 
be the Teichmtiller space of all equivalence classes of marked hyperbolic 
metrics on F. Then Fg S acts properly discontinuously on 3-~ ~ with quotient ~ .  
A result of Mumford (see e.g. [1]) says that for all e>0 ,  the subspace 
j / / j ( a ) c ~ ' j  of all metrics for which the length of every closed geodesic is at 
least a is compact. Furthermore, for e small enough ~'~(e) is a deformation 
retract of ~'~. 

Let ~-~g~(a) be the inverse image of JC/g(a) in ~-~, so that F~ " acts on ~ ( e )  
with quotient Jgg(e). Choose a finite triangulation of/r162 which is compatible 
with the stratification of J/gj by symmetry types; that is, if A is an open k- 
simplex of JC/j and [X1] , [Xz] are points of A, then the symmetry groups of 
the surfaces X1, X 2 are the same. This triangulation will then lift to ~ ( e )  
which becomes the complex desired. Hence F~ ~ is geometrically WFL for all g, s 
(actually, this proof  requires 2 g -  2 + s > 0; the other cases are well-known). 
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Now, in order to apply Brown's theorem to F = Fg ~ o r  Fg I we must compute 
the centralizers of elements of finite order in F and show they are geometri- 
cally WFL. Consider Fg 1 first and let ~r have finite order. A result of Nielsen 
[12] says that a may be represented by a periodic homeomorphism f of F of 
order k which fixes the basepoint p. The quotient Fff" is an orbifold of genus h 
with singular points P0 . . . .  ,Ps; the Pi are the ramification points of the 
branched covering 0 I :  F ~ F / f  Since f fixes p, 0z(p) is a singular point, say 
$ i (p )=p0 .  If B 0 denotes F/ f - {p i }  and F 0 denotes ~gjl(B0), the covering 
F o ~ B  o is determined by a map co,: H I ( B o ) ~ Z / k Z  Let 7i, O<i<=s, denote the 
class in HI(Bo) represented by a circle around Pi. Define F(F/f)  to be the 
group of all isotopy classes of homeomorphisms f l  of F/f  which fix Po, fix 
{Pl,--.,Ps}, may permute Pi and pj (i,j>=l) when c%(Ti)=co~(?j), and satisfy 
co o of  1 = co~. 

Lemma 3. There is an exact sequence 

1 -~ ~./kTZ -~ N, -~ r (F / f )  ~ 1 

where N~ is the normalizer of cr in Fg 1. The groups F(F/f), N~ and Z~ are all 
geometrically WFL; in particular, Z(F(F/f)), z(N~) and z(Z~) are all defined. 

Proof Let /~s denote the mapping class group defined as usual but with one 
basepoint p fixed and s other points p~ . . . .  , p, fixed setwise. T h e n / ~  acts on Y 
=J~hS+l(e) (or on the complex Y constructed in [8]) and Y is structurally finite. 
Now F(F/f)  is a subgroup of finite index o f / ~  so it acts on Y and is therefore 
geometrically WFL. Furthermore,  the exact sequence of the lemma gives an 
action of N~ and Z~ on Y so they are geometrically WFL. Thus it remains only 
to construct the exact sequence. 

Let z~N,  and write (a ,  ~) for the subgroup of F~ 1 generated by a and z. 
There is a short exact sequence 

1 ~ Z / k Z  ~ (a, z)  -* Z /nZ  ~ 1 

where z has order n>__0. The Nielsen conjecture is known for such groups when 
n > 0  by a result of Zieschang ([15], Theorem 54.7). It is also true when n = 0  
by an argument of Kerckhoff (private communication) which is based on an 
analysis of the action of (a,  z)  on Teichmiiller space. This means we may find 
diffeomorphisms f representing a and fo representing z with fk  = 1, fo ~ = 1 and 
fo fJo-~ =f~ for some r. The map f0 descends to a homeomorphism of F/f. This 
gives the map N,- ,F(F/ f ) .  

An element of F(F/f)  clearly lifts to an element of N, and the identity in 
F(F/f) is covered only by powers of a. The lemma follows. []  

Now we turn to the computation of e(F~). Looking more closely at the 
branched cover O:F-- ,  F/f, let the singular point pi of F/ f  have type n~> 1. By 
the Riemann-Hurwitz  formula 

2-2 --k (2-2h-,s+l +i ljoit  
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here h is again the genus of F/f  and each n~ divides k. Let ri=c%(Ti) (recall 
e)~:Hl(Bo)--*Tl/kTl determines the covering F o ~ B  o and 7i is the class in 
HI(Bo) of a circle a round  Pi); rieTl/k7l and we have 

k 
(ri, k ) =-- (O<=i<=s), ~ r i = 0  rood k. (12) 

I1i i= 0 

It is easy to see that  the existence of the data  {h, k, s, n i, ~o} satisfying (12) is 
necessary and sufficient for the existence of a in F~ 1. A m a p  f :  F~ ~ ~ F~ 1 with 
data  {h,k,s, ni, co} is conjugate  to a power  of the m a p f '  with data 
{h',k',s',n'i, co'} if and only if h=h', k=k',  s=s', {ni}={n'i} and there is an 
a u t o m o r p h i s m  2 of H 1 (Bo) such that ~o'o 2 = v), {2(7i)} = {71} and whenever  2(7~) 

To pass from Z~ to N~, suppose Z~ has index l in No; then z (Z , )= I .  Z(No). 
The m a p a  is conjugate  to exactly l of its powers,  so if S denotes a set of 
representat ives of the conjugacy classes of {a": (n, k )=  1 } in F~ 1, then 

Y, z ( z 3  = ~o(k) �9 z (N~)  
ZES 

where ~o is the Euler phi-function. 
The  l emma above  allows us to pass form N o to F(F/f); we have 

1 
z(Np = ~ '  z(r(r/f)). 

Finally, to pass from F(F/f)) to Fh s+~, let f2 B be the set of characters  
Hl(Bo)~2g/k77 which satisfy (12). The group  /~ acts on O B and the stabilizer 
of the element e) ,ef2 B corresponding as above  to f :  F--*F is easily identified 
with F(F/f) .  Therefore  the orbit  (9(0~) has order  [/~s: C(F/f)] and we have 

z ( r ( v / f ) )  = # r  z(F~ s) = # 0 ( ~ p  �9 z(&"+~'-) 
s! 

since Fh s+ 1 is a subgroup o f /~  of index s t. 
To put this all together,  fix the orbifold B and let A be the collection of 

conjugacy classes ( a )  with a the isotopy class of a m a p f  with F/ f  i somorphic  
to B as an orbifold. Normal i ze  by setting r o = 1 ; then 

~o(k) ~ Z(r(F/f)) Y z(zp= 
( a ) e A  k ( a ) e a  

=~o(k) Z(Fh ~+') ~, @tO(c~ 
k s! <o>~A 

~o(k) z(Fh s+ 1) 
= ~  s! 4~OB" 

Since a character  is determined by its value on H l(Bo), the cardinali ty of f2 B 
equals k 2h (corresponding to the values on Im(HI(B)~HI(Bo)))  t imes the 
numbe r  of ( s + l ) - t u p l e s  (r o . . . .  , rs)e(Z/kZ) s+a with t o =  1 satisfying (12). Writ-  
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k 
ing li for , we have: 

ni 

Theorem 4. The Euler characteristic o f  F~ 1 is given by 

e(Y~') = ~, ~o(k) z ( F h S + ' ) . k 2 h N l ( k ; l l , ,  ls) 
k> l.h>_O.s>O k s! ""  
I1 . . . . .  I ~ ] k , l ~ : # k  

2 ~  1 - k ( 2 h - l + s )  11 ~ . . .  - i s  

where 

N 1 (k ;  11 . . . . .  Is) = # {(q . . . . .  r~) s(7Z/k ~)s[1 4- r I 4 - . . .  4- r s --  0 ( r o o d  k), (k,  ri) = l i } .  

Similar arguments  work for F~ except that to guarantee that the cover of B 
is connected we must  add the requirement that the character 
o J : H l ( B o ) - ~ T l / k Z  be surjective (this was automat ic  before because r 0 was 
prime to k). If a i ( l < i < 2 h )  are the values of co on a basis of 
I m ( H I ( B ) ~ H 1 ( B o ) ) ,  and r i ( l < i < s )  are as before the values on the 7i, then 
this condit ion is simply g.c.d. (a 1 . . . . .  azh, r 1 . . . . .  r , , k ) = l .  Set l~=(k, r~) as 
before; then for fixed r 1 . . . . .  r2h we must count  the number  of 2h-tuples in 
(Z/h7/) 2h whose greatest c o m m o n  divisor is prime to (l I . . . . .  l), and this num- 
ber is clearly k 2h. [ I  (1 - p  2h). Hence we have 

p[( l t  . . . . .  Is) 

Theorem 5. 

1 z(FhS) k2h [ ]  ( l _ p _ 2 h ) . N ( k ; l  ' . . . . .  1~), 
e(F~)= ~ k" s! 

k > 1.h_->O,s>O p ] ( l l  . . . . .  ls) 
l l  . . . . .  l s j k ~ L  ack 

2 g  2 = k [ 2 h  2 + s )  It .. .  Is 

where 

N ( k ;  l I . . . . .  1~) = :~ {(r 1 . . . . .  rs)~(7Z./kZ)Sjrl + ... + r  s - O ( m o d  k), (ri, k)=l i} .  

Theorems 4 and 5 are already sufficient to compute  e(F~ 1) and e(F~) numeri-  
cally. The computa t ion  of  e(F~ 1) for g=<3 is illustrated in Table 2 (here we list 
the l i in increasing order  and include a multiplicity to count  the permutations).  
As g grows, however, the number  of terms to be considered becomes very 
large, so we would like to have closed formulas for the functions N 1 and N. 
Clearly ~o(k)Nl(k;  11 . . . . .  l s ) = N ( k ;  l, 11 . . . .  , Is), so it suffices to treat N. Using 
the identity 

1 ~, U = ~ I  i f r - O ( m o d k )  

~k= 1 " / 0  otherwise, 
we find 

N(k ;  11 . . . . .  Is) ~-~-k @~=1 . . . .  dk . . . .  dk 

( r l , k ) = l l  ( r s ,  k ) = l s  

_  (Xo ) ~; Ck= l i = 1  r k 
(r, k ) = l ,  
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Table 2. Computat ion of e(Fg t) 

J. Harer and D. Zagier 

k h s l l , I  s . . . .  
Number  
of per- 
mutat ions 

z(Fh ~+ ~). ~(k). k 2h- ' 
s! 

N l ( k ;  l I . . . . .  I s) 

g = l  

g = 2  

g = 3  

I i 0 -  1 

2 0 3 1 , 1 , 1  1 
3 0 2 1 , 1  1 
4 0 2 1 , 2  2 
6 0 2 2 , 3  2 

1 2 0 - 1 

2 1  l I 1 
2 0 5 1 ,1 ,1 ,1 ,1  1 
3 0 3 1,1,1 1 
4 0 3 1 ,2 ,2  3 
5 0 2 1,1 1 
6 0 2 1,2 2 
8 0 2 1,4 2 

10 0 2 2,5 2 

1 3 0 - 1 

2 1 3 1,1,1 1 
2 0 7 1 , 1 , 1 , 1 , 1 , 1 , 1  1 
3 1 1 1 1 
3 0 4 1 ,1 ,1 ,1  1 
4 0 3 1,1,1 1 
4 0 4 1 ,2 ,2 ,2  4 
6 0 3 1,3,3 3 
6 0 3 2 ,2 ,3  3 
7 0 2 1,1 1 
8 0 2 1,2 2 
9 0 2 1,3 2 

12 0 2 1,6 2 
12 0 2 3,4 2 
14 0 2 2,7 2 

- 1 / 1 2  
-1/12 

1/3 
1/4 
1/6 

1/120 
1/6 

- 1/40 
- 1/9 
- 1 / 1 2  

2/5 
1/6 
1/4 
1/5 

- 1/252 
1/6 

- 1/84 
1/2 
1/18 

- 1 / 1 2  
1/24 

- 1/18 
- 1/18 

3/7 
1/4 
1/3 
1/6 
1/6 
3/14 

1 - 1 /12  
1 - 1 / 1 2  
1 1/3 
1 1/2 
1 1/3 

1 

1 1 / 1 2 0  

1 1 / 6  

1 - 1/40 
3 -1/3 
1 - 1 / 4  
3 6/5 
1 1/3 
1 1 / 2  

1 2 / 5  

2 

1 - 1/252 
1 1/6 
1 - 1 / 8 4  

1 1/2 
5 5/18 
4 - 1/3 
1 1/6 
1 - l / 6  

1 - 1/6 
5 15/7 
2 l 
2 4/3 
1 1/3 
1 1/3 
1 3 / 7  

N o w  for I I k and ~ a primitive d 'h root  of unity, d I k, we have by an elementary 
calculation 

~* = # ~ q) (d/(d, I)) r rood k 
(r, k) - l 

where ~o and # are the MObius and Euler functions (Ramanujan  sum). Denote  
this expression by c(k,l,d). Since for each dlk there are ~o(d) primitive d th 
roots of unity among  the k th roots of unity, this gives the closed formulas 

s 
N ( k ;  l 1 . . . . .  Is) = k  E (~0(d) H c(k,  li, d) 

dlk i=1 

and (since c(k, 1, d)=#(d)q)(k)/~o(d)) 
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1 s 

N '  (k; l, . . . .  ,1s)=~- " ~ #(d) [ I c(k, l,, d). 
d[k i=1 

These formulas can be used to calculate N and N 1 rapidly. Substituting the 
above expressions for c(k, 1, d), we find 

l 1 k ~ q ~ ( d ) ~  p(d/(d, l~)) 
N ( k ; l ,  . . . . . .  ) = ~ p  ""~P l dlk ,=, q~(d/(d,l,))' 

N ~ (k; l, . . . . .  ls) = ~  q~ ... q~ ~ p(d) [ I  #(d/(d, l~)). 
,.~- a I k ~ =, q~ (d/(d, l,)) 

We can simplify further by noting that the expressions in the sums are 
multiplicative in d, so that the sums can be written as products  over prime 
divisors of k, viz. 

s 
2]x(d)[~I1 ' l ( d / ( d " i ) )  ( 1 - ~  ~(P/(P ' / i ) )~:  ( 1 -  ( - ]  ~vP~ 

,:1  oip/Ir, l,)):  F i-l: : 

(Vp = number  of i for which p,gli) and similarly 

, ~  ~ I~(d/(d, l i ) )_  i - i p ~  ( 1 -  - 1  , ~ ,  

(2v=largest  2 such that P~I l, for all i, # p = n u m b e r  o f /  for which p~'~+ ~l , ) .  In 
particular N l ( k ;  11 . . . . .  /~)=0 if vv=0  for some p and N(k ;  l~ . . . . .  /~)=0 if # p = 0  
for some i; these properties,  of course, are clear from the definitions of N L and 
N. 

Finally, we recast Theorems 4 and 5 into a more convenient  form using 
generating functions. In Theorem 4, we have k ( 2 h -  1 + s )=  2 g -  1 + l~ + . . .  
+ / s > 2 g - l > l ,  so we cannot  have h = s = 0  or h = 0 ,  s = l .  Conversely, given 
any k > l  and s, h > 0  with s + 2 h > 2 ,  and any proper  divisors 11 . . . .  , l ,  of k with 
Nl(k;11  . . . . .  l~)#O, we have k ( 2 h - l + s ) - l l - . . . - l ~ = 2 g - 1  for some integer 
g > l .  Indeed, the left-hand side is > 0  because l i<k /2  and (s, h) # (0, 0), (1,0), 
and odd because 

k o d d ~ k ( 2 h - 1  + s ) - l ~ - . . . - l ~ - i  + s - s - l ( m o d 2 )  

k even, N1 (k; 11 , . . . ,  l~) # 0 ~ v 2 odd ~ k (2 h - 1 + s) - ll - . . .  - ls - v 2 =- 1. 

Hence Theorem 4 can be rewritten as the formal power series identity 

z(Fhs+ 1) k 2h- 1 tk(2h- I) Z e(F~') t2" ~= Z q~(k) 
g~l k>l 

h , s > O  
s+2h>2 

Na (k ; l 1, . . . ,  l~) t ~k-t')+'''+~k-'~). 
ll . . . .  , ls lk 

l ~ - k  
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Substituting the formula for N ~ given previously, we find that the inner sum 
equals 

1 ~p(d) ~ c(k,l , ,d)t k-h.. .c(k,l~,d)tk- , ~1 tk_t)s 
dlk  I . . . . . .  l , [k  " "= ~p (d ) (~  c(k,l,d) @ 

dlk  Ilk 
l~:Fk t t k  

Thus Theorem 4 is equivalent to 

Theorem 4'. The numbers e(Fg 1) are given by the generating function 

Z e(r/) t~-~= Z Z z(r:+,) k2h_ 2 g > l  d , k > l  h,s>=O s~12(d)(p(k) f i k ' d ( t ) s t k ( 2 h  - l )  

d lk  s+ 2 h >  2 

where 

fig, d( t )= Z e a tk-(k,*)= Z #  

The generating function in Theorem 4' can be written 

~o(k) 
Z ~-~ Z#(d) q)~(fik, d( t)' ktk) 

k>=l dlk  

where 

1 1 ) X s y 2 h _  1 ~l(x, r)= ~ 7., z(~s+ 
h , s > O  

s+ 2h> 2 

By the formulas for Z(F~ s) at the beginning of this section, we have 

�9 J (X, Y)=s  s(s - 1~ + ~ ( 
= h>=l 

s>_O 

1 
=~- ((1 +X)log(1 + X ) - X ) + a M  

B2h T 2h- 1~I1~ [[-T]]. The power series aM(T) is familiar from where aM(T)= - Z 
h_>_l 

Stirling's formula for log F(x), which when differentiated says 

F(x) ~ l o g x  -~-x + x  ~ ( x ~  o0). 

However, it is not clear whether these remarks can be used to simplify the 
power series on the right-hand side of Theorem 4' and, in particular, to show 
directly that its coefficients are integers. 

For Fg the situation is similar but more complicated. Here we find 
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e(F~) t 2g-2= 
g > l  

Z(Fd ~) k2h 1 tk (2h-  2) 

k>=l S! 
h , s > O  

s + 2 h > 3  

l ] * k  

�9 N(k;  11 . . . .  , ls) t k-h+' ' '+k- l~)  

and now the inner sum equals 

m 2 h l N ( k ; 1 1  . . . .  , l s ) t  k t l+. . .+k-t ,  
II . . . . .  l s l k  1( l . . . . . .  ) 

l~ ~:k 

#(m) 
= E  mZh E Ntk;lx .. . . .  1s) tk-''+'+k '~ 

talk  l~ . . . . .  l s l k  
l~ +k  
rail, 

Also 

=k ~lk ~ V  dlk • ~o(d) c(k, l , d ) t  k ' . 

l~-k 
roll 

I lk  I l k '  
l~:k l~-k" 

t l k" # (d/(d, lm)) 
I:l-k' 

,Ik" #(d'/(d', 1)) 
l~-k" 

= i l k ' ,  d' (tin)" 

Hence Theorem 5 is equivalent to 

Theorem 5'. The numbers e(Fg) are given by the generating function 

E e(Fg) t2g-2= E E X(FhS)#(m) (p(d) ( k  t k)2h-2 
g>_-I k>_-I h,,>=o s!  m 2 ilk_, 

m, d lk  s + 2 h > - 3  

The expression on the right can also be put in the form 

#(m) ( d (tm), k tk  

k>=l m , d [ k  

d ( t in)  s. 

m (d, m) 
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where  

q~(X, Y ) =  ~ Z(Fh ~) X s y2h-2  
h,s>=o S!  

s+2h>_-3 

(_1)~  , 
= E s ( s - 1 ) ( s - 2 )  X~+ E ( - 1 ) S X ~ Y 2  

+h~2 ~-~ 2 h ( 2 h - 2 )  \1 + X ]  
o 

Theorems  4' and  5' are  much  more  convenient  for c o m p u t a t i o n  than 
Theorems  4 and 5, since we no longer  have the summat ions  over  s- tuples 
(11 . . . . .  ls). Us ing  them, we found the fol lowing values for g < 15: 

g e(F~) e(F~') 

1 1 1 
2 1 2 
3 3 6 
4 2 2 
5 3 6 
6 4 8 
7 1 8 
8 - 6 - 34 
9 45 164 

10 - 86 - 350 
1l 173 118 
12 -100 4206 
13 2641 -43770 
14 -48311 919838 
15 717766 -20261676 

F o r  compar i son ,  the orbi fold  character is t ics  for genus 15 are 

Z(F15) = 716167.5514 . . . ,  Z(/]15) = -20052695.7966 . . . .  

In  general  the terms of Theo rems  4 or  5 with k =  1 give numbers  X(F~I), Z(F~) 
which grow roughly  like gZg (the exact a sympto t i c  formulas  were given in the 
in t roduct ion) ,  while the terms with  k > 2  grow roughly  like gZg/k. Thus  for F 
=F~ or  Fg ~ the fo rmula  for e(F) consists of a very large ma in  te rm z(F)  and an 
e r ror  term of abou t  half  as many  digits. In  pa r t i cu la r  e ( F ) ~ z ( F ) ,  so the Euler  
character is t ics  of bo th  Fg and Fg' grow more  than  exponent ia l ly  rap id ly  with g 
and  take  on  posi t ive and negat ive  values infini tely often, ind ica t ing  that  F~ and 
F~ 1 have some  very large Betti numbers  and tha t  these occur  in bo th  odd  and  
even dimensions .  
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