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Introduction 

L e t  p =  1 ( m o d  4) b e  a p r i m e ,  (!) t h e  r i n g  o f  i n t e g e r s  o f  Q ( g / p ) .  T h e  g r o u p  SL2(d)  ) 

o p e r a t e s  o n  t h e  p r o d u c t  o f  t h e  u p p e r  h a l f - p l a n e  w i t h  i t s e l f  b y  

T h e  q u o t i e n t  X = ~ 2 / S L 2 ( O )  is a n o n - c o m p a c t  c o m p l e x  s u r f a c e  w i t h  f i n i t e l y  

m a n y  s i n g u l a r i t i e s .  O n  X w e  d e f i n e  a s e r i e s  o f  c u r v e s  T1, T 2 . . . .  a s  f o l l o w s :  
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given N, we consider all points (zl, Z 2 ) ~  2 satisfying some equation of the form 

a l /p  zl z2 + ~.z2-  ,t' z~ + b l /p=O (2) 

with a, beZ, 2e(9, 22'+abp=N; this set is invariant under SL2((9), and T u 
denotes its image in X. Then T N has finitely many components, is non-empty if 

N )  1, and is if N is not the of ideal of 6. The # compact norm a n  curves 

TM and T N meet transversally if MN is not a square, and (because X is a rational 
homology manifold) have a well-defined intersection number TMTNeQ. This 
number is evaluated in Chapter 1. We find for example T~TN=Hp(N) if N is 
not a square, where Hp(N) is the arithmetical function 

Hp(N)= ~ H((4N-x2)/p), (3) 
x 2 < 4 N  

x 2 ~- 4N (rood p) 

H(k) being the class number of positive definite binary quadratic forms of 
discriminant - k  (precise definitions are given in the paper). We also consider 
the compact surface )( obtained by adding to X the "cusps" and resolving the 
singularities thus created (cf. [4]). The compactification of the curve T N represents 
a cycle in the middle homology group H 2 (X). This group decomposes canonically 
as the direct sum of the image of H2 (X) and the subspace generated by the 
homology cycles of the curves of the cusp resolution; we denote by T~ the 
component of T N in the first summand. Then the intersection number of T( and 
T~ on X is the sum of Hp(N) and a contribution Ip(N) from the cusps given by 

Ip(N) =S~I~__ ~ min(2, 2') (4) 
VP Ate) 

A~,O 
2A'=N 

(this is a convergent series). The calculation of T~t T~ on )f in general is more 
complicated, especially if (M, N) > 1 ; we find for example 

(T~tTN)fC=al,~m(~)d(Hp + I ,  ( ~ - ) )  

if (M) = I (if MN is a square, then Tu and TN have components in common 

and we must calculate self-intersection numbers, but the formula remains valid). 
In Chapter 2 we prove that the function 

oo 

q~,(z)= -Tq~+ ~ (H,(N)+Ip(N)) e2~iN~ (ze~) 
IZ  N=I  

is a modular form of weight 2, level p, and "Nebentypus"  (in Hecke's termi- 
nology), i.e. 
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fo al,   anaa,1 (: ..deod. t.is provod for  ,s riminaot 

of any real quadratic field, not necessarily prime.) Thus the intersection numbers 
(TlC T[@c are the Fourier coefficients of a modular form. The above formula 
for (T~T~v)x shows that this number (if p3/M) is precisely the N-th Fourier 
coefficient of the modular form ~op[ T(M), where T(M) denotes a Hecke operator 

on the space M2 (Fo(p), ( p ) ) ,  , . .  of modular forms of weight 2, level p and Neben- 

typus. In this way we obtain a map from the part of H 2(2;  C) generated by the 

7~ into this space of modular forms, and indeed into the subspace M~- (Fo (p), (p))  

(of half the dimension) of modular forms having the property that the N-th 

Fourier coefficient is zero whenever ( ~ ) = - 1 .  We conjecture that this map 

is always an isomorphism (this has been verified for p < 200). This conjecture, 
as well as the significance of the mapping and its relationship to the Doi-Naganuma 
lifting ([37, 38]), is discussed in Chapter 3. 

The starting point for this paper was a letter of Serre (December 8, 1971), 

in which he pointed out that the number [P+ 19] [ ~ j  ([ ] =greatest-integer function), 

which had occurred in a formula for the arithmetic genus of a surface related 

to X, is precisely the dimension of the space M~- (Fo(p), (p))  as calculated by 

Hecke. To explain this coincidence, we calculated (Tr~ T~)~Z in hundreds of cases 
on the Hewlett-Packard calculator at the I .H .E .S . -a t  the time we knew the 
formula for these intersection numbers only under the hypotheses ( M , N ) = I  
and T N c o m p a c t - a n d  found empirically that these were Fourier coefficients of 
modular forms. Later we were able to prove this, as well as to extend the formulas 
for T u T N to the general case (M, N) > 1 and to determine the contribution of the 
cusps. Part of this work was done during visits to the University of California 
at Berkeley, the Coll6ge de France, and the Institut des Hautes Etudes Scientifiques. 
The authors enjoyed the stimulating atmosphere at these institutions and would 
like to thank them for their hospitality. 

The results concerning modular forms (Chapter 2) are due to the second 
author and were announced in [-35]. Some of the results concerning the inter- 
section numbers of the T N were announced in [5]. 

Notation. K denotes a fixed real quadratic field, 0 its ring of integers, x', 
N(x)=xx '  and Tr(x)=x+x'  (xeK) the conjugate, norm and trace of x, respec- 
tively; x >> 0 means that x is totally positive (i.e. x > 0  and x'>0). In Chapters 1 
and 3 we assume that the discriminant of K is a prime p - 1 (mod 4); in Chapter 2, 
K is arbitrary. We write )~n(n) for the character associated to a quadratic field 
of discriminant d, L(s, za)=~xa(n)n -s for the associated L-series. Thus 
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.~ denotes the upper half-plane {zeCllm(z)>0},  SL2(TZ ) the group of 2 x2 
integral matrices of determinant 1, acting on ~ in the usual way, Fo(N ) the 

of matrices (a ; ) w i t h  Nlc,  SL2(d~ ) the group of 2 x 2  matrices with subgroup 
x ~  

entries in tP and determinant 1, acting on .~ x .~ as in (1) above. 

Chapter 1 : The Intersection Behaviour of the Curves T N 

In this chapter we evaluate the intersection number of the curves T M and T N 
defined in the Introduction for all values of M and N. We have 

TN= UFs/,2, 
n2lN 

where FNcx=~E/SL2((~) is defined as in (2) of the Introduction but with the 
additional requirement that only triples (a, b, 2)e7Z • Z • are allowed which 
are not divisible by any natural number > 1. All intersections of F M and F N (M 4= N) 
are transversal and occur at certain distinguished points of X which we call 
"special". To each special point 5~X is associated a positive definite binary qua- 
dratic form cpa, and T M and T N meet in ~ if and only if the form ~0~ represents both 
M and N. In Section 1.1 we study the special points and determine how often 
any given positive definite form ~ occurs as the form ~oa associated to some 
special 3. This result, together with some results on representation by quadratic 
forms given in 1.2, permits the evaluation of the number of intersections of T~ 
and T N on X (Section 1.3). In the last sections we study how the curves T N ~ X 
meet the curves of the cusp resolution and evaluate the self-intersection numbers 
of the curves T N on X for all N, thus obtaining in all cases a formula for the inter- 
section number of the homology classes [T~t] and [T~] on the compact suface )(. 

We remark that curves defined by skew-hermitian matrices have been pre- 
viously used by Hammond [-2]. 

1.I. Special Points 

We fix a prime p - 1 (mod 4) and consider the field K = Q (l/p) and the quaternary 
lattice 932 of all skew-hermitian matrices 

A =  b 

where O is the ring of algebraic integers contained in K. On ~0l we have the 
quadratic form 

~OloA ~-~det A = a b p + 2 J ;  (2) 

of discriminant p3. Over R this form is of type ( + , - ,  + , - ) .  For a point 
z=(zx, z2)e ~ x ~ let 9J~, be the sublattice of ~ consisting of all Ae~01 such that 

a V ~  zl z2 + 2 z2 - 2' zl + b l /~=O. (3) 
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Equation (3) is equivalent for A + 0 to 

2' z l - b  l /~ 
z2= a V ~ z l w ) "  

Thus det A > 0 if A =~ 0, and 9Jl z is a sublattice of 991 of rank 0, 1 or 2 on which 
the function det is positive definite. 

We can also introduce the 4-dimensional real vector space 9 J i |  and 
associate to every point z~ ~ • .~ the 2-dimensional subspace (991 | IR)~ of 9~ | R 
consisting of all matrices A satisfying (3) where a, b, 2, 2' are now four arbitrary 
real numbers. Then we get an embedding of .~ • .~ as an open subset of the 
Grassmannian (5 of all 2-dimensional subspaces of 9J/| R. It has the Grass- 
mannian I~i of all oriented 2-dimensional subspaces of 9 J / |  as a twofold 
cover. Since .~ x .~ is simply connected, we have two embeddings of .~ • .~ in (5 
covering the embedding in 15. One such embedding we choose once for all. 

The lattice 932 z is contained in the oriented 2-dimensional real vector space 
(9~ | ~)~. We call the point z special if rk 931~ = 2. Then ~0~ = det 19Y/z is a positive 
definite binary integral quadratic form defined over an oriented lattice. Clearly, 
9J//~lJ2~ is torsion-free and 9J/z is a direct summand of 9J/. Therefore, for every 
prime q, the 2-dimensional vector space 9Jlz| over 7l/q7l is a direct 
summand of 9J/@ Z/q Z. In the next lemma, we will state exactly which binary 
quadratic forms can occur as forms ~o z. First we introduce some terminology 
concerning binary quadratic forms. 

For an oriented Z-lattice L of rank 2 we use only bases e 1, e 2 of L compatible 
with the orientation. A quadratic form ~p: L ~ 7I can be written as 

qg(uel q-vez)=C(u2 + fluvq-];v 2 , (4) 

where ~=(o(e0, T=r , fl=tp(el+e2)-cp(el)-tP(e2). Such a quadratic form 
will sometimes be denoted by [c(,fl, 7]. The discriminant of r is fl2-4c(7. The 
content of ~0 is defined as the greatest common divisor (~, fl, 7). It is the greatest 
common divisor of all integers represented by ~p. A form of content 1 is called 
primitive. Isomorphisms (equivalences) between quadratic forms are always 
supposed to be orientation preserving. Thus I ' l l , i l l ,  ~11] and 1"(~2, f12, 72"] are 
equivalent if and only if one can be transformed into the other by an element 
of SL 2 (Z). We sometimes speak of SL 2 (Z)-equivalence. 

Lemma 1. Let z be special. Then the discriminant of ~0~: 9~--,  7/.. is divisible by p 
and q~ represents only quadratic residues modulo p. The content m of qg, is not 

or (q) ,s 
discriminant o f -  ~o z is also divisible by p, then - q~ ~ represents only quadratic residues 
mod p. p P 

Proof Since ~F/~ | Z/pTl is a direct summand of 9)2| Z/pTZ and the quadratic 
form det has a 3-dimensional nullspace on the latter space, the discriminant 
of ~0z -- det I ~Y/~ must be divisible by p; that ~0, represents only quadratic residues 
modp  is clear from the definition and Equation (2). If the odd prime q divides m, 
then, choosing a basis for the vector space 9)1 | 7Z/qTl whose first two elements 
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span 9Jlz| we see that the form 2det on ~.iJl| can be given by a 

matrix ""'--0(~t--?~n), where B and C are 2 x 2 matrices. symmetric integral Thus, 

because the form det on ~g/has discriminant pa, 

pa_(det  C) 2 (modq), 

1 

We now prove that m ~ 0  (mod 2) if p - 5  (mod 8) and that m - 0  (modp 2) is 
not possible. Let A 1, A 2 be a base of gJl~, with A~ a matrix (1) given by (a i, bi, 2~). 
Then ~0~ has content divisible by r if and only if 

or 

det A 1 - det A 2 ~- det (A 1 + A2)-  0 (mod r) 

(i) al bl p + 21 2~ = 0 (mod r), 

(ii) a2b2p+222'2=O (modr), 
(iii) (a i b 2 + a 2 b 1) p + (21 2~ + 22 2~) = 0 ( m o d  r). 

Suppose r = 2  and p - 5  (mod 8). Write 2i=ci+di I+Vp-/-. Then (i), (ii) and 
(iii) become (since ( 1 - p ) / 4 - 1  (mod 2)) 2 

(i)' albl=Cl +dl +cld 1 (mod2), 

(ii)' a2 b2 = c2 + d2 + c2 d2 (mod 2), 

(iii)' a I b2+a2bl =_c 1 d2+c2d 1 (mod 2). 
Equation (i)' has five non-zero solutions 

(al,bl,Cl,d,)=-(1, O,O,O), (0, 1, 0, 0), (1, 1, 1,0), (1, 1,0, 1), (1, 1, 1, 1) 

modulo 2 and similarly for (ii)'. Since (al, bi, cl, di) (i= 1, 2) must span a 2- 
dimensional vector space over 7//2Z, the two vectors must be different from 
each other and from 0. This is not compatible with (iii)'. 

Now suppose r=p 2. Write 21=�89 Then ci-O (modp) and so 
(i)-(iii) become 

(i)" - 1 2 al bx =~d l  (modp), 
_1 2 (modp) ' (ii)" a2bE=~d 2 

(iii)" a 1 bE +aEb 1-�89 1 d 2 (modp). 
Since (al, bl, dz) and (a2, b2, d2) are not proportional modp, we have a two- 

dimensional subspace of (Z/pZ) 3 on which the non-degenerate form ab-d2/4 
vanishes identically. This is impossible. 

Finally, suppose that p I m and that 1 - (Pz  has a discriminant divisible by p. 
P 

If, as before, A1, A 2 is a base of 93/z and 21=�89 then ci-O (modp) and 
(al,bl, dl) and (a2,bE,d2) span a direct summand 9~ of (2UpT]) a. On the 3- 
dimensional vector space (Z/pZ) 3 we have the non degenerate form ~h(a, b, d)= 

a b -  d2/4 of discriminant 1/2 = determinant of the matrix 0 0 
0-�89 
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with 01~  1 =-~o z. We use a splitting (Z/pZ) 3 _~91 �9 7l/p7l and diagonalize 20 I~. 
P 

Then the form 2 0 (mod p) is represented by a matrix (00 ) 
0 2c~ 

U V 

(the upper left 2 x 2 matrix represents 2019l, which has vanishing determinant 
mod p and therefore a zero on the diagonal). Thus 

�89 2 (modp) 
1 

and c~ is a quadratic residue mod p, so the form - ~0~-= 019l-= [0, 0, e] (rood p) 
P 

represents only quadratic residues. This completes the proof of the lemma. 
The Hilbert modular group SL2((9 ) operates on .~x.~. Every BeSL2(• ) 

induces an automorphism of 93/: 

A ~-- (B')' AB (5) 

which carries 9J/ez to 9J/z preserving the orientation of these lattices and giving 
an equivalence of the quadratic forms q~z and ~p~. Thus we can speak of special 
points on the Hilbert modular surface ~2/SL2((9). They are represented by 
special points of .~2. For 3~2/SL2((9) represented by z ~  2 write q~, instead 
of q%, where, however, the form ~03 is defined only up to equivalence. We wish 
to count the number of special points of f32/SLz((_9) for which ~p~ is (equivalent 
to) a given form ~p. As number of special points 3 with ~p~ ~-q~ we define 

1 
s(cp)=w~ ~, --, (6) 

3~.~21SL2(~) V8 

where va is the order of the isotropy group of S L  2 (d)) at a point z~ ~2 representing 3 
and w~o the order of the group Aut(cp) of orientation-preserving automorphisms 
of ~0. Of course, vJ2 is the order of the isotropy group of the effectively acting 
group SL2((9)/{ +_ 1}. The possible values of vj2 are 1, 2 and 3 (and 5 for p=5). 
The possible values of w~/2 are 1, 2 and 3. 

The main result of this section is the following theorem. We first recall that 
h(A) denotes the number of equivalence classes of primitive positive definite 
binary integral quadratic forms with discriminant A (for A <0  with A - 0  or 1 
(mod 4)). By h'(A) we denote the modified class number where the class of a 

)=3,  h ' ( -4 )= �89  and form cp is counted with multiplicity 2/w~. Thus h ' ( - 3  1 
h'(A)=h(A) otherwise. 

Theorem 1. Let q~ be a positive definite quadratic form of discriminant A - 0 (rood p) 
1 

and content m. Let ~po=--tp be the corresponding primitive form, Ao=A/m 2 its 
discriminant. Then m 

s(q~) =�89 + Zp((Oo))/~,(m) h'(A/p), (7) 
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where 

~v(~Oo)= if p lA o and tpo represents only quadratic residues (mod p), 
- otherwise 

and 
[ l - I (  1 +zv(q)) if p2Xm, 

flo(m)--/0m if p21m. 

The cases where s(~o)=0 by (7) are already proved in Lemma 1. The proof 
of Theorem 1 will be preceded by a lemma concerning the F o (N)-classification 
of quadratic forms. 

Lemma 2. Let N > 0 ,  A<0,  m > 0  be given with A -O  or 1 (mod 4), mlN, m2lA, 
N/m square-free and prime to m. 7hen the number of Fo(N)-equivalence classes 
of positive definite quadratic forms [aN, b, c] with 

(a,b,c)=l, b 2 - 4 a c N = A ,  (N,b, ac)=m, (8) 

each form r being counted with multiplicity 2/IAut(q~)n Fo(N)[, is given by 

where v is the number of distinct prime factors of m and the product is taken over 
all primes q dividing N/m. 

Proof By (8), any prime dividing m divides a or c but not both. Hence the 
numbers (N, b, a) and (N, b, c), which are easily seen to be Fo(N)-invariants of 
the form [aN, b, c], are relatively prime and have product m. A further Fo(N )- 
invariant is the value of b (rood 2N). By (8), this value is of the form m x with x 
a residue class (mod 2N/m) satisfying x 2 -  A/m 2 (mod 4N/m). There are precisely 

~ ( l + (A) ) such residue classes x (mod 2N/m) and 2V decompositions m=ml m2 

with (ml,mz)= 1. Hence the lemma will be proved if we show that, for each 
decomposition m=m 1 m 2 and each value of x there are h'(A) Fo(N)-equivalence 
classes of forms [a N, b, c] satisfying (8) and 

(N,b,a)=ml, (N,b,c)=m2, b = m x  (mod 2N). (9) 

To do this, we define a map from the set of such forms to the set of primitive 
forms of discriminant d by 

~o=[aN, b, c] ~ 0---EaN, b, c N2], 

where we have written N=N1N 2 with (N1,N2)=I and N 2 containing exactly 

th~ prime divisors of N which divide m2. Acting on ~0 with ( ~ fl) 
7N 

corresponds to acting on ~ with 7N~ ; in particular, the Fo(N)-equiv- 

alence class of q~ determines the SL2(TZ)-equivalence class of 0. Conversely, if 
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IA B \  
two forms satisfyin  ( )and (9)an  transforms 

] 

31 to 32, then an easy calculation shows that NI[C and N 2 IB, so ~01 is transformed 

-( A B/N2)eFo(N Finally, any primitive to (/92 by the matrix .CN2 D form of 

discriminant A is equivalent under SL 2(7Z) to 3 for some q~ satisfying (8) and (9) 
(this is just a matter of checking congruences modulo the various prime powers 
dividing N). Therefore q)~--,~b is a I : 1  correspondence between Fo(N)-equiv- 
alence classes of forms [,aN, b, c] satisfying (8) and (9) and SL2(7l)-equivalence 
classes of primitive forms of discriminant A, with IAut(q~)c~F0(N)l=lAut(0)l. 
This proves the lemma. 

Proof of Theorem 1. By Lemma 1, we may suppose that m is not divisible by p2 

or by any prime q with ( q ) = - 1  and that Zp(~po)=0 or 1. Then (% is a primitive 

form which represents quadratic residues (modp), so by a classical theorem 

[-11, 14] it represents a prime qo with qoYA, ( q ~  Then ~0 represents the 

number N = m qo primitively, so all special points 3 with q)a- qo lie on the curve F N 
defined at the beginning of the chapter. The curve F N in ~2/SL2((9) is irreducible 
[-7] and can be described as follows: 

The number N is the norm of a primitive ideal b in (9 (i.e. one which is not 
divisible by any natural number > 1). Consider the group SL2((9, b) of matrices 

of determinant 1 belonging to . This is the group of automorphisms 

of (9| Since the class number of K=ll~(1//p) is odd, every ideal class is a 
square, so (9 @ b is GL+2 (K)-equivalent to (9 @ (9. This sets up a canonical iso- 
morphism 

p: ~2/SL2((9, b ) ~  ~2/SL2((9) 

([-4] 5.3), and F N is the image under p of the curve in ~2/SL2((9, b) given by the 
diagonal in .~2. For t~.~, we sometimes write simply t for the image p(t, t)) of 
(t, t) in F N. The subgroup F of SL2((_9, b) carrying the diagonal to itself is Fo(N ) 
if pyN and an extension of Fo(N ) of index 2 if pIN. We have a map ~/F--~F N 
of degree one. 

On the other hand, ~Oq is the lattice of skew-hermitian forms taking integral 
values on (9 @ (9, so it corresponds under the above equivalence to the lattice 
of all skew-hermitian forms taking integral values on (9 ff~ b, i.e. to the lattice 
of all matrices 

A =  c (a, c~TZ, j.EB-1), (10) 

where for technical reasons we have replaced b in (1) by c. The quadratic form (2) 
on ~0l is transformed to 

A~--* N(b) det A =acp + N2 2'. (11) 
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A point te.~ corresponds to a special point o fF  n if and only if it satisfies a quadratic 
equation 

ao Nt  2 +bo t+Co --0, (ao, b0, Co)= 1. (12) 

Then a matrix A as in (10) belongs to the lattice 9J~ if and only if 

2 - 2 '  
aN t2 + N---~-- t +c=O, 

and this is equivalent to 

2 - 2 '  
a=xao, N ~ p  =xbo, c=xco (xeZ). 

Also, 2' e b' - 1 = N-  1 b, and the ideal b can be written as 

b=71 M-1/~ t-ZN 
2 

for some integer M with M 2 - p  (rood 4N). Therefore 

N 2 = x b  o M+I /P  +yN 
2 

with y e Z  and 
(a ~ . -2 M 2 - p ~  

acpWN),~,'=x 2 cop-Co o ~ ] +  x yb o M + y 2 N. 

This means that the quadratic form ~o t of a special point t as in (12) is given by 

[ a~176 ,boM,  N ]. (13) 

The discriminant of this form is p A 1, where A 1 = bE - 4  a o c o N is the discriminant 
of the quadratic polynomial (12). We have to look for those points t~.~ satisfying 
an Equation (12) for which the form (13) is equivalent to our given form ~o. 

To simplify the exposition, we suppose first that the form ~0 has no non- 
trivial automorphisms and is not the form ~oa for any of the finitely many quotient 
singularities 5~ X, i.e. that w, = v 3= 2 in Equation (6). We consider first the case 
pXm. Then p•N and (N, M ) =  1, so the content of the form (13) is (N, bo, a o Co). 

Also, F=Fo(N)  in this case. By Lemma2,  there are h'(A)2 v 1+ Fo(N )- 

equivalence classes of forms [a o N, bo, co] with (ao, bo, co) = 1, (N, bo, ao co) = m, 
b~-4a  o c o N=AI=A/p,  where v is the number of distinct prime factors of m. 

We h a v e -  - (A_~)=----(a~) =1  ' so there are two SL2(TZ)-inequivalent representations 

of qo by primitive forms of discriminant A/m 2. Thus one of two cases occurs: 
(a) The form ~0 chosen originally is the only form (up to SL2 (Z)-equivalence) 

of discriminant A and content m which represents N=mqo,  and tp represents N 
twice; or 
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(b) There are two forms of discriminant A and content m which represent N, 
namely the form ~0 and a form improperly equivalent to q~ (i.e. GL2(Z)- but not 
SL2(Z)-equivalent), and each represents N exactly once. 

In case (a), the 2h'(Ax) 2 ~ points te~/F given by (12) are mapped in pairs to 
h'(A1) 2 ~ points of F N, because the fact that ~o represents N twice means that each 
point 3eX with %_---q~ is a double point of F N. In case (b) the 2h'(A 0 2 ~ points t 
are mapped to distinct points of F N, but for only half of these points is the cor- 
responding form % equivalent to q~. Thus in both cases we find 2Vh'(A1)= 
tip(m) h'(d/p) points 3eF  N with % ~  q~, in accordance with (7). 

M 2 - p  
If plm, then (N,M)=p and p,f 4N . Also p2[A, so p[A~. The content of 

the form (13) is either (N, bo, ao co) or p(N, bo, ao co), according as p does or 

d~176176 1+ @o)) 

Fo(N)-equivalence classes of forms [a o N, bo, co] with this value of (N, b o, a o Co), 
where v is now the number of prime factors of (N, bo, aoCo). Clearly 2v= 
(1 + zp(q)o)) tip(m). The rest of the argument is as in the case p~/m, except that we 
must divide the final result by IF :F  o (N)[= 2. This proves formula (7) in this case, 
too. 

It remains to discuss the isotropy and automorphism groups. In the definition 
of s(q~) (Eq. (6)), we count each point 3 with q~a~o with multiplicity w~/v~, where 
w~o=lAut(q~)l and va=[sg2((9)~ I. There is an obvious map n: SL2(d))~--* Aut(q9 ) 
(compare (5)), and 

w__ e = IAut (q~)[ 1 

v~ [Im(rc)[ IKer0z)l" 

The first factor represents the number of distinct t~ ~/F mapping onto 3, i.e. the 
number of branches of F N passing through 3 (or rather, of those branches cor- 
responding to a given SL2(Z)-equivalence class of representations of N by q~). 
The second factor 1/]Ker(r01 is just 2/IFtl, where F t is the isotropy group of t 
in E But in Lemma 2, which we used for our proof of Theorem 1, each F o (N)- 
equivalence class of forms was counted in precisely this way, and the same applies 
to the passage from F 0(N) to F in case p lm. Thus the proof given above counts 
each point 3 in just the way required by (6). 

Example. Prestel [8] found that there are h ( - 3 p )  quotient singularities of order 
3 on X, h ( - 4 p )  of order 2 and two of order 5 if p=5 .  Consider a form q~ with 
discriminant A = - 3 p (respectively - 4p) and content 1 which represents quadratic 
residues (mod p). There are � 8 9  p) (resp. �89 h ( - 4 p ) )  such forms. By Theorem 1, 
s(~0)=�89 (resp. �89 and since w~=2 (because A < - 4 )  this can only mean that 
v 3 = 6 (resp. 4). Thus we have found half of the fixed points of order 3 (resp. 2). 
Now consider the form q~= [p, p, p] of discriminant - 3 p  2 and content p (resp. 
q)= [p, 0, p] of discriminant - 4 p  2 and content p). Here Theorem I gives s(q~)= 
�89189 (resp. �89  Here w~,=6 (resp. 4) and one can 
check that v~=we, so s(~0) is the actual number of special points ~ with %~q~, 
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and these points are all quotient singularities of order 3 (resp. 2). We have thus 
found the remaining fixed points of order 2 or 3. 

The two fixed points of order 5 when p = 5 are not special. 

1.2. Modules in Imaginary Quadratic Fields 1 

Let k be an imaginary quadratic field and M a module in k, i.e. a free Z-module 
of rank 2 contained in k. Two modules M~, M E a r e  called equivalent if there 
exists an element a of k such that c t M l = M  2. For a module M the norm N(M) 
can be characterized as the unique rational number such that the quadratic form 

x~  
x ~ - * - -  (x~M, ~=conjugate  of x) (14) 

N(M) 

is integral and primitive. An order of k is a module which is a subring of the 
ring o of all algebraic integers in k and contains 1. For every natural number f 
there is a unique order o: with Io : o:1 =f .  The number f is called the conductor 
of the order. For a module M the set of all ~ k  with ~ M c  M is an order o(M). 
The conductor f of this order is also called the conductor of M. Thus o (M) = o:. 
The quadratic form given in (14) has discriminant D f  2 where D is the discriminant 
of k. Every module is oriented by the bases z, w with z / w ~ .  We have a bijection 
(using (14)) between the set of equivalence classes of modules of discriminant A 
and the set of isomorphism classes of primitive positive definite integral quadratic 
forms of discriminant A. We have A =Dr  2 where D is the discriminant of a 
field k (discriminants of fields are called fundamental discriminants). The number 
of equivalence classes of modules of discriminant A is the class number h(A). 
Every module is equivalent to a module admitting a base z, 1 with z~.~. In this 
way we get a bijection between the set of equivalence classes of all modules in 
all imaginary quadratic fields and the set of SL2(Z)-equivalence classes of points 
in .~ which satisfy a quadratic equation over Q. If ~o is a primitive form, M a 
corresponding module having the Z-base z, 1 ( z ~ ) ,  then the group Aut(q~), 
the group Aut(M) of units of o(M) and the isotropy group of z in SLz(7Z ) are 

isomorphic. Of course, for a form of content m we have Aut(q~)= Aut (~  ~0). 
/ 

Of fundamental importance for this paper is the function H(n) defined for 
n > 0  as the number of equivalence classes of all positive definite forms of dis- 
criminant - n ,  where the equivalence classes of re[ l ,0 ,  1] and re[l ,  1, 1] are 
counted with multiplicity �89 and �89 respectively. Of course, H(n)=0  if - n  is not 
a discriminant. For reasons which will become apparent later, we define H(0) 
= - ~ 2 .  The function H(n) occurs in the work of Kronecker and Hurwitz. We 
can also define H(n) as the number of SL2(Z)-equivalence classes of points z~.~ 
which satisfy a quadratic equation over Z with discriminant - n ,  

O~Z2+flZ+7=O, f l2--4Ct ~ =  - - n ,  

1 A general reference for modules in quadratic fields is [9]. Results related to Propositions 2 
and 3 below are given in [13] and [10] 
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where (ct, fl, y) is arbitrary and where a point equivalent to i or to e ~i/3 is counted 
o r  1 3, respectively. We have 

H(n)= ~ h'( -n/d2) ,  (15) 
dZln 

where d runs through those natural numbers such that - n / d  2 is a discriminant. 
Two modules M 1, M 2 ~ k can be multiplied. If f~ is the conductor of M 1 and 

f2 of M2, then f = ( f l ,  f2) is the conductor of M 1 M  2. We have N(M1M2)= 
N(M 0 N(M2). The equivalence classes of modules of fixed conductor f constitute 
a group G ( D f  2) of order h(Df2),  where D is again the discriminant of k. For 
every divisor d of f the map 

M~'--~O d M (16) 

induces a homomorphism of G ( D f  2) onto G(Dd 2) which can be used to prove 
the following well-known proposition. 

Proposition 1. Let D be a fundamental discriminant. Then 

h ' (D f  2) = h'(D) YD(f), (17) 

where 

yn{f)=f~(l-(D)/q) (18) 

and q runs through all primes dividing f. 

Let r~(n) denote the number of SL2(Z)-inequivalent representations of the 
natural number n by all primitive forms of discriminant A. For A =D a funda- 
mental discriminant, the following formula is well-known ([9, 12]): 

ro,.,=z 
din 

However, we need the formula for general discriminant A = D f2 ;  for convenience 

of notation we write rD( f, n) instead of roi2(n ) and zD(n) instead of (~-). 

Proposition 2. Let D be a fundamental discriminant. Then rD(f, n) is given as follows: 

(a) rD(f,n ) is simultaneously multiplicative, i.e. if f=l- Iq~ '  and n = l - [ @  
(where the qi are distinct primes), then 

to(f, n)=l -  [ rD(q~', q~'). 

(b) For q prime, introduce the generating series 

RD.q(t,u)= ~. ~ rD(q',qa)t'u # 
a=O p=O 

in indeterminates t, u. Then we have 

(1 - t u ) ( 1  - Z o  (q)  t u)  
RD, q(t, u)= (1 --t)(1 --u)(1 - q  t u2)(1 -- ZD(q) u)" 
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Equivalently, 

ro(q ~, qP) = 
qp/Z /f f l<2a ,  fl even, 

0 /f f l<2a ,  fl odd, 
p - 2 a  

~D(q') ~, zD(q) r if fl>=2~. 
r=0  

Proof Let r* (f, n) denote the number of SLz(Z)-inequivalent primitive represen- 
tations of n by all forms of discriminant D f  2, i.e. we now count representations 
n=ax2 +bx y+c y 2 (where b 2 - 4 a c = D  f 2) with (x ,y )= l ,  whereas for rD(f,n ) 
we count those with (a, b, c)= 1. Clearly 

rD(f /d, n/d)= ~ r*(f, n/c2), (20) 
d[(f, n) c2ln 

since both sides count the total number of representations of n by forms of dis- 
criminant D f  2, with no condition of primitivity on the form or on the represen- 
tation. But it is well-known [12] that 

r* (f, n) = 6 { k (mod 2 n) I k2 - D f 2 (rood 4 n) }, (21) 

and from this formula it follows easily that r~ (f, n) is simultaneously multiplicative 
in f n in the sense of (a), which together with (20) implies the multiplicativity of r o. 
It remains to determine rD(q ~, qO) for q prime. 

We introduce the generating series 

R~,q(t,u)= ~ ~,r~(q~,q')Uu '. 
a=O B=0 

Then formula (20) is equivalent to the identity 

(1 - t u )  -1 Ro, q(t, u)=(1 -u2) -1R*q(t ,  u). (22) 

From (21) we see that r* (q', qO) = q r* (q'- 1, qO- 2) if g => 1 and fl >__ 2. By (19), 

to(1 ' qO)= ~. zo(q)r, 
r=O 

whence 

RD, q(0, U) = (1 -- u)- 1(1 -- zD(q) u)- 1 

and (by (22)) 

R*,q(O, u)=(1 + u)/(1 - 3(o(q) u), 

whereas (21) implies r* (q~, 1)= r* (q', q)= 1. Hence 

l + u  t ( l+u )  ~ o~ 
+-=-- - -+  2~ ~=2r~(q~,qa) t~up R~'q( t 'u)=l-zo(q)u 1 - t  ~=1 t~= 

(1 + u)(1 -- xD(q) U t) 
- -  (1 --2D(q) U)(1 --t) ~-q tu2 R~,q(t, u). 
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Thus 

(I +u)(1--ZD(q)ut) 
R* q(t, u)= (1 --xD(q) u)(1 -- t)(1 - q  t u 2) ' (23) 

and the formula for RD, q in (b) follows by (22). 

Remark. The contents of Proposition 2 can be summarized by the formula 

~, s ' ro( f 'n)  I-I o,q(q , ~(s+a)L(s+a,  zo) 
= R -a q-~)=~(s)~(a)((2s+a-1)L(s,;(o)  

f=l n=~al f ans qprime 

We also have to study the representation of forms by forms. We therefore 
introduce for modules M1, M z in k of conductors fl ,  f2 the module 

Hom (M 1, ME) = {a ~ k J a M1 c M E } 

on which we have the quadratic form 

q~Mt, M2(a)= IME : a Mll- 

Lemma 3. The content of  the quadratic form q)M,, M~ equals 

m =f l  f2 / f  2 , 

1 
where f = ( f l ,  f2). The primitive quadratic form -q~M,, M~ belongs to the module 
M---1 M 2  (see (14)). m 

Proof. We can check easily that 

f2 1 - -  
Hom (M1, M2) = - -  M 1  M 2  

f N(M1) 
and 

N(M~) 
(~Mt, M2 ( a )  = N(M2 ) f~ a ~. 

Let ~ be a quadratic form of discriminant Df~  mE and content ml (where D 
is a fundamental discriminant). Define ro(r m2,f2 ) as the number of SL2(I  )- 
inequivalent representations of ~z by forms of discriminant Df~  mE and content 
m 2. If ~z is the quadratic form 

XX 
x~--*~k(x)=ml N(M1 ) (x~M1)' 

then such a representation of ~ is given by a module M z c k = I1~ (1/~) of conduc- 
tor f2 and an element a~Hom(M1, ME) with 

a M  , , m l f l  
[M2" 1 = q~Ml, M2 ta) = ~-2 f2'  (24) 

Thus r o (~k; m2, f2) is the number of pairs (M 2 , a) with a ~ Horn (M 1, M2) satisfying 
(24), where (ME, a) and (/f/2, &) are considered equal if there exists an element 

~ k such that V M 2 =/f/z and ~ = ~ a. 
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Proposition 3. 7he number rD(~b ; mE, rE) depends only on ml, f l ,  where D f 2 m 2 is 
the discriminant and m 1 the content of  ~. We write rD(ml, f l  ; mE, rE) instead of 
rD(~; m2 f2). Then 

E ?o(f)"  

where f =(f l ,  fE) and ro( f ,  n)=0 if n is not an integer. 

Proof. By MEn-*M-- 1 M 2 with fixed M 1 we get a map G(Df22)~G(DfE).  Since 
M 1 ME=O f M l . o  f ME, we can conclude from (16) that the inverse image of any 
element of G ( D f  ~) has IG(DfEZ)l/IG(DfE)l elements. By (17) and (18), 

I G ( D f E ) I / I G ( D f E ) I = ~  ]Aut (M11Aut (ME)IME) [ " (25) 

We have to count the "number"  of pairs (M 2, ~) with ~r ME) such thaf 
(24) holds. By Lemma 3 this is just the number of pairs (M2, ~) with ~r M 2 
such that 

~ ml f 2  

N(M~) N(ME) m E f2  

The "number"  of possible ~z equals r o (f,  ml fE)  m-2 ~ _  " Aut(Mx ME)" To get the 

"number"  of pairs (M 2, e) we have to multiply this with the expression in (25) 
and divide by [Aut(ME)[. 

For the application of Propositions 2 and 3 to Hilbert modular surfaces we 
will need some additional information concerning the behaviour of quadratic 
forms at our fixed prime p. If M is a module in an imaginary quadratic field k 
and ~o o the corresponding primitive quadratic form, we set zp(M)=Zp(q)o), 
where Xp(~Oo) was defined in Theorem 1. Thus xp(M)=0 if the discriminant A 
of M is not divisible by p and xv(M)= + 1 ifp [A. The character Xv is multiplicative 
on the modules of k. 

Now consider a discriminant A = D f  2 which is divisible by p and write 
A/p=Do g2 (here D, D O are fundamental discriminants, Do=DIp or Dp). We 
define rg (f, n), rg (f, n) as the number of SLE(•)-inequivalent representations 
of n by primitive forms of discriminant A and character Xv equal to + 1 or - 1, 
respectively. We write 

rg (f,  n ) -  rg (f,  n)= rtDP)(g, n). 

The function r~ v~ is simultaneously multiplicative in g, n (not in f, n). For each 
prime q we define the generating series R~)~ (t, u) = ~ r~ p~(qL q~) t ~ u ~. Obviously 

R~)q(t, u)=Ro, q(t, zv(q) u) if q . p .  

For p = q one has 

R~?v(t, u)= 1 - ZDo(P) t u 
(1 - t)(1 - Zoo(P) u)(1 - p  t u2)" (26) 

The proof of these assertions is analogous to that of Proposition 2. 
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Let 0 be a quadratic form of discriminant D f (  m~ and content ml with p [Df (. 
We define r~oV)(~; mz,f2  ) as the number of SLz(Z)-inequivalent representations 
of 0 by quadratic forms q~ of discriminant D m~ f ]  and content m 2, where each 
q~ is counted with multiplicity )~p(O/ml)Zp(qo/m2) (note that this is zero unless 
plOf~). 

Proposition 3'. The number r(oV)(~,; m2, fz) depends only on m 1, fl where D f (  mE is 
the discriminant and m 1 the content of tp. It is 0 (by definition) if D fx z and D f~ 
are not both divisible by p. I f  plD f ( and plD f 2, write Df~Z=Do gZp and Df2= 
D O g~p and also r~oP)(ml, gl; m2, g2) instead of r~oV~(~; mz,f2 ). Then 

( ml gZ)~'o(f2) 
r(oP)(ml, gl; m2, gz)=r~oV) g , ~  ~ Yo(f)' 

where g=(gl ,  g2). 

The proof is the same as for Proposition 3. We use the multiplicativity of Xv 
on modules. 

Let ~k be a quadratic form of discriminant D fl  z m~ and content m~. Define 
po(qJ; mz,f2 ) as the number of SL2(Z)-inequivalent representations of ~b by 
forms of discriminant Df z mZz and content m2, where now each ~o is counted with 
multiplicity �89 (1 + Zv(qo/m2)). Then 

po(~k;m2,fz)=[�89 unless plDf( ,  plDf22, 

I �89 f l ;  mE, fz) + Xp(~b/mO r~oV)(ml, gl; m2, g2)) (27) 
if Df12=Do g~p, Dfz2=Do g~p. 

These equations follow easily from the definitions and from the proof of Proposi- 
tion 3. In the case p,~Df(,  but p lDf  2, we have to use that in the kernel of 
G(Df~)-.  G(Df  2) the elements with Zv= 1 form a subgroup of index 2. 

For the calculations concerning Hilbert modular surfaces it is convenient 
to give the simultaneously multiplicative functions ro(m ~, fa; mz,fz  ) and 
r~oP)(ml, gl; mz, g2) by generating series. These functions depend only on the 
ratio ml/m z (and of course f l ,  fz or gl, gz). For each prime q we write 

Tq(x,y,z)= ~ ro(qr 1, q')x" y~z '. 
r, s,  l 

Since by Proposition 3 

{ ro(q~, qr) for s>  l, 
ro(qr, q~; 1, ql)= rD(qS, q'+2s-Zl)q t-~ for 0 < s < / ,  

rD(1, q~-2t)qt(1-Zt)(q)/q) for 0 = s <  l, 

we have 

y. z)= y. z)+ y. z ) -  r,'"(x, y. z). 

where 

(x, y, z) = ~ r o (q', q') x" y~ fl = ~ Ro, ~ (y z, x) 
r , s , l  l y 

s > l  
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(compare  Propos i t ion  2 (b)), 

T."" q , + 2 ~ -  2/) ql-~ x r y~ q tx, y ,z)= ~ ro(q ~, z l, 
r,s,l 

O < s < /  

Tq"(X, y, Z) = )~D(q) E ro(1, qr 21) qt-  1 x ~ z I" 
r, l 

/ > 0  

To evaluate T~' we put  l -  s = j  and r - 2 j  = k and obtain  

qx  2 z 
tt J+S Tq (x, y ,z)= ~, ro(qS, qk)qi xk+ 2-i yS z" =t~o,q(y z, x) l _ q  x2 z. 

j ,k ,s  
j>O 

Similarly, 
X 2 Z 

Tq"(x, y, z) = Zo(q) Ro,q(O, x) 1 - q x 2 z" 

Thus  we have 

1 - q x 2 y z  x2z  
Tq(x,y,z)=Ro.q(yZ, X ) ( l _ y ) ( l _ q x 2 z  ) xD(q)Ro.q(O,x) l _ q x 2 z  (28) 

where  RD, q is given in Propos i t ion  2. In the same way we calculate the generat ing 
series TtpP)(x, y, z ) = ~  r~P)(p r, f ;  1, p~) x r f z ~ and obtain  f rom Proposi t ion  3' and 
(26) 

1 - p x 2 y z  
T~pP)(x, y, z) = R~,)p(y z, x)(1 - ~  ~pp x 2 z) 

1 - ZOo (P) x y z (28') 
- (1 - z y)(1 - Zoo(P) x)(1 - y)(1 - p x z z)" 

1.3. The Transversal Intersections of the Curves T N 

Let ~O be a positive definite form defined over  the oriented lattice Z O Z and 
let s0(qJ ) be the number  of  or ienta t ion-preserving embeddings  j :  7/. �9 Z ~ ~ 
with z ~  2 special and (pzoj=~9, where SL2(r  embeddings  are 

1 
identified (cf. (5)). Each such embedding  is counted  with multiplicity IKer(~)[ '  

where  ~: SL2(r ~ Aut(~p~) as in the p roof  of  T h e o r e m  1 is the m a p  given by  (5). 

Theorem 2. Let ~ be a positive definite quadratic form of discriminant A - 0 (mod p) 

content m and ~b o = ~  ~O the corresponding primitive form. Then a n d  

So (~k) = al,, 2 

where t t  is defined in (15). (We put  H ( n ) = 0  if n is not  integral.) 

Proof. We write ml instead of m and A = Dfl 2 m 2, where D is a fundamenta l  
discr iminant ,  and again  write Do for the d iscr iminant  of  Q ( t / - ~ ) .  Theo rem 1 
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implies 

So(q/) = E PD(ml, f,; m2,f2) flp(mz)h'( Din2 f22/p), (30) 
m2, f2 

where PD was given in (27). We put h'(n)=O if n is not integral. The reader may 
check that isotropy and automorphism groups are counted in the correct way. 
It suffices to prove 

~Zp(d)dH(-Df~2m2/pd2)= ~, ro(ml,fl;m2,f2)flp(m2)h'(DmE f2/p) (31) 
dlml ma, f2  

and, for O f l  2 = O  0 gEp, 

zp(m,/d) dn  ( -  D O g2 m2/d 2) 
dlml 

= ~ rcDP)(m,, g,; m2, g2) tip(m2) h'(Do g2 m2). (31') 
m2, g2 

Substituting for H from (15) we can rewrite the left-hand sides of (31) and (31') 
as sums where all summands have a factor h'(Do a2) which we substitute by 
h'(Do)Tno(a) (Proposition 1). The same can be done for h'(Dm~f22/p) and 
h'(Dog2m 2) on the right. We divide both sides of (31) and (31') by h'(Do). Then 
both sides of (31) become simultaneously multiplicative in ml,ul, where 
D fl 2 m 2 = Do u 2 p, and both sides of (31') simultaneously multiplicative in ml, gl. 
Thus we can treat both equations at each prime q separately. We first prove (31) 
for the case q+p or q=p, plOD o (i.e. pID). Then plDf~ 2 and we can write rn~=q', 
gl=q s in (31), where Dflg=Dog2p. We then write a(r,s) for the left-hand side 
of (31) divided by h'(Do). We put e=;~p(q) and ~=XDo(q)" We have 

r + s - - k  

a(r , s )=  ~,e kqk ~ 79o(q") 
k = O  n = 0  

and therefore the generating series A (x, y )=  ~ aft, s)x'y s is given by 

/h+s \ 
A(x,y)= 2 ~kqk127"o(q")}xk+hyS 

k,h,s>=O \ n = O  / 

1 (1+ q2+...+qh+s)) xh yS (l_q) 
1 { _qh+~+1 1 __qh+s, 

--1--eqx ~ k! xhy s 
h , s = O  1 - q  ~ - - q  ] 

1-c t x -~ ty -qxy+c txy+q~xy  
(1 -eqx)(1 - x ) ( 1  - y ) ( 1  - q x) (1 -qy)" (32) 

On the right-hand side of (31) the summation runs over all m2 =qk, g2 =qt with 
Df2=Dog~p. For the coefficient fl-(m2)h'(Dog 2 m 2) appearing in (31) we intro- 

k k + l  k l duce the generating series B(x, y)=~ flv(q )7oo(q ) x y and obtain 

B(x,y)=a_+(l_~) l+qx  1 (33) 
q 1 -eqx  1-qy" 
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The numbers rD(q r, qS; qk, qt) occurring in (31) can be regarded as the coefficients 
of an infinite matrix M giving an endomorphism of the Q-vector space Q [Ix, y]] 
which is Q [[x]]-linear. We must prove A = MB. In view of (28) (noting also 
that ro(q',pq~; 1, pqt)=ro(qr, q'; 1, ql) for p=~q and p~VD) we have to prove the 
identity 

( ~ )  l + q x  Tq(x,y,q). (34) A(x,y)=qTq(x,y,O)+ l - q  

In the definition of Tq enters 6=•D(q ), whereas the numbers e=zp(q) and 
~=Zoo(q) enter in (32) and (33). The reader may check that (34) is a formal 
identity in x, y, q,e, ~, 6 provided 6=ee.  This finishes the proof of (31) except 
in the case p~VD (i.e. Do=Dp) and p=q, where we have to prove (31) for m l=p  r, 
f~=pS with r + s > 0 .  The summation runs over all mz=p k, f2=f f  with k + / > 0 .  
If we define ao(r,s ) as the left-hand side of (31) (for ml=p r, f1=p s) divided by 
h'(Do) and Ao(x, y) as the corresponding generating series we have 

y + x - x y - p x y  
A~ - x ) ( 1  - y ) ( 1  - p x) (1 - p y ) "  

The generating series B o (x, y) = ~ flz,(Pk) ~0o (pk + l- 1) X k yl is given by 

PBo(x, y)= 1 + p x _  1, 
1 - p y  

and we must show that A o = MB o, i.e. we must check the identity 

p Ao(x, y ) = ( l  + p x) Tp(x, y, p ) -  Tp(x, y, O) 

(compare (34)), which is indeed true. 
We now prove (31'). If p,frnl, then p]Dfl 2 and (31') is equivalent to (31). We 

consider (31') for ml=p r, g l = p  ~ and define a'(r, s) as the left-hand side divided 
by h'(Do). Then the corresponding generating series A'(x, y) is given by 

A'(x, y)= 1 - c~ y 
(1 -y)(1  - px)(1 - p y )  

We have B(x, y) as in (33) and must check the equality 

y 0,+ 

in place of the previous (34). Using (28') this is a formal identity. Thus Theorem 2 
is proved in all cases. 

We are now finally able to evaluate the number of transversal intersections 
of the curves T u and Tu on the Hilbert modular surface X. The curves TM, TN 
have a common component if and only if M N  is a square. We do not exclude 
this case. A transversal intersection of TM and T N in a point 3 eX  represented 
by ze.~ 2 is given by an ordered pair (A, B) of linearly independent elements 
of 9Jl z (cf. 1.1) with detA = M ,  detB =N.  Thus we have transversal intersections 
only in special points. Each ordered pair (A, B) determines an orientation of ~ z .  
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On the other hand, in 1.1 an orientation of 9J~ z was chosen once for all. Let 
(T M TN) ~ be the transversal intersection number of T M and T N in 3 in the sense 

of rational homology manifolds. Then (T M TN) ~ is 1 times the number of ordered 
va 

pairs (A, B) with A, B linearly independent elements of 9X~ determining the given 
orientation and with (p~ (A)= M, (Pz (B)= N. (Note that the orientation convention 
allows only the sign change from A,B to - A ,  - B  and that each v 3 contains 
the factor 2, with vJ2 the order of the isotropy group of SL2((9)/{+1 } at z. 
Because SL2((9)/{ +_ 1} acts effectively on .~2, the intersection theory on rational 
homology manifolds requires division by vJ2.) For each such pair we get a 
quadratic form by restricting (p~ to ZA �9 7Z.B. This quadratic form has the form 
[M, b, N]. Also, it is positive definite and has discriminant divisible by p (Lemma 1), 
so the integer b must satisfy 4 M N - b 2 > O ,  4 M N - b 2 - O  (modp). Conversely, 
for any integer b satisfying these two conditions we can consider the quadratic 
form ~ = [M, b, N] over Z |  and the number of SLz((9)z-inequivalent orienta- 
tion-preserving embeddings j: ;gO7Z.-~931~ with ~ozoj=~O (where each such 
embedding is counted with multiplicity 1/[Ker(rc)] as explained at the beginning 
of this section). Clearly (TM TN) 3 is the sum of these numbers for all b. The trans- 
versal intersection number 

t r  ( r  M r~) x - ~ ( r .  TN) ~ 
36X  

8 special 

of T M and T N on X is therefore given by the formula 

(TM TN)~ = ~ s o ([M, b, N]),  
beZ 

b 2 < 4 M N  
b 2 _= 4MN(mod  p) 

(35) 

where s o is given by Theorem 2. If M N  is not a square (so that TM, Tu have no 
common components), we write (TMTN)x=(TMTN)~. If one of the curves is 
compact in X, then (T M TN) x is the intersection number in the sense of homology 
theory. 

Theorem 3. Let M, N be positive integers, vp(N)< vp(M) (vp denotes the exponent 
of p). Then the number of transversal intersections of the curves T M and T N on the 
Hilbert modular surface X is given by 

where 

H ~ x2z H 
x 2 < 4 N  

x 2 = _ 4 N ( m o d p )  

H (n) being the class-number function defined in (15). 
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Proof. By (35) and Theorem 2, 

2(TMTn)~= E E zp(d) dH \[4MN-b2]-'~ ] 
b2<,a,-MN d l { M , b , N  ) 1 1 "  2 

b z = 4MN(mod  p) 

+ E 
b 2 < 4 M N  

([M, b, N] 
pd 2 ]" 

b z =_ 4 M N  (rood p) 

In the first sum, we write b=dx and may assume that xZ-4MN/d  2 (modp) 
since the only terms contributing are those with pXd. Thus the first sum equals 

~p(d)d ~ H((4MN/d2-x2)/p) = ~ zp(d)dH~ 
d l ( M ,  N)  x 2 < 4 M N / d  2 dl(M, N) 

x 2 _~ 4 M N / d  2 (rood p) 

Similarly, in the second sum in the formula for 2(TuTN) ~ we only have 
to sum over those b for which (4MN-b2)/(M,b,N)2=O(modp). Then 
N/(M, b, N) ~_ 0 (mod p) and hence 

(E M, b, iv] 
ZP \(M,b,N) ]=ZP ((M,b,N)) " 

Therefore 

/[M, b, N I l  N 

and we see by the same calculation as before that the second sum equals 

d I ( M , N  ) \ d / 

This completes the proof of the theorem. 

1.4. Contributions from the Cusps 

As before, X denotes the Hilbert modular surface ~2/SL2((9) for a fixed prime 
p =  1 (mod4). We consider the compact surface ~" obtained by adding to X 
the "cusps" and resolving the singularities thus created. Then f f = X w [ J  S k, 

k 
where each Sk is a rational curve and the S k are arranged in finitely many cycles 
corresponding to the h(p) different cusps ([4, 6, 7]). The index k runs through 
a finite indexing set I which is this union of cycles. To each k corresponds a 
reduced quadratic irrationality 

Wk= 2N k ' O<W'~<I<Wk, 

where M k and N k are natural numbers, and these are all reduced quadratic 
irrationalities of discriminant p. Each w k determines a primitive ideal a k (i.e. 
one not divisible by any natural number >1) with afl=ZWk+TZ, N(ak)=N k 
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(see [4], 4.1). The ideal a k has characteristic (k[0, 1) in the terminology of [4]. 
We have 

2 " 

The integers operate on the indexing set. The result of the operation of n~TZ 
on k e I  will be denoted by k + n .  Thus Wk+ 1, for example, is defined, and in fact 

1 
W k = b k - - - -  with bk~TZ, bk=[Wk]+ l > 2 , 

W k + l  

and this leads to the continued fraction for w k. The quadratic form associated 
to the ideal a k is 

(x' Y) ~-'~ N~k) N x N k + y  2 = X 2 N k + X y M k + y 2 N k - I "  

The intersection matrix SkO S~ (k, l~I )  has the form (at least in the case when 
each cycle has length >2) 

i if k = l + l ,  
S k  o S l  = - -  k if k = 1, 

otherwise. 

The curve TN defined in X can be extended to a curve in X, also denoted 
by T N. It meets each curve S k of the resolution with some multiplicity T N o S k. 
Since det(S k o S~)4:0, we can introduce a divisor (with rational coefficients) 

T~ = T N + ~ ~x (N, k) Sk 
k 

such that T~ o S; =0 for all j. In order to calculate the rational coefficients c~(N, k) 
we have to invert the intersection matrix (S k o Sz). First we introduce the following 
notation. Let a be an ideal in (~. We put 

f ( a ) = ~ p  (~)~' omin ( 2 , =  2'). (36) 

2 ~ 0  

Thus f ( a ) = 0  if a is not principal. For a principal, a=(#), the sum in (36) is 
infinite but converges. Let e be the generator of the infinite cyclic group U § of 
totally positive units of 6 which satisfies 5 < 1 and 5' > 1 and suppose # >> 0 and 

5 2 "( ~ / ~ '  ~_~ 1. (37) 

Then, writing f(/a) instead of f((#)), we find 

f ( P ) = ~  ,~=o ~=1 - = ~  -fZe-e+lZe-e)=T-~-s Tr \ - ~ ]  

where 5 o is the unit (determined up to sign) satisfying eo 2 =e. After multiplying 
any totally positive number/ze(9 with a suitable power of e it will satisfy (37). 
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Therefore f (a )  is always a rational number such that Tr(eo)f(a)  is an integer. 
We put g (#)=(Treo) - lTr (#eb/ l fp)  and have f ( # ) = g ( # )  if (37) is satisfied. We 
check easily: 

if l < p / # ' < e  -2,  then f ( p ) = g ( p ) - T r ( p / 1 / ~ ) .  (38) 

Proposition 4. The inverse matrix of the intersection matrix (S k o Sl) is the matrix 

( --f(ak a't)). 

Proof. We first observe that f(aka'z)=O if ak, at are not in the same ideal class. 
Therefore the matrix (--f(akal)) decomposes into blocks corresponding to the 
various cycles. Obviously the matrix (Sk St) has the same property. Thus we may 
consider just one cycle. We shall use without further comment the notation 
of [4] 2.3. The ideals of the cycle are indexed by a number k~Z/r71, where r 
is the length of the cycle. The indexing can be chosen in such a way that any 
given ideal a t becomes ao. Therefore we only have to check that 

- f (a_ l a'o) + bo f (ao a'o)- f (a, a'o) = 1, 

- f ( a t _  ' a'o)+bkf(aka'o)--f(ak+l a'o)=O for k=t=0 

(the matrix (SkSt) was given above only for r>2 ,  but these are the equations 
to be checked also if r = l  or 2; cf. [4] 2.4). The module M = a o  1 admits bases 
(Ak_I,A,)  (keTl) which are given by two consecutive points of the support 
polygon which bounds the convex hull of Mc~(IR+) 2, where M is embedded 
in Rz  in the usual way. We have 

--Ak_ l +bkAk--Ak+l=O. 

The A t are totally positive numbers which are monotonely decreasing (A_, = Wo, 
A 0 = 1, 0 < A,+ 1 < At) whereas the A' t are increasing. We have A, = e and A,+ r = A k e. 
In the following equations w,, at depend only on k (mod r) whereas A k depends 
on ke7Z. We have 

WkAR=Ak_I, a ~ I = A ~ I M ,  ak=Akao, 

ak a I = (A k AI N (%)) = (Ak A't No). 

Since No=N(ao)=Tr(wo/]/~)  -1 we have to prove 

- f ( A  1) + bo f ( A o ) -  f ( A O  = Tr (Wo/1/~), (39) 

- - f ( A k _ l ) + b k f ( A k ) - f ( A , + ~ ) = O  for k= 1, ..., r -  1. 

Since A r = e, the A t with 0 < l<  r satisfy (37). Therefore f =  g in the second equation 
of (39), and the equation holds because g is a linear function. On the other hand, 

1 < Wo/W' o = A_ 1/A'_ 1 < A_ , /A '_r  = ~- 2, 

so (38) applies to A_ 1 and the first equation of (39) also follows from the linearity 
of g. This finishes the proof. 

The coefficient a(N, k) of Sk in the formula for T~ can now be written down 
using the symmetric matrix ( f ( a  k a't) ). We have 

(N, k) = ~, f (a k a'~) (S t TN) (40) 
l 
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and for the intersection numbers in the sense of rational homology 

( TM T~v)x = ( T~t TN)~ = ( T~ Tfv) yc = ( TM TN)X + ~ f (ak al) ( Sk TM) (St TN) . 
k,I 

If M N  is not a square, then TM, T N have no common components. The two 
curves meet in finitely many points of the compact surface X. Therefore (T M TN) x 
can be broken up into the intersection number (TMTN) x calculated in 1.3 and 
the sum of the intersection multiplicities of T M and T N in points of U S k = X -  X .  
The latter sum will be denoted by (TM TN)~_ x. We put 

(Tu TN)~ = (TM TN)~- x + ~ f (ak a't)(Sk TM) (St TN) (41) 
k,l 

and have 

TM T~ = (T. ~)x +(T~ ~)o~. 

For given M the intersection of T M with a small neighbourhood of U Sk is the 
union of all the curves 

q - -  P Uk--Uk, p~O, q>O,  pENk_l+pqMk+q2Nk=M, (42) 

where (u k, Vk) is the local coordinate system in which S k is given by v k=O and 
Sk_ 1 by u k = 0. The "characteristic" (kip, q) determines an ideal a with N(a)=  M 
and in this way the curves given in (42) correspond bijectively to the ideals a 
in 0 with N(a )=M.  (See [4] 4.1 and [7] 3.3.) Contrary to [4] we do not assume 
(p, q)= 1. The ideal a need not be primitive. The ideal a/(p, q) is primitive. 

In the same way, TN near U Sk is just the union of all curves 

utt=v~, s>=O,  t>O,  s 2 N t _ l + s t M z + t 2 N l - - N ,  (43) 

and these correspond bijectively to the ideals b with N(b)= N. The curve u~, = Vk p 
intersects S k with multiplicity q and S k_ 1 with multiplicity p, and similarly the 
curve u~ = v~ intersects S l with multiplicity t and S l_ 1 with multiplicity s; other 
intersections with curves Sj do not occur. Similarly, in a sufficiently small neigh- 
bourhood of U Sj the curves (42) and (43) intersect only if k = l, their intersection 
point then being the origin of the k-th coordinate system (u k, Vk). Since the 
intersection number of the affine curves uq-vP=O,  u t - v s = O  at the origin (for 
p t - q s + O )  is min(pt, q s), the intersection number of the curves (42) and (43) 
near U Sj is 6kl min(p t, q s). 

Proposition 5. Assume that M N  is not a square. Then 

(TMTN)~= ~, f ( ab ' ) .  
N(a)= M 
N (b)= N 

(The sum is taken over all ideals a, b in (9 with N ( a ) - M  and N ( b ) = N  and is 
of course finite. It can also be written as ~ f ( a  b).) 

Proof. The ideals a, b correspond to curves (42) and (43), respectively. Each pair 
of such curves contributes to (TM TN)~ as defined by (41) the following expression: 

C~kt min (p t, q s) + f (a k_ 1 al- 1) P s + f (a k_ 1 al) P t + f (a k a I_ 1) q s + f (a k a;) q t, 
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and we have to show that this equals f ( a  b'). Interchanging the roles of TM and T N 
if necessary, we may assume that p t < q s if k = l. 

As in the proof  of the preceding proposition, we may suppose that k, l belong 
to the same cycle and (after re-indexing) that l = 0  and 0 < k <  r - 1 ,  where r is 
the length of the cycle. Then ak=Akao, a _ l = A _ l a o = W o a o  . By [4] 4.1(6),(8), 

0 = 2 0 0  with 2=pAk_l+qAk, 

b=/~ao with # = s A  l + t A o = s W o + t .  

If k >__ 1 we have to show 

f (Ak-  1 W'o) P s + f (A k_ 1) P t + f (A k W'o) q s + f (A k) q t = f (2 #'). (44) 

Since the sequence {Aj} is monotonely decreasing and {Aj} is monotonely 
increasing, and Aj+r=A j e for all j, we have 

1 = Ao/A'  o > A k_ x/A~_ ~ > Ak/A'k > A~/A'. = e 2 

and 

1 ~Ak_ 1 A'_, /Ak_ 1 A 1 >__AkA'_t/AkA_I > A t _  ~ A'_x/A'_ 1 A_~ =e 2, 

so all four numbers Ak_ x W'o, Ak_l ,  A k W'o, Ak satisfy (37). The number 2it' is 
a linear combination of these four numbers with nonnegative coefficients, so it 
also satisfies (37). Thus for all five of these numbers f can be replaced by g and 
(44) follows from the linearity of g. If k = 0, p t < q s, we must show 

p__t_t + f ( w  ~ W'o) p s+ f (wo)  p t + f(w'o) q s + f ( 1 )  q t = f ( 2  p'). (45) 
N(ao) 

The numbers w o w~), w~) and i all satisfy (37), and therefore 

2 ff  =(P Wo + q)(sw'o + t )=(p swo W'o + p t(Wo + W'o)+ q t)+(q s - -p  t) w'o 

also does, so for these four numbers f = g ;  on the other hand, w 0 satisfies the 
assumption of (38) and therefore 

1 
f (w~  = g ( w ~  Tr(w~ g(w~ N(a0)' 

so (45) also follows from the linearity of g. This completes the proof. 

1.5. Self-Intersections 

The curve T N in X=~2/SL2(~) is a union of irreducible curves each of which 
has a non-singular model ~/F, where F is a discrete subgroup of SL2(~. ). In .~ 
we have the SL2(lR)-invariant volume form which we normalize in such a way 
that the volume of the fundamental domain of SL2(Z  ) becomes - 6  ! (see [4] w 1). 
The above mentioned curves ~ / F  all have finite volumes and thus the volume 
of T N is well-defined. We have 

vol(TN) = -- ~2 ~ (Xp (d) + Xp (N/d)) d. (46) 
dIN 
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This result was mentioned in [5] (15) for p g N .  It is a consequence of a volume 
calculation due to Eichler [1]. The proof of (46) will be contained in a forth- 
coming Bonn dissertation by H.G. Franke. 

For  positive integers M, N we define 

( TM TN)x = ( TM TN)t~ + VO1 ((T M c~ TN)I), (47) 

where (T~c~ TN) 1 is the one-dimensional part of the intersection of TM and TN, 
which is empty if M N  is not a square and equals T~M ' N) if MN is a square. For  
(TMTs)t~ see 1.3. 

Let us now consider the case that M N  is a square. Assume vp(N)<=v~(M). 
Then vp((M, N))=vp(N) and N/(M, N) is a square prime to p. Hence zp(N/d)= 
Zp((M, N)/d) and by (46) 

vol(T~M,N))= ~ (dzp(d)+dzp(N/d))H(O), (48) 
d l ( M ,  N) 

where H(0)= - 1/12 by definition. In 1.4 (Theorem 3) we defined a function H ~ 
It is more natural to introduce the function 

Hp(n) = ~ H ( a n - x 2  t . (49) 
x~e \ P / 

x2  <=n 
x z ==. 4n(mod p) 

If n is not a square, then Hp(n)=H~ If n > 0  is a square, then np(n) -H~ 
2H(0). Therefore by (47), (48) and Theorem 3 

(TMTN)x=�89 ~ (dzp(d)+dz,,(N/d))H,,(MN/d:) if vp(N)<vp(M), (50) 
d[(M,N) 

and this formula holds for all values of M and N. 
If M N  is not a square we have 

( TM T~)yc = ( TM TN)x + ( TM TN)~, 

with (TMTN) ~ given by Proposition 5. We want to show that the same formula 
holds if M N  is a square. 

Proposition 6. For the curves TN, T N of the Hilbert modular surface X we have 

TM T;,= T;, TN=(TM T~)x +(T. T~)~ 

with 

(T M rN)oo = ~ f (a b'), 

where the sum is taken over all ideals a,b in (_9 with N ( a ) = M  and N(b)=N.  

We have to calculate (T~tTN) ~ and this involves (T(M,N)T(M,N)) ~ if M N  is a 
square. Self-intersection numbers can be evaluated by the adjunction formula 
(compare [4] 0.6). Therefore the proof of Proposition 6 will be preceded by a 
discussion of the adjunction formula for curves in complex surfaces (Pliicker 
formula) and its generalization to surfaces with isolated quotient singularities. 

Let D be a compact curve (not necessarily irreducible) on the non-singular 
complex surface Y Then the Euler number of the non-singular model /) of D 
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is given by the formula 

e (D) = c I [D] - DD + ~ #x (D), 
xfiY 

where c 1 is the first Chern class of Y and the Plficker number #x(D) is a non- 
negative even integer depending only on the germ of D in x which is positive 
if and only if x is a singular point of D. For example, if r non-singular branches 
of D intersect pairwise transversally in x, then #x(D)=r(r-1).  Now we consider 
a complex surface Y which is allowed to have isolated quotient singularities. 
For each x e  Y we can choose a sufficiently small neighbourhood U~ of x in Y, 
an open ball V~ around the origin of ~22 with a linear action of a finite group G~ 
on V~ which is free on Vx-{0}, and a map n: Vx~ U~ with n - l ( x ) = 0  which 
induces an isomorphism Vx/G x ~ Ux. If D is a compact  curve in Y passing 

1 
through x, we consider n-l(Dc~Ux) and define Iz~,(D)=I~__I#O(n-I(D~U~) ). 

For every irreducible branch D~,j of D in x the inverse image under n consists 
of v~,j irreducible branches, each covering Dx,~ with multiplicity rx4=lGxl/vx,j. 
We define a modified Euler number e'(D) by 

e'(D) = e(D)-  ~ rx'j - 1 ,  (51) 
x , j  rx,j 

where b is the non-singular model of D and the sum extends over all irreducible 
branches of D in quotient singularities of Y. Let Y' be the non-singular surface 
obtained from Y by removing the quotient singularities. Then H2(Y';Q)---  
H2(Y; Q) (by Mayer-Vietoris), so the first Chern class of Y' defines a class 
c~eH2(Y; ff~) which we will call the first Chern class of Y. 

Lemma 4. Let Y be a complex surface with isolated quotient singularities, cx the 
first Chern class of Y,, and D a compact curve on Y. Then 

e'(/)) = c 1 [D] - DD + ~ p~ (D). 
x~Y 

We omit the proof  of this lemma. It uses the fact that for a non-singular point x 
the number p~(D) equals the Milnor number of D in x (which Milnor introduced 
in his study of isolated singularities of hypersurfaces) plus the number of branches 
of  D in x minus one. 

Let D1,  D 2 be compact  curves on Y and D the one-dimensional part of D~ n D 2 . 

Write D'~ =D~ - D ,  D'z=D 2 - D .  Then by Lemma 4 

D~ D 2 = D (D i + Di) + Di D~ + ~ p~ (D) + ca [O] - e'(D). 
x~Y 

In other words, we have 

D~D 2 = ~ #~ (D,, D2) + c~ [D] - e'(D) (52) 

where 

#x (D~, D 2) = (D (D'~ + D'z))x + (D'~ D'z) x + #x (D), 

(D(D'~ + D'2))x and (D~ D'2) x being local intersection numbers. 

(531 
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We now come to the proof  of Proposi t ion 6. We assume MN is a square. 
For  ~eX with ISL2((9)~ I = v  3 and such that r branches of the inverse image of 
T(M,m in .52 pass through a representative z of 3 in ~ 2  w e  have 

2 r ( r -  1) 

V 3 

and therefore 

1~3(T M, TN)=(T M TN)t~ r. (54) 

As explained in 1.4, the curve T(M,N ) near U $1 is given by local equat ions 
b a u k -  v k = 0 corresponding to the ideals r in (9 with N (r (M, N), the characteristic 

of c being (kla, b). Locally such a curve has (a, b) branches and hence the number  
of cusps of TtM ,m in the sense of the one-dimensional  theory is ~ Ca, b), where 

the sum extends over all ideals c with norm (M, N). By [4] 4.3 (21 ~) we have for 
the non-singular model  ~M, m of T(M ' N) 

e'(T(M, m) = vol (TcM' m) + E (a, b). (55) 
r 

It follows from [4] 4.3 (19) that 

gl[T(M,m]=2vol(T(M.m)+ T(M,m.(E Sk)=2vol(T(M.m)+ E(a+b) ,  (56) 
r 

where ~ l e H 2 0 ? ;  II~) is the first Chern class of X. By (47), (52), (54), (55) and (56) 
we obtain 

(T M TN) ~ = (T M TN) x + ~ (a + b - (a, b)) + ~ #x(T M, TN), (57) 
c x E X  

where the second sum runs over x~TMc~TNc~USj. The intersection of T M 
or TN, respectively, with a small ne ighbourhood  of U Sj is described in (42) 
and (43). We must calculate i~x(A,B ) where A is the curve u~=vf, B the curve 
Ukt _Vk~ and x the origin of the coordinate  system (Uk, Vk). If p t--qs4=O, then 
A and B have no common  branch in x a n d / ~ ( A ,  B) is just the local intersection 

number  min(pt, qs) of A and B in x. If p t - q s = O ,  then we write P-=-q=-~ 
p s q t s t fl 

with (ct, fl) -- 1 and put  ~ - -~  -- a and ~- -~  = b. Then A c~ B is the curve u~ -- v~, with 

~,x(A c~ B ) = ( a -  1 ) ( b -  1)+ (a, b ) -  1 =a b - (a+b)+(a ,  b) 

((a - 1 )  (b - 1 )  is the Milnor number,  (a, b) the number  of branches). The curve A 
is the union of A c~ B and the curves u~ = ~ v~ (~" = 1, ~ 4: 1) and B is the union 
of Ac~B and the curves u~=qv~, (q~=l ,  t/4=l). Each pair  of curves u~=~v~,, 
u~=tlv~, with (4, t / )*(1,  1) has the intersection number  (a,b). Therefore,  since 

fl a b = p t = q s, we have/~x (A, B) = min (p t, q s) - (a + b) + (a, b). The  ideal a with 
characteristic (kip, q) has norm M, the ideal b with characteristic (kls, t) has 
norm N. Then a/e = b/fl and this is an ideal c with norm (M, N) and characteristic 
(k[a,b). We have e2=M/(M,N)  and f l2=N/(M,N).  Every ideal c with 
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N(c)=(M, N) is obtained in this way. Therefore (57) yields 

(TMTN)y~=(TMTN)x+ ~ 6klmin(pt,  qs), (58) 
N ( a ) =  M 
N ( b ) =  N 

where the sum is over all ideals a, b with N(a)= M, N(b)= N and (kip, q), (/Is, t) 
are the characteristics of a and b. Since 

T M T~ = (T M TN)y: + ~ f(ak a't) (Sk TM) (S, TN), 
k,l 

the proof of Proposition 6 is now identical with the proof of Proposition 5. 
The number (TITN)o~ = ~ f(a)  equals the number Ip(N) defined in (4) of the 

Introduction. We have N(a)=N 

(TMTN)o~= ~ f ( a b ' ) =  ~ dZp(d)Ip(MN/dZ). (59) 
N ( a ) =  M dl(M, N) 
N ( b ) =  N 

This is a consequence of the following lemma applied to the function f. 

Lemma 5. Let g be a function on integral ideals of a real quadratic field K of 
discriminant D satisfying g(da)=dr g(a) for some fixed r and for all ideals a and 
natural numbers d. Let G(N)= ~ g(a). Then 

N (a) = N 

g(ab)= ~ d'zo(d)G(MN/dZ).  (60) 
N ( a ) =  M dI(M, N) 
N ( b ) =  N 

Proof. We denote the left-hand side of (60) by G(M, N) and calculate the 
corresponding generating (Dirichlet) series: 

y, G(M, N)M- N - '= Z g(a b) N(b)-' 
M = I  N=I a,b 

= ~, g(r Z N(a) -s N(c/a) - t  
c ale 

= ~  g(c) o't_ s(c ) N(c)-' ,  
e 

where a, b, c run through the integral ideals of K and ak (C) is defined in analogy 
with the standard function ak (n)= ~ d k (n e Z, n > 0) as the sum of the k-th powers 

din 

of the norms of all ideals dividing c. By the Lemma in w of [-15], 

aa (c) = ~ d R Zo (d) a k (N (c)/dZ) 
die 

for any k, where the sum is over all natural numbers d dividing the ideal c. Hence 

G (M, N) M-S N - '  = ~ g (c) N (c)--t E dt-~ ZD (d) a t_~ (N (c)/d 2 ) 
M,N c die 

= ~, y, g(da) N(da)-td '-~zD(d) a,_~(N(a)) 
d = l  a 

= ~ Z d' g (a) d-2 '  N (a)-' d '-~ Zo (d) a,_s (N (a)) 
d = l  r 
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) = ~zD(d)d ~-'-~ ~ G(N)at_~(N)N -t  
\ d=  1 \ N =  1 

= y'xD(d)d ~-t-~ G(mn)m-~n -t  
\ d = l  1 n= 

= z o ( d ) d r G ( M N / d 2 ) ) M - S N  - ' ,  
M-- 1 N= 1 all(M, N) 

and this proves the lemma. 
We have now completed the calculation of (TMTIv)~ in all cases. Before 

stating the final result, we rewrite (59) in a form similar to (50): 

(TMTu)o~=�89 Z (dxp(d)+dx,(N/d))I,(MN/d2) if vp(N)<vp(M). (61) 
d[(M, N) 

To see that this holds, write N=pVNo, M=p~Mo with p.~N o. Then 

dzp(d)I~,(MN/d2) = ~ do)~p(do)Iv(pZ~MoNo/d~), 
dl(M, N) dol(Mo, No) 

dZp(N/d)Ip(MN/d2) = ~ dop~)~p(No/do)Ip(MoNo/d2) �9 
dl(M, N) dol(Mo, No) 

These expressions differ only by a factor zp(No), since clearly Ip (p2~ n)= pHp(n) 
for any n. Thus if Zp(No)= 1, (61) reduces to (59), while if zp(No)= - 1 both sides 
of (61) are zero (the left-hand side because N is not a norm). 

Summing up, we have proved: 

Theorem4. Let M , N  be positive integers, vp(N)~vp(M). Then the intersection 
number of the homology classes T~ and T~v on the compact surface X is given by 

TM Try = �89 ~ (dxv (d) + dzp (N/d)) (Hp (MN/d2) + Ip (MN/d2)), 
dI(M,N)  

where lip and Ip are the Jimctions defined in Equations (3) and (4) of the Introduction. 

Chapter 2: Modular Forms Whose Fourier Coefficients Involve Class Numbers 

Notation. We again fix a real quadratic field K. The discriminant of K is denoted D; 
the other notations concerning K ((_9, x', x ~ O, N(x), Tr(x)) are the same as in 
Chapter 1. As before, .~ denotes the upper half-plane; P~+ and P~_ denote the 
sets of real numbers =>0 and <0, respectively, N the set of integers ~0. For 
z ~ ,  nsZ,  we write e(z) for e 2~iz and z "/2 for ]zl "/2 e inarg(z)/2 with -~<arg(z)=<~. 

For k > 0  even, Mk(Fo(D),zD ) denotes the vector space of modular forms of 
weight k, level D and "Nebentypus" ZD, i.e. of functions f :  ~ C  satisfying 

,1, f \c z + d / =  ZD (a) (c z + d)kf(z) 

and which are holomorphic on .~ and at the cusps of Fo(D). The (infinite- 
dimensional) vector space of functions f :  .~--, C satisfying (1), with no holo- 
morphy conditions, is denoted M* (F o (D),)~D); such functions will be called "non- 
analytic modular forms" (of weight k, level D and Nebentypus). 
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2.1. The Modular Form <po(z) 

Let D be the discriminant of a real quadratic field. For N e N ,  set 

c (N) = H o (N) + I o (N), 

where 

H~ t~z H (  4 N ~  t - - - ~ 2 )  

t 2 < 4 N  
t 2 ~- 4 N  (mod D) 

(H(n) being the class number function defined in 1.2) and 

1 
I o (N) = 1/~ ~e,Ez~ o min (2, 2'). 

2 A ' = N  

We saw in Chapter 1 that, at least if D is prime, c(N) (N >0) represents the 
intersection number T~ T~ on an appropriate compactification of the Hilbert 
modular surface ~2/SL2((P), Ho(N) being the actual intersection number of the 
curves T 1 and T N on this surface and Io(N ) the contribution from the cusps. 
For N=O, c(N)= -1/12 is half the volume of the curve T 1. The main result 
of this chapter is that the numbers c (N) are the Fourier coefficients of a modular 
form in M 2 (F 0 (D), ZD)"  

Theorem 1. The function 

qgo(z ) = ~ c(N) e 2~INz (ze.~) 
N = O  

is a modular form of weight 2 and Nebentypus Zo for F o (D). 

This theorem is similar to various classical class number identities of 
Kronecker, Hurwitz and others (see bibliography) in which various expressions 
involving class numbers are shown to be equal to Fourier coefficients of modular 
forms. One such result, for example, due to Hurwitz [17], says that the expression 
c(N) in the case D =  I, i.e. the number 

Hi(N)+ ~ min(21, •2), 
2 =  (21, ~.2)~Z x Z 

2 1 , 2 2 > - 0  
~,1 '~2 = S 

is equal to 2a 1 (N) if N > 0, where tr 1 (N) as usual denotes the sum of the positive 
divisors of N; thus ~01(z ) is - ~ 2  times the normalized Eisenstein series 

E 2 ( z )  = 1-24 ~ al(N ) e 2~iNz. 
N = I  

(This is of course not a special case of Theorem 1.) We now describe briefly 
some other related results and generalizations of Theorem 1. 
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For any positive even integer k, we set 

Ck(N)=~,pk(t,N)H(4N--t2) 1 
- -  + - -  ~ min (2, 2') k- 1, 

, 1 / - f i ~  

where the summations are the same as in the definition of c(N) and pk(t, N)  is 
the polynomial defined by 

pk(t ' N ) =  (pk+-1 _pk-1)/(p+ _p_),  p• =�89 + ] / ~ - -  4N). 

Then the function q~D.k(Z)=~,Ck(N ) e 2niNz is a modular  form of weight k for 
the group F 0 (D) and character ZD and in fact a cusp form for k > 2. If k > 2 and 
D = 1, then the Selberg-Eichler trace formula [32] tells us that 

c k (N) = - 2 Tr (T (N), Sk (SL2 I,)), 

where T(N) is a Hecke operator on the space of cusp forms of weight k for the 
full modular  group, so the function r k (Z) is -- 2 times the sum of all normalized 
Hecke eigenfunctions in this space. The proofs of these results, as well as new 
proofs of the results of Cohen mentioned below and various generalizations, 
will be given in [36]. 

The other result related to Theorem 1 which we would like to discuss is due 
to Cohen [23]. Let r be an odd positive integer, and define an arithmetical 
function H (r, N) (N ~ N) b y / 4  (r, 0) = ~ (1 - 2 r) , /4 (r, N) = 0 for N -= 1 or 2 (mod 4), 
and 

H(r, N) = L(1 - r, ~(a) ~ d 2~-1 lq[ (1 - Za (P) P - ' )  
dlf pJd 

for N > 0 ,  N - 0  or 3 (mod4), where A <0  is the discriminant of Q(I/-L-~) 
and f is defined by - N = A f  2. This function generalizes the class number 
function I-I(N)=H(1, N) (cf. Eq. (15) and Proposition 1 of 1.2). We set 

the summation being the same as before. Then Cohen shows that, for r >  1, the 

function ~ Ho(r, N)e 2~iNz belongs to Mr+I(Fo(D), Zo). Thus for r >  1 no cor- 
N = O  

rective term like our ~ min(2,2') is needed. As with the case r =  1, there is a 

( 4 N - t 2  t generalization in which the terms H r, D in the sum above are weighted 

with a certain homogeneous polynomial in t and N, leading to modular  forms 
(in fact cusp forms) of higher weight. Unfortunately, Cohen's proof does not 
work for r = 1, although the starting point for both proofs, as we shall see, is the 
same. 

The basic idea is to express the numbers /4(N) as Fourier coefficients of a 
modular  form of half-integral weight. This suggestion was already made by 
Hecke [20] as a way of explaining the classical class number relations like the 
above-mentioned theorem of Hurwitz concerning /4~(N). Hecke pointed out 
that, by the formula of Gauss and Hermite, the number  r 3 (N) of representations 



90 F. Hirzebrueh and D. Zagier 

of N as a sum of three squares can be expressed in terms of class numbers: 

[12H(N)  

r3(N)=I~4H(4N) 

[ r 3 (N/4) 

if N = I  o r 2 ( m o d 4 ) ,  
if N = 3 (mod 8), 
if N = 7 (mod 8), 
if N = 0 (mod 4). 

On the other hand, r3(N ) is the N-th Fourier coefficient of 0(z) a, where 

O(z) = ~, q,2 (q = e2.i~) 
t~Z 

is a modular form of weight one-half; thus one should expect that the function 

3Of(z) = ~, H(N)q N ( z ~ )  
N=0 

is a modular form of weight 3/2, and then the number HI(N ) would be the 4N-th 
Fourier coefficient of the modular form ~ (z )  O(z) of weight 2. 

At the time of appearance of Hecke's paper, no satisfactory theory of modular 
forms of half-integral weight was known; such a theory has now been provided 
by Shimura ([33, 34]). However, one still cannot carry out Hecke's suggestion 
directly because, as we shall see, the function ~ ( z )  does not in fact transform 
like a modular form of weight 3/2. For  r >  1 odd, on the other hand, Cohen 

proves that the function ~ H(r, N)qN is a modular form of weight r+�89 (for 
N=0 

F 0 (4)) in the sense of Shimura, namely equal to the linear combination 

~ ( 1 - 2 r )  
22r+ 1 {(1 - -  i)E,+l/2(z ) -  iF~+l/2(z)} 

of the two Eisenstein series 

,~=1 . . . .  (mz+n) r+l/z' 
modd (n,m)= 1 

Fr+l/2(z)=z-r-1/2Er+l/2 (~Z ), 

whose Fourier coefficients were calculated by Shimura in the papers cited. 
For r = 1 we should like to apply the same idea and show that ~ ( z )  is equal 

to the linear combination 

: ( z )  = - ~ {0 - i) E~/~ ( z ) -  i v~/~ (z)} (1) 

of the two Eisenstein series of weight 3/2. However, the series defining E r + l / 2 ( z  ) 
diverges for r =  1. To overcome this difficulty, we use the well-known device 
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of Hecke [25] : we introduce the series 

Ea/z,~(z)= ~ (mz+n)a/21mz+nlZ ~ (ze~, seC), (2) 
m > 0  

(m, 2n)= 1 

which converges absolutely for Re(s)>�88 and transforms by 

(?;2 
E3/2'S\cz+d] (d) (cz+d)3/Z[cz+dl2SE3/z'~(z) 

for (~ ~)~F0(4 ) (for the definitions of (d) '  (~-~) 1/2etc" cf. [33]). This function 

is analytic in s, and by analytic continuation we obtain a function 
E3/z(z)=E3/2,o(Z) which is possibly not holomorphic in z but a least satisfies 
the transformation equation of a modular form of weight 3/2. We proceed 
similarly for F3/z(Z) and then define ~(z) by (1). The function ~(z) is periodic 
of period 1 and hence has a Fourier expansion ~ fN e2~u~, the coefficients fs  
possibly being functions of y =  Im(z). We will calculate these Fourier coefficients 
in the next section, finding that the N-th coefficient is equal to H (N) (independent 
of y) for N positive and to 0 for N negative except for N =  - u  2, u~_.. Thus ~(z) 
is the sum of 3r and a certain non-analytic expression involving the powers 
q_,2. In Section 2.3 we construct a theta series of weight 2 which will cancel 
the contribution from this non-analytic piece and create the term ~ min(2, 2') 
in the formula for c(N). The proof of Theorem 1 will be completed in Section 2.4. 

2.2. The Eisenstein Series of Weight 

At the end of the last section we defined a function ~-(z) which transforms under 
Fo(4 ) like a modular form of weight 3, and explained a reason for expecting a 
relationship between ~(z) and the function ~(z )=~H(N)q  N. In this section 
we will prove the following result. 

Theorem 2. For z ~ 8, we have 

~(z)=~f~(z)+y_l/2 ~ fl(4~zf2y ) q_f2, 
f = - o o  

where y=Im(z), q=e(z) and fl(x) is defined by 

o o  

Before proving this, we mention two corollaries. The first is a description 
of the way J~f'(z) transforms under Fo(4 ). 



92 F. Hirzebruch and D. Zagier 

\ c z + d ] -  ( )=l-~n d/c ( t+z?/2 '  

where 0(t)= ~ e ( f  2 t) and the integral is taken along a vertical path in the upper 
half-plane. I~z 

Indeed, by the theorem, 

1 ~ . 1+i i~176 
~ ( z ) -  dt~ i~n y-  a/2 ! u- 3/20(2iuy-z) clu =l~n _ ~ ~ (z + v)- 3/20(v) dr, 

the integral being taken along the vertical path v = 2 iuy - z ,  1 < u < oo. Denote 
a t - b  

the latter integral by ~(z); then, substituting v = d' we find 
- c t +  

{az+b] ~C[az+b a t - b  ~-3/2 [ a t - b  ~ dt 
0 \c~-~]  =_~ \cz+d q - c t + d ]  0 \ - c t + d ]  (c t -d)  2 

= (cz+a)3/2 ~ (z + t)- 3/2 0(t)dt, 
--~, 

where in the second line we have used our knowledge of the behaviour of O(t) 
under F o (4). Thus 

(c z + , t)-  3/2 ~ \c~-$-a! - 0 (z) = - I (z + t)-  3/20 (t) a t .  
d/r 

The expression on the left, with ~O replaced by o~ is zero because ~- transforms 
under Fo(4 ) like a modular form of weight 3/2. The Corollary now follows from 

1+i  
the identity ~ -  dg= ~ O. 

We should mention that one result concerning the behaviour of oug under 
modular transformations was already known, namely the identity 

(2z/i)-3/2af ' + ~ ( z ) = - ~ 0 ( z )  3 -  z ~ e(r l + e ( 2 ~ z ) ,  
_ ~  1 ~  ~d~' 

found by Eichler [21]. 
The other consequence of Theorem 2 was pointed out to us by H. Cohen, 

namely, a "modular" proof of the Gauss-Hermite formula quoted in Section 2.1. 
To see that r3(8N+3)=24H(8N+3), for example, we observe that 

~,H(8N+3) qN=~ ~ e(-3r/8)~,ut~ ~ e(-3r/8)o ~[z+r~ 
,~mo~ ~ ,~mo~ ~ ~I' 

the terms involving q -I~ all dropping out because _f2 is never congruent to 
3 modulo 8. Therefore the function ~ H(8N+ 3)qN is a (holomorphic) modular 
form of weight 3/2 for some congruence group (in fact for Fo(2)), and since 
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I ~ '~24 r3(8N+3)qN is also such a form, one can prove the equality of the two 
functions by comparing finitely many of their coefficients. A similar argument 
works for coefficients belonging to the sequence 4 N + 2  or 4 N + 3  or to any 
other arithmetical progression not containing the negatives of any squares. 

We now give the proof of Theorem 2. Set 

O~s(Z)= - l  { ( 1 - i )  Ea/2,s(Z)-iF3/2,s(Z)} (Re(s)>�88 

where E3/2,s(Z) is the function defined by Eq. (2) of 2.1 and 

F3/2,s(Z ) = z -  3/2 Iz ]- 2SE3/2,s(_ 1/4z). 

Then o~(z) has an analytic continuation to the whole s-plane with ~o(Z)= ~(z), 
and on the other hand ~ is periodic in z with period 1 and therefore has a Fourier 
development of the form 

5~(z): ~ fN(s,y) qU 
N =  -- oo 

with fN(s, y) analytic in s. Theorem 2 will follow if we show 

[H(N)  if N > 0 ,  

] 1 1 - 1/2 
fN(0, y ) = { - ~ + ~ Y  if n = 0 ,  

[2y-1/2fl(arcfZy) if N = - f  2, f > 0 ,  

[0 if N < 0, - N ~ square. 

We begin by finding the Fourier expansion of E3/2,s(z ). Write 

- 1  1/2 3/2 2s n n -3/2 n -2s. 
( - - t  m- - ~ (--t~(z+--+hl Z+m+h E3/2,s(z) = 

m = l \  m / n ( m o d m ) \ m / h e Z \  m ] 

m o d d  

By the Poisson summation formula, 

~(z+h)-3/21z+h[-2s= ~ %(s,y)e(Nz) (z~)  
h~TZ N =  - oe 

with 
i y + ~  

% ( s , y ) =  ~ z-3/2]z]-2Se(-Nz)dz 
i y - -  o~ 

= y-  1/2- 2s e 2 nNy S (V + i)- 3/2 (/)2 ..~ 1)-s e ( - Ny v) dv 
-oo  

(the last formula is obtained by the substitution z = (v + i)y), and inserting this 
into the formula for E3/2, s we find 

E3/z,s(z) = ~ m -1-2s ~ 7m(--N) o~N(s,y) e(Nz) 
m =  1 N =  - oo 

modd 

= ~ E~ 2'~iNz, 
N =  -- cJo 
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where 7,. ( - N )  denotes the Gauss sum 

~ m ( - N ) =  m -1/2 ~ e(ng/m) (m odd) 
n ( r o o d  , . )  

and EOd~ (s) the Dirichlet series 

E~ (s) = ~ ~., ( - N)  m- s. 
m = l  

m o d d  

A similar calculation for F3/2.s(z ) gives 

F3/2.,(z)=22"+ 3i+(l +i) ~ E_~ tq + 2s)c~N(s,y) e2~INz 
N =  -- oo 

with 

EV~ n (s) = ~ 7m (-- N) (m/2)- s, 
m = l  

m e v e n  

the Gauss sum ~m(-N) now being defined by 

- 1 / 2  m 

7m(- N) n(mod2m) (n ) in~2 = m ~ -- e (N n/2 m) (m even). 

(The constant term 22s+3i comes from the term m-- l ,  n = 0  in (2).) Thus the 
Fourier expansion of ~ ( z )  is 

22' 1 - i  oo 
o~(z)= 12 48 N= ~ -o~ 

E_N(I + 2s) eN(s, y)q N 

with 

E_ N(s) =�89 (E~ + E_N (s)). 

The Gauss sums ~,"(-N) and the Dirichlet series E~ Ee~} n and E N are 
evaluated in [15], w Theorems 2 and 3. It turns out that E N(s)=0 identically 
if N is congruent to 1 or 2 (rood 4), while if N • 0 is congruent to 0 or 3 (rood 4), 
then 

E-N(s)= ~ (2s)-I L( s, Zd) ~ #(a) zn(a) c- 2s+1 a-S, (3) 
a , c >  O 

a c l f  

where d is the discriminant of Q ( 1 / -  N), ~d the associated character, and f the 
number defined by - N  =df  2. Finally, for N = 0  we have 

E o (s) = ~ (2 s - 1)/{ (2 s). 

We are interested in finding the value of the Fourier coefficients 

1 - i  ~ - 2 2 ' / 1 2  if N = 0  
fN(s, Y) = -4-8 E-N(I+2s)~N(s'Y)+~O if N4:0  

at s=0 .  
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The integral defining an(s, y) can be evaluated easily at s=0 :  

an(O'Y)={O41r(l+i)N1/2 ifif N>0,N<0. 

If N is positive, formula (3) shows that E_N(s) is holomorphic at s = l  with 

E n ( 1 ) = ~ L ( 1 ,  Zd) ~ #(a) xd(a)/a c 
aclf 

= 6 N -  1/2 L (0, %a) ~, k 1--I (1 - %~ (p)/p) 
k l f  p[k 

6 N_I/2H(N ) = - -  

(we have used the functional equation of L(s, Xd)), SO fn(0, Y)= H(N) as claimed. 
If N is negative but - N is not a square, then the number d in (3) is the discriminant 
of a real quadratic field and so L(s, Xn) and hence E_ N(s) are holomorphic at 
s =  1; this, together with an(0, y)=0, implies that fN(0, y)=0. It remains to treat 
the case N =  _ f 2 .  

First, if N =  _ f 2 ,  f > 0 ,  then 

E N(s ) = ~(2s) -1 ~(s) ~/~(a) c- 2 s + l  a-S 
aclf 

has a pole of residue ff (2)- 1 at s = 1, so 

1 - i  
fN(0, y ) -  16re 2 a~(0, y), 

where 

0 an(s, y) s= o a~(0, y)=~s  

oo 

= _ y-  1/2 eZ,~nr S (v + i)- 3/2 log(v 2 + 1) e ( -  Ny  v) dv 
- o o  

1 /2  + ioo  

= - ( 2 i y )  -1/2 S u-3/2e4':nr"log{4u(1-u)}du 
1 / 2 - -  ioo 

(the last equation is obtained by substituting v = 2 i u - i ) .  We deform the path 
of integration in the last integral to a path in the cut plane ~ - [ 1 ,  ~ )  which 
circles the cut clockwise from i e + oo to �89 to i e -  ~ .  Across the cut, log {4 u (1 -u)} 
jumps by 2hi  and the other terms in the integrand are continuous. Therefore 

~X3 

a~v (0, y) = - 2 n i (2 i y)- 1/2 ~ u - 3/2 e- 4 ~ In ly, du = - 16 ~2 (1 + i) y-  1/2 fl (4 n IN I y) 
1 

and hence 

fN(O,y)=2y-1/efl(4rcf2y) (N= - f 2  <0) 
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as claimed. Finally, for N = 0 we have 

1 1 - i  1 1 
f~ 12 32n 2~t~(0'y)= 12 8~Z y- l /2 '  

because E o (s)= ((2 s -1) / ( (2s )  has a pole of residue 3/n 2 at s = 1. This completes 
the proof of Theorem 2. 

2.3. A Theta-Series Attached to an Indefinite Quadratic Form 

If F is a positive definite quadratic form in 2k variables, and L c I R  2k some 
lattice on which F takes integral values, then the associated theta-series 

e 2"izv~a) ( z ~ )  is a modular form of weight k (of some level and for some 
2 e L  

quadratic character depending on F and L); similarly, the series ~ p(2)e z~zF~a), 
where p(2) is a homogeneous polynomial of degree m which is spherical with 
respect to F, is a modular form of weight k +m (for precise statements and 
proofs see [30] or [24]). If, on the other hand, F is an indefinite form, then these 
series diverge because [e2~i~vt~) I grows exponentially in I),21 in the cone F(2)<0. 
To obtain a convergent series, we can either allow the coefficient p(2) to be a 
non-analytic (or piecewise analytic) homogeneous function of 2 which is identi- 
cally zero for F(2)<0,  or allow p(2)=pz(2) to depend on z in such a way that 
p,()`) is much smaller than e - 2 n i z v ( ~ ' )  as  [21-~ or. If the function pz(2) is chosen 
in such a way that the Fourier transform (with respect to 2) of p=(2)e 2~rt~)  
equals z- 'p_l/z(2 ) e-2.~Ftz)/~ for some r, then the same proof as in the classical 
case (namely, by application of the Poisson summation formula) shows that 

P,(;O e2"i~Fta) is a modular form of weight r. In this section we shall construct 
such a modular form, of weight 2, associated to the norm form of the quadratic 
field K, i.e. F will be the indefinite form F(21,22)=21 22 on R2 and L will be 
the lattice (9, embedded in R2 by x ~-+(x, x'). Our coefficient function p,(21, 22) 
will be 

2fl(ny(21_22)2)_S�89 , I).21) if ).1).2>0, 
if 2122~0,  

where 
oo 

f l ( X ) = l - ~ I u - a / 2 e - ~ d u  ( R e x > 0 )  
1 

is the function defined in Theorem 2. 
We will need some properties of the function fl(x) and of the related function 

m u 2 + 2 n i a u d U  
f ( a , x ) = ~ e -  - -  (a~lE, x ~ l E - ~ _ ) .  

x U 

These functions are related to the standard "complementary error function" 

oo 

erfc(x) = ~ e -"~ du (xeff~) 
x 
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by the formulas 

fl (x) = ~ (e- ~ - ~ erfc (l/x)) (4) 

(which also gives the analytic cont inuat ion of fl(x) to C -  IR_) and 

(3 f (a, x) = i 7z a/2 e-  ~2 ,2 erfc(x + i zt a). 
Oa 

The propert ies we need are summarized in the following lemma. 

Lemma  1. The functions fl, f and erfc satisfy the identities 

a) ~ fl(ct2)e2ni'X d t=  ~-~6 ~z- 5/2 cl/21-e-nEx2/c 
X2 

- - o 0  

b) ~ 1 - e - ' ~  eEl ,  x dx = 161t 3/z ~1/2 fl(~z2 tz/ct), 
X 2 

- - o 0  

c) erfc(x) + e r f c ( - x ) =  2, 

d) f ( - a, - x ) -  f (a, x) = irc erfc (r~ a) (x 6.~). 

Proof a) is obtained easily by substituting the definition of fl into the integral 
and inverting the order of integration, and b) by differentiating both sides of 
the identity with respect to ~; alternatively, b) can be considered as the inverse 
Fourier  t ransform formula to a). Formula  c) is s tandard and easy: one sees by 
differentiating the left-hand side that  it is a constant ,  and the constant  is found 
by setting x = 0 .  Finally, the function f ( - a , - x ) - f ( a , x )  is defined for a e C ,  
x ~ C - l R = . ~ u - . ~ ,  and its derivative with respect to x is identically zero, so 
for fixed a this function has a constant  value q~+(a) for x in the upper half-plane 
and a constant  value q~_ (a) for x in the lower half-plane. Differentiating with 
respect to a, we find 

d d-a cp+ (a) = -2 i~z  3/2 e - ~ 2 0 2  , 

SO 

q~ + (a) = i n erfc (zt a) + c + 

for some complex constants  c+ and c_. Interchanging the roles of (a,x) and 
( - a ,  - x )  in the definition of  tp+(a) leads to 

~ o + ( - a ) =  - (p~ (a), 

which, together with c) of the lemma, implies c+ + c_ = - 2 n  i. Finally, it follows 
by the calculus of residues that  

lim ( f (a ,  x - i e) - f (a, x + i e)) = 2 n i 
ex, O 

for x real and negative, and this implies c + - c  =2~i .  Hence c + - 0  and 
c = - 2 h i ,  so q~+(a)= _+in erfc(_+rca). 

We are now in a posi t ion to construct  our  non-analyt ic  theta-series. 
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Proposition 1. For z~.~, define continuous complex-valued functions Uz, Vz and W z 
on R z by 

U~ (2, 2') = 2 y -  1/217 (rt y (2 - 2')z) e (2 2' z), 

(2, 2,)=J" �89 min(12[, 12'l)e(22'z) if 2 2 ' > 0 ,  
Vz 10 if 2 2 ' < 0 ,  

Wz(L 2')= Uz (2, 2 ' ) -  V~ (2, 2'), 

where y=Im(z) .  Let 17V denote the Fourier transform of W: 

Wz(#,P)= S S Wz(2 ,2 ' ) e ( -2# -2 '# ' )d2d2 ' .  
- o o  - o o  

Then 

~ , = Z - 2  ~ ( # , # )  w_l/z(#, #'). (5) 

Corollary. The function 

~(z)= ~, w=(2, 23 (z~)  

is a non-analytic modular form of weight 2, level D and Nebentypus Zo. 

Proof We calculate the Fourier transforms of U z and Vz separately. First, in 
the integral defining 0 z we substitute 2' = 2 + t and use a) of Lemma 1 : 

oo 

U z ( # , # ' )  = ~o J" e(-2#-2'#')U:(2,2')d2'd2 
- oo  - oo  

=2y -'i2 S e(2(z2--#--#'))  ~fl( rcyt  2) e ( ( z 2 - # ' ) t ) d t d 2  
- o o  - c 1 3  

1 ~- 1 - e  -~(za-"')2/y 
= 8 n  2 -~J" (z2_#,)2 e(z22--#2--# '2)  d2" 

Substituting 2 =u + #'/z and applying b) of Lemma 1, we find 

~ , 1 e 2 n i z u 2  - -  e- n [ZI2U2iy 

Uz(V,#)=8~-z j2e ( -#p ' / z  ) S u2 e ( (# ' -# )u)du  
- c o  

=2Z -2 e(-##' /z){izly-a/zf l(Tzy(p-#')2/lz[Z)-wll2fl(x(#-p')2/w)} 

= z-  2 U 1/z (#, #') + 8 w- 3/2 e ( - # if/z) fl (~z (# - #')2/w), 

where in the last two lines we have set w=2z/i ,  so larg(w)l< 7. For l? z we find 

IT"z( #, #')= T(#, #')+ T ( -  #, -#')+ T(#', #)+ T ( -  #', -#) ,  

where 

T(# ,# ' )= �89  ~ 2e(zXX'-2#-X'p')d2'd2. 
o _<__ ~._< ~., 
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In this expression we perform the Z-integration and substitute 2=u+#' / z  to 
obtain 

i T ). 2 
T(U,# ' )=~-  j ~ e ( z 2  - # 2 - # ' 2 )  d2 

~rr  0 Z A - - #  

i ~ u+#'/z  
= 4 ~ z  e ( -  p #'/z) r 2-u # + u #') du 

- ,u' lz  U 

= - - w  e( - (#-p ' )Z /4z )er fc  i(#'+#) 
4~ 

+ ~ z -  e ( - p # ' / z ) f  \ l / rcw,2 i# '  . 

Adding to this the corresponding formula for T ( - # ,  -# ' )  and using c) and d) 
of Lemma 1, we find 

T(#, p ')+ r ( - # , - # ' )  

1 ( ~nw) = - - w - 3 / 2 e ( - ( g - g ' ) Z / 4 z ) + � 8 8  sign(#')(#'- #) . 
2re 

Adding to this the formula obtained by interchanging # and #', and using 
again c) of the lemma as well as Equation (4), we find after a short calculation 

(#, #') = z-  2 V 1/z (#, #') + 8 w-  a/2 e ( - # #'/z) fl (n (# - #')2/w). 

Comparing this with the result for 0~ we obtain Equation (5). 
The proof of the corollary is now essentially the same as the standard proof 

that theta-series associated to definite quadratic forms are modular forms, as 
given in [30], Chapter VI or [24], pages 81-87. We recall briefly how the argument 
goes. As well as the series ~V(z), one must consider the sums 

~(z)= Y. Wz(,~+v,,V +v') 
).E~) 

over the translated lattices ~+v ,  where v belongs to the inverse different 
b- l=(1/ l /D) .  Clearly ~ depends only on the residue class of v (rood(9), so 
there are only D distinct functions ~V v, with ~o = ~ Then 

~/~(z + 1)= ~ W~(2+ v, 2 '+ v') e(N(2+ v)) =e(Nv) ~ ( z ) ,  

since N(2+v) -N(v)~7 l  for 2 ~ ,  v~b -1. On the other hand, by the Poisson 
summation formula 

~t/~(z) =D- ' / z  Z IYCz(P,P')e(Trpv), 
#eb  - 1 

and combining this with (5) we find 

z -2" l~ ( -1 / z )=D -1/2 ~ e(Tr#v)Wz(p,# ' )=D -1/2 ~ e(Trpv)~Wu(z). 

Thus we have 

~//~ I T=  e (N v) ~q/~, ~#~lJ=O-l/Z~e(Tr#v)~r (6) 
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where T and J are the matrices and - 1  

bd) (az + b~ (~ denotesthefunction(cz+d)-2~l/~\c~].Since T a n d J  generate F, 

we obtain a representation of F in the space generated by the D functions ~/r163 
The first step in the proof of the Corollary is to show that the Equations (6) 
imply ~V~IA=3r ftir A in the principal congruence group F(D). The argument 
is given in 1-24], pages 85-87. Now to show that ~o transforms under Fo(D ) 

like a modular form of Nebentypus, we take A=(a  ~ set 
\ C  al 

R= T"JTaJT"J. Then R =  (~ o)(modD), so, choosing xeT] with d x - b  (modD), 
~ v  

we find A=A'TXR with A'eF(D) and hence ~ o l a  =~o lR .  But from (6) we find 

ff~vv ] z a J  = D -  1/2 e (a N (v)) ~ ~ e (Tr p v) 
/z 

and hence 

[R = ((fr [ T"J)[ TaJ)[ T"J 
= D -  3/2 E E E e(aNv+dNp + a N 2  +Tr(kt v + 2 # +  x 2)) ~r 

2 K 

=D- 3/z ~ CCr~ ~ e(Tr ;t'(x-av'))~ e(dN(g+a2' +av')). 
tr 2 it 

Replacing # + a 2 '+ a v' by # in the inner sum, we see that this sum is equal to 
the standard Gauss sum 

e (dN p)= D1/Z )~D(d). 
lteb - 1/~ 

Hence 

[R = D-I zo(d ) ~ ~ ~, e (Tr 2'(x - a v')) = )~o(d) ~,v, 
K 2 

(the inner sum is zero if x .av ' ) .  In particular, taking v = 0 we find ~o I R = Zo (d) ~o,  

and this completes the proof that ~olA=)~D(d)~o for A= (~ bd)eFo(D). 

2.4. Proof of Theorem 1 

We proved in Section 2.2 the identity 

o~(z)= ~ H(N)qN + y -1/2 ~fl(41ru2y) _,2 q , 
N =  0 u e Z  

where as usual q =e(z) and y = Im(z) and ~- is a function satisfying 

[az+b~ 
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for (a b/~Fo(4)(and of course c#:0). The function 0(z)= ~ q : ,  on the other 
\ C  te2g 

hand, satisfies 

[az+b~= - 
O \cz+d] ( ~ - )  l/2 (d)(Cz+d)l/20(z) 

for (~ bd)~Fo(4 ). It follows immediately that 

iDaz§247 
\ cz+d] \cz+d! 

( aDz+bD ~ (az+b~ 
=: \(c/D)Dz+d/ 0 \c~d/ 

= (@)1/2 (~D_)(cz+d)3/2 : ( D z ) ( @ ) - t / z  (d)(cz+d)~/20(z) 

= (D) (c z + d)2~.~(D z) O(z) 

for (~ bd)eFo(4D), i.e. the function 

~(Dz) 0(z)= ~ cN(y) qN, 

cs(Y)= ~ " (~ f~)+D-~/2Y-X/z  ~ /~(4rc u2y), 
t 2 < N t ,  u s Z  

t 2 --= N ( m o d D )  t 2 - D u 2 =  N 

belongs to M*(Fo(4D), Xo). We claim that the function ~ c4N(�88 belongs to 
M*(Fo(D),•o). The corresponding statement in 1-231 (Proposition 5.1) is proved 
by appealing to Lemmas 1 and 4 of 1-29"1; however, since this latter paper treats 
only analytic modular forms, we give the proof of the special assertion we need: 

Lemma 2. If  f (z) = ~ a, (y) q" is in M* (F o (4D), XD), and a, (y) = 0 for all n = 2 (mod 4), 
then the function ,~z 

4 

h(z)=�88 ~ f (z~4f)= ~'.a4,(�88 
e =  1 n e Z  

is in M~ (F o (D), ZD). 

Proof We prove the lemma in two steps, first showing that the function 

(: 
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is in M*(F0(2D),~D). Set Xo=  (~ ~), X~= (~ 

matrix in F o (2/)). If b is even, then the matrices 

XoAXo~ = a X ~ A X { I =  2c 2c 

are in Fo(4D ), so 

F. Hirzebruch and D. Zagier 

~) a n d l e t A = ( ~  ~) b e a n y  

� 8 9  
d - c  - c ) )  

g (A z) = �89 f (X o A X o  1 (X o z)) + �89 f (X x A X ?  l (X 1 z)) 

= �89 ~o (d) (c z + d)kf (X o z) + �89 ZD (d - c) (c z + d)kf (X a z) 

= zo  (d) (c z + d) k g (z), 

the last equality holding because x v ( d - c ) =  zv(d). If b is odd, then the matrices 

( X o A X 1 1 =  
\2c d - c  ! 

are in F o (4D), so 

g (A z) = �89 f (X o A X~ 1 (X 1 z)) + �89 f (X 1 AXo 1 (X o z)) 

= �89 Zo ( d -  c) (e z + d)kf (X a z) + �89 ZD (d) (c z + d)kf (X o z) 

= zo  (d) (c z + d) k g (z). 

This proves the assertion concerning g. Under the assumptions made on f, 
a2.( �89 for n odd, so 

g (z) = g (z + �89 = Z a4, (�89 y) q2. = h ( 2 z). 

Let A =  (~ bd)eFo(D). The formulas just given for the four matrices X,  AXF1 

(~, fl=0, 1) show that at least one of these matrices lies in Yo(2D); then 

h(a z) = g(X, AX~ 1 (Xtj z)) = zo(d)(c z + d) a g(Xa z) = zo(d)(c z + d) a h(z). 

We now apply this lemma with f ( z )=~(z)O(z) ,  a,(y)=c,(y). The fact that 
cu(y)=0 for N - 2  (mod4) follows from the fact H ( n ) = 0  unless n - 0  or 3 (mod 4) 
and from D~-0 or 1 (rood 4). Thus ~ cau(�88 N is in M* (Fo(D), XD). But 

( 4 N - t 2 )  
C4N(�88 ~ H ~ +2D-V2y  -1/2 Z fl(~Du2y) 

t2<-4N t, ue l  
t 2 ------ 4 N ( m o d  D)  N = (t 2 - Du2)/4 

=HD(N)+ 2D-I/2y -1/2 ~ fl(rt(A-2')2Y), 

2 ; t ' = N  

so this means that the function 

H~(N) q~ + 2D-~/2y -1/~ Z ~(~(~- Z)~ Y) q~' 
N=O ;~r 
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is in M*(Fo(D), ZD)" On the other hand, by the Corollary to Proposition 1, we 
know that the function 

- D-1/2 ~I/'(z)= D -1/2 ~, min(2, 2') qa~' _ 2D-1/Z y-1/2 2 f l ( l t ()~--  2 ' )2Y) q~'  
2e~ 2e~ 
2~'0 

is also in M*(Fo(D), Zo). Adding these two functions, we find that the function 

~~ ~ Ho(N)q N+D-1/2 E min(2, 2 ' )q~'  
N= 0 2~r 

2~0 

is in M~(Fo(D), Zo). Since the N-th Fourier coefficient of qgo(z ) is independent 
of y and is O(N ~) for some r (in fact, for r =  1), the function ~oo(z) is analytic in 
the upper half-plane and is O(y -~) as y ~ 0 ,  which implies that ~oo(z ) is holo- 
morphic at the cusps of F 0 (D). Hence ~ODeM 2 (Fo(D), Zo). 

Chapter 3:  Modul ar  F o r m s  with Intersection N u m b e r s  as Fourier Coef f ic ients  

3.1. Modular Forms of Nebentypus and the Homology 
of the Hilbert Modular Surface 

In Chapter3 we return to our Hilbert modular surface X=~2/SL2((~), again 
supposing that the discriminant of the quadratic field K is a prime p -  1 (mod 4). 
The middle homology group Hz(J~ ) (all homology and cohomology is with 
coefficients in I1~ unless otherwise stated) of the compactification 37 = X w U sk 
of x is the direct sum of Im(H2(X )--*H2(J~)) and the subspace generated by 
the homology classes of the curves Sk, the two subspaces being orthogonal 
complements of one another with respect to the intersection form. In the first 
component lie the homology classes T~ (N=  1, 2, ...) defined in 1.4 and one 
further important class which we now describe. 1 

On .~x.~ we have two differential forms c q j = - ~ y f Z d x j A d y j  ( j = l ,  2), 

where z~=-x~+ iy~ ( j=  1, 2) are the coordinates. Each o)j is an SL2(lR)-invariant 
form on .~, so co I and 0) 2 are SL2(r they can therefore be considered 
as differential forms on the smooth non-compact surface X' obtained from X 
by removing the finitely many singular points (quotient singularities). The sum 
~o 1 + co 2 is the first Chern form c 1 on X', while the product ~o =o31 ^ 0) 2 is the 
second Chern form (Gauss-Bonnet form) c2; clearly clAc~=2c 2. Then ([4], 
1.3, Eq. (9)) 

c 1 ̂  c 1 = 2 ~ co = 4~K(- -  1), (1) 
X' X" 

where (x(S) (ssff~) denotes the Dedekind zeta-function of K. On the other hand, 
in ([4], p. 229) it is shown how the forms co i can be modified by coboundaries 
to obtain differential forms with compact support in X'; extending these forms 
to 2 D X' by 0 on the complement of X', we obtain differential forms on 2 
representing cohomology classes in Im(H~(X')~HZ(fC)), or equivalently (by 
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Poincar6 duality), in Im(H2(X')-+H2(X)). We denote the homology class 
corresponding to 1(o91+o9l) by 7~. This seemingly strange notation is easily 
justified: the restriction of 091 or o92 to any T N is just the standard volume form, 
so by (46) of 1.5 

c __1 T; TN--g vol(TN)= - z -~(z . (d)+zp(N/d))d  (N > 0), (2) 
din 

whereas in Theorem 4 of Chapter 1 we proved that 

(M, N > 0 ,  vp(N)<vp(M)). 

Since H p ( 0 ) = - ~ 2  and lp(0)=0, Equation (2) is formally the special case M =  0 
of Equation (3). By (1), we have the formula 

7~ T~=�88 ~K(-- 1) (4) 

for the self-intersection number of T~. We can now state the main result of this 
paper. 

Theorem 1. For each homology class K in the subspace of H2(X ) generated by 
the T~ (NeN),  the function 

�9 K(Z)= ~ T~K e 2"iN~ (ze~), 
N = 0  

given by a Fourier expansion whose N-th coefficient is the intersection number 
of K with T{v, is a modular form of weight 2, level p and Nebentypus Zp. It is an 
Eisenstein series for K= T~ and a cusp form for K orthogonal to T~. The map 
K ~--~rb K from the space generated by the Try to the space M2(Fo(p), Xp) is injective. 

Proof 2. We begin by recalling the structure of M2(Fo(p),zp ). The group Fo(p) 
has two cusps, oo and 0, and correspondingly two Eisenstein series E 1 and E 2, 
and M2(Fo(p), )~p) is the direct sum of the space of cusp forms Sz(Fo(p), )~p) and 
the two-dimensional space generated by E 1 and E z. The Eisenstein series have 
the Fourier expansions 

E, (z)= ~ (Z  zp(N/d) d) qN, 
N = I  dIN (5 )  

p3/2 
(z)= - L(2, x.) + L ( Z x .  (d) d)q  

N = I  din 

([28], p. 818, Satz 12), where as usual q=e 2~iz. The Hecke operators T(1)=id,  

T(2), ... act on M2(Fo(p), Xp)as follows: if f =  ~ a(n)q" is in M2(Fo(p), Xp), then 
n = 0  

f l r(m)= ~ ( ~ ):p(d) da(m n/d2)) q". (6) 
nffi 0 dl(n, m) 

2 Eichler (in a letter of May 7, 1974) has proposed a different possible method of showing that 
~ is a modular form, based on Siegel's work on indefinite quadratic forms and not requiring explicit 
knowledge of the intersection numbers, but a proof along these lines has not yet been given 
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The Eisenstein series E~ and E 2 a r e  eigenfunctions of all T(m), the eigenvalue 
being in each case simply the m-th Fourier coefficient. The space S2(Fo(p), Xp) 
has a basis of normalized Hecke eigenfunctions. Each such eigenfunction has a 

o0 

Fourier expansion f ( z ) =  ~a(n)q" with a(1)= 1 and f l T(n)=a(n)f for all n, 
n = l  

so Equation (6) implies the identity 

a(n)a(m)= ~ xp(d)da(mn/d 2) (re, n>0)  (7) 
dl(m, n) 

for the Fourier coefficients of f In particular, 

a(p" n)= a(p) ~ a(n) (8) 

for all n > 0, v > 0. Finally, the coefficients a(n) of a normalized eigenfunction 
satisfy 

a(n)= zp(n) a(n) if p,~n (9) 

(i.e. the n-th coefficient is real if ( ~ ) =  1 and pure imaginary if ( ~ ) = - 1 ) a n d  

la(p)l 2 = p  (10) 

([27], p. 785). Therefore, if f (z )=~a(n)q"  is a normalized eigenfunction, 
f ( - 2 )  = ~ a(n) q" the normalized eigenfunction with eigenvalues a(n), the function 

f+(z )= �89  Re(a(n)) q" 

is a modular form having the property that its n-th Fourier coefficient vanishes 

for all n with (p)= - l. Denote the space of all modular forms with this property 

by M~ (F o (p), Xp) and its intersection with the space of cusp forms by S~ (F 0 (p), ;tp). 
Then the map f w-~f+ extends by linearity to a projection map 

~+ : s2(ro(p),  zp)-, s~(ro(p) ,  zp), 

and similarly the map 

f(z) ~--~f_(z)=�89 i Y, Im (a(n)) q" 

extends to a projection rt_ from S2(Fo(p), Zp) to the space S;(Fo(p), Zp) of cusp 

forms whose n-th Fourier coefficient is 0 whenever (p)  = 1. Clearly it+ + re_ = id. 

The spaces S~(Fo(p) , Zp) and S2(Fo(p), Zp) are disjoint, since a modular form in 
their intersection would have the form ~ c, qP" and hence vanish by virtue of 
a lemma of Hecke (cf. Ogg [31], Lemma 6, p. 32). Therefore Sz(Fo(p), Xp) is the 
direct sum of S~(Fo(p), Zp) and S 2 (Fo(p), Xp), both summands having the same 
dimension. From (5) we see that EI+E2eM2~.(Fo(p), ~(~), so the same statements 
apply to the whole space Mz(Fo(p), Xp), with it• extended to this space by 

5: (El) = "+" ~ • (E2) = �89 (El +- E2). 
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In particular, 

dim M~ (F o (p), Zp) = dim S~- (F o (p), Zp) + 1. (11) 

We can now prove Theorem 1. For the first assertion it suffices to consider 
K = T~t (MEN). By (2) and (4) we have 

~T~,(Z)=�88 - 1)--~t~4 ~ Z (Zp(d)+ zp(N/d)) dq N. 
N= 1 din 

By the functional equation of ~K(S) and the decomposition ~K(S)=~(s)L(s, Zp) 
we have 

p3/2 p3/1 
I ~ K ( -  1)= 1 - ~ ,  ~K(2)= 9~-~2 L(2, Zp), 

and comparing with (5) we find that 

~r~ = - z~ (E, + E2). (12) 

For M > 0, we claim that 

t/ir~ = 7z+ (tp. I T(M)), 

where 

q~p (z) = ~. (Hp (N) + lp (N)) qN e M~- (F o (p), Zp) 
N = 0  

is the modular form constructed in Chapter 2. If 

(13) 

(7)--1 
(14) 

then the Hecke 

operator T(M) maps M~(Fo(p), Zp) to itself, so (13) reduces to q~r~ =~op[ T(M), 
which is an immediate consequence of (2), (3), (14), (6) and the definition of ~K. If 

(~-~) = -  1, then T(M)interchanges M f  (Fo(p), Zp)and M2 (F0 (p), Xp), so the right- 

hand side of (13) is zero, in accordance with the fact that the curve T M is empty 
in this case. Finally, if plM then (13) follows from (2), (3), (14) and the following 
lemma. 

Lemma 1. Let 
o0 

g(z)= ~c(n)q"eM;(Fo(p),zp), m > 0 .  
n = 0  

Then 

n+(g(z)[ T(m))= ~ c+(m, n) q", 
n = 0  

where c+(m, n) is determined by c+(m, n)=c+(n, m) and 

c+(m,n)=�89 ~ (Zp(d)+ z,(n/d))dc(nm/d z) (vp(n)<__vp(m)). 
dl(m, n) 

Proof It suffices to treat the two cases g(z)=�89 g(z)=f+(z) ( f  a 
normalized Hecke eigenfunction), since these functions generate Mf(Fo(p), Zp). 
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For g = f + ,  f=~,a(n)  q", we have 

+ (g (z) l T(m)) = re+ (�89 ( f  (z) + f ( -  2))[ T(m)) 

= r~+(�89 f(z)+�89 f ( - 2 ) )  

= �88 (a (m) + a (m)) ( f  (z) + f ( - 2)), 

so we must show that 

(a(m)+a(m))(a(n)+a(n))= ~ (xp(d)+zp(n/d))d a +a (15) 
al(m, n) 

if vp(n)<Vp(m). Write n=p'no, m=pVrno with p,fn o. Then 

xp(n/d) da(mn/d2) = ~ xp(no/do)" dop ~. a(mono/d 2) 
dl(m, n) dol(mo, no) 

=p~ xp(no) ~ xp(do)doa(mono/d2o) 
dol(mo, no) 

= p~ )~p(no) a(mo) a(no) (by (7)) 

= a(p) ~ a(p) ~ a(mo) a(no) (by (9), (10)) 

= a(m) a(n) (by (8)). 

Adding this equation to (7) and adding the equation obtained to its complex 
conjugate, we obtain (15). The proof of Lemma I in the case of Eisenstein series 
is similar and will be left to the reader. 

We have thus proved the first statement of Theorem 1. The second is easy: 
Equation (12) shows that ~r~ is an Eisenstein series, and ~g for a cycle K with 
T~K=O is a cusp form because, by (11), any form in m~(Fo(p) , ~p) with zero 
constant term is a cusp form. Finally, the injectivity of K ~ q~tc follows from 
the Hodge index theorem, which says that for any compact algebraic surface Y 
the restriction of the intersection form to the subspace of H2(Y ) generated by 
algebraic cycles has signature (1, n - 1 )  for some n (i.e. it is non-degenerate and 
a diagonalized version of the intersection matrix has one positive entry and 
otherwise only negative entries on the diagonal). Applying this to X, we see 
that, since (T~)2 > 0 by (4), the intersection form restricted to the space of algebraic 
cycles orthogonal to T~ is negative definite. The classes T~ are all algebraic. 
If K is in the space they generate and T~ K = 0 for all N >__ 0, then in particular 
T~K=O and KK=O, so K = 0 .  This completes the proof of Theorem 1. 

Theorem 1 was stated as a conjecture in [5]. In view of our new information 
we can improve some of the discussion given in [5]. Let us write H for H 2 (X ; ~), 
F for the subspace of H generated by the Poincar6 duals of the homology 
classes T~ (N=0,  1, 2 . . . .  ), M for the space M+(Fo(p), Xp) (the letters are meant 
to suggest "homology",  "curves F N" and "modular forms", respectively). The 
content of Theorem 1 is the existence of an injective map 

�9 : F ~ M ,  K~--~'.T~vKq N. 

In the proof of the injectivity we showed that a class K ~ F  which is orthogonal 
to all of the T~ is zero, i.e. the space F is disjoint from its orthogonal complement 
F • in H. Hence H - - F  @ F • It follows immediately that ~ ( z ) = ~  ~[T~] e 2~INz 
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belongs to M for any cohomology class ctEH, i.e. the map �9 extends to 
a map ~: H ~ M .  This map is injective on F and zero on F • so we have 
dim(Im ~)= dim F. We now give a conjectural description of the subspace F of H 
in purely homological terms: we will define a certain subspace U of H which 
contains all the T~ and conjecture that this "upper bound" U for F in fact 
coincides with F. 

The Poincar6 duals of the classes T; have the following properties: 
(i) They are of type (1, 1) in the Hodge decomposition of HE(X; (]~); 

(ii) They are invariant under the involution z of .~ induced by the involution 
(Z 1 , Z2)~'-~(Z2, Z 1) of~2;  

(iii) They are orthogonal to the curves Sj of the resolution of the cusp, i.e. 
they lie in Im(Hf(X;  C ) ~ H 2 ( X ;  r 

(iv) They are in the kernel of t,  - t , ,  for all ideals n c(_9, where t,  is the Hecke 
correspondence on X. 

We take for U the space of all cohomology classes satisfying (i)-(iv). Since 
H*(X/z)_~H*(X) ~, one can identify the (bigger) space of all cohomology classes 
satisfying (i)-(iii) with the subspace 

~1,1 = Im (H~ 2 (X/z; IE) -~ H2(V; C)) c3 H L I(V) 
of H2(V), where V is the minimal resolution of X/z ( R = X u  {cusps}). Thus U 
can be considered as a subspace of 61' 1. The notations U, V, ~ '  ~ are the same 
as in [5], where it was deduced from the formulas for the arithmetic genera 
of X and V that 

d i m U - - [ ~ ]  + 1. 

On the other hand, Hecke [28] has shown that the dimension of M = M~-(F o (p), Xp) 

is also given by I ~ - / + 1 .  (as mentioned in the Introduction, it was this 

coincidence of dimensions which formed the original motivation for the present 
investigation.) Summarizing, we have F c U c H  and a map ~: I t - ~ M  with 
dim (Im ~) = dim F and dim U = dim n .  The only reasonable way to explain this 
is to assume the truth of the following conjecture: 

Conjecture 1. We have F = U  and the map ~: U--* M is an isomorphism. 

By Theorem 1, it would suffice to show that ~: F ~ M  is surjective, and by 
(13) this can be expressed purely in terms of modular forms, with no reference 
to the Hilbert modular surface: 

Conjecture 1'. The modular forms rc+(~0p[ T(M)) span M~(Fo(p), Zp). 

3.2. The Relationship to the Doi-Naganuma Mapping 

Let ~=$2(SL2((~)) be the space of cusp forms for the Hilbert modular group. 
To each such cusp form F(zl, z2) we associate the differential form 

~(F(e'o zt, eo Z2) dZl Adz  2 + F(e o Z2, ~ Z1) dz2 A dzl) (16) 
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on X ' =  X -  {quotient singularities}, where eo > 0 > e~ is a fundamental unit for K. 
This form is cohomologous to a form with compact support and thus leads to 
a cohomology class on X satisfying the properties (i), (ii), (iii) listed above. This 
gives an injective map j: ~ ~ ~ '  ~, and in fact ~L 1 is the direct sum of j (~)  and 
the one-dimensional space generated by the Poincar6 dual of T~. Since this 
latter class comes from the differential form 

1 .(y7 2 dz 1 ̂  d-~l + Y2 2 dz 2 A dz2) 
16~zz 

whose exterior product with the form (16) vanishes identically, we see that j (~)  
is orthogonal to T~ and hence by Theorem 1 the image ofj(~)  under ~ is contained 
in the space of cusp forms. In this way the map q~ constructed in 3.1 leads to a map 

q~ oj: 6 =  SE(SLz((9))~ Sf (Fo(p), Zp) 

involving only cusp forms, and it is natural to ask for a description of this map 
purely in terms of the theory of modular forms. 

A non-degenerate scalar product (Petersson product) is defined on 
s2(Fo(p), zp) by 

( f ,g)=  S f ( z ) g ( z ) d x d y  ( z = x + i y ) ,  
~/Fo (p) 

and similarly on ~ by 

(F,G)= ~ F(Zl,ZE)G(zl ,z2)dXldyldxEdy 2. 
~21SL2((~) 

The Petersson product on 6 corresponds under j roughly to the cup product 
pairing in chomology; more precisely, for F, G ~ ,  

(j(F) wj(G)) [.~] = - 2(F, G), (17) 

where (~ is the cusp form defined by G(zl, Z2)---~ G ( - ~ ' 2 ,  -Zl)"  
In [37], Doi and Naganuma defined a method of "lifting" cusp forms in 

one variable (for SL2(Z)) to Hilbert cusp forms for SL2((9), and later Naganuma 
[-38] carried over the construction to the case of forms of Nebentypus, constructing 
for each even k > 2  a map 

z: Sk(Fo(p) , Zp) ~ Sk(SL2((9)) 

(in fact, Naganuma assumes that k > 2  and that the class number of K is 1, but 
these restrictions can be lifted). This map sends Hecke eigenfunctions to Hecke 
eigenfunctions, it factors through the projection ~ + : S k (F o (p), ~p)~ S~ (F o (p), Xp), 
and its image lies in the subspace ~ Ker (T(n) -T( f f ) )  of 6 ,  where n runs 

11 
through the ideals of (9 and the T(n) are Hecke operators in ~ (this subspace 
is just j - I U ,  with U as in 3.1). The purpose of this section is to motivate the 
following conjecture. 

Conjecture2. The map ~ o j  form 82(8L2((9) )  to s2(r 'o(p) ,Zp) is, up to a factor, 
the adjoint of z with respect to the Petersson product. 
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Notice that this conjecture would imply Conjecture 1, since ~ is known to 
be injective on S~ (Fo(P ), Zv). 

In [40] a series of cusp forms o~ k), co(~ ~ .. . .  ~Sk(SLz(e))) was constructed for 
any even k > 2, and it was shown that the function 

O(Zl, Z2; Z)= ~ Nk-log~)(Zl,zz)e 2~iNz (zl,Zz,ZE~) 
N = I  

considered as a function of z, belongs to Sk(Fo(p ), Zp) and that this function of 
three variables is the "kernel"  of the Doi-Naganuma mapping in the sense that 

1 
l ( f )(zl ,z2)=~- ~ f2(Zl,Zz; - z )  f(z)Yk-Z dxdy 

~'k ~/Fo(p) 

(with C k = 8 zc (2 i)-k/(k -- 1)) for all f ~  Sk (Fo (P), Zp). The definition of ~'s ~ (k) if k > 2 is 

W~) (Zl, Zz)= P k/2 Z (a ]/~ Zl ZE + )~ Zz -- )L' zl + b ]//P) -k, 
a,b ,~  

where the summation runs over all a, bET~, 2~(9 satisfying 2 2 ' + a b p = - N  (for 
k=2 this series diverges and the definition is more complicated); the similarity 
with the definition of the curve T N springs at once to the eye. Now the fact that z 
is given by the Petersson product in z with C~-1f2(-2~, -22;  z) is equivalent 
to the statement that the adjoint map t* is given by the Petersson product in 
(z~, z2) with the complex conjugate of the same function, i.e. that 

z*(F)(z)= C; 1 ~ NR-I(F, ~ ) )  e 2'~iNz 
N = I  

for any F6Sk(SL2((9)). For k = 2  this says (using (17) and the fact that ~N'r~(2) _ . . . .  ~N(2)~J 

1 
z*(F) (z) = - 7-- ~ N(J(c~ )) wj(F)) IX] e z'~'~r 

~ N ~ I  

whereas by definition 

oj(F)(z)= ~ j(F) [T~] e 2~iu~. 
N = I  

Therefore Conjecture 2 is equivalent to 

Conjecture2'. The images under j of the Hilbert cusp forms N~o~)(zl,z2) 
(N= 1, 2 . . . .  ) are, up to a constant factor, the Poincar~ duals of the homology 
classes T~. 

In particular, this would imply that 

Hp(N)+Ip(N)=(const.).U. ~ o9~)(%z,e'o2)dxdy, 
~]SL2(Z) 

since the expression on the left equals T~ T~ and the integral on the right equals 
x.2j~.s~(E)~[T1] " j  The justification for making Conjectures2 and 2' is that the 
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corresponding equation for the forms of higher weight is true: if k>2,  then 

Ck(N)=(const.)" Nk- i .  ~ tn N(k)(s ~ z, s o' -~) yk-2 dx dy, (18) 
~/SL2 (Z) 

where Ck(N ) is the arithmetical function defined in 2.1, with c 2 (N)= Hp (N)+ Ip(N). 
This will be proved in [36]. Unfortunately, the proof breaks down for k = 2  
because some of the sums and integrals involved no longer converge absolutely. 
Note that (18) together with the fact that O(zl,z2; z) is a modular form in z 
immediately imply the result that (Pp, k(Z)=ZCk(N)e 2~iNz is a modular form, 
so a proof of (18) in the case k = 2  would give another proof of the main result 
of Chapter 2. 

We mention one other result for higher weights, also to be proved in [36], 
which if true for k = 2 would imply Conjecture l', namely the following charac- 
terization of the function ~Op, k in terms of the Petersson product: 

Let k>2.  Then for f ( z ) = ~  a(n)e2ninz~s+(-Fo(p), ~p), the Petersson product 
of (pp, k and f is given by 

(f, q~p, k)= (const.) �9 
~(n) a (n  2) 

nk n=l  

where r 1 or 2 according as p,(n or pin. 
It is not hard to deduce from this result that the functions rt+(q)p, kl T(M)) 

(M = l, 2, .. .) generate M+(ffo(p),Zp); t h u s  the analogue of Conjecture l' for 
higher weights is true. 
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