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Modular Forms Associated to Real Quadratic Fields

Don Zagier (Bonn)

The purpose of this paper is to construct modular forms, both for SL,Z
(and certain of its congruence subgroups) and for the Hilbert modular group of
a real quadratic field.

In §1 we fix a real quadratic field K and even integer k>2 and construct a
series of functions w,(z,, z,) (m=0, 1,2, ...) which are modular forms of weight k
for the Hilbert modular group SL, 0 (0 =ring of integers in K). The form w, is a
multiple of the Hecke-Eisenstein series for K, while all of the other w,, are cusp
forms.

The Fourier expansion of w,, (z,, z,) is calculated in §2; each Fourier coefficient
is expressed as an infinite sum whose typical term is the product of a finite ex-
ponential sum (analogous to a Kloosterman sum) and a Bessel function of order
k—1.

The main result is that, for any points z; and z, in the upper half-plane §, the
numbers m*~'w,(z,,z,) (m=1,2,...) are the Fourier coefficients of a modular
form (in one variable) of weight k. More precisely, let D be the discriminant of K,
g¢=(D/ ) the character of K, and S(D, k, ¢) the space of cusp forms of weight k for
I3 (D) with character ¢; then for fixed z;, z,e §, the function

o«

Qzy, 225 0)= ), m oz, 2) ™ (1€9)

m=1

(considered as a function of t) belongs to S(D, k, ¢). What we in fact prove is an
identity expressing Q as a linear combination of Poincaré series for the group
I, (D) and character ¢. The necessary facts about such Poincaré series are collected
in §3; the proof that Q is a modular form is given in §4 (in these sections we assume
for simplicity that D=1 (mod 4)).

In [2] and [8], K. Doi and H. Naganuma prove the following: assume D is a
prime (= 1 (mod 4)) having class number one, and let f(1)=) 7, a,e*™ "€ S(D, k, &)
be a normalized eigenfunction of all Hecke operators T(n). Then

(2o (£

is the Mellin transform (in a suitable sense) of a function f of two variables which
satisfies

/-1 -1 .
7 (—4—, ~~) A Tz (o 22€9)

Zy Z3
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as well as the trivial invariance property

SEz v ez, +p4)=f(21,2,) (uan integer of K, ¢ a unit of K).

~1
In particular, if K is Euclidean, so that the matrices (f) 8_1H) and ( (1) (1))
e _

generate SL, O, then f is a Hilbert modular form; to be sure, this is the case only
for D=5, 13, 17, 29, 37, 41, 73 (cf. [3], Theorem 247). We show (in §5) that f(z,, z,)
is, up to a scalar factor, the Petersson product (with respect to the variable 1)
of f(z) with Q(z,, z,; 7). It follows that f(z,, z,) is always a cusp form for SL, 0.1
Thus f+f extends to a linear map from S(D, k, ¢) to the vector space of cusp
forms of weight k for SL, ¢0; the image of this map has dimension 4 dim S(D, k, &)
and is spanned by the forms w,,(z;, z,) (m=1, 2, ...).

In Appendix | we define the forms w,,(z,, z,) for the previously excluded case
k=2 and reprove all the results of the paper in this case; in particular, the restriction
k>2 can be lifted in the work of Doi-Naganuma. In Appendix 2 we investigate
briefly the modular forms

{
B a2t bztoF deN
/4@ a,b,z;ez (az’+bz+c) (ze 9, 4eN)
b2 —dac=4d

of weight 2k for the full modular group SL, Z ; these forms arise naturally when one
looks at the restriction of w,,(z;, z,) to the diagonal z; =z, in Hx H.

The main results of this paper (in the case when the discriminant D is a prime)
were announced in a Comptes Rendus note [12].

I would like to thank Professor Hirzebruch, who suggested studying the forms w,,, as well as Deligne
and Harder for several useful conversations.

This paper was written at the Institut des Hautes Etudes Scientifiques (Bures-sur-Yvette, France)
and Sonderforschungsbereich Theoretische Mathematik (Bonn, Germany) and forms part of the
author’s Habilitationsschrift (Bonn).
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§ 1. Definition and Properties of w,,

We will use the following notation:
K  a real quadratic number field;
D the discriminant of K;

! Lenstra has pointed out to the author that, by a recent theorem of Vaserstein, the matrices

01
((1) lll) and ( ) 0) always generate SL, 0, so that this does in fact follow from the work of Doi-

Naganuma.
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¢  thering of integers of K;

¢*  the group of units of ¢;

b thedifferent of K (i.e. the principal ideal (}/D));
x"  the conjugate over @ of an element xeK
N(x) the norm of x, N {(x)=xx;

Trr(x) the trace of x, Tr(x)=x+x’;

$  the upper half-plane {zeC|Imz>0};

k a fixed even integer >2.

For each integer m> 0, we define

, 1
W2y, 23)= - ;
ml21: 22) ,,Z‘be‘z‘ (azyzy+ Az + A z,+ b)

g
N{A)—ab=mD

(2172265)’ (1)

where the summation is over all triples (q, b, 1) satisfying the given conditions,
and the notation ) indicates that, for m=0, the triple (0,0, 0) is to be omitted.
One easily checks that, for z, z,e , the expression az; z,+1z, + 4z, +b never
—A'z,—b
az,+42

B ) is §O> and that the series con-

(3

vanishes (indeed, azyzy+Az +24' z,+b=0 implies z, = , and this is

impossible since the determinant of (*
a

verges absolutely. Therefore w,, is a holomorphic function in $ x 9. Its main
properties are summarized in the following theorem.

Theorem 1. (i) For each m20, w,(z;, z,) is a modular form of weight k with
respect to the Hilbert modular group SL, Q.

(1) wq is a multiple of the Hecke-Eisenstein series of weight k of the field K.

(1) w,, is a cusp form for m>0.

(iv) w,=01if —4m is not a quadratic residue of D.

Proof. (i) We recall that a Hilbert modular form of weight k for SL, @ is a holo-
morphic function F in § x § satisfying

F (ocz1 +B 'z + 8

) bt e ) Gned) Q)
1 2

B
é
(explained below) at the “cusps”. We verify only Eq. (2), since the conditions
on the behaviour of w,, at the cusps are contained in the statements (ii) and (iii)
of the theorem.

. fo e . . .
for any matrix ( )e SL,0 and also satisfying certain regularity conditions
Y

If (3 (/;)e SL, 0, then, for any a, beZ, led™ !,

“ (E.Z_I_tﬁ) (O‘ﬁé) 42 (”,Q:fi) Y (O{' %z.iﬂ,') +h
yz,+0 ) \¥'z,+6 vz 10 V2240

(yz1 +0)(y' z,+ )
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ith
W a*=aad +Aay + Aoy +byy,
M=aaf +Aad+A B y+byd,
b*=aff+AB0+A B S+b55.
Thus a*=aN («)+ Tr(4(xy"))+ bN (y) € Z since (by definition) the trace of the prod-

uct of an element of @ and an element of D! is an integer; similarly, b*e Z and
A*e ™ 1. Furthermore N (A*)—a*b* =N (4)—ab. Therefore

® (oczl+[i a'22+ﬁ’>
"\yzi 467 vz 40
=z, +0) (V' 22+ Y (a*zyz,+ A%z + A%z, +b¥)7H
Nu)‘ffi,};m/n

=2+ 8V 23+ 8V 0n(zy, 25),

the latter equality because (a*, b*, A*) runs over the same set of triples as does
(a, b, 1) and because the sum converges absolutely.

Remark 1. From the general congruence x'=x (mod d) (xe ) and the equation
a6 — By=1, one deduces that in the above formula

A¥*=J  (mod 0).

Thus, for each ved~* such that N(v)=m/D (mod 1) we could define a Hilbert
modular form w,(z,, z,; v) by restricting the summation in (1) to those 4 with
A=v (mod 0) (notice that, for Aed~!, N(4) (mod 1) depends only on A (mod 0)).
The function w,(z,, z,) would then be the sum of the (finitely many) functions
®,(zy, z,; v) with v running over the residue classes of b~ (mod () for which
N(v)=m/D (mod 1).

Remark 2. A more invariant way of writing w,, and seeing that it is a Hilbert

b)e GL,R, let

modular form is as follows. For any matrix M = (i d

1 d 1
a1, 22)= detM dz, (ZZ—M—ZT)

: 3)
= (21, 2,€9)

" (czyz,—azy+dz,—b)?

(here Mz = (Cl? is
1

det M =0, while the first shows that ¢,,(z,, z,) has no poles in $ x § if det M <0.
One easily checks that, for 4, = (OCl 51), A4,= (al f 2)6 GL,R,

); the second formula serves to define ¢, (z,z,) even if

Y1 0 Y2 03
dulAy 2y, Ay 25) =01 2y + 6, (7,25 +0,) Dasma, (215 23), “)
where A% = ( ‘;2 -k 2) =(det A,) A5 is the adjoint of 4,. Let
Y2 %

o ={Me M, (O)| M*=M"} )
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be the set of matrices whose adjoints equal their conjugates over QQ; a typical matrix

D
of f has the form M:(#ale/z‘) bg, )witha,bez,oe@. Write 0= — 11/D with

Aed™1; then ¢y (zy,2,)=D"*(az,z, + Az, + Az, + b)~2. Hence
Wz, Zz):Dk/z ZI Pu (2, Zz)k'/z’ (6)
Mesd
detM=-m

where the prime on the sigma indicates that, for m=0, the zero matrix is to be
omitted from the summation. That w,, satisfies (2) now follows immediately from
Eq. (4).

(i) We recall the definition of the Hecke-Eisenstein series. Let (temporarily)
K be a totally real number field of arbitrary degree n over @, @ its ring of integers,
O* the group of units of @, C an ideal class. Set

1
Fo(zy5 ) 2 C)=2N (a)

D e (00 Ty 2
(1, vyeta x a= 110, oo (U Zp VY (U z, + v

(7)

where z,, ..., z, are in $ and a is any ideal in C; here u'”, v'? are the conjugates
of u, v and the summation is over non-associated non-zero pairs of numbers in a.
(The factor 2 is inserted so that for K =@ F, agrees with the usual Eisenstein series
Y m. mez x 2~ 100, oy (M Z +n)~* where one does not divide by the action of 0* = {£1})
Clearly, replacing a by (2) a (xe K*) does not change the right-hand side of (7), so
that the expression really does depend only on the ideal class C. The Hecke-
Eisenstein series of the field K is then defined as the (finite) sum

Fk(Zl’ ""Zn):ZEc(ZI’~-~aZn; C)
C

We wish to prove (in the case that K is a quadratic field) the formula

k
(00(21»22):‘5(“(1%)5((21’22)- ®)
K

Here {(s) is the Riemann zeta-function, {.(s) the Dedekind zeta-function of K.

First of all, one of the summation conditions in the definition of g 18 2 1’ —ab=0.
This implies Ae @ (since N(4), Tr(A)eZ). It is also homogeneous in (a, b, 1), ie.
if the triple (g, b, 1) appears in the sum, then so does (ra, rb,r 1) for each positive

integer r. Hence
o

wo (2, 22) = w§ (21, 22) ) r™*={ (k) w§(z,, 2,),
r=1
with
w§(zy, 25)= > (azyz,+ Az + 4z, +b)7 " 9)
(a, b,;.%'p_rimbitive

{(where “primitive” means that (a, b, ))eZ x Z x @ is not divisible by any integer
>1).
Similarly, define

1
*(z,,z,: C)=2N(a)* ¥* — 10
F} (24,245 C) {a) s (Hzl+v)k(urzz+vr)k (10)
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where the summation is over non-associated pairs of numbers y, ve K whose
greatest common divisor, d(y, v), is the ideal a (again, this depends only on C,
not on a). Then

1
F.(z,,z,; C)=2N(a)* * ; ;
m : ide};—;‘sb (5(;1,;):0[) (‘u21+ v)k(.u 22+v)k

(since for any (g, v) in the summation of (7), 8(u, v) is divisible by a)

L F¥(2y, 251 [ab]),

—IN@}Y ———F,
IN@" L SN aor

(where [ab] is the ideal class containing ab)
:Z N (b)* F¥(z;,25; C- [b]).
b

Hence
F(z,, 22)22 F(z1,25; C)
c

:}b: ; F¥(zy, 255 C-[b)) N(b)~*

(the reversal being permitted since ) is finite)
c

:Z N(b)—k Z F¥(zy,25; C)
b [
(since, for each b, C[b] runs over all ideal classes as C does)
= {glk) Z FE(zy, 255 €).
5

Hence to prove Eq. (8) we must show that

(2, 2,) =), F¥ (21,255 €). (11
C
For each ideal class C, let
wE(zy, 755 C)= > (azyz,+ Az, + Az, +b)7F (12)

(a, b, A) primitive
Ald'=ab

dla, A)eC

Clearly w§(z;, z,)=Y w§(zy, z,; C), so that (11) will follow if we show that, for
C

each C,
w§(z,, 255 OY)=Ff(z,,2;; C). (13)

Fix the class C and an ideal ae C, and let
S={(a, b, YeZ xZ x O}(a, b, A) primitive, 14" =ab, §(a, 1)eC},
T={(u, velax a—{(0. 0})/0*|6(x, =]

(recall that 6(,) denotes g.c.d.). We define a map

m: S—>T
as follows. Given (g, b, )€ S, one can write the quotient a/A'=A/b as x/y for

some x,yea. Then the ideals 6(x, y) and d(a, 1') belong to the same class, ie.
3(x, y)eC. Also d(x,y) is divisible by a, and aeC. Therefore d(x, y)=(c)a for
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some principal ideal (¢), and it follows that x and y are divisible by ¢ and that
u=Xx/o, v=y/o are in a and have greatest common divisor a. On the other hand,
it is clear that the two conditions u/v=A/b and é{y, v)=a determine the pair (u, v)
up to possible multiplication by a unit. We set m(a, b, 1)=(u, v).

The map m is onto, for given u, v we choose an integer b,e Z, b, +0 such that

A =b, % is in O; then a; = N(1,)/b, is in Q. Multiplying ay, b, 4, by the denom-

inator of a,, we obtain (a,, b,, A,)€Z xZ x O with a,/i,=2,/b,=p/v. Dividing
(a,, by, A,) by the largest rational integer r for which (a, b, A)={(a,/r, b,/r, A,/r)
satisfies the same conditions, we obtain a primitive triple (q, b, )eS whose
image under m is clearly (g, v).

Finally, the mapping m is two-to-one: m{a,, b, 4,)=mla,, b,, 1,) if and only
if (a,,by,A)=*(ay,b,,4,). Indeed, m(a,, b, A )=m(a,, b,, A,) implies A /b, =

. . b

A,/b,. Let by be the greatest common divisor of b, and b, and write ,{O:fbi Ags
1

ao=2¢As/by. Then Aye @ and ay,eZ, for we can choose r, seZ such that by=

b
rby+sh,,andthen Ag=rd,+s4,, ag=ra,+sa,. Then{ay, by, 1) :"i)l— {ag» by, 4o),

0
so (since (ay, by, 4,) is primitive) b, /by = + 1. Similarly b,/b,= 11 and so (a5, b5, 1,)
= *(ay, bxa /11)-

If m(a, b, 1)={(u, v}, then
aziz,+ Az + Az + b=+ N(@) Hpuz  + )z, +v). (14)
Indeed, from u/v=a/A’ = 1/b we deduce that
(uzy +V)(w'z,+Vv)=nlaz,z,+ iz, + Az, +b)

for some ne@, n+0, and the primitivity of (a, b, A) implies that n is an integer,
and in fact that |n| is the largest integer dividing d(up’, uv', vv'). But the greatest
common divisor (in the sense of ideals) of ug/, uv, ¢'v, and vv' is

Slupts 'y v, vv) =) S, V) (¥) S (1, )
=6, v) 31, V) =aa'=(N (@),
so n=+ N (a). It follows immediately from (14) and the fact that m is two-to-one

and surjective that

w¥(z1,25; C)= Y, (azyz,+Azy+ Az, +b)*
{a, b, L)eS
=2 ) N(@fuz +v) Wz +v)*
(u, veT

=F}z, z,5; C).

(1)) This property will be proved in §2; here we only recall what it means
for w, to be a cusp form for SL,®. A function F holomorphic on $x & and
satisfying (2), satisfies in particular

F(z;+0,z,+0Y=F(z,,z;) (0e0),
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and therefore has a Fourier development of the form

F(Zl’zz)___ Z a, eZni{vz‘+v'zz).
veb~!
The regularity condition which a modular form F(z,,z,) must satisfy is that
a,=0 if v<0 or v <0, i.e. that F has a Fourier development

F(z;,2)=ap+ Y, a,e*"it=+>= (15)

vep~!
v>0

{(v>0 means v totally positive, i.e. v>>0 and v' >0).
If F is a cusp form, then also a,=0; an equivalent condition is that

F(thz):O(e—CViTyE) as yy,—0  (yy=Imz,y,=Imz,)

because, for ve d7! totally positive, vv’ylyzgl%—v—z— SO vy, +V'y, 22

Yi¥2
D K
|62ni(vz1 +v’z;)l <e~4nViy2iD)
If the class number of K is 1, then this is the only condition that F must satisfy.

. b .
In general, we require that, for each W= (a d) € SL, K, the function
¢

z.+b o b’
(F]W)(zl,zz):(czl+d)"‘(c’zz+d’)""F(a1+ 4zt )

czy+d’ dzy+d

satisfy a similar condition as y, y, —o0. By (2), F| W satisfies

(FIW)(z,+0,2,+0)=(F|W)(z,, 2,) (16)
Loy 16y . (l—ach a0 .
whenever W (O 1)W eSL,0. But W (0 1) Ww-i= ( —e20 1+ac())’ so this

condition is equivalent to the three conditions
fa*c®, Oacel, 0’0,

i.e. the fractional ideal (0~') divides (a=2), (a='c¢™*) and (c~?). Hence (16) holds
whenever (07')[6(a~%,a ¢!, ¢™?), where (as in the proof of ii)) 5(xy, ..., x,)
denotes the greatest common divisor of the fractional ideals (x,), ..., (x,). But
dla%a ¢ e =8, ¢ 1), so the condition is that fed(a=t, ¢ 1)~ 2
Denote §(a~*, ¢~ ')~? by M. Then we have shown that (16) holds whenever §eM,
and it follows that Fi{W has a Fourier expansion of the form

(FIW)(zy,29)= ) a, ™5+, (17)
ve M*
where M*={ve K| Tr(vf)eZ for all‘0eM} is the complementary module of M
(here M*=p"'6(a"*,c™!)?). The condition that F be a modular form is that,
for each WeSL, K, the coefficients q, in (17) with v<0 or v'<0 vanish; if also
ao=0 in (17), i.e. if F|W has an expansion
(FIW)(zy,20)= ), a, 205+ (18)

ve M*
v>0
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for each WeSL, K, then F is a cusp form. There are in fact only finitely many
. . b
such conditions, since, as one easily checks, the condition on W= (Z d) that F{W
have a development of the form (18) depends only on the ideal class of the ideal
d{a, ¢).
Now take F=w,,, and expand
021, 23)= Y Cppy, @™ HFYE), (19)

ved !

We will calculate the Fourier coefficients ¢, in § 2, and will see then that c,,,=0
if v<0 or v'<0 and also that ¢, ,=0 for m>0, i.e. that ,, for m>0 does have a

. . . . i
Fourier expansion in which only totally positive v occur. If W= (oc />e SL, K,
. v 0
then, by the same argument used to prove i),

(O W zy, 23) =DM (320 +8) My 2, + 8V Y dp(Wzy, Wzy)

Meof
detM=-—-m
k/2 K/
=D Z Gwamw (21, 22)°7
Med
detM=—-m
=DN? Z Drlzy, Zz)krzv
Mego,
detM=—-m
where
A=W od W
=W -loaw

= (MeW ~1,(0) W|M = M*}.

. . 6 byD\ .
A typical matrix Me/, has the form M:( VD 0 ) with 0ekK, a,beQ,
and, writing 0=1}/D, we obtain —a

(w,, | W)(zy, 2,)= Y azyzy+iz+ Az +b)E 20)
(a. b, A)el
AL —ab=miD

where L@ x Q x K is the lattice (i.e. free Z-module of rank 4) of triples (a. b, 1)
. ( +YD bYD
for which W ( )
ay/D —7'/D
Fourier expansion of w,,| W, but in view of the similarity between Eqgs. (20) and (1)
it will be clear that the method used in § 2 to find the Fourier development of w,,
applies equally to prove that w,,| W has a Fourier series of the type (18).

e M, 0. We will not in fact calculate the

(iv) This property is clear, since the summation in (1) is empty unless

x+yyD .

—4m=x?(mod D) for some x (write A= i ) and multiply by 4D)

§ 2. The Fourier Coefficients of o,

We wish to evaluate the Fourier coefficients c,, (m=0, ved™!) defined by
Eq. (19). We first break up the sum (1) into subsums corresponding to various
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values of a:
W2y, 23)= Z (24, 2;)

aelZ

=, (21’ z3)+2 Z Wnlzy5 22),

where
oz, 20)= Y (azyz;+ Az + Az, +b) (21
Aep—1
Ar —ab=m/D

The individual pieces wj, are no longer modular forms of weight k, but they do
satisfy the periodicity property wi(z; +6,z,+0)=wl(z;, z,) (0 ©), and hence
each wj, has a Fourier expansion

(21, 22)= ), oo €ORTYE, (22)
ved

The Fourier coefficients of ¢, are then given by
Cmv:Cg.v-f_zchnv‘ (23)
a=1

We wish to compute the ¢%, and, in particular, to see that ¢?,=0 unless v>0
or v=m=0.

The computation of ¢, is different according as ¢=0 or a>0.

Casel. a=0.

The condition 1A' —ab=m/D now becomes just A2’ =m/D, so »2(z,,z,)=0

if —m is not the norm of an element of @. The summation on beZ is unrestricted.
Thus (for m=0)

0z, 2)= Y Y Az + Az +b)7F

Aed-! bez
AL =m/D (24)
= Y Riz+XVz,),
Aed—!
A2 =m/D
where
ad 1
t —— 25
hk() ZOO (b+l)k ( )
2
The functions h, can be expressed in trigonometric terms: h, (t):?n2 ; and
-1 d T
hk(t):_ktl— —d—t- hk—l (t) for kZ 3. Now
ntesc?mi=—4n2Y re?™  for te$,
r=1
and by successive differentiation we obtain
2 k o
RO~ DT e (). 6)

(k=112
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For convenience, we abbreviate
Q2rif
Cp= - —.
k-1

In Eq. (24), it follows from A3'=m/D>0 that 130 or — A 0. Since h, is an even
function (because k is even), we can write

27

(21, 22)=2 ) Wiz +2z))

Aed !
AP0
AA'=mD
or, using (26), o
0)2(21’22):20" Z Zrk—leZmr(A:1+A :z)'
Aed 1 r=1
A>0
Ai'=m'D

Thus we have proved:

Proposition 1. For m>0, ved ™", the Fourier coefficient ¢, defined by (22} is zero
unless v>0 and v=ri with relN, Aed™', LA’ =m/D, in which case

Q=20 (28)

J——

. . . . . / D
(Notlce that v can be written as rZ in at most one way, since necessarily r:l/ vy -

m
and A= v/r.)

The excluded case m =0 is even simpler, since from AL —ab=m/D, a=0, m=0
we deduce A=0, and hence

03(zy,25)=Y b *=2{(k
beZ

Thus we can complete the above proposition by

20(ky if v=0,
0 _ 29
cov J{o if v=0. 29)
Case 2. a>0.
We have
(Um(ZI’ZZ Z ¢M Zl’ ’ (30)

MeS

where ¢, is defined by (3) and § is the set of matrices
S (— A= b)
B a A

For M= (-/1 _ﬁ)eS and fe0, define MyeS by
a

1ed b —ab="04
Aed €Z, AN —a D

1 o' 16 —l—al —b~()/1—9’}t’—a00’)
M"‘(o 1) M(o 1)‘( a X +al '
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— —b )
Conversely, if M, =( A AX>ES with A; =4 (moda0), say 4, =4i+a¥’, then
a

1

b,=(4;A\;—m/D)Ja=b+61+6 ) +ab8 and M, =M,. Therefore we can break
up the sum (30) according to the values of 1 (mod al):

W (21, 25)= Z Z ¢M(A)9 2y, 2,) M2, (31)

A€R 80

where R is a set of representatives for the set of Aed~! (mod a ) for which

N(1}/D)= —m (mod aD) (32)
and, for each AeR,
—i —b "—m/D
M ()= ( 4 ) p= A —mD (33)
a A a

By virtue of (4), we have ¢y, (z,, z,)= Py (2 + 6, z, +0'), so each inner sum in (31)
has a Fourier development. Since R is finite, the determination of the Fourier
coefficients of w, will be known as soon as we know those of the sums
Y0 Pataye(Z1» 22)% They are given by the following lemma, which will be proved
at the end of the section.

Lemma 1. Let M = (“ B)eimle,ozé—,Byz—Agﬁ Then
y

B
Y Gz +0, 2, OF 2= Y (v, M) 2RO (34)
e veb !
v>0
with
ck(V,M)
1 @k (zxr(v))"—;—1 25 (5w <4n ) .
e Joi [~ YN 4 A4>0,
/D k=11 \ 4 e\ VNOA) (5)
] QuF \2 et o o
/D ((k—l)!) NO) i 4=0.
Here © {1y 2rik—1
Js (= 3 SV (36)
o rir+k-D!

is the Bessel function of order k—1.
Remark. The second formula in (35) is the limiting case of the first, since
21—k
(k=1

Substituting (35) into Eq. (31), we obtain for the v Fourier coefficient the
formula:

lim (/. (x)/x* )=
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Proposition 2. For m>0, ved™', a>0, the Fourier coefficient 2, defined by
(22) is zero unless v 0 and is then given by
k4 k-1
@n)+t D? N(v)) 2 4 /mN @)
a — G J i) PR S
e dm s () e

where J,_, is the Bessel function of order k—1 and G ,(m, v) the finite exponential sum

G,,(m, V): z e2niTr(vl)/a. (38)
Aed~1/a0
AA’=m/D (mod aZ)

For m=0, we have Qm* D12

OTRInE &

Putting the results of Propositions 1 and 2 into Eq. (23), we obtain the following
theorem, which is the main result of this section.

N1 G0, v). (39)

Theorem 2. For m>0, the Fourier coefficient c,, of w,(z,z,} defined by
Eq. (19) is given by

cmv:_2_£2n)k {(—1)"'2 Z pe—1

(k_l)' relN
N(v lr/ll;/l/)li —m (40)
L NV 2l 4n [mN ()
+27‘[D2 (_;n_) 2 agli‘]k_l (—a“ - D _) G,,(m, V)
if v>0 and is zero otherwise. If m=0, then
2k+1 2k “ G.(0,
cOv:—z‘ _____ ___N(v)k—x Z_ a(k V)
(k=D yD = @

if v>0,
/ Coo=2{(k),

and c,,,=0 unless v is zero or totally positive.

Notice the resemblance between Theorem 2 and the Hardy-Ramanujan-
Rademacher partition formula, in which also the Fourier coefficients of a modular
form are expressed by infinite series whose terms are products of a finite exponential
sum and a Bessel function.

Before giving the proof of Lemma 1, we will look more carefully at the case
m=0, where the Fourier coefficients are given by (41). We write y for the Dirichlet
character associated to the field K, i.e. y(n)=(D/n).

Proposition 3. For fixed ved ™" the sum G,(0, v) defined by Eq. (38) with m=0
is a multiplicative function of a, i.e. G,(0,v)=]]; Ggs (0, v) if a=]|g;" is the prime
decomposition of a. For prime powers, G,(0, v) is given as follows:

() If x(@)=—1, so that (q)=q is a prime ideal in O, and if q* is the largest
power of q dividing the integral ideal (v) D, then

202 i p<at 1,
Gq,((),v)={q iy rs2e

; (43a)
0 if r=z2a+2.
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(i) If x(q)=0, so that (q)=q?, and q* is the largest power of q dividing (v} b, then

qg if rsa,

0 ifr>o. (43b)

G, 0,v)= {

(iii) If x(g)= +1, so that (q)=qq’, and q*,q"* are the largest powers of q, q'
dividing (v) b, then

r+1)q Hg-D+q " if r<min(, )
_ j(min(, H)+1)g"~(g—1) if min(a, f)<r<max(a, f)
Gor(0.7)= (a+B+1-rqg g—1)—q ' if max(a, B)<r<a+pf+1 (43¢c)
0 if r>a+f+1.

Proof. In (38), the equation AA'=0 (mod aZ) implies in particular N(1)eZ,
and, since Tr(4)eZ (by the definition of d-'), Ae . Thus
G,(0,v)= Y e (Tr(vA), (44)

Ae0Ola@
A2"=0 (mod a)
where we use the standard abbreviation e, (n)=e?™™“ That this is multiplicative
is almost obvious: if a=a,a, with (a;,a,)=1, choose integers x ,x, with
a;x, +a,x,=1. Then
G,(0,v)= Y e, (Tr(vAy) e, (Tr(va,))
A1{mod ay)
Az(mod a3)

A1 A1 =0 (mod ay)
A2A% =0 (mod az)

=G,(0,v)-G,,(0,v),
since there is a one-to-one correspondence between the pairs (4,,4,) in this
summation and the integers A of (44) given by A—(x, 4, x; ), (4,, 4,)—a, 4, +a, 4, .
Now let a=q" with y(q)= —1. Then 14'=0 (mod ¢") implies ¢"~"/2}| A; writing
A=q"" "2y we find
G,(0,v= Y epm{Trivy).

nedgtriz1e

If ¢"/?1|y, then each term of this sum is 1 and so G,(0, v)=|0/q"? O|=q¢*"'*;
if not, then the permutation pr-p+x of the summation set (where xe@ is such
that Tr(xv)=£=0 (mod g% gives G,(0, v)= e,z (Tr(xv)) G, (0, v), so G,(0, v)=0.

Cases (ii) and (iii) are similar, although the details in the case of decomposable
primes are more complicated.

Corollary 1. Let ved™!, a=(v)d. Then

0y 1 1
a=1 at L(S, X) bla N(b)S~1

x(n)
ns

for seC with Re(s)>1; here L(s, y)= ),
n=1

and the summation is over all integral ideals dividing a.

is the L-series of the character ¥

Proof. This just summarizes the contents of Proposition 3, for that proposition
implies that ) G,(0, v)a~* (Re(s) large) admits an Euler product whose factor
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corresponding to a prime g is
(1+g7) (1 +g20 94 g2 =) if (9)=q, q*[lq,
(I4+g" "+ 441 if (g)=a*, a*lq,
(=g +q "+ -+ (1+q 4+ ) if (9)=qq, 9" q7]a.

Corollary 2. The form w,(z,, z,) has the Fourier expansion

2(2 U(Dlak X ,
1 ( 7'[) ( Z N(b)k‘l)eZnI(v21+v zz).

oz, 2,)=2L(k)+ Lk, 72) (k—1)1*}/D vg‘x sip

Proof. Immediate from Theorem 2 and Corollary 1.

Comparing this with the known Fourier expansion

2k
2(27’[) Z ( Z N(b)k_l)eani(vzl+v'Zz)

(k—l)!2 |/Dk‘% vsgbl bl(v)d

of the Hecke-Eisenstein series of weight k ([4], p. 385) and observing that {.(k)
={(k)L(k, x), we obtain a second proof of the identity

E(zy,2,)=20x (k) +

wolzy, Z:}.):‘C“(ﬁ Kz, 2,)
{x(k)
which was proved by a more direct method in § 1.
Finally, we must prove Lemma 1.
Lemma 2. Let aeR, 0 =>0. Then
1 . ,
eé) (2, +0)(z,+0) —ar)f :vg-xj"“(a’ pem @)

with Fourier coefficients j,_,(a, v) (v>0) given by

@ny+! (N(v)
(k—1)!1y/D
(27{)2’(

(k—1)!1*y/D

We observe that Lemma 1 follows immediately, since (in the notation of that
lemma)

)%Jk*1(4n]/ocN(v)) if a>0,

o

J_q(o, v)= (46)

N(v)-1 if a=0.

1
(yzy2,—0az +622_ﬂ)2
1
7 (2 +0/p) (25 —afy)— A7)

Oulzy,25)=

and hence

2y . 4
Ck(V M) ,y‘keZN‘(”"— )jk—l <?,V>.
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Proof. The sum on the left-hand side of (45) is absolutely convergent since
k>2, and is clearly invariant under translations T,: (z,,z;)—(z; +0,2,4+8)
with 8. It therefore possesses a Fourier expansion as in (45) with

. 1 i
Je-a (@ V)= VD &jgé,, ((z; +0)(z, +0)— )

where A4 is a subset of the plane {Imz =C,;>0,Imz,=C,>0} which is a
fundamental domain for the group of translations {T;} (the factor 1 /1/5 enters
because A has area 1/5)‘ By virtue of the compactness of 4 and the absolute
convergence of the sum, we may interchange ||, and ), to get

. 1 1
/k—l(a"’):ﬁz H

D ——
k
8e0 (z1, zz)ETeA(Zl Zy (X)

e 2ri(vzy+v zz)dZ1 de,

—an(vzl+v’zz)d21 dZZ.

But the domains T4 (0€0) exactly cover the plane {Imz, =C,, Imz,=C,}, so

. 1 o\ K .
Jk_l(oc,V)=l/5 ) zz"e““”“< | (er—) e‘z"‘vz‘dz:l)dz;. @7)
Imz2=C3

Imz;=Cy 22

In the inner integral, the integrand has its unique pole at z; =o/z,; since z,€9
and =0, this pole is on R or in the lower half-plane, i.e. below the line of
integration Im z, = C; . Hence if v<0, we can deform the path of integration up
to +ico without crossing any poles, so the inner integral is 0 for each z,. This
proves that j, ,(«, v)=0 if v<0 or (by symmetry) if v’ <0, i.e. j,_, (o, v)=0 unless
v3> 0. We therefore suppose that v>0; then the inner integral in (47) equals

a -k
—2mires,,_u;,, (zl——> g™ 2riva
Z2

=—2mni Tes;_o ([-ke‘z’”"’a/zze~27tivt)

_(=2mifa!

(k—1)!

—2mivajzy

and so

(—2mifve-? . .
5’ Zz—ke—va zz—21uva/zzd22.

-1 (o V)=
Jie—1( (k—l)!]/B et

If =0, then the same calculation as we just did for the z;-integral gives
(—2miyev*-?

(k—]! -
then the substitution z,=i V%‘it gives

for the integral and we obtain the second formula of (46); if o> 0,

k-1
k s\ 2 Chy+i v (e L
D -t i) I B S
(k—1)'y/D

Chr—im
and the integral equals 27iJ,_;(4n}/avv) (standard integral representation of
Je_1)-

dt,
o
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§ 3. Poincaré Series for I, (D)

In this section we recall the basic facts about Poincaré series and their Fourier
expansions (a more detailed account can be found in [7], Chapter VIII) and
introduce the linear combinations of Poincaré series which will be needed in §4
for the formulation of the main result.

We use the following notation:

k (as previously) is a fixed even integer >2 (for a discussion of the case k=2
see Appendix 1).

b
For A=<a )eSLle, z€9,
cd

pata= (42

k/2
_ ~k
P ) (cz+d)* .

If furthermore f is any map $— €, then f|A is the function defined by
(f14)(2) = pa(2) f(A2)
az+b )

=(cz+d)*"f(cz+d

(Observe that p,p(z)=pu,(Bz)ug(z), flAB=(f|A)|B, f|—A=f]|A.) For ceN,
heZ/cZ, e.(h) denotes e*™* (notice that h is taken modulo c; thus, if (b, ¢)=1,
the symbol e,(a/b) denotes not *™'4/** but rather e**** where bx=a (modc)).

Let I'cSL,Z be a subgroup of finite index containing —I, and y: ' {41}
a character such that y(—1I)=1. We denote by S,(I', ) the space of cusp forms
for I' of weight k and “reellem Nebentypus™ (Hecke’s terminology) y. A function
J€S (I, x) is a holomorphic function in $ satisfying

(i) flA=y(A) S for all Aerl.
(i) f is holomorphic and vanishes at the cusps of I'.

The second condition means the following. A cusp P of I' is an equivalence
class of points of @ U {oo} under the action of I'. For each cusp P we fix a matrix
Ap transforming the cusp P to oo (i.e. such that Ay !(co)e P). The width wp of the
cusp P is defined by

1z |z
W":[(o 1)21;’]’ F”:A”FAFIG( ) (48)
1 wpZ {
(thisindexisﬁnitesince[SLZZ:F]<oo);thus]},:( e ):{( "W">

0 1
Z;.
0 1 o 1 /" }
The width w, is independent of the choice of 4. Now for any feS, (I, 3), the

function A4z ! is periodic of period wp; we require that it have a Fourier expansion
of the form

1A @)=Y ab(f)e2minsivr, (49)
n=1

The numbers a” ( /) are called the Fourier coefficients of f at P, and they do depend
on the choice of Ap, but in a very trivial way —a different choice of A, replaces
ab(f) by {"ab(f), where { is some wpth root of unity.
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If f,geS, (I, ), the Petersson product of f and g is defined as
(e)=[[f(2)g@) y*~*dxdy, (50)
F

where z=x+iye® and £ is some fundamental domain for the action of I on $;
it is easily checked that the integral converges (for k>2) and is independent of
the choice of % . The Petersson product makes S, (I, ¥) into a finite-dimensional
Hilbert space; thus any linear map S, (I, x) — € can be represented as f—(/, g)
for some (unique) geS, (I, x). In particular, the map fi—a’ (f) sending a cusp
form to its n'™ Fourier coefficient at P can be represented in this way; the function
g which achieves this is (up to a factor) the Poincaré series

Gr()=% ) x(4p'A)pa(z)emindzive (51
Aelp~ ApT’

(summation over the orbits of the left action of I; on A,I'; the series is easily
checked to be convergent for k>2 and independent of the choices of representa-
tives 4); indeed, it is an easy calculation to check that GFeS, (I, ¥) and satisfies

k—2)!
U 6=y whall) (52

for all feS, (I, y).

Now GFeS, (I, ) and so has itself a Fourier expansion of the form (49) at
each cusp Q of I'. For simplicity we take Q=(c0) and suppose that the width
w,, 1s 1 (this will be the case for the group we need); we can then choose 4,=1

Z
and have I, = ((1) { ) in (48). Thus G¥ has a Fourier expansion

GE)= Y ghae®™™  (ze8), (53)

m=1

and we wish to calculate the coefficients g .

Lemma. Let A= (a 3) eSL,R, y>0. Then we have the following Fourier
expansion: ¢

0 e27riy[a(z+r)+b]/[c(z+r)+d]

r:zjoo [c(z+r)+d]
ko1 (54)
_ 2n(—1)"/2 © 4 2mi

m 2 n (ya+ md) .
Z (H) J 1 (Tvmv>e <7 errime, (ze9)

m=1 Y

C

where J,_, (t) is the Bessel function of order k—1 (Eq. (36)).
-1
0

k-1

0
Proof. 1t suffices to treat the case A= ( ) , 1.e.

© e—Zniy/(z+r) e m 2 .
Y =2n(=1)}2 Y (—> Jo_1(dny/my) e27im, (55)

r=— (Z+r)k m=1 '}’
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. d D
since Eq. (54) then follows on replacing z by z+? and y by y/c? and multiplying

both sides of the resulting equation by c~*e?™7%<. To prove (55), we observe
that the series on the left converges absolutely and uniformly in $ (for k>2)
and is periodic with period 1, so equals Y c,e*™™ for some c,; then

iC+1
Cm: 5 872nimz(2(2+r) k ~27rzy/(z+r))d
iC rez
iC+ o0
— j e-—Znimzsze—Zniy/z dZ
iC— o

(applying the usual Poisson summation trick); the integral can be evaluated as
in proof of Lemma 2 of §2 and equals

k-1

2mi(mfy) 2 J, s (dmy/my).

. . b AW
Now consider (51). Two matrices 4= (j d) and A'= (a, d’> in ApI' arc
. ¢
left equivalent under I, iff (¢'d’)=(cd); thus the sum is over all rows (cd) which
b
occur as the bottom rows of matrices of A, I, the whole matrix (a d) then being
c

a b

determined (mod I;) by the conditions ad—bc=1, A;' (() J

)ef. Also (cd)
d
occurs iff (d,¢)=1 and —7eP. Thus

ab -
G:(Z):% z x (A}:I <C )) (CZ+d) -k 21rnmp Yaz+ b)) +d)
P

d
(c,dy=1, -€

We break up the sum into the terms with ¢=0 and twice the sum of terms with
. b

¢>0. Clearly ¢=0 can only occur if P= o0, and then d must be +1, (z d) =41,

wp=w, =1; thus the terms with ¢=0 contribute &, e*""* (3, =Kronecker

1 Z
delta). To study the terms with ¢>0, we observe that 'S 1 = (0 1) and hence

(* *> AT (* * ) <* *> (1 ’) AT for all reZ, ie. the conditi
= = or a r L. € C 1tion
cdeP c d+rc c d OIE‘P - Le on

—d : .
TEP only depends on d(mod c). Therefore the terms with ¢>0 yield

a b 2ninw§1[a(z+r)+b]/[c(z+r)+d]
> ol () se —
c=1 d(modc) d [c(z+r)+d]

reZ

—d
where the inner summation is over all d (mod c) satisfying (d, ¢)=1, ——€P and
b .
we have made some choice of matrix (a d)eA,,F with lower row (cd). The
¢

Fourier expansion of the inner sum is now given by the lemma, and we obtain
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Proposition. The Poincaré series G'(z) has a Fourier expansion of the form
(53) with ko1
mwp

7w 4
g =8p, 8, t2m(—1)? (——) Y Hfn,m)J,_, (—n‘/— ﬂ) (56)
n =1 C WP

with

1 o= 1 (naws !
Hcp(n, m)=? Z* X(A;l (a b>> ezmc (nawg +md), (57)

d{modc) 4 d

~d
where the summation is over all d (mod c) such that (d, c)=1, TeP, and where

b
a, b satisfy Ap? (a )eI".
cd

For example, if '=SL,Z, y=y, the trivial character, then

1
He(n,my=— Y, e.(nd”'+md)
4 d (mod ¢)
. d,c)=1
is a Kloosterman sum.

We now return to our quadratic field K of discriminant D and take

F:I’O(D):{(j Z)estz | ¢=0(mod D)}

(00 —ea=e@ (4 )ero),

where ¢=¢, is the fundamental character of K with ¢(p)=(D/p) for p¥2D. The
space S, (I, ) is usually denoted S(D, k, ).

For the rest of the paper we suppose

D=1 (mod 4),

and

or (equivalently) D square-free; this simplifies the formalism and proofs. In
particular, it is easy to check that, for x/y, x'/y'e QU {co} with (x', y)=(x, y)=1,

th ti
¢ equation X" ax+by (a b

v cd

’

= Iy (D
y Cx+dy, )EO()

can be solved if and only if (y', D)=(y, D). The equivalence classes of Qu {0}
modulo I;(D) are thus described by the positive divisors D; of D. Let the cusp P
be given by D, and write D,=D/D,; then (D,,D,)=1 since D is square-free,
and we can find p, geZ such that pD, +gD,=1; we choose

D. —
A= (D2 qp>€SLZZ. (58)

1

The cusp P is easily checked to have width w,=D,. We will denote the cusp P
simply by D, ; thus for feS(D,k,¢) and D,|D we have the Fourier expansion

(145 = 3 abr(f)e?mineime, (59)
n=1
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. D . . . .
the coefficients a”! ( f) being independent of the choice of p, g in (58) and given by

(dnn)-t

@ =5

D3 (£, G (60)

with GP' defined by (51). By the proposition, we have

GDl(Z)_ z g" 21umz

D, \k=t 4n 4 /mn
D; _§ S 2m(— 1) (&) 2 HP: J (_ __>
gnm D, DY nm 7[( ) n Z < (n9 m) k-1 c l D s

c=1

(¢, Dy=Dy
I—ID1 n m)«_ z x ( v-l ((1 b)> Znic‘l(na/D2+md).
d(mod ¢ d
. )=
ab ag+pc  bg+dp o ,
N A*I( )Z( ) Il be in I,(D) only if D
oW A\ a)=\_ap,+cp, —bD, +ap,) W1 P i Lo(D) only if Dl

(since D, [¢), so a is determined {(mod c¢D,) by

ad=1(modc), D,la
Then

where in the last line we have used quadratic reciprocity and D, D, =1 (mod 4)

-1
to set (&> (&):( ) Therefore for (¢, D)=D,,
Dl D2 DI

2 7 d(med c)
d, o)=1

Hf‘(n,m)z%(Di) Y (;fl>ec(nD;1d“+md) (61)

(note that D, and d are prime to c, so e, (nD; *d~') makes sense).
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Finally, we introduce certain linear combinations of the Poincaré series:

Definition. Let D=1 (mod 4) be square-free and positive and n a positive
integer. We set

G, ()= ). Y(D,)D;*GPy.(2) (z€9), (62)
i
where
D, .
(3')1/32 if D,=D,=1(mod 4)
Y(D,)= ’ (63)

D
i (D—‘>1/D‘2 if D,=D,=3(mod 4).
2

Thus G, (z} is a linear combination of Poincaré series at certain of the cusps of
I, (D). Notice that the coefficient y(D,) is just the Gauss sum

V0= T (o) ent-Dov

x (mod D3) D2
it is also easy to check that, if D, =D/, D} divides D (in which case (D}, D})=1),
Y (D)= (D3)y (D3). (64)

Finally, from the formula above for the Fourier coefficients of g2 we obtain
the Fourier expansion of G,(z):

G,(z)= Z Zum €T (65)
m=1
with
Gn=, 2 U(D,)D5 8D,
;)2 Iln ? ‘ot ll/
= D, & n 4r
o (2 S5 e (2 (4515
nm+2n( ) n D=%:D2 D2 cg:l ¢ D2 m k_1 cDZ nm
D, ]1" {c, D)= D (66)
k-1l 4
=6, +2n(— 1)/ <ﬂ> Y H,(n,m)J,_, (lﬁ),
n B=1 bD
where
D n
Hy(n,m= Y ‘//1() 2) HP, (D—,m>, (67)
D=bD;D; 2 2
A

Hpy being given by (61).

§ 4. The Form 2(z,,z,;7)

As before we fix a real quadratic field K=Q(]/5) (D =1(mod 4) squarefree)
and even integer k>2. We define a function of three variables

Qz,,zy1)= Z mk‘lwm(zuzz) errime (z1,2,,7T€9), (68)

m=1
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where the w,(z,, z,) are the forms defined by Eq.(1). The series converges ab-
solutely. It follows from the results of §1 that, for fixed 1€9, Q(z,,z,;7) is a
Hilbert cusp form for SL, @ of weight k with respect to the variables z, , z,. Our
goal is to show that, for fixed z,,2z,€9, Q(z;,z,;7) is a cusp form for I3(D) of
weight k and Nebentypus ( /D) with respect to the variable t. We will do this
by proving an identity which expresses Q as a linear combination of the functions
G.(1)eS(D, k, €) constructed in the preceding section:

Theorem 3. For all z,,z,,1€$, the identity
Qz1,2250= 3, n* 1 (21, 2,) G,(0) (69)
n=1

holds.

Proof. We will expand both sides as triple Fourier series. Of course, the defini-
tion of Q(z,,z,; 1) already gives the Fourier series of the left-hand side of (69)
with respect to the variable 7; its Fourier development with respect to z,;,z, is
given by Theorem 2 of § 2, which tells us that

Q2= Y, ¥ m g ettimenitns ey (70
meZ ved~!
m>0 v>»0

with ¢,,, as in (40).

As to the right-hand side of (69), we recall that the function w?{(z,,z,) is
defined by (24) and has the Fourier expansion

o]

0)3(21 , 22)22('k Z Z rk-—l e2ni(rlzl+ ri’zy)

Aed~ ! r=1

A»0

DA =n
— k—1 2mi{vzy +v' z3)
=2c 2, (X e

ved~! riv

v»0 Dvv=nr?
with ¢, the constant (27); here the inner sum is over all natural numbers r such
that l—ve > !and N (L v) :%, and contains at most one summand. On the
r r
other hand, G,(r) has the Fourier development (65), so the right-hand side of
Eq. (69) equals

i Z (zck i nk_lgnm z rk»—l) eZni(vzl-i-v’zz)eZnimr
ne—

m=1 vedb 1! =1 riv

v>0 Dvv=rin
il Dvy/\k !
2ri(vzy+v'zy) ,2nimt
=2¢. Y Y (Z( ) 8oy | e .
m=1 ved 1 \rlv r [
v>0

Comparing this with (70), we see that we must prove

D 1y k-1
M =26, Y. ( Al ) -~ (71)
rlv Sz oom

r r
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for meZ, m>0, ved~!, v>0. Substituting for c,,, and g,,, from Egs. (40) and (66),
respectively, we see that the identity to be proved is
L kot ooy
mt Y e 2n(= 07D mvy) 2 Y —Gylm ) J, 1(-*L '”"")
rlv a=1
vy D=mr?

=Z(

riv
Dvv'=rlm
1

The first terms on the two sides of this identity are plainly equal, and comparing

. 4n / mvy
the coefficients of J, (—
a

Dvy )"“

r

) on the two sides of the equation, we find

that the theorem will follow once we have proved the following identity between
finite exponential sums:

Proposition. For a, meZ, ved™}, a>0,

ﬁ %Ha,,(Dv" : ) (72)

ria

Here G,(m, V) is the sum defined by (38) and H,(n, m) the sum defined by (67), (61)
and (63).

It is convenient to write u for vl/ﬁ, so that ue(; then

Gum =G, (m -t} = ¥ ep(Trin) 3

1/5 A{modabd)

N(A)=-—m(moda D)
(sum over Ae@®/ad) and we wish to show that this equals

ayDY H,, (—N (%)m)

rlu

rla (74)

¥ (D,)
=ayDy ¥} 5 H’)’ (= N(uyr*D,,m).
rlp D=D D, 2 r
rla Dy|N (ur)
(afr, D2)=1
Now both expressions (73) and (74) are clearly periodic in m with period aD,
so to prove them equal, it suffices to show the equality of their finite Fourier
transforms. Thus we must multiply both expressions by e, ,(—hm) and sum over

m(mod aD), i.e. we must show that, for every heZ/aDZ,

aD
Y. €ap(—hm) 2 e,p(Trip)
m=1 A{mod ad)

N(A)= —m(mod aD) (75)

by | _HH
—ayby Y Y02 z —hmy H (=B m).

r D>
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where the conditions of summation on r and D, are the same as in (74). The left-
hand side of (75) clearly equals

Y eup(RN(A)+ Tr(uh).

A (mod abd)

As to the right-hand side, we observe that HY'(n, m), considered as a function
of m, is a linear combination of terms (™ with {=e.(d) a primitive ¢™ root of
unity; therefore for claD, the sum Y, vodap) €ap(—hm) H? (n,m) is O unless
e,p(h) is a primitive ¢ root of unity, i.e. unless (h, aD) equals aD/c, in which
case it equals aD/c(c/D,)(—d/D;)e(nD7'd"") with d defined by h/aD=d/c
(cf. (61)). Hence the inner sum in (75) can only be different from zero if

(1} (h,aD)=rD,.

On the other hand the conditions on r, D, are that D, D, =D, (a/r,D,)=1, so
(a,rD,)=r and hence

(1)) (a, h)=(a, h, aD)=(a,rD,)=r.
From (i) and (ii) we see that r and D, are determined by h: given h, we must set

B {(h, aD)

r=(a,h), D,= ha

(76)

These values of r and D, automatically satisfy r|a, D,|D, (a/r, D,)=1, butl must
still satisfy r|u, D,|N(u/r) in order for the right-hand side of (75) to be non-zero.
Thus the identity we have to prove now reads:

Lemma 1. Let a>0, ue®, heZ, and define integers v, D,, D; by (76) and
D,=D/D,. Then

Y euplhAd +pd+ ' L)

Aeélad
, 77)
= ¥(Dy) (aol/r> ( ~h/rDZ> (_ up ) (
) ayD D, rD, D, ) cavir { = 2p, (hfr)
- i rlws DaIN (2).
0 otherwise.
Proof. We first show that the left-hand side is zero unless r|u, D,r?|N(p).

If we replace 4 by l+%11/5 (re®) in the summation, then

hN(l)HhN(l+%r1/5)=hN(,1)+aD%Tr(%)_ a h
=hN(A) (mod aD)
and

D
Tr(ud)— Tr(,u/l)+%— Tr ( add ),

/D
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s0 e,p(hAd +pl+y'A’) is multiplied by the factor e, (Tr%)

of A. Therefore the sum on the left-hand side of (77) equals e, (Tr %) times
u

/D

r)eZ for all €0, ie. if

independent

itself, and can only be different from 0 if Tr(

——ed!,
- 1/_ rlp
If we repeat the argument with tea" instead of e, a being the ideal with
a?=(D,) (D,|D is a product of ramified primes), then from D,|h/r we again

see that A— A+ a/r)tf D does not change hN(4) (mod aD) and that therefore

we must have
e, (Tr add ):1 (tea™)

/D

if the left-hand side of (77) is different from zero; this implies that

ead?, ﬁea, D,_IN(—”—).
r r

U
VD

We can therefore suppose that the conditions r{y, D,{N(u/r) hold. Then
a. h and p are now all divisible by r, and we see easily that both sides of (77) are r?
times their value when q, h, g and r are replaced by a/r, h/r, ufr and 1. It therefore
suffices to prove Lemma 1 in the case r=1. We thus assume that (h,a)=1 and
that D, =(h, D) divides w, and have to prove the identity

Y e,plhAd +pd+ i k)
Aeljad (78)

. aD, —h/D, ) ( N(w ,,1>
=a}/Dy(D,) (32—) ( D) s D, h
(here k™' makes sense because (h, aD;)=1). Because D, {h and D, |uy’, we have

h
e.p(hN (A)+ Tr(ud)) = e,p, (D2 N+ Tr—D% l)

h N(g)
=e,p, (— N(A+h ) (—h"‘ )
aDy (Dz ( + ﬂ) €ap, D2
with Le Z,-2 cv~!. Therefore, multiplying both sides of (78) by e, (M -t )
DZ DZ ' D2

and replacing A by A—h~'y (mod aD,), h by h/D, and aD, by b, we find as the
identity to be proved
- b —h
Y. e (hil)=ay/Dy(D,) (D—) (D—) (79)
rebad 2 1
where (h,b)=1, (b,D)=D,, D/D;=D,, b/D,=a. It is convenient to replace the
summation in (79) by one over @/aD,; it is clear that this multiplies its value by
D,/D, (both sums are multiples of a sum over O/aa with a’=(D,)). We have
thus reduced the complicated identity (77) to the simpler one given in the following
lemma:
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Lemma 2. Let b be a natural number, h an integer prime to b. Set D, =(b, D),
D,=D/D,. Then

LAY 7 Dy~
% Y e (hN(1)= <bl/)51 ) (12’ ) S (80)
2 (mod b) i (_D21 ) (~D_1) I/E if D, =3(mod 4),

where the summation runs over integers e modulo the principal ideal (b).

Proof. Denote the left-hand side of (80) by C(h/b). Thus C(h/b) depends on
the class of h in (Z/bZ)* modulo squares. It is easily checked that C(h/b) has the
multiplicative property

h hb” hb, I RZ ORIy
c(p)=clG) i) pmrv @

The right-hand side of (80) has the same property, since (setting D} =(b’, D),
=D/D} and similarly for b”)

b'/Di) ( b”) (b"/D’{) (hb’) _
3D, (2L T
( D, D; VD Dy J \DY VD
b’ b’ h ) (D’1 ) (Dlll) ;
B L)V Diy/+D
() ) 2
(where 1/+n is +71/[n] or i}/|n| depending whether n=1 or 3 (mod 4))

(o) (5,) (o) (2 vem=(5) () v

as we see after a short calculation. Because both sides of (80) behave multi-
plicatively, it suffices to prove Lemma 2 for b=¢* a prime power. Clearly

h 12
C (?> :Ewn;N,,(n) ep{hn), (81)
where
N,(n)=# {Ac0/b| N(2)=n(mod b)}, (82)

and the above multiplicativity property can be stated simply N, (n)=N,.(n)N,..(n)
for (b, b")=1. To evaluate C(h/b), therefore, we have to find a closed formula for
N,(n) when b=g". There are three cases, according to the value of (D/q); we
summarize the results in a lemma.

Lemma 3. Let b=q* (q prime), n=nyq" with v20, q yny. Then

(i) If (D/g)=+1, et g1 o
1y, <A
N,,(n):{(v+ )¢ g -1 ifv

83a
(A+1D)g*—Ag* ! if vZA. (83a)
(i) If (D/q)= —
g* 'g+1) if v<A,v even,
0 if v<A,vodd,
N, (n)= . (83b)
q if v=4, A even,
q*! if v22, A odd.
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(i) If ¢1D, D,=D/g,
(1 + (%)) q* if v<A, v even,
N, ()= —nyD
) (l + ( n; 2)) gt if v<l, vodd, (83¢)
A ifvzA.

q
The proof of the lemma is straightforward and tedious and will be omitted.

We now substitute (83) into (81). If b=g* q 4D, then N,(b) only depends on
the largest power ¢ of ¢ dividing n; hence
h 1 i ) b
C(4)=5 X M@ X ethn,
b b v="0 n=1
qviin
and the inner sum equals 1 if v=4, —1 ifv=1-1,0if v<i—1. Hence

h 1
C () =5 4@ - Mg 1.

If (D/q)= +1, then we see by (83a) that this equals 1, in agreement with (80)
(here D=1, D,=D, {b/D,)=+1). If (D/g)= 1, then using (83b) we find
C(h/b)={(—1)*=(b/D), again in accordance with Lemma 2.
If g|D, D,=D/q, then (81) and (83 ¢) give
h n
C (7) = Z Z (‘;O‘) eq/l v(h no)

0= v< A ng(mod g* ~ V)
v even (no, 9)=1

N

0= v< i ng{mod g* V)
vodd (ng, q)=1

The inner sum in both terms is zero if v<A— 1, as we see on replacing n, by no+4.
Thus only the terms v=1—1 contribute, and we find
1 (i) Vtq if 2 is odd,
LR e
a (_ 2)(——) +q if 4 is even,
q q
where again }/ +q is ]ﬁ} or i ﬁ depending whether g=1 or 3 modulo 4. In the
notation of Lemma 2, D, =q, (—D,/q)={(q/D;), so (84) can be stated as
h g\* ! (h —
—)={= —)y/+
()G (v
b/D, h —
—I)V+ b=q¢* qth
( D, )<D1 )1/_01 (b=q", qxh),
in agreement with Eq.(80). This completes the proof of Lemma 2 and hence of

Theorem 3.
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§ 5. The Doi-Naganuma Map

In the last section we proved the identity
€0 . el
2 m T wo,(zy, )€ =Y mEt wl(zy, 2,) Gl(T)
m=1 =1

relating the Hilbert modular forms of weight k constructed in §1 to the Poincaré
series of weight k and “Nebentypus” constructed in § 3. Depending whether we
read this identity from left to right or from right to left, we can deduce two state-
ments asserting that some infinite series defines a cusp form: on the one hand,
since G, (1) is a cusp form of Nebentypus, we have

1. For each point (z,,2,)eH X D, the series

k-1 2nimt

m wm(ZIaZZ)e s
1

ﬁM%

considered as a function of <, defines a cusp form for I, (D) of weight k and *“ Neben-

typus”;

on the other hand, since we know that the w,, are Hilbert cusp forms, we have
2. For each point 1€$9, the series

Y L G(0) (2, 2,),
m=1

considered as a function of (z,, z,), defines a cusp form of weight k for the Hilbert
modular group SL,(0).

The first of these assertions has several interesting consequences; for example,

using Hecke’s well-known estimate for the Fourier coefficients of cusp forms,
we have the corollary,

For fixed (z,,z,)€ 9 x 9, the absolute values of w,(z;,z,) (m=1,2,...) satisfy
| (21, 2,)] = O(m"'?)
as m— oo (indeed, using the recently proved Petersson conjecture we can improve

k — . . . .
5 to —2——+£). A considerably more interesting corollary of 1. is obtained by

integrating the forms w,, along certain curves. If the field K has a unit of negative
norm, say ¢>0>¢, then the function y*w,(ez,£2) (z=x+iye®) is invariant
with respect to SL,Z, and so we can consider the numbers

ap=m""' {w,(ez,6'2) y* " 2dx dy,
Ea

where # ={z||z|>1, [Re(z)| <3} is a fundamental domain for the action of
SL,Z on %. It follows from 1. above that the series Y =_, a,e*™™" is a cusp
form of weight k and Nebentypus for the group I (D) and character ( /D). On
the other hand, the a,, can be evaluated explicitly and turn out to be (apart from
a trivial factor) integers expressible as a finite sum of class numbers of imaginary
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quadratic fields. In this way we are able to construct a large number of cusp forms
of Nebentypus whose Fourier coefficients are explicitly given by certain expres-
sions involving class numbers. That these class number expressions really are
Fourier coefficients of cusp forms had been conjectured (in the case k=2) by
Hirzebruch and the author on the basis of another interpretation of them as the
intersection numbers of certain curves on the Hilbert modular surface § x $/SL, ¢.
{This conjecture was the original motivation for studying the forms w,,.) The
proofs of these relations will be given in a subsequent paper.

In this section, however, we will investigate the significance of the second
assertion above. We fix, as usual, an even weight k>2 and discriminant D=1
(mod 4). We denote by S, the vector space of cusp forms of weight k and Neben-
typus for I5(D) and the character e=(D/ ) (so S;=S,(I3(D),)=S(D, k,¢) in the
notation of §3) and by S, the space of cusp forms of weight k for the Hilbert
modular group SL,(®). (The subscripts 1 and 2 refer to the number of variables
of the functions involved.) The assertion of the theorem in Section 3 is then that
the function Q(z,, z,; 1) defined by (68) is in S, ®S,. On the other hand, as dis-
cussed in §3, the Petersson product on S, is a non-degenerate scalar product
and provides a canonical identification of S; with its dual §f=Hom(S,, Q).
Using this, we can identify S, ® S, with Hom (S,, S,) and thus think of Q as a
map from S, to S,, namely the map sending a cusp form f=f(1)eS, to

(£9).= [ £ Q1 20 42 dx dy

(t=x+iy, # =fundamental domain for $/I;(D)).

On the other hand, we have expressed Q as a linear combination of Poincaré
series and therefore can easily evaluate its Petersson product with any cusp
form. Let feS; and let aP'(f) (n=1,2,...;D,|D) be its Fourier coefficients at
the various cusps as defined by Eq.(59). Recalling the definition (62) of G, as a
linear combination of Poincaré series and the basic property (60) of Poincaré
series, we find

n LG =0 Y (DY) DM (G, f)

D=D;D;>

k—-2)!
B ((4—71)"‘)1 o2, VPIDE i, ()
22'1" :

and hence
o0

(£Q) =3 i '(£,6) 00z, 2)

n=1
(k—2)! I
=T, o, VDIDE Y @ (), (e, za).
=12 m=1
Into this expression we substitute the Fourier expansion

2(2n)k - - mi(rizi+ri’z
(k—l)' (__1)k/2 lgvl erk 1e2 (rizi+ri'zy)

A>0
N(A)y=m/D

w(r:l(zl ,23)=

obtained in § 2, and obtain the following theorem.
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Theorem 4. Let fe5S,(I3(D),€) be a cusp form of weight k and “Nebentypus”
and a?*(f) (neN, D, | D) its Fourier coefficients as defined by (59). For each integral
ideal a of the field K, define

C(a):zrkw1 Z l//(DZ)Dg_l ag}a)/rzDz(f)’ (85)

rla D> [(D, N(a){r?)
where the first sum is over all natural numbers r dividing q, the second sum over all
positive integers dividing D and N(a)/r*, D, =D/D, and \(D,) is defined by (63).

Then the series _ ,
F(zy,z))= ) c((v)b)erritzi+>=) (86)
o
is a cusp form of weight k for the Hilbert modular group. The map fi— F defines a

linear map S s
118, -8,

which is, up to a factor, the map sending a cusp form f (1) to its Petersson product
(with respect to 1) with Q{(z,, z,; 7).

We have written the Fourier expansion of F in the form (86), with coefficients
¢{(v)d) depending on the integral ideal (v)D rather than simply c, as previously,
first of all because this form puts into evidence the invariance of F under

(zy,20—(ez,,€'2z;) (¢ a totally positive unit) 87)
as well as under the translations
(21, 22) (2, + 0,2, +0), (88)

and, secondly, because this is the appropriate form for writing down the Mellin
transform of F. Namely, to a cusp form with Fourier expansion (86) we associate
the Dirichlet series

P(s)=) c(a)N(a)~* (89)
(at least if the class number of K is 1, in which case every integral ideal a can be
written as (v)d with ved~!, v>0); then ¢ and F are related in the same way as
are Dirichlet series and modular forms in one variable, namely that the invariance
of F under the modular group is reflected by a functional equation of the function
d(s).

We now describe the relationship of Theorem 4 to a construction of K. Doi
and H. Naganuma, in which these Dirichlet series play a basic role. The original
paper of Doi and Naganuma [2] treats the case of modular forms of “Haupt-
typus” (i.e. trivial character); we will in fact describe the modification for forms
of “Nebentypus” given by Naganuma [8]. Let

&= ¥ a,em 90)
n=1

be a cusp form of weight k for I (D), where D=p is now assumed to be a prime
of class number 1. We assume that f is an eigenfunction of all the Hecke operators
T,,, normalized with a, =1 (so that g, is just the eigenvalue of f under T;); then
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the associated Dirichlet series
o)=Y an~* (Res>1) (91)
n=1

has an Euler product expansion of the form
(p(s):g(l—aqq-5+(~g—) q) 92)
{product over all rational primes g). The series
P)=Y an @=a,
n=1

whose coefficients are the complex conjugates of those of ¢(s), will then be the
Mellin transform of the modular form f*(z)=) @,e*"""*. Thanks to Hecke [5],
one has the following information about the eigenvalues a, of ¢(s) in (92):

for (a/p)=1,  a, isreal; (93a)
Jor (q/p)=—1, a, is pure imaginary; (93b)
Jor  gq=p, la=p* 17 (93 ¢)
This gives us the possibility of writing
2(5)=0(5) o*(s)=] [ (1 =b(a) N(@) >+ N(q)*~* =), 94)
q

where the product is extended over all prime ideals g of Q@ (]/;)) and the coefficients
b(q) are defined by

b(a)=a, if qa'=(q), g/p)=1, (95a)
b)=a;+24¢*' i a={g), (g/p)=—1, {95b)
b(q)=a,+a, i q*=(p). (95¢)

Indeed, for decomposable primes g we know by (93 a) that a,=a,, so the factor
(1—a,q*+4*"'~2%) " occurs twice in ¢(s)¢°(s), and since there are two prime
ideals with norm g, it also occurs twice in the product in (94). For inert primes g,
(93b) tells us that G,= —aq,, so the corresponding local factor in @(s) p*(s) is

(1 —aqq‘s—qk‘l‘zs)‘l(l +aqq—s_qkA1~Zs)—1
=(1 _a2q~25__2qk-1—Zs+q2k—244s)—1
q

=(1—b@N(@) "+ N(af %)
with q=(q), b(q) as in (95b), N(q)=q". Finally, for the ramified prime p, (p)=02,
we deduce from (93c) that the local factor in @(s) ¢”(s) is

(1 -—app~S),1 (1 —app—s)_l :(1 _(ap+ap)p—s+pk—1—2s)—1
=(l=b@N@ "+ N(@" ' ~*)".

We now extend the definition of b(-) to all integral ideals, defining first b(q")
(q prime, relN) by

a0

1+ Y b(a)t"=(1—b(q)t+ N(q)*~* £*)~* 96)

r=1
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(as formal power series in R[[t]]) and then requiring b to be multiplicative, i.e.

b(ay'... ar)=b(ai")... b(ar). 97)
Then clearly
®(s)=[T(1+b(@N(a) *+b(@*)N(@) >+ )= b(a) N(a)~*
q a
(sum over all integral ideals). We can now state the resuit of Doi and Naganuma:

Theorem (Naganuma [8]). Let p=1 (mod4) be a prime with h(p)=1, and
feSu(Iop), ( /p) a normalized eigenfunction of the Hecke operators with the
Fourier expansion as in (90). Define numbers b{a)eR for all integral ideals a of
Q(]/E) by (95)-(97). Then the function

F(z;,25)= )}, b((v)d)e?™ =) (z,,2,€9) 98)
o
satisfies the functional equation
-1 -1
P =)=, 2. (99)

Z Z3

As the author remarks, if the ring of integers ¢ is Euclidean, then (99) (to-
gether with the obvious invariance of (98) with respect to translations and multi-
plication by totally positive units) is sufficient to ensure that F is in fact a Hilbert
modular form, for in this case the transformation (87) and (88) together with

(z1,2,)F ( L ) (100)

21 Z3

certainly generate SL, 0. However, it is known that the only primes p=1 {mod 4)
for which Q(ﬁ) is Euclidean (at least with respect to the norm map) are 5, 13,
17, 29, 37, 41 and 73 (cf. [3], Theorem 247).

In fact, a recent and very difficult theorem of Vaserstein (Mat. Sbornik 131
(89) 1972) tells us that the transformations (88) and (100) always generate the
full group SL,0, and combining this with the theorem of Naganuma just
enunciated, we deduce that (98) is in fact always a Hilbert modular form. We
now give a different proof of this fact by showing that the function constructed
by Naganuma is precisely the function we constructed in Theorem 4.

Theorem 5. Let the assumptions be as in the theorem of Naganuma above:
p=1 (mod 4) a prime with class number one, f€S,(I3(p), ( /p)) a normalized Hecke
eigenfunction. Then the function defined by (98) is identical with that defined by
(86), and in particular is a cusp form of weight k for the Hilbert modular group.

Thus the modular form Q(z,,z,;t) in three variables constructed in this
paper has an interpretation as the “kernel” (in the sense of integral operators)
of the Doi-Naganuma mapping.

Proof. We must show that, for each integral ideal a, the number b(a) defined
by (95)-(97) equals the number c(a) defined by (85). Since D=p is prime, the
number D, in (85) can only have the values 1 or p, and so (85) simplifies to

C(a)=z k-t al%(a)/rz(f)—*- Z rk_lpk_%allwa)/rzp(f), (101)

rla roja
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where a£(f) and a,(f) are the Fourier coefficients of f at the two cusps of I (p)
and the second sum vanishes if dfa (to obtain (101) we have substituted the
values y(1)=1, ll/(p):]/[_J). Now the coefficients af( f) are the Fourier coefficients

of fl(l 0) (cf. (58), (59)), and since (!1) ?)el},(p) these are precisely the q,
defined by (90). Similarly, the a}(f) are the coefficients of f ‘ (p _(1)), i.e. are

given by
=D (T )= L anenr es)

n=1

or (replacing z—p by pz)
—k —kf (

But, by Lemma 2 of [§&],

Pt "‘f( ) ~krj2g fo(z)

(f?(z)=>_a,e*"'"* as above), and therefore
(=073,
Also, because the local factor corresponding to p in ¢*(s) is simply
(A-a,p ) '=Yap",
we see that ,d,=a,, for all n. Therefore (101) can be rewritten as

C(a): Zrk—la;‘l(a)/rza

rla

o if pyn,
" la,+a, ifpln

> ij: a f) elmnz (265).

where

(102)

(103)

Since c(a) is then clearly multiplicative for ideals with relatively prime norms
(ie. cfayay)=c(a,)c(ay) for (N(al),N(az)):l), we only have to prove the
equality c(a)=>b(a) for prime powers g™ with q inert or ramified or products

r /r

if q9'=(g). We consider the three cases separately.

(1) a=q™, 9=(q), (q¢/p)=— 1.
Then rja for r=1,q,...,4™, so

c(@=Y ¢* Vagm-..

i=0
To evaluate this, we introduce the generating series:

o0

© ©
z C(qm)t?.m Z Zqi(k_l)aqllt21+2i
=0

m=90 i =0

(iql(k—l)t2i> (iaqzltZI)
i= =0

=0
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=(1—g"1t3)! (%Zaq,thL%Zaqz(—t)')
=0 1=0

b ) (o ]

+
l—ai—¢"'t*  l+agt—qg ¢

1
(1 waqt—qk”tz)(l +aqt_qk—1[2)
B 1
T l=b(q)t? gkt

L

b(q™ ™,

m=0

where the various steps use the precise form of the Euler factor for g in (92) as
well as the properties (95b), (96) of b(g™). Thus c(q™)=b(g™) for all m.

(i) a=q", ¢*=(p).
Now rja for r=1,p,..., pi™?, so (102), (103) give

mi2]
cl@m= Y P Va,.-.
i=0

m—1
o 2

IA
HA

i

= P  Vapmo+ Y P VA
m
7

osi

{IA

Also, by the above noted total multiplicativity, a,.=(a,)", a,»=(a,)". We again
use a generating series:

0 20 o feel o
Z C(qm)tm: pi(k~1)apltl+2i+ z pi(k—l)apltl+2i
m=0 i=01=0 i=01=1
[eel X . o o0 X . e
:( pt(k—l)tlz) (Za2t1>+(2pl(k—l)t2:> (Zﬁ;ll>
i=0 =0 i=0 I=1
_ 1 ( 1 N a,t )
- k-1,2 =
1=p" 12 \l—a,t  1—ay
= 2
_ 1 ' 1—aya,t
1—p 1 (1—a,0)(1—a,r)

1
1 —(a,+a)t+pte?
(since a,a,=p*~* by (93¢))

1
T1-b(q+pe
= 3. b,

m=20

and again we deduce c(g™)=b(q™) for all m.
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(ii) a=q"q"", qq'=(q), (¢/p)=1.
Then rja for r=1,q,...,q"" ™" 5o
min {m, n) .
c@qf= 3 g Vagmen-a

i=0

Now we have to introduce a double generating series with two formal variables t,
u and find

© o ®
c(qmqm)tmunzz Z Zqi(k_l)aqj+xti+jui+l

18
P18

m=0 n=0 i=0j=01=0
= (Z q“"‘”t'u‘) (Z aq..(t"+t"—‘u+~~-+tu"—‘+u"))
i=0 n=0
1 0 tn+1 un+1
= agn
1—q“ 'tu ,,;) 1 t—u
1 1

B 1 1 ( t u )
Cl=g'tu t—u \1-ait+q"1*  l-autqgtu?

- (1~a,t+g* ') (1~au+q'u?)

B { !

T 1=b(q)t+N@F 2 1-b(@)u+N(q)tu?
=Y Y b@"b@@m)mu

m=0n=0

— Z Zb(qmqm)tmun

m=0 n=0

(the last equation because ™ and q™" are relatively prime and b(a) multiplicative).
Thus c(a™q")=b(q"q'™) for all m, n and the proof of Theorem 5 is complete.

As a consequence of Theorem 5, we find that we have two descriptions of the
map 1 of Theorem 4: as the Petersson product with Q and as the map of Doi-
Naganuma. Using these two descriptions, we obtain a better understanding of
this mapping.

First of all, there is a natural involution p on S,=S,(I;(p),( /p)) which
sends a normalized Hecke eigenfunction f=Y a,e*™™ to f°=) afe?™
(a®=a,) and is then defined on all S; by linearity (the normalized Hecke eigenfunc-
tions form a basis of S,). If we denote by q, the Fourier coefficients of f* (feS,
arbitrary), then it follows from (93a) and (93b) that

a2 = (%) an if phn; (104)
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ie. p: S — S; “twists” the Fourier coefficients of a cusp form by the character
( /p). Let

S; :{fesl 'f(z): Z a"elni'lz, an:() for (%): _1}’
n=1

Sy :{fesl | f(z)= ) a,e*™"*, a,=0 for (£—>= + 1}.

n=1
Then S} N S; = {0} since a well-known lemma of Hecke (see e.g. Ogg [9], p. 32)
states that a non-zero cusp form cannot have a development of the form ) , a,e*™"?".

It is easy to see that
S;=8®S¢ (105)

and that S§ are just the (+ 1)-eigenspaces of the involution p. It follows easily
from either description of the map 1 that 1 is zero on S7. One can in fact show

Proposition 1. For the splitting (105) of S, according to the eigenvalues of p,
(i) dim S} =dim S =4 dim$S,;
(ii) the map 1: S, — 8, is zero on S; and injective on Sy .

We omit the proof.
This describes the kernel of 1; we now describe the image.

Proposition 2. The image of 1: S, — S, is precisely the subspace of S, spanned
by the cusp forms w, , w,, ... defined in § 1.

Proof. Consider the Poincaré series G2(z) for the cusp at infinity of I(p).
By the basic property of Poincaré series, (G, f) is a constant (#0) times a, for
an arbitrary f(z)=) a,e*™"* in §,. In particular, the GZ (n=1,2,...) generate S;,
since a cusp form orthogonal to all the GE would have all its Fourier coefficients
zero and hence vanish. But by the same property of G,

1GD)=(GE, Q)=(const) - w,
since

@
Q= Z wneannt’
n=1

and therefore the w, generate Im(1).

Propositions 1 and 2 give some insight into the nature of 1. Since the map 1,
relating as it does modular forms in one variable with Hilbert modular forms,
seems to play quite a significant role in understanding Hilbert modular forms
(cf. for example the rather theoretical discussion in § 20 of Jacquet [6]), it would
be of considerable interest to acquire more information about its properties.
The following questions suggest themselves.

I. Elucidate the relationship of 1 to the Hecke operators in S, and S,. Just
as there are Hecke operators T,,: S; — S; sending a form Fourier coefficients a,
to one whose n'™ coefficient is

t
Z (A) tkAlanm/tz’
t](n,my 14
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there are Hecke operators Ty: S, — S, sending a form F(z,z,) with Fourier
coefficients c(a) to one whose a*® coefficient is
Y Nt} Tc(abt™?).
t|{a,b)

It is, of course, clear from the Doi-Naganuma description that 1 maps Hecke
eigenfunctions in S; to eigenfunctions of the Hecke operators in §,, and the
assertion of Proposition 1 is essentially that this map from the (finite) set of
Hecke eigenfunctions of §; to the similar set for S, is precisely two-to-one,
sending the two eigenfunctions f and f* (which are always distinct, by i) of the
proposition) to the same eigenfunction. One also has the Doi-Naganuma map
for forms of “Haupttypus,” i.e. a map 1,: S, (SL,Z)— S,. This map also takes
Hecke eigenfunctions to Hecke eigenfunctions and seems to be one-to-one and
have an image disjoint from that of 1. The image of : @ i, seems to be precisely
the set of eigenfunctions in S, whose eigenvalues c(a) satisfy

cla)=c(a’)
for all a. Otherwise stated, one has an involution on the set of Hecke eigenfunc-
tions which sends a function with Fourier coefficients c¢(a) to the function whose

a® coefficient is c(a’), and the image of 1® 1, is the space spanned by those
eigenfunctions fixed under this involution. This would imply, in particular, that

1 dim S; +dim S, (SL,Z)=dim (Im 1 ® 1)
=dim §, (mod 2).

That this is in fact the situation seems to follow from work of Saito, at least if
the discriminant D is a prime with class number h(D)=1 (“ Algebraic extensions
of number fields and automorphic forms,” to appear). Saito also finds a similar
map for Hilbert modular forms associated to certain cyclic number fields of
prime degree.

I1. Since Hecke eigenfunctions are mapped to Hecke eigenfunctions under 1
and since these eigenfunctions are orthogonal under the Petersson product, it
is natural to ask whether the map i: S; — S, is not perhaps an isometry (up to
a constant factor) with respect to this product, i.e. whether the relation

(1) 1@)=x(£8)

holds for all f,geS, for some constant k0. Because the Hecke eigenfunctions
form an orthogonal basis, it would suffice to show that

(N 1(N)=K(£ 1)

for all normalized eigenfunctions f, with x independent of f. This can be attacked
using the Doi-Naganuma description of the associated Dirichlet series and
Rankin’s description [10] of the Petersson product. As far as the author can
check, however, the answer seems to be negative: 1 is not an isometry.

II1. Finally, one can ask for a geometrical description of i; namely, if we
think of modular forms as functions of pairs (E, w) with E as elliptic curve and o
an abelian differential on E, and of Hilbert modular forms similarly as functions
of 2-dimensional abelian varieties, then i should have some interpretation in
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terms of a relationship between abelian varieties of dimension two and one.
However, it is not yet evident what such an interpretation might be.

Appendix 1: The Case k=2

In this paper we have constructed and studied a series of Hilbert modular
forms wy, w;, w,, ... of arbitrary even weight k> 2. The case k=2 was excluded
because the series defining w,, is not absolutely convergent. However, Hecke [4]
has shown that the Hecke-Eisenstein series of weight 2 for a real quadratic field
can be defined by an appropriate limiting procedure and is a modular form
having the same properties as the series of higher weights. Since —as we saw
in § 1 —the Hecke-Eisenstein series is a multiple of our w,, it is reasonable to
expect that all of the w,, can be defined also for k=2 by applying Hecke’s method.
This will be carried out here.

Hecke’s idea is to replace a conditionally convergent series Y f(z)~* by the
absolutely convergent series Y f(z)™2|f(z)|~?%, where seC has positive real
part. The latter function is no longer holomorphic in z but is an entire function
of s. It also is periodic in z with real period, so has a Fourier expansion
Y c,(y, s)e*™** whose Fourier coefficients depend on s and also on the imaginary
part of z. The coefficients ¢,(y,s) are then holomorphic in the entire s-plane,
and in favourable cases c,(y, 0) is independent of y; then lim (Y. f(2)~*| f(2)|~**)
=Y ¢,(y,0)e*"** is holomorphic. 70

We thus define (for meN, z;,z,€9, seC, Re(s)>0)

0, (2, 25)= Z pslazyzy+Az + 2z, +b), n
a,beZ
Aed—!
AA ~ab=m/D

where for convenience we have used the abbreviation

fps(Z):—“'r‘[z_s:Z_Ze*zslog‘zl- )

The function w,, , satisfies

(azl +8 oz, +f
(ms > 7 ’
yz;+8  Y'z,+90

|
= s ’ (Um.s(Z I Z )
) Plyzy +0) @y (Y2, +0) e

for all (a l;)eSLz O; in particular, the function w,, defined by
Y

wm(zhzz):{ij% O, (21, 22) (3)

(if the limit exists) will satisfy

(azl+ﬁ o'z, +f
"\yz 40T Y+

) (2 40P 23 +6) (211 25). 4@

We want to prove that w, exists, is holomorphic, and has a Fourier expansion
given by Theorem 2, §2, with k=2. Since the Hecke-Eisenstein series was treated
by Hecke, we assume m>0.



40 D. Zagier

As in §2, we split up w,, ; as w,, (+2) 7, wf, ,, where 02 ((z,,z,) is defined
as the subsum of (1) with a fixed value of a. The series

1
0
walzy, 25)= —_—
(21 2) “Z:",,D (Azy+ X z,+b)?
beZ
is absolutely convergent and lin(} wy, s=wy. Therefore we only have to worry
s

about a+0. Let a>0 and split up the sum defining w?, ; as in Eq.(31), §2:

A —m/D
W)=Y Y o, (a(z1 +0)(z,+0)+ Az +0)+ 4z +0')+—7”1/—) (5)
AeR Be0
with R a finite set. The inner sum equals
_22s A A m
g oo o) (o)) ©
Denote by b, ((a, y,, v,) the Fourier coefficients in the expansion
Z q)s((zl + 9)(22 + 61)—(1) = z bv,s(av yl » )’2) e2ni(vzx Hye) (7)

el veb~ L

(x>0, 2, =x; +iy,,z,=x,+1iy,). Substituting this into (5), we see that wf, ¢ has
a Fourier expansion

LA VA
. . 2rifv=—+—= m
O)fn,a(zl’zz): Z eZm(vz,xv 23) (a—Z—ZsZe ( a a bv,s ( 5 ’yl’y2)>

ved~ L i€R ab

and therefore

wm,s(zl L ZZ)

< G m,v m ilvzi+vizy
:wr?z.s(zl’zl + Z (22 2(+Zs v (azD’yl’y2)> eZn( N ) (8)

ved !

with G,(m, v) as in Eq. (38),§2.

As usual, b, | in (7) can be evaluated by Poisson summation:

1 . .
by (e, y1,y2)=—= e PMEYE) o (2, 2) —0) dz, dz,
" ! 2 I/B Im z!=y2 Im zljzyl : 2
— 1 j’ qDS(ZZ)e—Zni(v'zz-# va/zy)

VB Imzy =y,

. o4
e—anv(zl—a/zz) (ps (Zl _ )dZI d22

Im z;y =y 23 9)
_ 1 —2mi(v'zz + vafza)
—“ﬁ}m 2Ly) ps(z;)e
] e Vo ()dtdz,.

Imt=y; ~Im(a/22)
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Consider the inner integral. Write y for y, —Im (a/z,).

y e~2nivt (ps(t)dlz j‘ e—Zniv()ﬁ' iy) q)s(x+ly)dx

Imt=y R §)
2nvy j‘ e—Znivxdx
S (i) (67 +y7)

2wivyu
—1-2s 2nvy :F € " du

i) (W21
where in the last line we have set u=x/y. The integrand is now holomorphic and
one-valued in the cut region € —[i,ioco]—[—ico, —i]. If v is negative, we can
deform the path of integration upwards to a path I starting at —¢+ico, circling
counterclockwise about the point i and ending at +e+ioco; if v is positive, we
deform the path of integration to the mirror image of I The resulting integral

in both cases is then holomorphic in s for all s and satisfies a uniform estimate
(Eq. (10) of [4]) which suffices to make the series

- m i{vzy vz
Z (Z a 272G, (m. Vb, (;IZ—D—,yl,h)ezm(\u 2)) (11)
ved ! \a—1

vE(0

(10)

=y

absolutely convergent for all s; therefore this series has a limit at s=0 which is
obtained simply by setting s=0 in each term. By Lemma2 of §2 (with k=2),

by o, yy ,)‘2):47121/% Jy @y avy)

(this is independent of y,, y,, so the limit of (11) as s -0 is holomorphic). There-
fore in (8) the sum of w?, ; and the terms with v=0 tend as s — 0 to the holomorphic
function ,; o ¢,,, €™ *V'# with ¢,,, as in Theorem 2, §2.

It remains to treat the term v=0 i (8). Eq. (10) for v=0 becomcs

) @s(t)dz_T‘ll(%;
Imt=y
where
W= [ A THhId)
=1 ey ey (12)

Substituting this into (9), we find

1. va) _ <) | Pslzy)dz,
() s 1252 1+2s
][D Imz; » (,V —Im __O(_)
Z
sy 7 dx

j S e

- 1+2s
]/5 — a0 . 2.2 238 ( XY, )
(P 4y i
(X+l)2) ( }2) M x2+y§

c(s) 1 x du

; \2s+1 j , 2stt -
VD T L (u2+1)5<1+a/)r12)
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The integral equals ¢(s)+ O{a/y, y,), with the constant implied by O uniform in s.
Therefore

© G,lm, O) m
22 2+23 (azD’yl’.VZ)

2c( )2 i Ga(m m, Q)

B § 450 0 0 S22,

Since |G, (m, 0)| < a?, the last sum is bounded for s — 0 and, since ¢{s) — 0 for s — 0,

. 1 . .
the second term tends to zero with s. Also, G,(m, 0)=E N, p(m) in the notation

of Eq.(82), §4, and — by Lemma3 of that section— the function ) N, ,(m)/a® has
—(D /q) -
1—-
pole at s=2. Hence Y G,(m,0)/a®"** has a simple pole at s=0 and, since c(s)
has a zero of second order, we see that also the first term of (13) tends to zero
with s. Therefore the terms in (8) with v=0 contribute nothing in the limit as
s— 0, and we deduce for the limit (3) the Fourier expansion

an Euler product with q-factor for ¢ D,, and therefore has a simple

wm(zlaZZ): Z CmveZni(vZI*-v'ZZ) (14)

ved !
v>0

with c,,, given by the same formula as in§ 2. In particular, w,{z, , z,) is holomorphic
and (by virtue of (4) and the absence of a term with v=0 in (14)) is in fact a cusp
form of weight 2 for SL, 0.

A similar calculation shows that if, in the context of § 3, we define a Poincaré
series of weight 2 by

Gl (z)=lim (§ Y 1 (At A) e2mimdzive o (cz+d))

$=0 " g_(delp~ Apl

(cf. Eq.(51), §3), then for non-trivial characters y G%(z) is a holomorphic cusp
form of weight 2 for the group I' and character y and has the Fourier expansion
Yooy g2 ™ with gh, as in (56) of §3. In particular, Eq.(65) and (66) of §3
define a function G,eS,(I3(D),( /D)). Since the calculation of §4 used only the
Fourier coefficients of w,, and G,, it remains true without any change. We have
proved:

Theorem. Let k=2 and, for m>0, define

1
(az 234+ Az, + Az ¥ b)Y laz z, + Az + Az, + b3S

wm(21722):£1_1:% ;Z
a,be
Aedp !
Ai —ab=m/(D

Then the functions ,, have all the properties which are asserted in Theorems 1, 2
and 3 (8§81, 2 and 4 respectively) for the corresponding forms of higher weight.
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Appendix 2: Restriction to the Diagenal

Given a Hilbert modular form F(z,, z,) of weight k, the restriction of F to
the diagonal in § x 9, i.e. the function F(z, z) (z€ D), is an ordinary modular form
of weight 2k for the full modular group SL,Z. This process can lead to interesting
modular forms: for instance, Siegel [ 117 has studied the restriction to the diagonal
of the Hecke-Eisenstein series of weight k. Since the Hecke-Eisenstein series is
(up to a factor) just our form w,, this suggests that it might be of interest to study
the forms w,,(z, z).

We have

ou(z,2)= Y a2+ (Trz+c)™" (1)

a,cef
Aed !
AX —ac=m/D

. d+byD
Let b=Tr AieZ and write A= at 1/- with d?=b?D (mod 4). Then (1) becomes

2y/D

w,(z,z)= > (az’>+bz+c)*,
a.b.c.def
d2- D(b? —dac)=-4m
where Y’ means that the 4-tuple a=b=c=d=0 is to be omitted if m=0. (The
condition d>=b>D (mod 4) can be left out since it follows from the equation
d*—(b*—4ac)D= —4m.)

Definition. For k>2 an even integer and for any nonnegative integer 4, set

1
. A Z) = ! S s 2
fk( " ) a.b;eﬂ ((122+b2+(')k ( )
b2—dac~A

where Z’ means that the term a=b=c=0 is to be omitted from the summation
in case 4=0.
Then the above equation can be written

1> +4
w,(z,2)= dZI Je (_‘_,bﬂ -’2-, z) . 3

d2= —4m(mod D)

Thus the modular form w,,(z,z) breaks up into an infinite sum of functions
£i(4,2). We now show that these functions are modular forms having similar
properties to the properties of the w,, considered in § 1.

Theorem. (i) For each 420, fi(4. z) is a modular form of weight 2k with respect
to SL,Z.
(1) £(0,z) is a multiple of the Eisenstein series of weight 2k.
(ii) fi(4,z) is a cusp form for 4>0.
(iv) fi(d,2)=0 unless A=0 or 1(mod 4).
Proof. (i) This is clear, since
2
a(£+ﬁ) +b(_zﬁﬁ

o y2+?) +e=(a* 22+ b* 2+ c)(yz+ )%,
yz
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with a*, b*, ¢* given by

b )= 8) G )6 D)
b*/2 e ) \y &) \b2 ¢/ \y &)
Then b*2-4g*c*=4 and (a*, b*, c*) runs over the same set as does (a, b, ¢).

(ii) If 4=0,the equation b>—4ac=A becomes homogeneous in q, b, ¢, s0 we
can remove the greatest common divisor of g, b, ¢ to obtain

1
0,2)={(k e
f’;( ) C( )a.b%:el (a22+bz+c)k
(a,b.c)y=1
b2=4ac
Now (a, b, c)=1, b*=4ac implies (a,c)=1, a= +m? c= +n?, b=2mn (with the
signs of a and ¢ agreeing) for some relatively prime integers m, n. Hence

£0,2=0(k)

m,neZ
(m,n)=1

(mz+n)2"

By the same argument, the Eisenstein series

, 1
sz(2)=m§elm
equals
1
R Y e o
(m,n)y=1
Therefore
LK)
S0, 2= 335 Ganl2) @

(iii) The whole Fourier expansion of f,{4, z) can be found by the method of
§2: one breaks up the sum

SLld,2)=£2(4,2)+2 ) fi(4,2)
a=1
with f&(4, z) defined by Eq.(2) with the summation restricted to a fixed value
of a; thus
1&(4,2)= Y h(bz)
b2=4A
(in the notation of (25), § 2) and
ffd, = 3 (azz+bz+
bZEAb(fnZod‘la)

for a=0. The Fourier expansion of f’ is then given by (26) and has no constant
term; that of fi° is found by breaking up the sum as

bZ—A>*"

bZ__A —k
(4, 2)= ) > (a(z+n)2+b(z+n)+ )
b(mod 2a) neZ 4(1
b2= A(mod 4a)
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The first summation is finite, so it suffices to show that the inner sum has a
Fourier expansion with no constant term. But the r® Fourier coefficient of the
inner sum is

2

4a

w+iC

f (azz+bz+

—w+iC

)_ke‘z’””dz (C>0) (5)

by the usual argument, and this vanishes for r<0 because the poles of the
integrand are on the real axis, below the line of integration.

(iv) This assertion is clear since the summation is empty otherwise.

. o b
We can evaluate the integral (5) by substituting t= —i (2+7) :
a
oo}iC e—Znirzd,, _ _ie"irb/aC+ioo eantdt
—w+iC ( 21 by b*— )k C—im (at +i)k
“ 4a 44
k+4 k+1 k—4% A .
2 A ("r‘/—) evirblaif 450 (62)
_ 4% Y ak—1y .
2k 2k
———-—(2i_7lr),67r2"‘1e’”"’/“ if 4=0 (6b)

(the integral is essentially the inverse Laplace transform of (s*+ 17" and is

evaluated in [ 1], (29. 3. 57). Recall that J, _, is an elementary function: the expres-

. T
(—daf-t 4o sm;]/rA
(k—1)! da*! ]/Z

Proposition. For 4>0, f,(4, z) has the Fourier expansion

sion (6a) equals 47 ) Therefore we have

A Z)— ZCA anrz

Ak k2 k42 k o0 A A
A (2ni) ¥ dk—1+;2.__n_r—2a ZSarAJ,‘_A(Ll/:), (7

Tok—1) 25y, AT_%(k nt . ’
where
S 8= ) e,(rh). (8)
b (mod 2a)
b2=4(mod 4a)

For A=0, we have
ﬁ‘(O,Z 2C k)“l" ZCO Zmrz

0 22k|ln2

=T ZkIZ—S(rO). 9
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As in §2, we can evaluate S,(r,0), for clearly

S.n0)= ) elro)

¢ (mod a)
¢2=0(mod a)

i1s multiplicative as a function of a and, for a=p™, is given b
p p g y

m/2l i plwi2l
p if pe

Spm{r,0)= o w2
0 if pelpr,

This implies

ZSa(ho)a*szﬂ(l+p_s).zd1~zs: C(V) szl_l

a=1 p dir {(2s) d|r

and thus (9) becomes simply

o ((ky 22krig?k
Tk k1) T2k (1)

This gives a second proof of 4).

I.
2.

3.

10.

12.
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