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Introduction 

The action of the classical modular group SL2(TI ) on the complex upper half- 
plane ~ has a natural generalization to an action of the group SL2((gx) on the n- 
fold cartesian product .~", where (9 r is the ring of integers of a totally real 
number field K of degree n. This is the Hilbert modular group, introduced by 
Hilbert towards the end of the last century and studied by his student Blumen- 
thal and later by Hecke, Maass, Gundlach and others. These authors showed 
how to compactify the quotient ~n/SL2((gK) t o  a (singular) projective variety 

~"/SL2((gK) by the addition of finitely many points ("cusps"), determined the 
function field in a few cases, constructed Eisenstein series and other modular 
forms for the group SL2((gr) and gave various arithmetic applications. 

The theory was given new impetus in 1970 when Hirzebruch [-4] showed 

how to resolve the singularities of ~"/SL2((gK) in the case n=2. He also 
calculated the Chern numbers of the non-singular models thus obtained and 
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studied the properties of modular curves on these surfaces, thus making it 
possible to apply the techniques of algebraic geometry and in particular to 
determine completely how the Hilbert modular surfaces fit into Kodaira's 
"rough classification scheme" (i.e. whether they are rational, K3, elliptic or of 
general type) [4, 8, 9]. However, there remains the problem of determining the 
isomorphism class of the Hilbert modular surfaces, rather than just their bi- 
rational equivalence class or Kodaira type. This problem seems to be very 
difficult and has been solved only in a few cases. In 1976, Hirzebruch gave the 

answer for th'e field Q(I/~) [6] and several other fields of small discriminant [7]. 

For example, the modular surface for Q(V/5) is related to a famous cubic surface 
studied by Klein. 

In this article we study various modular surfaces associated to the field K 

= ~(1/~).  In particular, let Y be the minimal desingularization of the surface 
obtained by compactifying 92//", where 

is the principal congruence subgroup of SL2(Cr) for the l~rime ideal generated 
by 2. In N3-4 we show that Y contains 10 exceptional curves and that the 
surface yO obtained by blowing down these curves is minimal and is isomorphic 
to the minimal desingularization of the quintic surface 

{ ~ ~ 5 4  4 } = 0 2  =0 3 

In w167 5-7 we study modular curves on Y and their images on S, showing that 
these images are always complete intersections and illustrating how their 
equations can be determined. In the last three sections we use the birational 
equivalence Y--*S to study the modular forms on F and on SL2((gK) and show 
how to express the coordinates of the map ~ x ~ x .~/F--*S in terms of 
Eisenstein series of weight one and weight two. Our thirteenth and last theorem 
(w 10) gives the structure of the ring of modular forms of arbitrary weight for the 
Hilbert modular group SL2((gK). 

w I. The Hilbert Modular Surface Y 

We denote by K the real quadratic field Q( l f~ )  and by • =C9~ its ring of 
integers. The group SLz((9 ) acts on 9 2 = 9  x ~ (where 9 =  {z~C I lmz>0} de- 
notes the upper half-plane) by 

~, ~z1+6'  ~' z2 +6']'  

where x~--~x' denotes conjugation over Q in K. The group SL2((9)/{++_ 1} acts 
effectively on .~ • 9. The subgroup F/{ +_ 1} (with F defined by (1)) acts freely. In 



m 

The Hilbert Modular Group for the Field Q(]/13) 95 

this section we collect some basic facts about the surfaces ~2/SL2((9) and ~2/r~ a 
reference for everything being the article [4] of Hirzebruch. 

The surface ~2/SL2((9) is the quotient of ~2/F by the group 

SL 2 ((9)/F _~ SL2 ((9/2 (9) ~ SL 2 OF,) 

of order 60. Both surfaces are non-compact and must be compactified by adding 
cusps;these cusps are in 1:1 correspondence with the orbits of IP~(K)= K tJ { oo} 
under the corresponding group. Since the class number of K is 1, there is only 
one orbit of ]PI(K) under 8L2((9), represented (say) by 0% so that .q,,)2/SL2((9) is 
compactified by adding one point: ~2/SLz((9)=~2/SLz((9)u {oo}. The action of 
F on IPI(K ) has five orbits, corresponding to the points of IPI(IF, 0, so ~2/F must 
be compactified by adding 5 cusps, represented (say) by o% 0, 1, e 0 and e 2, where 

3 + 1 / ~  is the fundamental unit of K. We number these cusps 0, 1, 2, 3 and 
%= 2 
4, respectively. The group SL2((9)/F~-SL2OF#) acts on these 5 cusps as 9/5, the 
alternating group on 5 elements. In future we identify SLz((9)/F with 9/5. 

Let Y(13) denote the minimal desingularization of .SE/SL2((9) and Y that of 
~2/F. The recipe for resolving cusp singularities was given by Hirzebruch in [4] 
and involves the periods of certain continued fractions. In our case, we find that 
the resolution of the cusp singularity of ~2/SL2((9) consists of 3 non-singular 
rational curves with the intersection diagram 

\ -s / -? (3) 

(the negative integers denote self-intersection numbers), whereas that of each 
cusp singularity of ~2/F consists of 9 non-singular rational curves with the 
intersection diagram 

-2 -5 

-2 -2 

-5 -~2 

-2 

(4) 

(the 5 cusps have isomorphic resolutions, since they are permuted by the group 
9/5). Under the action of 9.I 5, each cusp has an isotropy group isomorphic to 9/4. 
This group contains two involutions zl and z2 such that {1, zl, z2, z~z2} is a 
normal subgroup of index 3. The involution T~ has three isolated fixed points in 
a neighbourhood of the configuration (4). After blowing them up, we can 
visualize the action of the isotropy group which produces (3) as follows: 
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- 2 ~ - 2  blOWup,. 

-4 _~_2~- / ,  

-1 ' -10 -1 

dwideby - 
-3 -3 

-2 -2 

-2 2 - - ~  -2 ~ 7 ' ~ {  -2 action -5 divide -2 2 ~ "~"-2 blow W 

(Cf. [6], where a similar process for the cusps of the Hilbert modular surface for 

(l/~) is described in more detail.) 
Finally, we give the values of the numerical invariants of the surface Y. Since 

F/{ +_ 1} acts freely on .~2, the Euler characteristic of the quotient is given by 

e( f~/r )  = I o h ^ ~ = [ S L 2 ( ( o ) : r ]  S ~ ^ ~ 2 ,  
.~2/r .~2/SL2 (r 

1 2 where coj=-~yj- dxjAdyj (zi=xj+iy j, j= 1,2) is the invariant volume form 

in .~. Furthermore, 

S CO1A C0Z = 2 ( r ( - -  1)' 
~2/SL2(~) 

where (K(s) is the Dedekind zeta-function of K. Hence 

e(~og/r) = 60.2(x( - 1) = 20, 

and, since Y is the union of ~o2/F and 5 configurations (4), the Euler number of Y 
equals 65. On the other hand, the signature of ~2/F is zero and the 45 curves of 
the cusp resolutions (4) have a negative definite intersection matrix, so the 
signature of Y is -45.  Hence by the signature theorem of Hirzebruch and the 
theorem of Noether we find the values 

c2+c2 
cx2(Y)=-5, c2(Y)=65, z(Y)= 12 =5  

for the Chern numbers and arithmetic genus of Y. We recall that 

2 
Z(Y) = Y'. ( -  1) i dimHi( Y, ~r), 

i=o 

where (9 r is the structure sheaf of Y. Since dimH~ (gr)= 1 and the irregularity q 
=dimHl(Y,0r)  vanishes for all Hilbert modular surfaces, the geometric genus 
pg(Y)=dimH2(y, 0r) is equal to 4. 
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We denote by Ky the divisor class of a canonical divisor (i.e. the divisor of a 
meromorphic 2-form), or an element representing this class if no confusion can 
arise. Then 2_  2_  K r - c  1 - -5 .  

w 2. The Curves F N 

In this section we give the definition and main properties of the curves F N and 
T N which were studied in [4, 5, 9] and [10]. 

Let N be a natural number and consider in S5 x ~ the graphs of all linear 
fractional transformations 

,~t Z - -  a 2  ] / / ~  
z b----~ 

ax ~ Z  +/]. 

of determinant 13a I a z + 2 2' = N, where al, a2~Z, 2~(9 and the triple (al, a2,2) is 
primitive (i.e. no natural number > 1 divides as, a 2 and 2). The union of these 
graphs is invariant under the action of SL2((9); its image in ~z/SL2(C), or in 
.~Z/F, will be denoted by F u. We also consider the curves TN, which are defined 
similarly but without the condition that (al,a2,2) be primitive, since many 
formulas are simpler in terms of the T N. Clearly TN= o~2 FN/d~. The curve F N 

d> ,d /N 

in .~2/F is mapped into itself by the action of the group 9.15, the quotient being 
the curve F N in ~2/SL2((9). The curve F N is non-empty if N is a quadratic residue 
of 13. 

The curves F N have no singularities except ordinary multiple points and 
intesect one another transversally. Their intersection numbers were determined 
in [10] and can be given in terms of class numbers. These numbers are in 
general not integral, but only rational, since ~'~2/SL2((~) is a rational homology 
manifold. For  example, if N is not a square, 

?s-  
(TI'  TN)~/SL~w)=H~ ~z  H \ ~ 1 ,  (5) 

x 2 < 4 N  
X 2 ~ 4 N ( m o d  l 3) 

where H(n)e~TZ is the number of classes of binary quadratic forms (p of 
1 

discriminant - n ,  each counted with multiplicity I Aut(tp)l, and more generally 

(TM. TN)~/SL2(~,=d/(~. d (d )H~  (~-2 ) (6) 

if 13,~(M, N) and MN is not a square. The intersection numbers o n  ~2/F are 60 
times those given by (6) and are of course integers. 

The curves F N (resp. TN) on ~2/SL2((9) and ~ 2 / f f  determine curves on the 
non-singular models Y(13) and Y; these curves will also be denoted by F N (resp. 
TN). The curve F N intersects the cusp resolution(s) if there exists an element 
x eIPl ( K ) satisfying 
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a l V ~ x  x'-2'  x + 2x' +a2 ]f-~=O , 

i.e. if N is a norm in K. The way F N intersects the cusp resolution on Y(13) was 
described in [9]. Using our knowledge of the action of 9~ 5, we can determine 
how FN and T N meet the cusp resolutions of Y We find, for instance, that T,2 
meets each ( -5 ) -curve  in the cycle (4) transversally in 2n points and that T3,2 
meets each ( -2) -curve  in (4) transversally in 2n points, the intersection points 
being given in both cases by u 2"= 1, where u is a coordinate on the ( - 5 ) -  or 
( -2 ) -curve  which takes on the values 0 and ~ at the intersection points with the 
adjacent curves in the cycle. All other intersections of the T N with the cusp 
resolutions occur at intersection points of adjacent curves of a cycle. At a 
common point of a ( -2) -curve  and a ( -5)-curve,  the curve TN is given by the 
equations u2q=v 2p, where (u, v) are local coordinates in Y such that u = 0  is the 
local equation of the ( -  5)-curve and v = 0 that of the ( -  2)-curve, and where p 
and q are positive integers such that p2+5pq+3qZ=N. Similarly, at the 
meeting point of two (-2)-curves,  T N is given by uZq=v zp with p,q>O and 3p 2 
+7pq+3q2=N, where u = 0  and v = 0  define the two (-2)-curves.  Thus we get 
the following intersection picture: 

\/ _ 

F / \ " - /  \ ~ g 2  

We denote the ( -5)-curves  of the cusp resolutions (4) by D B ( f l= l ,  ..., 15) 
and the ( -2) -curves  by E~ (~=1 . . . . .  30). Then the above description of the 
intersection of T N with the cusps leads to the formulas 

(TN'Dt~)r=aN =2 ~ 2 P + {  2n (N=n2)  
p, q > o , 0 (N ~e square) 

p2+ Spq+ 3q2=N 

(TN.E~)y=bN= ~ 2q+  ~ 2p 
p , q > O  p , q > O  

p2 + 5pq+ 3q2= N 3p 2 + 7pq+ 3q2= N 

2n ( N = 3 n  2) 
+ 

0 (N/3 =4= square). 

(7) 
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On the other hand, the Chern class c 1 of Y can be represented by a differential 
form 71 +72, where Y2 represents in HZ(Y) the Poincar6 dual of the homology 
class of the cusp resolutions, and where 71 has support disjoint from the cusp 
resolutions and satisfies 

S ~1 = ~ (~~176 
Fly FN 

with ~ol, ~o z as in w 1 (cf. [4], 4.3). Also 

~1 = ~ ~Oz=VOI(FN), 
Fzv FN 

where vol(FN) is the Euler volume of F N. Hence 

(c 1" FN)Y = 2 voI(FN) + FN" (cusps). 

Of course a similar formula holds for T N. Using the formula for vol(Tn) given in 
[10], we find 

din 
(8) 

with aN, b N given by (7). Note that (c 1 �9 FN)r= - K r . F  N. 
We consider three examples of curves FN in detail. 

N = I .  The curve F I on Y(13) consists of one component,  so the components of 
F~ on Y are permuted by 9.I 5. It therefore suffices to consider the component 
given by z 1 = z  2. The subgroup of F that maps the diagonal z 1 = z  2 in .~2 into 
itself equals F(2), the usual congruence subgroup of level 2 in SL2(7I ). Since F(2)/ 
{ + l }  has index 6 in SL2(•)/{+__I} (which is the subgroup of SL2((9)/{+__1 } 
preserving the diagonal), we find that F 1 has 60/6 = 10 components in ~2 /E  Each 
is isomorphic to ~/F(2) and hence is compactified by adding three cusps, the 
result being a non-singular rational curve. The component defined by z l  = z  z 
intersects each of the cusps 0, 1 and 2 transversaUy in a point of a ( -  5)-curve. 
By the action of 9.I 5 we see that each component of F 1 meets exactly three of the 
five cusps, so that the components can be conveniently numbered F~ j 
(0 < i < j  < 4), where i and j are the indices of the two cusps which the component 
does not meet. From (7) and (8) we find (C 1 "FOr= 10, so the value of K r- F~ j 
(which must be the same for all i, j) equals - 1 .  Hence each component o f  F 1 is an 
exceptional curve (i.e. a non-singular rational curve with self-intersection number 
-1). Blowing down these 10 curves we obtain a new surface y0. This surface is 
non-singular and contains 10 points Pij which are the images of the F~ J under the 
blowing down map Y~ y0. We draw a picture of the image of one of the 
configurations (4) (say the resolution of the 0-th cusp) in yO: 
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/ /  P12 01 P34 \ 

~ ,~  ? P,, (9) 

N =4. Consider the component of F 4 defined by 

z~ =t  + l / ~  " ~  4 ' z z = t - - - 4  - (teO). 

This component intersects only cusp 0; in fact, ~ represents oo in IPIOF4) and 

,r 
x - x  = T  holds only if x is F(2)-equivalent to oo in IPI(K). Comparing the 

subgroups of SL2((9 ) and of F which map this curve in .~ x .~ to itself, we see 
that the curve F 4 on Y has five components. Each component intersects one of 
the configurations (4) transversally in six points, two on each (-5)-curve. We 
denote by F 4 (i= 0, 1, 2, 3, 4) the component of F 4 which meets the resolution of 
the i-th cusp. The subgroup of 9.15 that keeps a component F 4 invariant is 
isomorphic to 9.I4; by the Hurwitz formula for branched coverings we find e(F'4) 
=2, so F~ is rational. Applying formula (8) we find ( q .  F4) r = - 1 0 ,  s o  Ky. F~ = 2 
for each component. By the adjunction formula 

i i 2 Kr .  F~, +(F],) = - 2 ,  

the self-intersection of F~ is - 4 .  Since f~ is disjoint from FI, the image curve in 
yo (for which we use the same symbol F4) also has self-intersection number - 4  
and hence Kro./7,~ = 2. 

N--- 13. The curve in ~ x .~ defined by 

3 v z,- 4 r  = 0 

is transformed into itself by a subgroup of F that has index 6 in the correspond- 
ing subgroup of SL2((9 ). We find 10 components and (c l .F13) r=-80 .  Since 
(Fl.F13)r=30 by formula (6), Kro. F13=50. Just as in the case of F 1, each 
component of F~ 3 meets exactly three cusps and we can write Fa 3 = U /7;; where 
F~ does not meet cusp i and j. 
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w 3. A Canonical Model for Y 

As we just saw, the curve F 1 on Y consists of 10 exceptional curves which can be 
blown down to give a non-singular surface yO. This surface has the numerical 
invariants ~ = 5, c 2 = 5. This implies that yO (and hence Y) is of general type, i.e. 
that the sections in a sufficiently high tensor .power of the canonical bundle 
determine a birational map of yO onto a projective algebraic surface (see [8]). In 
this section we show that yO is a minimal model of Y (i.e. does not contain any 
exceptional curves) and determine its image under the 1-canonical mapping. 

Proposition 1. The surface yO is minimal. 

Proof We use the method introduced in [2], which is based on the following 
assertion: Any non-singular rational curve C on Y has at least three points in 
common with the curves of  the cusp resolutions. Indeed, if not, then by deleting 
from C its intersection points with the cusp resolutions we would obtain a curve 
in .~ • ~ / F  isomorphic to IP1, 112 or 112" and hence a curve in the universal 
covering .~z of ~2/F isomorphic to IP~, IE or C*. But this is impossible since, 
according to the theorem of Picard, none of these curves admit a non-constant 
holomorphic mapping to .~. Of course, the same principle applies to yO. 

Now suppose that yO contains an exceptional curve E. Then E has at least 
three points in common with the curves coming from the cusp resolutions. These 
curves are either ( -2) -curves  or ( -3)-curves  (i.e. non-singular rational curves 
with self-intersection - 2  or -3) .  There are now four possibilities: 

i) E.  C > 2  for some ( -2) -curve  or ( -3) -curve  C; 
ii) E intersects at least two (-2)-curves,  each transversally in one point; 

iii) E intersects two ( -3)-curves  and one ( -2 ) -curve  transversally in one 
point; 

iv) E intersects at least three ( -3)-curves  transversally in one point. 

By blowing down E in case i) we obtain a non-singular rational curve with 
self-intersection > 0. In case ii) we get two intersecting exceptional curves. By 
blowing down E and the exceptional curve arising from the ( -2 ) -curve  in case 
iii) we obtain two ( -2)-curves  with intersection number > 2. Finally, in case iv) 
we obtain three ( -2) -curves  with a common intersection point. However, as 
explained in [8], such configurations cannot occur on a regular surface of 
general type. 

Theorem 1. There exist 5 sections s i~H~ ~ Kro) such that the canonical mapping 

�9 : y ~ (s o (y):sl(y): s 2 (y): s3 (Y): s4(Y)) (10) 

is a holomorphic mapping of  degree 1 onto a quintic surface S in lP 4 determined by 
the equations 

O'1-----0 , ,~, 0"2 0"3 + # O'5 ---- 0 (11) 

for some 2 , # e ~ ,  where a i is the i-th elementary symmetric function in the 
coordinates x o . . . . .  x 4 of  lP 4. Moreover, S has 15 singular points, each resolved by 
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a configuration 

in yO. 

Proof. The geometric genus pg(yO) of yO equals 4. This means that for any three 
points qt, q2,qaeY ~ there is at least one effective canonical divisor passing 
through qx, q2 and q3. 

Now consider the configuration (9) on yO arising from the resolution of the 
cusp 0 on Y, and let D be an effective canonical divisor passing through P12, P34 
and P~3- Since Kro. I)1 = 1, the divisor D must contain D~. But Kyo.E~=O, so / )  
must also contain El, E 6 and hence also E 2 and E 5. Then it also contains 1)3, 
E3, E4 and DE. Thus D contains all nine curves in (9). Also, the component F~ of 
F 4 passes through each of D1, DE and D 3 twice (see above) and Kro F~=2, so D 
must contain F~. Hence 

6 3 

D= Z a~E~+ ~, b~D#+cF~+R 
a = l  ~=i 

with a~,ba, c>l  and RE~>O (1<~<6) ,  RDa>O ( l < f l < 3 ) ,  RF~>O and 
Kro R_>-0. The relation 

3 

5=K2o=KroD = ~ blj+2c+KroR 
# = 1  

implies b 1 = b 2 = b  3 = c =  1 and Kro R=0 .  By intersecting D with D 1 we find 

1 = Kro D~ = D D  1 = - 3 b  1 + a 1 + a 6 + 2 c  + R D ~  = a i  + a 6 + R D  1 - 1, 

so a l = a 6 = l  and RDI=O. Thus a , = l  for all ~ and RDr for all ft. Similarly 
RE,=O, RF4=O. Since the canonical divisor D must be connected ([1], w 4), R is 
empty. It also follows that El, ..., Ea5 are the only (-2)-curves on yO. Indeed, by 
the assertion used in the proof of the-preceding proposition, any other ( - 2 ) -  
curve would have to intersect some cusp, say the 0-th, and would then be 
contained in D, a contradiction. 

In this way, we have constructed a canonical divisor D consisting of the 
curves of the 0-th cusp resolution together wi th /~ ,  all with multiplicity 1. Let s o 
be a section of Kro with zero-divisor (So)=D. By the action of a subgroup Z 5 of 
9.I 5 which permutes the cusps cyclically we get 5 sections si~H~ ~ Kro), i 
= 0, 1, 2, 3, 4, where the zero-divisor of s i consists of F~ and the curves of the i-th 
cusp resolution. We claim that 

4 

(i) the sections So, sl . . . . .  s4 satisfy the linear relation ~ s i=0  and no other 
linear relation, ~= o 

(ii) any element neg.l 5 acts on the s i by si~--~cs~t o, where c#:0 depends on n 
but not on i, 

(iii) the sections si do not have a common zero. 
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4 

Indeed, since pg(Y~ there must be some relation ~ A i si=O among the 
i = 0  

s~, and this relation is unique (sl, s2, s3, s 4 are linearly independent, since exactly 
one of them is non-zero at each of the four points Poi, 1 < i<4 ) .  Applying the 
action of the group Z 5 to the relation, we see that all Ai are equal. This proves 
(i) but also (ii), since clearly n*s~=c~s~ti) for some number c ~ . 0  (the two 

4 
sections have the same divisor), and the only way for the relation ~ sg = 0 to be 

i = 0  
preserved is that c i should be independent of i. Finally, since the curve F~ does 

o 1 1 1 
not intersect the 0-th cusp, we have F 4 F~ =DF~, = Kyo F~ = 2, i.e. any t w o / ~  meet 
in two points (which are outside the cusp resolution). On the other hand, on F~ 
we have 8 points corresponding to the quotient singularity of order three on 
F4c.~2/SL2((9), and these must be the intersection points of F~ with the other 
F~. Hence there is no point lying on all of the divisors (sl). 

We have proved that the mapping (10) is a well-defined mapping from yO 
4 

into the hypersurface IP3 c l P  4 defined by 0"1 = ~ x~=0 and that it is equivariant 
i = 0  

with respect to the action of 9.15 on IP 3 defined by the permutation of the 
coordinates. Since K~o = 5, it is either a holomorphic mapping of degree 5 onto a 
surface of degree 1 in IP a or a holomorphic mapping of degree 1 onto a quintic 
surface. But the first case would contradict (i) above, so the image of yO is a 
quintic surface. The defining equation of this surface is invariant under ~5 and 
hence must have the form (1 i) for some constants 2,/~ not both zero. Finally, the 
mapping (10) sends (-2)-configurat ions to rational double points and is other- 
wise biholomorphic. Since we have already shown that the only ( -2) -curves  
on yO are the 30 curves E~, this proves the last assertion of the theorem. 

w 4. Quintic Surfaces in lP 3 which are Invariant under ~I s 

In this section we determine the coefficients 2 and # in the equation (11). We will 
show that the equation of S is 

a 1 =0 ,  2a5 =0"2 0"3 (12) 

(this is equivalent to the equations in (2)). This follows immediately from 
Theorem 1 and the following result 

Theorem 2. In the family of quintic surfaces S~:,) in IP 4 given by 

S(2:/t) = { (Xo:  . . .  : Xa)E:IP4[ 0-1 = 0 , / ~  0"2 0"3 't- lu 0"5 = 0 }  

(where 0"k denotes the k-th elementary symmetric polynomial in x o . . . . .  xa), all but 
the following 6 are non-singular: 

(i) 0"5=0 (reducible, consisting of 5 planes, meeting along 10 lines which in 
turn meet 3 at a time in 10 points), 

(ii) 0"2 0"3 = 0  (reducible; consisting of a quadric and a cubic surface meeting 
along a non-singular sextic curve), 
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(iii) 2a s + az aa = 0  (20 singularities, namely the ~5-orbit of ( - 2 "  - 2 :  - 2 : 3  

+ l/~-L-7: 3 - ~ -  7)), 
(iv) 2 5 a s - 1 2 C r z a 3 = 0  (10 singularities, namely the ~5-orbit of ( - 2 : - 2 :  

- 2 : 3 : 3 ) ) ,  
(v) 50as +a2 or3 =0  (5 singularities, namely the ~5-orbit of (1:1" 1:1: -4)) ,  

(vi) 2~rs -a2~r3=0 (15 singularities, namely the ~5-orbit of (0: 1 : - 1 :  1: 
- 1 ) ) .  

4 
k which Proof It will be more convenient to work with the power sums S k = ~ x~, 

i=0  
are related to the a k by the well-known formulas of Newton (here S 1 = al  =0,  S 2 
= - 2 a 2 ,  S3=3Ga, $ 4 = - 4 ~ 4 + 2 a ~ ,  $5=5~5-5a2~3). Then the equation of 
S~a:,) becomes 

SI~-~-0 , tS2S3-~-1S5=0 (13) 

2+/~ 
with t = - - - .  Since the cases 2 = 0  and # = 0  correspond to the obvious 

6p 
reducible cases (i), (ii), we assume t 4: - ~ .  

Let p=(xo :  ... :x4) be a singular point of Sta:u ). Its coordinates must satisfy 

O-~-(tS2S3q-�89 . ( i = 0 ,  . . . ,  4)  

for some u, i.e. 

x4+(3tS2)xZ+(2tS3)xi-u=O ( i=0  . . . .  ,4). (14) 

Summing over i, we find that u is given by 

S4 + 3tSZ-5u=O. (15) 

Since the five coordinates xl satisfy the quartic equation (14), at least two xl 
must be equal (but not all x~, since S 1 =0). We can then distinguish the following 
five cases 

Case p is equivalent to Number of points 
in ~s-orbi t  

I 

II 
III 
IV 
V 

(a, ~, a, a, fl), 4 ~ =  - f l + 0  5 
(a,~,a, fl, fl), 3 ~ ' - - - 2 f l + 0  10 
(~, ~, ~,/~, ~), 3 ~ + / ~ + ~ = 0  20 
(~, ~,/~,/3, ~), 2 ~ + 2 / 3 + ~ = 0  15 
(~, ~,/~, 7, 6), 2 ~ + f l + y + 6 = 0  30 

where ~, fl, ~ and 6 are distinct. In cases I and II, (13) is satisfied only for t =  
13 respectively, giving cases (v) and (iv) of the theorem. As to -1-~0 and t =  - i T 6 ,  

the other three cases, we observe that the coefficient of x 3 in (14) is 0, so the sum 
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of the roots of the quartic equation is 0. This implies that the roots of the 
quartic are ~,fl, 7 and 2~ in Case III and ~, fl, 7 and ~+f l  in Case IV. 
Consequently, in Case III the quartic (14) is identically equal to (x-~t)(x-f l)(x 
- 7 ) ( x - 2 ~ ) ;  comparing coefficients (using Eq. (15)) we get 

( 1 6 t + 2 ) ~ 3 - ( 6 t + l ) ~ f l T = 0 ,  

(36t+  7) o~ 2 - ( 6 t +  1) fl 7 = 0  

- 3 +_ } / -  7 giving Case and hence (since t 4: - 61- implies ~ oe 0) t = - �88 and fl, 7 = 2 ' 

(iii) of the theorem. Similarly, in Case IV the quartic (14) is identical with (x 
- ~ ) ( x - f l ) ( x - 7 ) ( x - ~ - f l )  and comparing coefficients we find t= -13~  and 7 = 
- 2 ( e  + fl)= 0, giving Case (vi) of the theorem. Finally, in Case V, the four roots of 
(14) are ~,fl,~,6 so we must have - ~ = ~ + f l + 7 + 6 = 0 .  Then $2=-20"2(fl ,7 ,6 ) 
and S3=3a3(fl,7,6), so the quartic equation having the roots ~=0,/3,  7 and 6 is 
X/4 1 2 1 --2S2x~-~S3x~=0,  which can agree with (14) only in the excluded case 
t = -61-. This completes the proof. 

Observe that the surfaces S{~:,) are the fibres of the projection map V~IP1, 
where V c I P  4 x IP~ is the threefold defined by 

V =  {((Xo : . . .  :x4), (2:#))elP4 x IPll a l  = 0 ,  2 0"2 a3 + #  0"5 = 0}.  

Each of these fibres contains the 15 lines 

x~+xj=O, Xk+Xi=O, X,.=O ({i,j,k,l,m}={O, 1,2,3,4}) 

and the 5 conics 

(16) 

4 4- 
x i=0 ,  Z x j=0 ,  Z x 2 = 0  (i6{0,1, 2, 3, 4}). (17) 

j=0  j=O 

In order to determine the singularities of V, note that, if 2p#:0,  a point q 
=((Xo:. . . :x4),  (2:p))~V is singular if and only if 0.20 .3~0,  0"5=0  and the xl 

( satisfy (14) with t -  ~ ].  If 2=0 ,  then a20"3=0, as = 0  and the x~ satisfy 

(14) with t = - ~  and u = 0. If # = 0, then 0"2 0"3 = 0, 0"5 = 0 and the x~ satisfy 3 S z x 2 
+ 2S  3 x~=0 (0< i<4), so $2 =0  and S 3 =0. Therefore V has 75 singular points: 

15 in the 

20 in the 

30 in the 

10 in the 

~5-orbit  of ((0:1 : 1 : - 1 : - 1), (1 : -2 ) ) ,  

~5-orbit  of ((0:0:1 : p : p2), (0:  1)), where p = e 2'~i/a, 

~5-orbit  of ((0:1 : - 1 : i: - i), (1 : 0)), and 

~5-orbit  of ((0:0 : 0:1 : - 1), (0: 1)). 

Digression: The extended Hilbert modular group for Q(k/~)  

The methods introduced so far apply to another case. Until the end of this 

section, let K = Q ( V / ~ ) .  Again there is a subgroup FcSL2((gr) of index 60 
defined by (1) and we can define a modular surface Y by compactifying ~ 2 / / -  
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and resolving the cusp singularities; here the numerical invariants of Y are c~ = 
- 10, Z = 5 and the resolutions of the five cusps are cycles consisting of six ( - 5)- 
curves. There is an involution c~ on ~2/F defined by (z 1, z2)~--,(e zl, e' z2), where E 

= 55 + 1 2 1 / ~  generates the group Ua of units - 1 (mod 2). The quotient of ~2/F 
by ~ is .~2/F e where 

fllv   e, 6el +2(_gK, fl, 7s2(.9 ,ctf_flT=e} re=r {  /vq  /vql 
is the extended Hilbert modular  group. Let Ye be the minimal desingularization 
of .~2/F~ u {cusps}; then Ye is isomorphic to Y/fi, where Y denotes the surface 
obtained by blowing up the fixed points of ~ on Y and ~ the extension of the 
involution ct to Y. By the Hurwitz formula, therefore, 

y 5 r 
c~(Ye)=--5, z( ~)=~+~, 

where r is the number  of fixed points of c~ on Y In particular, r . 0 .  But then 
r > 2 0  since the set of fixed points of e must be invariant tinder the operation of 
G=SL2((gK)/F and the surface .~2/SLz((gK)=(~2/F)/G has quotient singularities 
only of order 2 and 3. Hence x(Y~)>5. By blowing down F 1 (which again 
consists of 10 exceptional curves) on Y~ we get a surface yo with c 2 ( y ~  and 
pg(YeO)=pg(Ye)=Z(Ye) - 1. By an argument  like that in w 3 one shows that Ye ~ is 
minimal;  now the inequality c 2 > 2 p g - 4 ,  valid for minimal surfaces of general 
type ([1], Theorem 9) implies Z(Ye)=5. Using the cusp resolutions and F 4 as in 
the proof  of Theorem 1, we conclude that the canonical map is a holomorphic 
map of Ye ~ onto a quintic surface in IP 3 c l P  4 having 20 singularities, each with a 
resolution consisting of one ( -2) -curve .  Theorem 2 then implies the following 
result: 

Theorem 3. The minimal model Ye ~ of the Hilbert modular surface corresponding to 
the congruence subgroup of level 2 in the extended Hilbert modular group for 

I ~ ( 1 ~ )  is isomorphic to the minimal de singularization of the quintic 

x=(Xo:  ... : xi=O, xi - ~  . 
i = 0  i=0  j 

w 5. The Involution �9 and a K 3 Surface 

The involution (zl, 2"2)]'"~ (.72,.71) of ~ x .~ induces an involution z on Y. Since the 
curve F1 is transformed into itself under z we obtain an involution z ~ of yO. 
F rom the definition of the involution it follows that the cusps 0, 1, and 2 
(corresponding to 0% 0 and 1 resp.) are fixed and that the cusps 3 and 4 are 
interchanged. Therefore (z~ * s i = +__ s i for i =  0, 1 and 2, and (To) * s 3 = _ s4, where 
(z~ * is the involution on H~ ~ Kro ) induced by z ~ and the sections sl are as in 

4 

Theorem 1. Since the relation ~, s i = 0 has to be preserved the signs are equal. 
i=O 
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Hence the involution of the quintic surface S which is induced by t ~ is given by 

"~S: (Xo:XI:X2;X3:X4) I-"'*(Xo:X1;X2:X4:X3)" 

The fixpoint locus of z s can easily be determined. It equals: 

{(X0: . . .  :x4)ElP3clP4tx3-x4=O} k3 { ( 0 : 0 " 0 :  1:  -1)}.  (18) 

It is known ([4]) that the 1-dimensional part of the fixed-point set of the 
involution of .~2/SL2((9) induced by (z 1, z2)~-+(z 2, zl)consists of the two curves 
/:1 and F~ 3. Hence the 1-dimensional part of the fixed-point set of the involution 
on ~ x ~/F  is contained in F 1 w F 13 on .~ x ~/E One easily verifies that none of 
the curves of the cusp resolutions in Y is pointwise fixed under z. Also the 
inverse image of the point (0 :0 :0 :1 :  - 1 ) e S  in yO is the point P34 obtained by 

34 34 
blowing down the curve F x c Y. It now follows from (18) that the image of F13 
in S is the curve given by x 3 - x 4 = 0  (recall that F ~  denotes the component of 
F~3 which intersects the resolutions of cusps 0, 1 and 2) and that the fixed point 
locus of T in Y consists of the two c u r v e s  F~ 4 and F ~ .  By virtue of the 9Is- 
symmetry, it is clear that the image of F~3 in S is given by x l - x j  = 0. 

Now consider the surface Y' obtained by blowing down the nine components 
F'I j (i, j):~ (3, 4) of/71 in Y (or by blowing up the point P34 in Y~ involution 
induces an involution ~' of Y'. 

Theorem 4. The quotient Y'/z' is non-singular. Its minimal model, obtained by 
blowing down 3 exceptional curves, is a K3 surface, namely the non-singular model 
of the double covering of IP 2 branched along the sextic curve 

(Z 3 + S3) 2 -4Z1(S  2 -  X2)(Z3- S,  Z2) =0 ,  (19) 

where Z1, X2, X 3 denote the elementary symmetric functions in the coordinates of 

Proof. The fixed-point locus of z' is 1-dimensional (it consists of the images of F~' 
and F~), so Y'/T' is non-singular. We use the Hurwitz-formula for branched 
coverings. The canonical classes of Y' and Y'/z' are related by 

K r  = ~* Ky,/,, + F~ 4 + F~s, (20) 
6 

where ~: Y'--,Y'/T' is the natural map. The divisor F ~ ' + F ~ +  ~ E~,, where 
i=1 

E~I, ...,E~6 are the images of the (-2)-curves in the cusp resolutions which 
intersect F~3 , is a canonical divisor on Y' (namely the pull back of (x 3-x4)  on S 
ptus the exceptional curve). These six (-2)-curves E project down to three 
exceptional curves on Y'/z' and by (20) these three curves together form a 
canonical divisor. Blowing them down, we obtain a K3 surface. 

Now consider the projection of 8 from (0: 0: 0: 1 : - 1 )  onto the (x o, xl, x2)- 
plane. This projection factors through the involution Zs and exhibits S/z s as a 
twofold covering of IP 2 branched along a curve R of degree 6. If we write 
~1, Z2, Z3 for the elementary symmetric functions in Xo, X ~ and x2, then the 
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equations of S take the form 

x 3 + x 4 + X l = O ,  

,~1(x3 x4)2 _(,~3 +~:3) x3 x4 + (2;2 - ~:2)(2;3 - S 1  2;2)=0. 

The equation of the branch curve R is obtained by setting the discriminant of 
the quadratic equation equal to zero. 

Remark. Each component F~3 of F13 is isomorphic to ~/F0"(52), where 

Fo,(52)=Fo(52)wFo(52 ) ( 0 

t 
and is a non-singular curve of genus 3. The equation for FI~ on S enables us to 
give a (singular) model for this curve in 1P2(x o, xl, x2). In fact, F ~  is given by the 
equations 

X 3 - - X 4 = 0  

O " 1 = 0  

20"5 - -  0"20"3 = 0 .  

Using the symmetric functions 2; i in Xo, X1, X 2 as defined above, we find by 
elimination 

32;~ - 162;3 2; 2 +202; 22~ a + 162;i 2;~ - 162;2 2;a =0.  

This curve in IP 2 has 3 singular points: (0: 1: 1), (1:0: 1) and (1 : 1:0). 

w 6. Defining Equations for Modular Curves 

In N 3 and 4 we defined a map from the Hilbert modular surface Y onto a 
quintic surface S c IP 4. In this section we study the images of the modular curves 
FNc Y in S and in particular prove that the image of any F N (N 4= 1) is a complete 
intersection in IP4. 

We have already determined, at least implicitly, the equation in S of the 
i '  

images of several curves on Y In particular, the ten components F1J of FI are 
mapped to the ten non-singular points Pij of S lying in the ~5-orbit of Pol =(1: 
- 1 : 0: 0: 0) (since the image of F~ j in yO is the point Pij where the three sections 
s k (k 4= i, j) vanish) and the thirty ( -  2)-curves of the cusp resolutions are mapped 
to the fifteen singular points of S, i.e. to the points in the ~ls-orbit of (0" 1 : 
- 1 : 1 : - 1 ) .  We claim that the fifteen (-5)-curves of the cusp resolutions and 
the five components of the curve F 4 are mapped to the fifteen lines and the five 
conics on S given by Equations (16) and (17), respectively. Indeed, from the 
construction of the s i in the proof of Theorem 1 it is clear that the divisor of a 5 

4 
= I'I xl consists of the image of F 4 together with all of the curves coming from 

i = 0  

the cusp resolutions. Since as= �89  on S, this divisor is the union of the 
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divisors of a3 and 02, which are given by Equations (16) and (17), respectively. 
The intersection points of the various components of F 4 are the twenty points in 

e 2~i/3 Finally, as we saw in w 5, the image of the 9,Is-orbit of (0: 0: 1 : p : p2), p = 
F13 in S is the zero-divisor of the polynomial 

f~3(x0, ..., x , ) =  H (x,-xj).  (21) 
0 = < i < j = < 4  

We now show that all of the modular curves F n (N4=l) are complete 
intersections in S, i.e. that each such curve can be given in IP 4 by the defining 
equations of S and one further equation. We will determine this equation for 
several values of N in w 7. 

Theorem 5. The image in S of each modular curve Fn, N 4 = 1, can be given by a 
single equation of the form 

fN(xo ... . .  x4) = 0, (22) 

where fN is a homogeneous polynomial whose degree aN is given by 

~N/a~= 2 ~ ( d )  \ --,(d+N]-12HO3(N) - 3aN_6bN, (23, 
d> l d in  
d2] N 

with H~ (N), as, b N as in Equations (5) and (7). The polynomial fN is given by (21) 
for N= 13 and can be written as a polynomial in the elementary symmetric 
functions 0"2, 0"3, 0"4 if N +- 13. 

Proof. We will prove that for each F N (N 4= 1) there exists an effective divisor S N 
on Y consisting only of ( -2)-curves  from the cusp resolutions such that 

FN+(aN+ I FN Ft) F 1 + S  N (24) 

is an an-canonical divisor. The pull-back of the hyperplane bundle of S under 
the 1-canonical map (10) is the canonical bundle of yO. Since S is a surface 
whose only singularities are rational double points, each section of the ~s-th 
tensor power of the hyperplane bundle of Y can be extended to a section of the 
~N-th tensor power of the hyperplane bundle of IP 3. Hence, if the divisor (24) is 
an-canonical, its image in S is the divisor of some homogeneous polynomial fn 
of degree a N. Since (24) is invariant under 65,  this polynomial is either invariant 
under 6 5 or else changes sign under odd permutations of the coordinates. In the 
former case fN can be expressed in terms of the a i (and hence of 0"2, a3, a4); in 
the latter case, fN is divisible by the polynomial (21) and hence its divisor F n 
contains Fx3, so N =  13. 

In order to show that (24) is an an-canonical divisor, note that H2(Y; Q) 
splits as the direct sum of Im(H2(~2/F; Q)--}H2(Y; Q)) and W, where W is the 
subspace of H2(Y; Q) generated by the homology classes of the 45 curves E~ and 
D~. We define F~ as the component  of the homology class [FN] of F n in 
Im(H2(~2/F; Q) --} H2 ( Y; Q) ). The Poincar6 dual o f / :~  is invariant under the 
action of 9.15 and hence comes from a class in 

Im(H2(~2/SL2((9); Q ) ~ H 2  (Y(13); ~)) 
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which is invariant under the involution z* and of type (1, 1) in the Hodge 
decomposition of H2(y(13); ~). But the dimension of the space of such classes 
was computed in [-5] and equals 1. Hence there exists a 2~Q such that 

F~ + (aN+ ~A-6 FNFO F~=2(F~ + 2 FO, 

i.e. 

[,t~] + ( ~  +~o f~ ei)[,Fd + S~ = ~([F,] + 2 [,f~-I) (25) 

with SNOW. On the other hand, the number a N defined by (23) is an integer 
satisfying 5aN= Kro F N on yO (this follows from (5) and (8) and a comparison of 
K r and Kro; recall that TN=d~ N FN/d2 ). Also, F 4 is a 2-canonical divisor on y0, 

because its image in S is the divisor of a2. Hence 

F 4 F N = 10 a N (26) 

(the intersection number is the same on Y and on yO, since F4 F1 = 0). Therefore, 
intersecting (25) with F 1 an d F 4 and using F~ = -10 ,  F~ = 20, we obtain 

-IOaN+SNFI= - 2 0 2 ,  10~N+SN F4=202 

and hence SN(F4+Fi)=O. On the other hand, S u lies in the space W generated 
by the classes of the E, und Dp and is 9.Is-invariant, so 

15 30 

SN =du Z [-Op] + e N Z [E,]  
//=1 a = l  

for some dN, e N. Since (F4+FODa:~O and (F4+FOE~,=O, we must have dN=0. 
Intersecting both sides of (25) with E, now gives eN=FNE ~. In particular, end7/,. 
Using the well-known sequence 

... ~ n ~  (y, (gr) ~ n  1 (y, (_9*)~n2(y; 71)~... 

and the fact that q(Y)=dimHl(Y,(gr)=O we see that homology implies linear 
equivalence. Therefore (25) and the fact that F 4 + 2F 1 is a 2-canonical divisor on 
Y imply that (24) is an aN-canonical divisor. Q.E.D. 

We observe that Theorem 5 and its proof  can be used to obtain class-number 
relations in the style of [-5]. For  example, from (6) and (26) we find 

10 ~ aN/d, = F, T N = T, T N -  T 1 T N = 60(H~ ( 4 N ) -  H~ (N)) (27) 
d2lN 

if N is odd and not a square; in combination with (23) this gives 

2 ~ ( d )  (d +_~N) =6(HO3(4N) + HOa(N)) + 3aN + 6bN. 
din 

As another example we take two curves TM, T N with T N compact, MN prime to 
26 and not a square and M # 1. The intersection number of T M and TN on Y is 
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given by (6): 

(TM'TN)y=60 ~ ( d )  dH~ 
dl(M, N) 

After blowing down we get for the intersection number on yO 

(TM'TN)yO=60 ~ ( d )  dH~176 �9 
dl(M, N) 

By Theorem 5, this equals 

d2iM d2l N 

since K~o=5 and T N is disjoint from the (-2)-curves of the cusp resolutions. 
Using (27) we infer the following class number relation: 

3(H~ H~176 H~ 

= ~ (d)dH~176176 
dI(M,N) 

w 7. Explicit Equations for Modular Curves 

In this section we illustrate how the polynomials fN of Theorem 5 can be 
determined. Each such determination gives in principle an explicit (in general 

singular) projective model for a modular curve like the model for .~/Fo* (52) given 
at the end of w 5. 

The degree of fN for N < 26 is given by the following table 

N I 3 4 9 10 12 13 14 16 17 22 23 25 26 (28) 

aNI4  2 12 8 12 10 12 12 24 20 36 32 12 

(Equation (27) implies that aN ------ 0 (mod 4) for N 4= 4, 13). We will determine fN for 
the 9 values of N with aN< 12. 

The equation of F 4 was determined in w we have (up to a constant) 

f4 = a2. (29) 

The polynomial f13 is given by Equation (21). The polynomial f3 has degree 4 
and must vanish at the point (0: 1 : - 1 : 1 :  -1)eS,  since F 3 passes through the 
curves E,. Hence it is given by 

f3 =40"4--0"2" (30) 

However, for other values of N it is not so easy to determine fN. For example, 
flo has degree 8 and must vanish quadruply at the 10 points pi~where 0" 3 = 0" 4 = 0 
(since FI" F1 o = 40), so it has the form 

fl  o = a~ + Aa2s a 2 (31) 
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for some A, but there is no simple way to determine A. For  other values of N, 
where aN> 12, there are even more unknown coefficients. To find them, we will 
use the following two methods. 

1. In [10], the intersection behaviour of curves F N on Hilbert modular  
surfaces was described completely: these intersections occur in "special points", 
and at each special one can say exactly which F N pass through the point and 
determine their tangent directions. Even though we do not know how to identify 
the tangent space of the Hilbert modular  surface at a point with the tangent 
space of S at the corresponding point, we know that the cross-ratio of the 
tangent directions of any four curves must be the same in both spaces, and this 
gives conditions on the coefficients of the defining equations. 

2. The components  of the modular  curves F 3 and F4 are rational curves 

which can be represented as branched coverings of ~/SLz(TZ ) and hence para- 
metrised by an algebraic function of j(z), z~3. The intersections of F 3 and F 4 
with other F N at special points correspond to numbers z which are quadratic 
over II~, for which j can be calculated by well-known methods. On the other 
hand, we can give explicit parametrisations of F 3 and F 4 on S, so by comparing 
cross-ratios we can determine the coordinates on S of the intersection points of 
any F N with F 3 or F 4. A similar argument  works with F 1 instead of F 3 or F4: now 
the points on F~ J c Y correspond to tangent directions at Pij e S, so by computing 
j-invariants one can determine the tangent directions of the branches of F N 
which pass through that point. 

We now explain both methods in more detail. 
Every branch of FNc~Z/F is the image of a curve in ~2 defined by 

a, 1 / ~ z l  z 2 - 2 ' z l  + 2  z2 +a2  l / ~  = 0, (32) 

a21/~ (al,a2eZ, 2e(9) is a skew-hermitian matrix of de- 

terminant N. Conversely, for each z=(za,z2)e.~ 2, the skew-hermitian matrices 
satisfying (32) form a Z-module  ~Jlz of rank __< 2, and the map assigning to such a 
matrix its determinant 13a, a 2 + 2  2' is a positive definite quadratic form ~o z on 
~01~ whose values are the integers N for which zeF N. The map  assigning to a 
non-zero element of 93/z the tangent direction at z of the corresponding curve on 
.~2 defines a projective map IP(gJI~| Also, since C acts freely, 
]P(Tz(~2)) ~ ']P(Ta(~2//')), where 3e~2//" is the image of z. Thus, if 3 is 
"special", i.e. if rk (gX~)= 2, we obtain a map  IP(OJ/~ | C)--~IP(Ta(~2//')) which is 
an isomorphism of projective lines. In this case, tp~ is a binary quadratic form 
which can be written with respect to a Z-basis of 9J/, as a u2+ b u v + c v 2, and 
any parameter  on IP(Ta(~2/F)) is related to u/v by a fractional linear 
transformation. 

For  example, the curves F 3 and F4 meet in a point 3 ~ 2 / 1  -" with tpz(U , v)= 3u 2 
+3uv+4v 2. This point corresponds to the point p = ( 0 : 0 : 1  :p:p2)~S (p=e 2~i/3) 
which is a common root of the polynomials (29) and (30). (Note that q~z 
represents 4 twice, in agreement with the statement in w 6 that two components  
of F4 meet in p.) The form 3u2+3uv+4v 2 represents 3 and 13 once and 4 and 
10 twice, while the polynomials (30), (21) (resp. (29), (31)) vanish simply (resp. 
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doubly) at p, and we have the following table: 

U fN (t3fN/OfN~ 
\~X 0 /~Xl  ] p 

(U,V),3U2 + 3UV 

+4V 2 = N  

3 40"4-o-22 1 
4 o 2 0, oo 

13 [I(x , -x j)  - 1  
10 a2+Aa2a2 1 + A + V / ~ + A  2 

Compar ing  the entries for 

~Xo/~X~l[p u+v 

N = 3 , 4 ,  13 we obtain 

f l o = a ]  1 2 (33) -~- g O" 3 0"2. 

For  the second method we must first describe the components  of F 3. Arguing 
as in w 2, we find that F 3 has 10 rational components,  each meeting 3 cusps in the 
two ( -2 ) -curves  adjacent to some ( -5 ) - cu rve  D e. Let F~ j be the component  of 
F 3 not meeting the i-th and j-th cusps. For  example, F 3'  is the image of the 
curve 

(4 - ] f i3)  z 1 - ( 4  + I/q3) z z = 0 (34) 

in .~z and is isomorphic to SS/Fo(12 ). We claim that the image of F~ ~ in S is 
contained in the divisor of x i+x  j. Indeed, the canonical divisor on yO cor- 
responding to (xl + xj) has the form 

3 12 

Eo +ZE +R (R__>0), 
u=l v = l  

where the Dp, are the three D a passing through p,, and the E,v are the curves of 
the ( -2)-conf igurat ions  adjacent to these Dp. But ~ J  meets ~ E , v  in 6 points and 
Kro.  F3J=2, so /73 j must be contained in R. From the equations of S we deduce 
that ~r z = - 2x 2 = 2xl xj on F~ ~ and then obtain easily a parametrisation, e.g. 

F3 ~4 = {(4tu: 3t 2 - 2 t u - u 2 :  - 3 t  2 - 2 t u  

+ u 2 : 3t 2 + u 2 : - 3t 2 - u z) I(t: u)~IPI(C)}. (35) 

On the other hand, the curve .~/Fo(12 ) can be parametrised by a certain function 
k(z) (ze~) related algebraically to j(z); the functions k(z) and t/u must then be 
related by a fractional linear transformation. It is, however, more convenient to 
divide by the action of ~5 (i.e. to work on (~2/SL2(d)))/z instead of ~2/F), since 

F3/~5 is the simpler modular  curve ~/Fo(3) and the set F3 nFN is ~5-invariant.  
We represent F3/~ 5 as F34/~3, where an element of  ~3 acts by permuting 

_(1,0)  
+ ( 0 ,  1), + ( 1 ,  - 1) 
+(1, - 2 )  

+(1, 1), +(2, - 1) 

and hence 1 + A + V ~ A + A  2 =�89 2 and A=�88 Thus 
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x 2 , x 3 , x  4 in the obvious way and, if it is odd, also interchanges x 0 and xx. Then 
we can take 

A = 4 (X2 -- X3) (x3 -- X4) (X4 -- X2) 
(Xo - x l )  3 ((Xo : ... : x4)eF3 ~') (36) 

as a parameter on F2 ' /~3;  it is related to o'2,o'3,o'4 by 

A2 =0-3+540- 2 
0-3 (37) 

In particular, the two cusps of .~/Fo(3 ) correspond to A = _  1 (since 0-3=0)  and 
the fixed point of order 3 to A = oo (namely to the intersection of F 3 and F4). On 

the other hand, the map .~/Fo(3 ) --*go/SL2(7~ ) is a 4-fold branched covering with 2 
points over oo (one unramified, the other triply ramified), two over p (again one 
unramified and the other triply ramified) and two points over i (both doubly 
ramified). The values of j at oo, p and i are oo, 0 and 1728, respectively. 
Together, this implies that j and A are related by 

(4A - 5) 3 (38) 
j = 4 3 2  (A - 1)(A + 1) 3. 

A special point 3 on F 3 with associated quadratic form a u Z + b u v + c v  ~ cor- 
responds to a point ze.~ satisfying a quadratic equation of discriminant d 

b z - 4 a c  
- - - < 0 .  

13 
As a check of (38), note that A = 0  corresponds to the intersection points of F 3 
and ]713 not lying on F 4 (compare (21) and (36)), which have the quadratic form 
3 u 2 + 1 3 v  z with d = - 1 2 ,  and the value of j(z) for z satisfying a quadratic 
equation of discriminant - 1 2  is 54000, in accordance with (38). Proceeding in 
this way for other special points on F 3 we find the following table" 

Point N d j A 02, 0-3,0-4 

cusp 3,9,12,13 . . . .  - oo +1 - 2 , 0 , 1  
[3,3,4] 3,4,10,13 . . . .  - 3  0 oo 0,1,0 
[3,0,13] 3,13,16,. . .  - 1 2  54000 0 - 6 , 2 , 9  

[3,2,9] 3,9,10,14 . . . .  - 8  8000 + 5 ~ / 2  -1,�89188 

[3,1,12] 3,12,14,16,26,. . .  - 1 1  -32768  ___1/~-11/4 - 2 , 2 ,  • 1 

[3,0,26] 3,26 . . . .  - 2 4  1399+988l /~  __+1/~/2 -1,~,~1 

(39) 

In the first column we have ,indicated a special point ze.~ with quadratic 
form q~z = a u 2 + b u v + c v 2 by the symbol [a, b, c]. The second column gives the 
values of N for which Fu passes through z. The values 0-2, 0"3,0-4 in the last column 
are obtained from (37) and are defined up to (0-2, 0-3,0-4) ~ (~2 0-2, ~3 0-3, ~4 0-4.). For 
example, the fact that/71o passes through the point with 0-2 = - 1 ,  0-3 =�89 0-4=�88 
gives another proof  that the number A in (31) equals 1. 

Arguing similarly for F4 we find that F4/~  s -~-~/SLz (7z), the parameter 0-~/0-'~ on 
F 4 being related to j by 
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jZz', 214 0-3/0 -4 [ J =  41 3, 

and obtain the table 

Point N d j f f 2 , f f 3 , f f 4  
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cusp 4 - ~ 0, 0, 1 
[4,3,3] 3,4,10,13 . . . .  - 3  0 0,1,0 
[4,0,13] 4, 13,... - 4  1728=123 0,4,3 
[4,1,9] 4,9,12,14 . . . .  - 1 1  - 3 2 7 6 8 =  - 3 2 3  0,1, - 2  
[4,3,16] 4,16,26,. . .  - 1 9  - 8 8 4 7 3 6 = - 9 6 3 0 , 1 , - 6  

(40) 

Finally, the tangent directions at the point Po 1 = (1 : - 1 : 0: 0: 0)eS correspond 

(after blowing up Pol) to points on/:1 ~ =.~/Fo (4). Again dividing by the action of the 
isotropy group, we can take a3/a  2 a 3 as a parameter  for the tangent directions and 
j ( z )  as a parameter  for the modular  curve. They are related by j =  - z;"1~ a4/a  3 3 ,  2 a23, 

because j equals ~ ,  0, and 1728 at the cusp and the two fixed points on . ~ / S L 2 ( Z  ) 
and these points correspond to the intersections of F 1 with the cusp resolution and 
the curves F lo and F 13,where 3 2 3  a4/a 3 a 2 equals ~ ,  0 and -27 /16 ,  respectively. The 
curves F 14 and F 26 intersect F 1 at the special points [ 1, 0, 13] and [ 1, 0, 26] where d = 
- 4 ,  j =  1728 and d =  - 8, j = 8000, respectively. Hence 

lim 3 2 3__ 27 3 2 3 125 
- -  0"4/0"30"2 ~ 16 a,,/cz3 a2 - - 1 6 ,  lim . (41) 

z~Pot z~/30l 
zEF14 zEF26 

We now use the information we have obtained to determine the equation o f F  N 
for the five values of N in (28) with aN= 12, namely N = 9 ,  12, 14, 16 and 26. Each 
such equation has the form 

fN = A a ] + Btr ] a 2 + C a  4 tr~ + Dtr 6 + E a 4  a z tr 2 + F a  2 a32 + Gtr~ (42) 

where the coefficients A . . . .  , G are determined up to a constant. To determine them, 
we first use our knowledge of the way F N passes through the cusp resolutions. The 
line D 1 of the cusp resolution (cf. (9)) can be parametrised as 

( 0 : 1 : - l : t : - t )  ( t e I P l ( ~ ) = ~  ~ {o0}) (43) 

with a 2 = - 1 -  t 2, a 3 = 0, a 4 = t 2. The points t = + 1 correspond to the images of 

curves E,, the points t=0 ,  ~ to the images of Fx '~ and /~1', and the points t ( +  1 
= ( - 1  

((2 a primitive n-th root of unity, n > 1) to the intersection ofF,2 with Dt (cf. w 2). We 
deduce that the restrictions offg,  f l  2, f~ 4, f~ 6 and f26 to the line (43) are given (up to 
a constant) by 

( t  2 - -  1)4(t 4 + ~ t 2 § 1), t a ( t  2 - -  1) 2, t 6, t 4 ( t  4 + 6 t 2 -F 1) 

and t 6, respectively. This gives the coefficients A, B, C, D in (42). Then E + 4F and G 
can be determined by using the values of a2, ~3, ~% at the intersection points of F N 
with/73, F 4 as given by (39) and (40), and the coefficient F can be determined for N 
= 14 and N = 26 by using (41). This gives 
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f9 =(404 - ~ 2 (40",, + 3 02)2 + 320. 32 (0. 23 + 40.3)2 + E9  17 2 0. 32 (0. 4 - -  ~0.2)1 2 

f12~.---_0-2(40.`*__ 2 1 2 3 0.2) + ~0.3 (0.2 + 320.2) + E120-2 0.2"~ *̀ -- g 0.2)1 2", 
3 9 2 27 3 2 4- 

f14  ----- 0. ,, - -  2 0. 2 0. 3 0- ,, nt- ~ 0 .20.3 -I- 20. 3 (44) 
f16=0.](40.,,+0.22)+~_0.20.20.,,+2160.~+E160.20.3(0. 4 2  --40.2)12 

/26=0. _70.2 2 _125 3 2_540.  L 0. 3 0"4 -~'- ~-~- O'2 0.3 t 

To determine the remaining coefficients E9 ,  E12 and E16, we use the cross- 
ratios of the tangent directions of the curves F s passing through the special points 3 
given in tables (39) and (40). For  example, since Fa, F 9, F 1 o and/71` , pass through the 
point [3, 2, 9] and three of them are known, we can determine the tangent direction 
of the remaining one. The values of (u, v) with 3 u 2 + 2 u v + 9 v 2 -~- N for N = 3, 10 and 
14 are (1,0), ( 1 , - 1 )  and (1, 1), respectively, and the limiting value T of 0.2(0. 2 
-40.`*)/(0. 3 +40. 2) as 3 tends to [3, 2, 9] along these curves equals 0, 1/2 and -1 /3 ,  

- 2 v  128 
respectively. Hence T = . Since F 9 corresponds to (u, v)= (0, 1), we obtain - -  

U+v E 9 
= T =  - 2 ,  E 9 = - - 6 4 .  Similarly, using the special point I-3, 1, 12] and the equations 
of F3, F~`* and F26 w e  find that the limiting value of a2(a2-40.`*)/(o3+320. 2) 

- - / )  �9 
along the curve F3u~ +,,v + 12 v~ equals 4u - 2 v' applying this 

to (u, v) = (0,1) and (1,1) yields the values E12=10, E16=18 for the two re- 
maining unknown coefficients in (44). We can now use the point I-4, 1,9] 
in (40), where the limiting value of (0.34+2a4)/a20.~0.4 along F4u2+uv+9v: 

7 u + 2 v  
equals 12-~--~--' to check the values of E 9 and E~ 2. A further check is provided 

by blowing up the point po~eS and using the cross-ratios of tangent direc- 
tions of curves at the special point I-1, 1, 10] (the fixed point of order 3 on F~), 

_ (2u+v   We can where the limiting value of0.~./o 2 0.~ along Fu2+,~+ ~o~ equals \ 2v / " 

also use the special point 1-9, 3, 10], through which Fg, F~o and F~6 pass, or the 
special point 1-9, 10, 10], through which F 9, F~o and/726 pass (and in fact F9 doubly, 
which gives an extra condition), or the cross-ratios of the intersection points of FN 
with the ( -2) -curve  E obtained by blowing up the singular points on S (and on 
which we can take (40",, --  0.2) 0-22/0.2 as a parameter). Thus we obtain the coefficients 
A . . . .  , G for our five curves FN with considerable "overkill". Nevertheless, it is not 
clear whether this type of argument would suffice to determine fN in all or even in 
infinitely many cases. In w 9 we will give a method with which one could in principle 
calculate the defining equations of all non-compact curves F N. 

w 8. The Ring of Hilbert Modular Forms of Even Weight 

in this section we will determine the structure of the ring of modular forms of even 
weight for F and for the full Hilbert modular group SL2(• ) by making use of the 
canonical map 4~: yO_. S constructed in w 3. Let 

R=IE [Xo, ..., x4]/(0. . 2a5 - - 0 . 2 0 " 3 )  (0.i=ai(Xo . . . .  ' X4))  
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be the coordinate ring of S and 

0: 112Ix o, . . . , x4]-*e  

the natural  projection map. 

Theorem 6. Let Mev(F ) =@ M2k(F ) be the ring of Hilbert modular forms of even 
k 

weight for F and let L k be the subspace of tI~ [Xo, . . . ,x4]  consisting of all 
homogeneous polynomials of degree 4k which vanish with multiplicity >= 2k at the 
points in the 9.Is-orbit of (0 :0  : 0" 1 : - 1). There existfive cusp forms ~i (i = 0 . . . . .  4) of 
weight 2 on F such that the map 

C~: Lk--* M 2 k ( F  ) 

given by 

F(~o . . . . .  ~4) 
F(xo,  ... ,  x4) 

0.3(~o, ---, ~)k 

induces an isomorphism between O(Lk) and M2k(F ). 

Proof of Theorem 6. Each Hilbert  modular  form co =g(z l ,  z2)(dz 1 A dz2)  k of weight 
2k for F defines a holomorphic  section s of the k-fold tensor power of the canonical 
bundle K~2/r of ~2/_F. This section can be extended to a meromorphic  section ? of 
the k-fold canonical bundle of Y whose divisor (g) contains the curves of the cusp 
resolutions with multiplicity > - k (cf. lemma in [4], 3.6) and is effective outside the 
cusp resolutions. Let K s denote the hyperplane bundle of S. Then we have the 
isomorphisms 

H~ ~* H~176 4~* H~ Kks), 

where r~ is the map  Y ~  yO which blows down F 1 and 4 is the 1-canonical map  
defined by (10) in w 3. Also, the curves of the cusp resolutions in Ycorrespond to the 
divisor of 0- 3 in S. Hence ~ defines a meromorphic  section s' of Kks such that 

a~ s' ~ H~ ( S, Kks) . 

An element of H~ K k) can be given by a homogeneous polynomial  of degree 4k in 
x o . . . .  , x 4. We claim: a k s' vanishes with multiplicity _>_2k in the points ~ ;  on S. 
Indeed, the divisor of the corresponding element in H~ K~ k) has the form 

re* dp*(0.~ s')+4k F,, 

while the divisor of the section of H~ K3r) corresponding to o- 3 equals 

15 30 

Dp+ 2 E~+3F,+3F1 
f l=l  ~=1 

(the first three terms form the total transform of (o'3)). Hence the divisor (~) on Y 
takes the form 

~* c~*(a~ s ' ) -k  ~ D p - k  Z E~-2k  F1. (45) 
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Since (45) is effective outside the cusp resolutions, n* ~b*(a~ s') contains F 1 with 
multiplicity >2k.  

Conversely, if felI~ [Xo, ... , x4] is a homogeneous polynomial of degree 4k such 
that f vanishes with multiplicity ~ 2 k  at the points Pi~ on S, then f/ak3 defines a 
meromorphic section of the bundle Kkr on Y whose divisor is effective outside the 
cusp resolutions and hence a Hilbert modular form of weight 2k. Clearly the five 
sections xieH~ Ks) define (up to a constant) five cusp forms ~ieM2(F) with the 
properties stated. 

As the proof shows, the Hilbert modular forms of weight 2k which can be 
extended holomorphically over the resolutions of the cusps correspond to elements 
of the form ~(g a~) where g is a homogeneous polynomial of degree k, i.e. they 
correspond to sections in the k-fold tensor product of the hyperplane bundle of Y. 
Hence the dimension of the space of Hilbert modular forms that can be extended 
holomorphically over the cusp resolutions equals the k-th plurigenus Pk (S) of S. By 
a well-known formula, we have: 

Pk(S)={�89 .= if if k=l.k>2' 

On the other hand, the Shimizu dimension formula [12] gives 

dimM2k(F)=2Ok(k-1)+lO if k > 2 .  

For  k = 1 we have dim M 2 (F) = dim S 2 (F) + 5 = PI(S) + 4 = 9, since all cusp forms of 
weight 2 can be extended holomorphically over the cusps. The space of cusp forms 
of weight 2 is generated by the forms r and has dimension 4. The meromorphic 
sections 

~ = ~2(4o . . . .  , ~4)/4i= 2 40. . .  ~ . . .  44/~3 (40 . . . . .  ~4) 

of Ks determine 5 non-cusp forms. Since r h is holomorphic at all cusps but 
the i-th, these 5 forms are linearly independent and are also independent of 
the ~.  We normalize the 4~, which up to now have been defined only up to a 
multiplicative constant, by the requirement that the constant term of the Fourier 
expansion of r/i=a2(~ 0 . . . .  ,44)/~i at the i-th cusp should be equal to 1. Thus 
Theorem 6 permits us to give a basis of ME(F). However, it seems to be quite 
difficult to write down explicitly a set of generators of the ring M~v(F ) or even to give 
additive generators of M2k(F ), k > 1. 

By contrast, we can derive from Theorem 6 both additive and ring generators 
for the modular forms on the full Hilbert modular group. Let M~v(SL2((9)) be the 
ring of symmetric Hilbert modular forms of even weight, i.e. modular forms f(z~, za) 
satisfying f(z~, z2)=f(z2, z~). It is clear that M~,(SL2((9)) is isomorphic to the ~5- 
invariant part of M~,(F) and hence by Theorem6,  the space M~k(SLz((9)) is 
isomorphic to the image under ~ of all symmetric polynomials of degree 4k in 
Xo . . . .  , x4 which vanish with multiplicity > 2k in (0: 0: 0: - 1 : 1). An additive basis 
of M~,(SL2(O)) is given by the elements 

[_~2 ~ a4 a+3b+2c=2k, 3b+c>k (46) 
- , 
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where a i = ai(~o, ..., 44). Indeed, since a 3 and 0-4 vanish at Pij with the multiplicities 
3 and 2, respectively, the monomials (46) certainly lie in M~(SL2((9)). Conversely, 
suppose that a polynomial 

f =  ~ n,,,. b .... o'2(Xo, ...,x,,)"' o'3(Xo,..., x,,) 2b' c r4 (Xo , . . . , x , , )  ~' 
ai,bt,ct>O 

ai+ 3bi+ 2c~= 2k 
3bi+ci<k 

vanishes with multiplicity > 2k in the points Pi, on S. Let a TM be the largest power of 
a 3 dividing f Then for every monomial a~2 ' a~ b' a~ o f f  we have bi>d and hence 

a~=(ai + 3b~ + 2c~)- 2(3b~ + ci) + 3bi > 3d, 

so f is divisible by a32 d+l and we can write f = a ]  a+l a 2a - 3 g, where a3yg.  The 
intersection number of the divisor (a3) and (g) (which have no common 
components) must on the one hand equal 3 0 k - 1 8 0 d - 3 0  (since g and a 3 have 
degree 2 k - 1 2 d - 2  and 3, respectively, and K2=5)  and on the other hand be at 
least 30k - 180d (since g and a 3 vanish at each of the 10 points Pii with multiplicity 
> 2 k - 6 d  and 3, respectively). This contradiction proves our claim. 

By counting the elements in (46) we deduce 

dim M)k(SLz(C))= [k2 6 3 ~ k  ] (k> 0). (47) 

Also, any element of (46) can be written in the form 

i f 31  \ G 3 f  

where all the exponents are positive. This proves: 

Theorem 7. The graded ring of symmetric Hilbert modular forms of even weight on 
8L2((_9 ) is isomorphic to C [ A, B, C, C']/( B 3 - C C') where the generators A, B, C, C' 
have degree 2, 4, 6, and 6, respectively. The isomorphism is given by 

G 4 0 .3 
A w - ~ - -  Bv---~a2, CF- .63 ,  C'I ---*~2, 

if3' 173 

where a i is the i-th elementary symmetric polynomial in the modular forms 4o, ..., ~4 
of Theorem 6. 

We now determine the structure of the ring Mev(SL2(e)))~-M,v(F) ~'. The 
elements of M2k(SL2(•)) have the form f/ak3, where f is a polynomial in G0 . . . . .  44 
which is invariant under 9.I s and hence can be expressed in terms of a 2 , a 3 , a 4 and 
1-] (4i - 4i)- The latter polynomial has weight 10 and vanishes with multiplicity 3 at 
i<j 
each point Pij, so Theorem 6 tells us that 

A 8 =(1-[ ( 4 i -  ~j))/~ ..., 4,*) 2 (48) 
i<j 
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is a ho lomorph i c  modu la r  form (in fact a cusp form) of weight 8 on SL2((9 ). We 
claim that  

M2k(SL2(C))) = M~2k(SL2(O)) �9 M~2R- 8(SL2 ((.9)). A 8. 

Indeed,  any modu la r  form is the sum of a symmet r ic  and an an t i - symmetr ic  form, 
and an an t i - symmetr ic  fo rm must  vanish on the fixed point  set F 1 u/713 of  the 
involut ion z (cf. w 4). But the divisor of  A s in .~ • ~ is precisely F 1 w F 13 (compare  
Eq.(21)), so any ant i - symmetr ic  form is divisible by A 8. By comput ing  the 
d iscr iminant  of  the quintic po lynomia l  x 5 + 6 2 x 3 - 6 3 x 2 + 6 ,  x - � 8 9  6 2 63, we find 
the relat ion 

A 82 = P I - - ,  02, 63, - - / ,  (49) 
\0" 3 0"3] 

where 

P(A, B, C, D) = 256A5 C -  128A 4 B e + 16A 3 B D -  656A 3 BC + 776A 2 B 3 

- 261 AB e D + 27 BD 2 - 27 A 2 C 2 + 495 AB 2 C - 9~B4 + 54B C 2. (50) 

This  proves  

Theorem 8. The graded ring of Hilbert modular forms of even weight on SL2(C ) is 
isomorphic to 

•[A,B,  C, C ' , D ] / ( B 3 - C C ' , D 2 - p ( A , B ,  C, C')), 

where A, B, C, C', D have degree 2, 4, 6, 6 and 8, respectively, and P is the polynomial 
(50). 

As a further  appl ica t ion of T h e o r e m  6 we de termine  the modu la r  forms of even 
weight  on Fo, where  

0,mod , t 
I t  contains  F as a no rma l  subgroup  of index 12. If we compact i fy  the quot ient  ~2/F o 
in the usual way and resolve the singularities we obta in  a non-s ingular  algebraic  
surface Y(Fo). It  is s imply-connected.  The  isotropy g roup  at ~ of F has  index 12 in 
the isotropy g roup  at ~ of  F o. But  the subgroup  of 915 which preserves the 
resolut ion of cusp 0 has order  12 and  is i somorphic  to 914. Hence  if we divide Y by 
the act ion of this g roup  and resolve the singularities created we obta in  Y(F0). F r o m  
T h e o r e m  6 we deduce  a descr ipion for the ring Mev(Fo) of Hi lber t  m o d u l a r  forms of 
even weight on Fo: Mev (Fo) = M~y (F) 96', where 914 acts on r . . . .  , r In part icular ,  we 

4. 

see that  M 2 (Fo) is genera ted by 40, t/o and ~ t/i. Since S 2 (Fo) c M2 (Fo) is i somorphic  
i=1 

to n ~ (Y(Fo), Kr(ro)) we find pg(Y(Fo) ) = 1. 

Theorem 9. The Hilbert modular surface Y(Fo) associated to the congruence subgroup 
F o of SL2((9) is a blown-up K3 surface. The ring of symmetric Hilbert modular forms 
of even weight on F o is generated over M~y(SL2((9)) by the forms 40, 2 2 40 62/63, 
~'~ 62/63, ~6/6 3 (of  weight 2, 6, 6, 6, respectively) with the obvious relations. 



The Hilbert Modular Group for the Field 1~(1/~) 121 

Proof On Y(Fo) there are two cusps (the images of cusp 0 and 1) both with a 
resolution as in (3). The curve F 1 has two components, both exceptional curves, 
namely the images of F; '  and Fll;  the former meets the ( -5)-curves  of both cusp 
resolutions and a ( -2 ) -curve  coming from a quotient singularity, while the latter 
meets the ( -5) -curve  of the resolution of cusp 1. Also the image of F~ on Y(Fo) is 
exceptional and meets the ( -  5)-curve of cusp 0. Blowing down F; ", Ft ~ F 2 and the 
( -2) -curve  meeting F;" we obtain an elliptic K3 configuration (namely two 

2 intersecting cycles of(-2)-curves) .  The resulting surface is minimal because Kr(ro) 
= - 4  and we have blown down 4 times. 

F~ ~ 

\ 

cusp 0 

-2 F ~ 

%/  
cusp 1 

'7__3 
-3 

To prove the second statement, remark that in the coordinate ring R of S the 
elementary symmetric polynomials in x 1 . . . . .  x4 can be expressed in x o and a 2, 0.3 
and 0.4. As in the proof  of Theorem 7, one checks that 

{_~o 0.~0.k30.~ 0.d4 a + 2b + 3c +4d=4k ,  3c+2d_>_ 2@ 

constitute an additive basis of M~k(Fo) and that all of these elements can be 
expressed as monomials in 0.4/0.3, 0.2, ~ ~176 40,420 ~176 44o 0.2/0"3 and 46/0"3 . 

As a final application of Theorems 5 and 6 we now show that every curve F N is 
the zero-set of a modular form on SLz((9 ). For N =  1, for instance, we can take 
0"3(40 . . . . .  44), whose divisor in .~ x .~ is 6Fa. Since .~ x ~ is simply connected, this 
function has a sixth root ~1 which lies in $1(SL2((9), e) for a certain character e on 
SL2((9 ) with e6= 1. More generally: 

Theorem 10. For every curve F N there exists a H ilbert modular form of Nebentypus on 
SL2((_9), unique up to a constant, whose zero-divisor in .~ x .~ is the curve F N. This forra 

--otN-! F•" FI, 
has weight ~N - ~ FN " F1 and character e a o where ct N and F N �9 F x are given 
by (23) and (5) respectively. 

Proof In the proof of Theorem 5 we showed the existence of a polynomial fN such 
that the zero-divisor of the pull-back of fN (So . . . . .  s4)e Ho (yO, K yo) to Y is an ct N- 
canonical divisor of the form (24), where SN is a divisor consisting only of ( -  2)- 
curves coming from the cusp resolutions. Hence, by the identification given in the 
proof of Theorem 6, fN(4o, .-., 44) is a modular form of weight 2e u whose divisor in 

x S5 equals 

F .F0 
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Consider the modular form of Nebentypus defined by 
1 

ON = fN (~ o . . . . .  ~4)/f2~ ~ + 1~- vN. p,. 
�9 --~tN-- I ~ F N . F I  

This modular form is of weight ct N - 1~ FN" F1, its character is e 1 o and its 
zero-divisor in .~ x .~ is F N. Suppose that f2~ is another Hilbert modular form on 
SL2((9 ) such that the divisor of f2~v equals precisely F N. Then (f2~v/f2N) 6 defines on S a 
meromorphic section of some tensor power of K~ whose divisor is a combination 

ma Da of the cusp curves Dp. Moreoever, since O N and f2~ come from SL2 ((~), this 
section is invariant under 9.I5, so all mp are equal and the section in question is a 
constant times ~ .  Since the divisors of f2 N and f2~v do not contain F1, we must have 
m = 0, so f2~v/f2 N is constant. 

Remark. Both a s and A~ FN F1 are even for all S 4= 1, 13. (Proof: By (5), 1A~ ~ FN/d~ F 1 
= 6H~ 6 ~ H((4N-x2) /13) .  The number 6H((4N-x2) /13)  is an integer and 
is odd only when (4N-x2)~13 is a square, so 6H~ is odd if and only if 13N is a 
square.) Therefore a s has even weight and a character of order at most 3 for all such 
N. (In fact, we will show in w 10 that e 3 = 1, SO that f2 N has a character of order < 3 in 
any case.) If N - 2 (mod 3), then a s and ~o FN F1 are also divisible by 3. (Proof: The 

sum ~ ( 1 - ~ ) ( d + d )  is divisible by 3, since d=-N/d (mod3) .  

Also, 6H(n) is congruent to 2(mod3) if n is three times a square and is 
divisible by 3 otherwise, so ~ F N / ~  F~ = 6 ~  H((4N-x2) /13) is  congruent to 
twice the number of representations of N as (x 2+39y2)/4, i.e. as a norm in 

I1~ ( ] f ~ ) .  For  N = 2 (mod 3) there are no such representations.) Therefore f2 N is of 
Haupttypus in this case. In general, we can obtain a modular form of Haupttypus 
which vanishes on F N either by replacing f2 N by its third power or by multiplying it 
by f2~ for some appropriate integer a < 5. 

w 9. The Canonical Mapping in Terms of Eisenstein Series 

The aim of this section is to show how the modular forms ~i (i = 0 . . . . .  4) can be 
expressed in terms of Eisenstein series of weight 1 (with a character) and Eisenstein 
series of weight 2. Thus we obtain a description of the modular forms r as functions 
on . ~ x ~  and hence a more explicit description of the rings Mev(F ) and 
Mev(SL2(d))). The fact that the mapping 

(ZI, Z2) ~ (~0(Z1 , Z2): ~ I(Z1 , Z2): r Z2): ~3 (Z1, Z2): ~4(Zl, Z2)) 

is a birational map from ~2/F to its image on the quintic surface S can then be seen 
as the analogue of the classical parametrisation 

Z I"'* (E4(z)3:E6(z)2)EIPI(C)  

of ~/SL  2 Z by Eisenstein series. 
Consider the five normalised Eisenstein series E/2 ( i=0,  .. . ,4) of weight 2 on 

F defined by 
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d e f  
E~(zl, Zz)= ~,  1 (N(xz+#)  = (xz  1 +#)(x'  z z +#')) (51) 

~, .  N(K z4-~)  2 

where (x, ~) runs over all non-associated relatively prime pairs of integers in (9 such 
that #/x represents the i-th cusp and the summation has to be performed according 
to Hecke's well-known procedure for obtaining convergence. Let x~e(9 ( i#0) 
represent the i-th cusp. Then we have the Fourier developments 

E~ z2)= 1 +8  Z (16~rl(�89 e 2~i~z'+r (52) 
veb-1 

v ~ ' 0  

E~(zl, z2) = 8 Z (-1)Tr(~'x'l(t71(vb)-4t;rl(�89 e~i(vz~+r ( 0 < i < 4 ) ,  (53) 
v ~ b  - 1 

v>>O 

where b = ( ] /~ )  is the different of K and 

~,(a) = 
N(b) if a is integral 

bin 

0 otherwise. 

If F is a Hilbert modular form of weight k on F and A =  ( :t ~) ffSL2((-f) we 
denote by F IA the modular form of weight k defined by 

(F[A)(za, z2) = (7 zl + 6)-k(7' z 2 + 6')-k F 7 zl + 6 '  7' z2 + 6']" 

Since the form FIA depends only on F and on the equivalence class ofA mod F, the 
group 92s = SL2((9)/F acts on Mev(F). This group acts on the E~ (i = 0 . . . .  ,4) in the 
same way as on the five cusps; in particular, E~2 vanishes at all cusps except the i-th 
(by (52) and (53)) and any modular form of weight 2 on F is the sum of a cusp form 
and a linear combination of the Eh. The non-cusp forms r/i 
= ~r2(~ o . . . . .  ~4)/~i~M2(F) also have the value 1 at the i-th cusp and vanish at the 
other ones. Hence E~ is related to ~i and ~/~ by 

E~ ='t~ + Y, c~s Cs" 

Since E~ and qi are invariant under the subgroup 92 4 ~ 92s fixing i, the difference E~ 
- r/i is a linear combination of ~i and ~ ~s and hence, since )-" ~s = 0, a multiple ci ~i 

j , i  
of ~. Moreover, the invariance also implies that the coefficient c i is independent of 
i: 

E/2 = t/i + c ~i. (54) 

In order to determine the constant c we will use Eisenstein series of weight 1. An 
Eisenstein series of odd weight k (for a field whose fundamental unit has norm - 1) 
must be associated to some character. For example, the Eisenstein series of odd 

weight k > 3  with the ray class character z(a)= (~-S;--~~ / of conductor 4 is given by 
\ r~al  
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z((u)) 
E~ (z l, Z2) 

X-", 

~L' u N (to z +/~)k 

4 = Z (E ~(a) U(a) k-l) e~i(vz1+v'z2) 
1 - ~ L ( l _ k , z ) ~ b _ ,  .l~b 

v~'O 
(55) 

where the summation runs over non-associated relatively prime pairs K, # with/~/~ 
representing the 0-th cusp (i. e. 21~). The functions E~IA (A ~ SL 2 ((9)) depend (up to 
sign) only on the class of A in SLz((9)/F=9.15. We obtain in this way 20 functions 

(since Ek is invariant under the matrices ( o-' Oe ) , which represent three elements of 

(o _;) 
9.15). For example, the function E~ , which has the same character as E~, is 
given by 

~,. N ( ~ )  ~ 

4 k 
Z (Z x(a)Y(vb/a) k-') e~"Vzl+~'z~" 

L(1 - k ,  Z) ~ , - ,  .l~b (56) 

Each function Ek x I A is non-zero at precisely one cusp. 
For  weight one, Hecke [-3] showed how to define Eisenstein series by replacing 

the factor N ( r z + ~ )  k by N(xz+/~) lN(xz+/~) l  2s with Re(s)>�89 computing the 
Fourier coefficients as a function of s, and then extending analytically in s to obtain 
for s = 0 a function transforming like a modular form of weight 1. The result of this 
computation is that the higher Fourier coefficients are the same as they would be if 
the Eisenstein series were convergent, whereas for the constant term there is an 
extra contribution coming from the analytic continuation procedure. Hecke 
claimed (loc. cit., p. 394) that this extra piece vanishes; if this were true, the 
Eisenstein series of weight 1 would behave exactly like those of higher weight. 
However, this is incorrect (cf. correction by Schoeneberg, loc. cit.). Indeed, there are 
even situations where an Eisenstein series which is non-zero for k > 1 vanishes for k 
= 1, the contribution from the Hecke procedure in this case exactly cancels out the 
constant term of the series. In our situation, if we define E~ by applying Hecke's 
procedure to the Eisenstein series (55), then the extra contribution to the constant 
term vanishes and we obtain the same Fourier development 

E~(zl, Zz)=l+4 ~ p(vb)e ''(vzl+~'z~), p ( a ) = ~ z ( b ) ,  (57) 
v~b- 1 bla 

I( o, as for k > 1, but when we calculate the Fourier series of E~ , we find that 

this function equals - E~ ,  the constant term now arising solely from the analytic 
continuation procedure (it is clear that this must be so, since the higher Fourier 
coefficients in (55) and (56) coincide up to sign for k = 1). As a result we find that the 
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Eisenstein series E~ is non-zero at two cusps rather than only at one as in higher 
weight, and that (up to sign) only ten of the modular forms E;~IA (AESL2((9)) are 
distinct. More precisely: 

Lemma. For each pair indices i, j between 0 and 4 there is a modular form Ei~ = E{ i on 
F of weight 2 and with trivial character which takes on the value 1 at cusps i andj and 0 
at the other three cusps and which has even divisor in .~ x .~, namely E~ =(EX) 2 IA~j, 
where Aij is any matrix in SL2 ((9) mapping cusps i and j to cusps 0 and 1. The Fourier 
developments of these forms are given by 

E ~  ~ (--1)Tr(~xJ)p(vb)e~"~zl+r 2 ( 0 < j < 4 ) ,  
v ~ b -  1 
v~>0 

E ~ = [ - 4  ~ iTr(~xJ)p(vb)e~i(~z~+r ( 0 < i , j < 4 ,  i=~j) 
v e b -  l 
v , > 0  

with p(a) as in (57) and xj6(9 representing the j-th cusp. 

We can now proceed with the determination of c. The modular form E ~ -  E~ 
-E~2 is a cusp form of weight 2 and is invariant under the subgroup ~3 = 9-15 of 
permutations which fix or permute i andj. It is therefore a multiple of the cuspform 

E~ - E~ - e~ =,~(r + ~)  (58) 

()~ is independent of i,j because of the ~ls-symmetry ). Substituting (54), we find that 
the modular form 

th+rlj+(c+2)(~i+~j)=(~i+~j) ~ .  + c + 2  (59) 

equals (E~IAIj) 2 and hence has an even divisor in ~ •  so the corresponding 
section of the hyperplane bundle of S has an even divisor outside the curve a3 = 0 
corresponding to the cusps. Hence ff2 q- (C -I- )t) X i Xj must vanish on the component 
of the curve x~+x~=0 which is not contained in the divisor of a 3 (and which, as 
we saw in w 7, corresponds to F3 ~ c Y). In particular, a z + (c + 2) x o x~ must vanish 
at the point (1/3: - F / 3 :  1: 1: -2 )ES ,  so 

c + 2 = - 2 (60) 

(cf. (35)). The component Fg o f F 4 g i v e n b y ( z l , z 2 ) = ( z + ~ , z - ~ ) c o r -  

responds to the curve a2 = 0, x o = 0 on S, so the restrictions of ~o and r/~ to F~ vanish. 
Hence (52), (58) and (60) imply 

 l:c (z +--~--, z - T / .  (61) 
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Using the Fourier developments given by (52), (53) and the lemma we find the 
Fourier series 

E~ (z + ~ , z - ~ - 3 - ) =  l +Oq +Oq2 +Oq3-240q" + ... 

[ ] / ~  l /~ '~  _ ~  96 961/~ 
E~kz+____4__,z____4__)=O+ q__~q2  5 q3 + 0 q 4 + " "  

E ~  ... . (62) 

6 - -16  
Together with (61)this gives c = 5 ,  2 = ~  -2. We have proved: 

Theorem 11. The modular forms r rli are related to the Eisenstein series of  weight 1 
and 2 by 

�9 6 E~ = t / i+3  ~i, 

E~ = (E~)21Ai~ = r h + rl ~ -  2( ~i + r ~)" 

Inverting these formulas, we can express the forms r qi in terms of the 
Eisenstein series and hence obtain their Fourier expansions. We find, for example, 

r  - 4 1 - r  

=~6(E~2 34 1 2 3 4 +E2 - E  2 - E  2 - E  2 - E 2 )  
=8(X--X-1)2(X + X-1){ - -q+(x3  + 3X + 3X-I  + X-3)q 2 

__(X 6 + 4 x  4 _ x  2 q_ 4 _  x -  2 + 4 x - 4  q_ X -  6) q 3  

+ (X 11 _ 4 X  7 _ 7x 5 _ 1 0 x  3 _ 12x - 12x-  1 _ 10x-  3 

- 7 x - S - 4 x - 7  + x - l l )  q4+ ...} (63) 

where we have written 

q = e, iCzl +z2), x = e ~i~zl -~2)/r (zl, z 2 e~),  

(i.e. q = e 2~i", x = e 2~i~ with zl, z 2 = u _ v l/q3); this way of writing the Fourier series 
of Hilbert modular forms is convenient if one wants to see the effect of 
interchanging z~ and z 2 (corresponding to x~--*x- 1) or of restricting to the diagonal 
F 1 (corresponding to x =  1). The Fourier developments of the other ~ can be 
deduced from (63) using the relations (whose proof we leave as an exercise) 

Z1 
, i(zl,  z2): �88162 (-~-+ xj, ~L+ xj) ( j=  1,2,3, 4) 

where x i as before represents thej-th cusp. The forms 40, r and 42 vanish doubly on 
F ~ ' = { z l = z 2 } = { x = l  }, while ~3 and r vanish simply there. Computing the 
elementary symmetric functions of the r we find 
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0-2 = - 8(x - x -  1)2 (x + x -  1) {q + (7x 3 _ 19x - 1 9 x -  1 + 7 x -  3) q2 

+ ( x  6 - 44x4 + l 19x  2 + 100+  l 1 9 x  -2  - 4 4 x - 4  + x -6)  q3 + ...}, 

0-3 = 32(x - x -  1)6 {q2 _ 6(x + x -  1)3 q3 

+ ( 2 7 x  6 + 114x4 + 2 3 7 x 2  + 324 + 237x-,2 + 1 1 4 x - 4  + 2 7 x - 6 )  q 4 +  ...}, 

0-4=16(X--X-t)6 {q2 +(18X3 + 78X + 78X-1+18X-3) q3 

+ (3x 6 -- 582x 4 -- 2019x 2 -- 3084--  2 0 1 9 x -  2 5 8 2 x - 4 + 3 x -  6) q4 + . . . } .  (64) 

4 

The  function 0-4=�89 ~ r/i is invar iant  under  SL2((9 ) and takes  on the value �89 at all 
0"3 i=0  

cusps, so it must  be  �89 the normal ized  Eisenstein series of  weight 2 for the full 
modu l a r  group:  

2 ff4=E2(Zl,Z2)=l +24 ~ 0-1(vb)e 2~i(vzl+v'z~) 
0"3 veb- t 

v~>0 

= 1 + 2 4 ( x  3 + 4 x  + 4 x -  1 + x - 3 )  q 

+ 24(5x 6 + 13x 4 + 2 0 x  2 + 14 + 2 0 x  -2  + 13x -4  + 5x -6) q2 +. . . .  

The form 0-2 is --8 t imes the (unique) normal ized  cusp fo rm of  weight 4 on SL2((9 ) 
and is also equal  to ~-z~4(E4-E22), where E 4 is the normal ized  Eisenstein series of  
weight 4 for SL2((9 ). Similarly we find 

0-2 - 1 6 ( x + x - 1 ) 3 { q + ( 2 7 x 3 _ 3 9 x _ 3 9 x - l + 2 7 x - 3 ) q  2 
0-3 

+ (285x 6 _ 7 9 2 x 4 4 5 x  2 + 1356_  4 5 x -  2 _ 7 9 2 x - 4  + 2 8 5 x -  6) q3 + .. .}; 

this is a Hi lber t  cusp form of  weight 6 on SL 2 ((9) whose restr ict ion to F 1 = ~/SL2 (7..) 
is - 128A(z). In this way we get an entirely explicit descript ion of  the m o d u l a r  forms 
occurr ing in T h e o r e m  7. 

Finally, observe  that  the Four ie r  deve lopments  of  the ~i permi t  us to de te rmine  
the defining po lynomia l s  fN ofw 6 for any non -compac t  curve FN: since we k n o w  the 
degree offN as a funct ion of the ~i, we can by comput ing  sufficiently m a n y  Four ie r  
coefficients of  ~i(2 z 1, 2' 2"2) (where 2 2' = N) de termine  the po lynomia l  fN(r . . . . .  44) 
which vanishes a long FN. This  is the a lgor i thm we referred to at the end of  w 7. 
However ,  even for N = 9  the a m o u n t  of  c o m p u t a t i o n  involved seems to be 
prohibit ive.  

w 10. Hilbert Modular Forms of Odd Weight. Applications 

In this section we will de te rmine  the s t ructure  of  the ring of  all m o d u l a r  forms on 
SL2((9) and give some  applicat ions.  We  star t  with the following lemma.  

Lemma. The modular form co 3 =1/0-3(~o, .-., 44) is a modular form of weight 3 of 
Haupttypus on SL2((9 ). 
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Proof. It is clear that 093 is well-defined (up to sign), since the divisor of 0. 3 on .~ x .~ is 
even, and that 0931A = ---093 for all A~SLI((9 ). We have to prove that the sign is 
always +,  i.e. that e 3 = 1, where e is the character off2~ = ~ 3  (cf. Theorem 10, w 8). 
By (64) we have 

093 = 4 V/2(x - x -  1)3 {q _ 3 (x + x -  a)3 q2 

+(9x6 + 30x4 + 51xZ + 72 + 51x-Z + 30x-4  + 9 x - 6 )  q3 +.. .} .  (65) 

From this it is obvious that 093 is invariant under the translations 

(Zl,Zl)-~(Zl + I,z2 + I), Cz1,z2)-.-+(Zl-l-r 

(z 1, z2)~ z 1 -t- 2 ' zl -t , 

so for all 2e(9. We claim that is invariant under B =  \eo 

3 + 1 / ~ .  Indeed, the functions 093 and 093]B are equal up to sign and where t o = 2 

agree at the fixed point (t o i,~o 1 i) of B. Since 093 has no zeroes in .~ x .~ outside Ft, 
their common value at this point is different from 0 and our claim follows. Finally, 

093 ( 0  e2 ' )  and 093 are equal' since they are equal up tO sign and (by (65)) have the 

same coefficient of x 3 q. Since C K is Euclidian, the ring SL2((9 ) is generated by 

(O e21) ' (t O O ~ and ( ;  21). The lemma follows. 

In w 9 we used the fact that E~ has an even divisor on .~ • .~ to find the relation 
between the ~i ( i=0  . . . . .  4) and the Eisenstein series E~ ( 0 < i < j < 4 )  and E~ (i 
= 0 . . . .  ,4). We now show that the divisor of E~ is in fact divisible by 4. To show that 

EiJ (~i+~j), , 

has even divisor on .~ •  we proved that the divisor of 0"2(Xo, . . . ,x4)--2XiX j 
contains the component of the divisor (x~+x~) lying outside the image of the 
cusp resolutions. Hence a3(x o . . . .  ,x4)(~rz(X o . . . . .  x 4 ) - 2 x  ix j) must be divisible 
by x i + x  j in the ring R=~E Ix o . . . . .  x4]/(0.1, 2o5-o"1 0"3). Calculating we find 

or 

-�89 x0 
= -0.5 +Xo xl  [x2 x3 x4 + (Xo + x4)(x2 x3 + xl x4 +x3 x4 -Xo xl)] 

=XoXl(Xo+XO[0.1-2XoXl  + (X0 -'F X1) 2"] 

(a 2 - 2x o x 1) (�89 + Xo xl (Xo + x 1)) = - Xo xl (Xo + x 1) 3. 

Consequently, the divisor of the meromorphic section of K s given by 
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x ~  
Xo x1 

consists of 4 times the divisor of (x o + xl) plus a linear combination of curves in the 
image of the cusp resolutions. This section vanishes triply at Pol = (1 : - 1 : 0: 0: 0)eS 
and has a simple pole at the nine other points Po" Therefore its pullback to Y is 
a section of Ky whose divisor has the form 

4 F3 ' + 4 F1 ~ + (curves of the cusp resolutions) 

(recall that the divisor of xl + x s on S consists of the image of F3 J plus curves coming 
from the cusp resolutions). This proves: 

Theorem 12. The modular form E~(zl, z2) is the fourth power of a modular form of 
i j  

weight �89 on F which vanishes with multiplicity one along the curves F~ and F j  and has 
no other zeroes. 

Now consider the 0-series 

O(zl,z2) = ~ e2~i~,oa~-~6~'~)/CTY. 
2er 

(66) 

This is a modular form on F of weight �89 satisfying 

0(~  z , ,  ~'o 2 z 9  = O(zl, z2), 

O( 1 1 ) _  z ] /~ tz  zO(zl,z2) 
z 1 ' ~ - i 

(the latter by the Poisson summation formula). Hence 04 is a modular form in 
M2(F ) which (a) is invariant under the action of the six elements of ~5 that fix or 
interchange the cusps 0 and 1, (b) has the value 1 at cusps 0 and 1 and 0 at the other 
three cusps, and (c) has an even divisor in .~ • .~. It follows that 04=E ~ In 
particular, 0 vanishes on F~ ~ and F~'. Thus E~ has been identified (up to sign) as the 
square of the theta-series 0 and similarly E~ as the fourth power of the theta-series 
Oq = O IAi~ where A~s is some element of S L  2 ((9) mapping cusps i and j to cusps 0 and 
1. 

Now consider O 5 = l-I 0 o, which is a modular form of weight 5. By (59) and 
(60), o__<i<i__<4 

i<i i<s ~i~j 

The divisor of the corresponding section consists of F x + F a - 2 (image of the cusp 
resolutions), so from (30) we obtain O 2 = c4(a4 x _2,4,_2 - x o 2 )  /o 3 for some constant c (in 
fact c4= -21~ In the notation of the lemma, therefore, we have 

05 ~03 = c(a 4 - �88 a~), (67) 

where 0"i=0"i(~0 , "",~4)" The lemma now implies that O 5 is a modular form of 
Haupttypus (i.e. without a character) on SL2((9). 



1 3 0  G .  v a n  d e r  G e e r  a n d  D .  Z a g i e r  

We now show that every symmetric modular form of odd weight can be written 
as aco 3 + b6) 5 with a, b symmetric modular forms of even weight. Together with 
Theorem 8 this will permit a complete description of the ring of all modular forms 
on SL 2 ((9). Before giving our main result, we introduce the following notation. By 
M~k we mean the subspace of M2k(SL 2 ((9)) of symmetric modular forms of weight 
2 k which vanish with multiplicity > 2 i on F~ in .~ x .~. A basis of M~)k is given by the 
elements of (46) with 3 b + c > k + i. By counting the elements of such a basis we find 

o d i m M ~ =  L 6 6] ,  dimMt2~=_ _ - -  and dimMt2~ = [ ~ ] ,  

while ~x(o _ Ax(~- 3) for i >_ 3. a,~ 2 k  - -  ~,a 2 k - -  6 ' 0 . 3  

Theorem 13. The ring M,  (SL 2 ((9)) of modular forms on the full modular group for the 
field I~(1/~) is generated by the modular forms 

0.4/0.3, ~ 3 ,  0"2, 6)5, 0"2a/0"3, As and 0"2As/I/a-- 3, 

of weight 2, 3, 4, 5, 6, 8 and 9, r'espectively, with the relations (49) and (67) together with 
the obvious relations implied by these relations and by the notation (e.g. 

(0"23/0"3)  0"3 = ( 0 " 2 )  3 ,  

1 2 1 3 O~ = E(0",/0"~) ~ 0"~-~(0"d0"~) 0"~ +r~0"~(0"d0"~)]). 

Proof Let MT, = M~ (SL 2 ((9)) be the space of Hilbert modular forms f of weight k on 
SL2((9 ) such that f(Zl,Z2)=(--1)kf(z2,zO ("symmetric" forms). For example 
~03eM ~ (cf. (65)). If feM~2k+l then f ' ( o  3 lies in M~k+4 and vanishes with 
multiplicity > 3 on F 1 c .~  x .~. But, as one sees from (46) and the proof of Theorem 
7, every element of Msv(SL2((9)) vanishes with even multiplicity on F 1. Hence 

( 2 )  �9 (2 )  f" 0~3 ~M2R + 4- Conversely, lfg~M2k + 4 then g is divisible by co 3 (as a modular form) 
s ~ ~,r where the isomorphism is given by and g/fo3EMS2k+l . Thus M2k+l ~' lVa2k+4 , 

 hespace multiplication with co 3. In particular, dimM~k + 1 = 6 

M(O) . .05 contains the subspace M(z~ Zk-4 6)5 with M(2~ n ~(0) , l V 1 2 k - - 4  

,,(t) 6)5, and by comparing dimensions we find that these spaces coincide. = I V l  2 k  - 4 " 

Hence M.(SL2((9)) is generated over MSev(SL2((9)) by ~03 and 6)5 with the relations 
c036) s =c(0"4-10"2), o92 =0.a and 6)2__c2(0.4_~a2)1 22/0.3. 

Next, let M~ be the subspace of Mk(SL2((9)) consisting of elements f satisfying 
f ( z  2, zl) = - ( -  1)kf(zl, Z2) ("anti-symmetric"). If feM'~k+ 1 then f-e~ 3 eM~k+4 
=MS2k_4 �9 8 (cf. Theorem 8). Since f.o93 vanishes triply and A s simply on F 1 

M a A 8 
2 k  + 1 = M(21k)_  4 �9 

09  3 

* - ( 1 )  But iv/2k_ 4 ~---M(2~ )_ 8.0"2-[-M(2~ )_ 1o"0"3 (this follows by looking at the basis (46) or 
by computing dimensions, using AAr(o) ., t-x 8At(0)  ,.r - -  I / / ' ( 2 )  ' 0"2)"  This pro- ~,~ 2 k _ 8 "  t ,  2~ ~ aY~ 2 k _  1 0  " t ,  3 - -  ~,-* 2 k _  8 

ves the theorem. 
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Incidentally, we have obtained the dimension formulas 

dim M2k = dim M~k + dim M~k 

_ +3k+6] + -5k+lO]= -k+6] 
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(k> 1), 

dimM2k + 1 = dimM~k + 1 + dim M~k+ x 

This is in accordance with the formula 

dimSk_(k-1)2 _{~ (k e v e n ) { ~  (k• lmod3)  
12 (k odd) + (k -- 1 mod 3) 

[k2-zk 1 = I - - i T - I  + 1 (k >2) 

obtained from Shimizu's dimension formula, since there is an Eisenstein series of 
weight k for k even but not for k odd. It also agrees with the formula 

dim S~ - dim S~ 

= 2 [ ~ ] - , = � 8 9  ), (~3))+dimSk(SL2(Z)) (keven) 

expressing the fact that all symmetric Hecke eigenforms of even weight for SL 2 ((9) 
are the Doi-Naganuma lifts of eigenforms on SL2(TZ ) or of eigenforms of 
Nebentypus on Fo(13 ) (see e.g. [11]). The nature of the Fourier coefficients of 
co3eSs(SL2((9)) seems to indicate that the symmetric Hilbert eigenforms of odd 
weight are also liftings of modular forms of one variable. 

We end with two number-theoretical applications. The identity O(zl,z2) 4 
= E~(zl, z2) for the function (66), together with the Fourier development (57), gives 
the following. 

Proposition 2. Let #e(9 be a totally positive integer in II~(]/~). The number of 

representationsof#asasumof twosquaresin(gequalsa~(-~a ). 

This is the analogue of the well-known identity 

1 

r 2 (n) = 4d~ ~  (n > 0) (68) 

for the number of representations of a natural number as the sum of two squares, 
which is equivalent to the fact that the square of the ordinary 0-series 

O(z) = ~ e ""~ (ze~) 
neZ 
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is the Eisenste in  series of  weight  1 wi th  charac te r  ( - ~ - ) .  By c o m p a r i n g  the first few 

F o u r i e r  coefficients,  one shows tha t  O(z, z) and  0(z) 2 (which are  bo th  m o d u l a r  forms 
on  F ( 2 ) c  SL27. ) are  equal,  so 

E~(z, z) = O(z, z) 2 = O(zp.  

C o m p a r i n g  F o u r i e r  coefficients and  eva lua t ing  the coefficients p(a) of E~ by  the 
m e t h o d  given in 1-13] (Lemma,  w 3) for crk(a), one  gets as a fur ther  app l i ca t i on  

Propos i t ion  3. The number of representations of a natural number as a sum of four 
squares is given by 

r , ( n ) = 4  ~ ( ~ )  c ( 1 3 ~ ) ,  
aln 

d > O  

where 

xEZ 
x2 ~=m 

x 2 -= m ( r o o d  4 )  

with r z as in (68). 

This  p r o p o s i t i o n  can also be  ob t a ined  by  app ly ing  Sh imura ' s  t he o re m on lift ing 

m o d u l a r  forms of  hal f - in tegra l  weight  to ~ c(m) e 2~imz, which is a m o d u l a r  form of  
weight  3. m= 0 

By res t r ic t ing var ious  m o d u l a r  forms on Y to o ther  curves F N, one can  ob ta in  
m a n y  further  ident i t ies  of  this  type.  
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