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Introduction

The action of the classical modular group SL,(Z) on the complex upper half-
plane $ has a natural generalization to an action of the group SL,(0k) on the n-
fold cartesian product ", where O is the ring of integers of a totally real
number field K of degree n. This is the Hilbert modular group, introduced by
Hilbert towards the end of the last century and studied by his student Blumen-
thal and later by Hecke, Maass, Gundlach and others. These authors showed
how to compactify the quotient $"/SL,(0k) to a (singular) projective variety
$"/SL,(@k) by the addition of finitely many points (“cusps”), determined the
function field in a few cases, constructed Eisenstein series and other modular
forms for the group SL,(0x) and gave various arithmetic applications.

The theory was given new impetus in 1970 when Hirzebruch [4] showed

how to resolve the singularities of $"/SL,(0f) in the case n=2. He also
calculated the Chern numbers of the non-singular models thus obtained and
*  This research was supported by the Netherlands Organisation for the Advancement of Pure
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studied the properties of modular curves on these surfaces, thus making it
possible to apply the techniques of algebraic geometry and in particular to
determine completely how the Hilbert modular surfaces fit into Kodaira’s
“rough classification scheme” (i.e. whether they are rational, K3, elliptic or of
general type) [4, 8, 9]. However, there remains the problem of determining the
isomorphism class of the Hilbert modular surfaces, rather than just their bi-
rational equivalence class or Kodaira type. This problem seems to be very
difficult and has been solved only in a few cases. In 1976, Hirzebruch gave the
answer for the field Q(]/g) [6] and several other fields of small discriminant [7].
For example, the modular surface for Q(]/ 5) is related to a famous cubic surface
studied by Klein.

In this article we study various modular surfaces associated to the field K
=Q(]/E). In particular, let Y be the minimal desingularization of the surface
obtained by compactifying $?/I’, where

r={(‘;‘ g) eSL,(0)|a=6=1, B=y=0(mod 2)} (1)
is the principal congruence’subgroup of SL,(0g) for the prime ideal generated
by 2. In §§3-4 we show that Y contains 10 exceptional curves and that the
surface Y° obtained by blowing down these curves is minimal and is isomorphic
to the minimal desingularization of the quintic surface

5 a 2 ¢ 3

= Y x2 Y x}p )]

= j=0

4 4
S={(x0: 1 xg)€PY@) ] Y x,=0, Y x7=
i=0 i=0 12

i=0

In §§5-7 we study modular curves on Y and their images on S, showing that
these images are always complete intersections and illustrating how their
equations can be determined. In the last three sections we use the birational
equivalence Y—S to study the modular forms on I' and on SL,(0f) and show
how to express the coordinates of the map HxH—-HxH/'-S in terms of
Eisenstein series of weight one and weight two. Our thirteenth and last theorem
(§ 10) gives the structure of the ring of modular forms of arbitrary weight for the
Hilbert modular group SL,(0g).

§ 1. The Hilbert Modular Surface Y

We denote by K the real quadratic field Q(]/IS) and by 0=0 its ring of
integers. The group SL,(0) acts on H*=9Hx H (where H={zeC|Imz>0} de-
notes the upper half-plane) by

a B _ az,+p a,22+ﬂ,)
(v 6) (Z"ZZ)“<vz1+5’v’z2+5’ ’

where x—x’' denotes conjugation over @ in K. The group SL,(0)/{+1} acts
effectively on 9 x . The subgroup I'/{+ 1} (with I' defined by (1)) acts freely. In
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this section we collect some basic facts about the surfaces $?/SL,(0) and H3/I;, a
reference for everything being the article {4] of Hirzebruch.
The surface $?/SL,(0) is the quotient of $?/I" by the group

SL,(0)/T =SL,(0/20)=SL,(IF,)

of order 60. Both surfaces are non-compact and must be compactified by adding
cusps; these cusps are in 1:1 correspondence with the orbits of IP,(K)=Ku {0}
under the corresponding group. Since the class number of K is 1, there is only
one orbit of IP,(K) under SL,(0), represented (say) by oo, so that $?/SL,(0) is
compactified by adding one point: $2?/SL,(0)=9H?/SL,(0)u {o0}. The action of
I' on IP,(K) has five orbits, corresponding to the points of IP,(IF,), so $2/I" must
be compactified by adding 5 cusps, represented (say) by oo, 0, 1, &, and &7, where

3+7/13
o=""5
4, respectively. The group SL,(0)/I ~SL,(IF,) acts on these 5 cusps as U, the
alternating group on 5 elements. In future we identify SL,(®)/I" with U;.

Let Y(13) denote the minimal desingularization of $2?/SL,(0) and Y that of
$?/I'. The recipe for resolving cusp singularities was given by Hirzebruch in [4]
and involves the periods of certain continued fractions. In our case, we find that

the resolution of the cusp singularity of $?/SL,(0) consists of 3 non-singular
rational curves with the intersection diagram

is the fundamental unit of K. We number these cusps O, 1, 2, 3 and

©)

(the negative integers denote self-intersection numbers), whereas that of each

cusp singularity of $?/I' consists of 9 non-singular rational curves with the
intersection diagram

4

(the 5 cusps have isomorphic resolutions, since they are permuted by the group
). Under the action of 2, each cusp has an isotropy group isomorphic to .
This group contains two involutions 7, and t, such that {1, t,, 7,, 7,7,} is a
normal subgroup of index 3. The involution , has three isolated fixed points in
a neighbourhood of the configuration (4). After blowing them up, we can
visualize the action of the isotropy group which produces (3) as follows:
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(Cf. [6], where a similar process for the cusps of the Hilbert modular surface for

Q(lﬁ) is described in more detail.)
Finally, we give the values of the numerical invariants of the surface Y. Since
I'/{+1} acts freely on H?, the Euler characteristic of the quotient is given by

e(gz/r)= 5 0y Aw,=[SL,(0):T] f Wy AW;,
$2/r H2/SL2(0)

1 . . .
where ;= —Eyj‘z dx;ndy; (z;=x;+1iy;, j=1,2) is the invariant volume form
in $. Furthermore,

01 AWy, =2{x(—1),
$2/SL2(0)

where {(s) is the Dedekind zeta-function of K. Hence
e(9*/T)=60-2(x(—1)=20,

and, since Y is the union of $2/I" and 5 configurations (4), the Euler number of Y
equals 65. On the other hand, the signature of $?/I" is zero and the 45 curves of
the cusp resolutions (4) have a negative definite intersection matrix, so the
signature of Y is —45. Hence by the signature theorem of Hirzebruch and the
theorem of Noether we find the values

+c,

12 .

d(Y)==5, c,(V)=65 x(Y)=
for the Chern numbers and arithmetic genus of Y. We recall that
2
1(Y)= ) (—1) dimH(Y,0y),
i=0

where Oy is the structure sheaf of Y. Since dim H°(Y, Oy)=1 and the irregularity q
=dim H'(Y, 0y) vanishes for all Hilbert modular surfaces, the geometric genus
p,(Y)=dim H(Y, 0y) is equal to 4.
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We denote by K, the divisor class of a canonical divisor (i.e. the divisor of a
meromorphic 2-form), or an element representing this class if no confusion can
arise. Then Ki=c}=->5.

§2. The Curves F,

In this section we give the definition and main properties of the curves Fy and
T which were studied in [4, 5, 9] and [10].

Let N be a natural number and consider in $ x$§ the graphs of all linear
fractional transformations

ZHl’z—az]/ll3 .

13z+4

of determinant 13a,a,+ A4 =N, where a,,a,€Z, 10 and the triple (a,,a,, 1) is
primitive (i.e. no natural number >1 divides a,,a, and 1). The union of these
graphs is invariant under the action of SL,(0); its image in $?/SL,(C), or in
$2/I, will be denoted by Fy. We also consider the curves Ty, which are defined
similarly but without the condition that (a,,a,,4) be primitive, since many

formulas are simpler in terms of the T},. Clearly T, = U Fy,2. The curve Fy
d>0,d2/N

in $2/I' is mapped into itself by the action of the group U, the quotient being
the curve Fy in $2/SL,(0). The curve Fy is non-empty if N is a quadratic residue
of 13.

The curves Fy have no singularities except ordinary multiple points and
intesect one another transversally. Their intersection numbers were determined
in [10] and can be given in terms of class numbers. These numbers are in
general not integral, but only rational, since $2/SL,(0) is a rational homology
manifold. For example, if N is not a square,

4N — x>
(T;- TN)532/SL2((9)=H?3(N)DfF Zz H ( 3 ), %)
SC4N

x
x2=4N(mod 13)

where H(n)etZ is the number of classes of binary quadratic forms ¢ of

1
discriminant —n, each counted with multiplicity ————, and more generall
P TAut(o)] goneray
MN
(T Tgsian= % d(15) 18 () ©
dj(m,n)

if 13 4(M, N) and MN is not a square. The intersection numbers on $2/I" are 60
times those given by (6) and are of course integers.

The curves Fy (resp. Ty) on H%/SL,(0) and $?/I' determine curves on the
non-singular models Y(13) and Y; these curves will also be denoted by Fy (resp.
1y). The curve F, intersects the cusp resolution(s) if there exists an element
xelP (K) satisfying
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a, Y13xx A x+Ax" +a,)/13=0,

ie. if N is a norm in K. The way Fy intersects the cusp resolution on Y(13) was
described in [9]. Using our knowledge of the action of U, we can determine
how F, and T, meet the cusp resolutions of Y. We find, for instance, that 7.
meets each (—5)-curve in the cycle (4) transversally in 2n points and that Tj,.
meets each (—2)-curve in (4) transversally in 2n points, the intersection points
being given in both cases by u?"=1, where u is a coordinate on the (—5)- or
(—2)-curve which takes on the values 0 and oo at the intersection points with the
adjacent curves in the cycle. All other intersections of the Ty with the cusp
resolutions occur at intersection points of adjacent curves of a cycle. At a
common point of a (—2)-curve and a (— 5)-curve, the curve Ty is given by the
equations u??=1v??, where (u,v) are local coordinates in Y such that u=0 is the
local equation of the (— 5)-curve and v=0 that of the (—2)-curve, and where p
and g are positive integers such that p?+5pq+3¢®=N. Similarly, at the
meeting point of two (—2)-curves, Ty is given by u?*?=v?? with p,q>0 and 3p?
+7pq+3¢*=N, where u=0 and v=0 define the two (—2)-curves. Thus we get
the following intersection picture:

We denote the (—5)-curves of the cusp resolutions (4) by D, (f=1,...,15)
and the (—2)-curves by E, (x=1,...,30). Then the above description of the
intersection of Ty with the cusps leads to the formulas

2n  (N=n?

(Ty-Dyly=ay=2 ) 2p+{0 (N #square)

p,9>0
p?+5pq+342=N
()
(Ty-Ey=by= > 29+ > 2p
p,a>0 p,4>0

p2+5pq+3q2=N 3p2+Tpq+392=N
2 (N=3n?
0 (N/33square).
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On the other hand, the Chern class ¢, of Y can be represented by a differential
form y, +7v,, where y, represents in H?*(Y) the Poincaré dual of the homology
class of the cusp resolutions, and where y; has support disjoint from the cusp
resolutions and satisfies

_[ 71:j (0, +w,)

Fn Fn
with w,, w, as in § 1 (cf. [4], 4.3). Also

jwlz j w, =vol(Fy),

Fa Fyn
where vol(F,) is the Euler volume of Fy. Hence
(cy- Fy)y=2vol(Fy) + Fy - (cusps).

Of course a similar formula holds for T,. Using the formula for vol(7,) given in
[10], we find

d\(, N
(e Ty==10 (1_37) (d+7)+15a,v+30b~ ®)

with ay, by given by (7). Note that (¢, - Fy)y= — Ky F.
We consider three examples of curves Fy in detail.

N=1. The curve F, on Y(13) consists of one component, so the components of
F, on Y are permuted by . It therefore suffices to consider the component
given by z; =z,. The subgroup of I' that maps the diagonal z, =z, in $? into
itself equals I'(2), the usual congruence subgroup of level 2 in SL,(Z). Since I'(2)/
{£1} has index 6 in SL,(Z)/{+1} (which is the subgroup of SL,(0)/{+1}
preserving the diagonal), we find that F, has 60/6 =10 components in $?/I. Each
is isomorphic to $/I'(2) and hence is compactified by adding three cusps, the
result being a non-singular rational curve. The component defined by z, =z,
intersects each of the cusps 0, 1 and 2 transversally in a point of a (— 5)-curve.
By the action of U5 we see that each component of F, meets exactly three of the
five cusps, so that the components can be conveniently numbered F,’
(0i<j<4), where i and j are the indices of the two cusps which the component
does not meet. From (7) and (8) we find (c, - F,)y =10, so the value of Ky-F,’
(which must be the same for all ;, j) equals — 1. Hence each component of F, is an
exceptional curve (i.e. a non-singular rational curve with self-intersection number
—1). Blowing down these 10 curves we obtain a new surface Y°. This surface is
non-singular and contains 10 points p;; which are the images of the F;’ under the
blowing down map Y— Y° We draw a picture of the image of one of the
configurations (4) (say the resolution of the O-th cusp) in Y°:
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©)

N =4. Consider the component of F, defined by

fomer V13 vis

T, Z,=t——— (teg)

/B3

This component intersects only cusp 0; in fact, N represents oo in IP;(IF,) and

x—x’=@ holds only if x is I'(2)-equivalent to oo in IP,(K). Comparing the
subgroups of SL,(0) and of I' which map this curve in $ x $ to itself, we see
that the curve F, on Y has five components. Each component intersects one of
the configurations (4) transversally in six points, two on each (—5)-curve. We
denote by F, (i=0, 1,2, 3,4) the component of F, which meets the resolution of
the i-th cusp. The subgroup of U that keeps a component F, invariant is
isomorphic to U,; by the Hurwitz formula for branched coverings we find e(F),)
=2, so F, is rational. Applying formula (8) we find (c, - F,)y= — 10, so K;-F,=2
for each component. By the adjunction formula

Ky Fi+(F)*= -2,

the self-intersection of F, is —4. Since F, is disjoint from F,, the image curve in
Y? (for which we use the same symbol F,) also has self-intersection number —4
and hence Kyo- F,=2.

N=13. The curve in $ x $ defined by
e/ 13z, -3 1/132,=0

is transformed into itself by a subgroup of I' that has index 6 in the correspond-
ing subgroup of SL,(0). We find 10 components and (c, - F,3)y= — 80. Since
(F,- F3)y=30 by formula (6), Kyo-F,;=50. Just as in the case of F,, each
component of F,; meets exactly three cusps and we can write F, ;= ) F;}, where
F;% does not meet cusp i and j.
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§ 3. A Canonical Model for Y

As we just saw, the curve F, on Y consists of 10 exceptional curves which can be
blown down to give a non-singular surface Y° This surface has the numerical
invariants y =5, ¢ =5. This implies that Y° (and hence Y) is of general type, i.e.
that the sections in a sufficiently high tensor.power of the canonical bundle
determine a birational map of Y° onto a projective algebraic surface (see [8]). In
this section we show that Y° is a minimal model of Y (i.e. does not contain any
exceptional curves) and determine its image under the 1-canonical mapping.

Proposition 1. The surface Y° is minimal.

Proof. We use the method introduced in [2], which is based on the foliowing
assertion: Any non-singular rational curve C on Y has at least three points in
common with the curves of the cusp resolutions. Indeed, if not, then by deleting
from C its intersection points with the cusp resolutions we would obtain a curve
in $xH/I" isomorphic to IP;, € or €C* and hence a curve in the universal
covering $? of H2/I' isomorphic to IP,, € or C*. But this is impossible since,
according to the theorem of Picard, none of these curves admit a non-constant
holomorphic mapping to §. Of course, the same principle applies to Y°.

Now suppose that Y° contains an exceptional curve E. Then E has at least
three points in common with the curves coming from the cusp resolutions. These
curves are either (—2)-curves or (—3)-curves (i.e. non-singular rational curves
with self-intersection —2 or —3). There are now four possibilities:

i) E- C=2 for some (—2)-curve or (—3)-curve C;

ii) E intersects at least two (—2)-curves, each transversally in one point;

iii) E intersects two (—3)-curves and one (- 2)-curve transversally in one
point;

iv) E intersects at least three (— 3)-curves transversally in one point.

By blowing down E in case i) we obtain a non-singular rational curve with
self-intersection =0. In case ii) we get two intersecting exceptional curves. By
blowing down E and the exceptional curve arising from the (—2)-curve in case
iii) we obtain two (—2)-curves with intersection number =2. Finally, in case iv)
we obtain three (—2)-curves with a common intersection point. However, as
explained in [8], such configurations cannot occur on a regular surface of
general type.

Theorem 1. There exist 5 sections s;e H°(Y®, Kyo) such that the canonical mapping
D: Yy (so(¥):s1(¥):s2(¥):53(0):84(y) (10)

is a holomorphic mapping of degree 1 onto a quintic surface S in P, determined by
the equations

0,=0, Ado,0;+uc;=0 (11)

Jor some A, ueC, where o, is the i-th elementary symmetric function in the
coordinates x, ..., x4 of IP,. Moreover, § has 15 singular points, each resolved by
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a configuration

in Y°.

Proof. The geometric genus pg(YO) of Y° equals 4. This means that for any three
points q,,q,,q;€Y? there is at least one effective canonical divisor passing
through ¢,, q, and ¢;.

Now consider the configuration (9) on Y?° arising from the resolution of the
cusp 0 on Y, and let D be an effective canonical divisor passing through p,,, p3.
and p, ;. Since Kyo-D, =1, the divisor D must contain D;. But Kyo.- E;=0, so D
must also contain E,, E and hence also E, and E5. Then it also contains D,,
E,, E, and D,. Thus D contains all nine curves in (9). Also, the component F, of
F, passes through each of D,, D, and D, twice (see above) and Kyo F,=2, so D
must contain F,. Hence

6 3
D=3 a,E,+ Y byDs+cF,+R
a=1 =1

with a,,bs,c21 and RE,20 (1=a<6), RD;=0 (1<f<3), RF;=0 and
Kyo R20. The relation

3
5=K%0=KyoD=pzl bﬁ+2C+Ky0R

implies b, =b,=b;=c=1 and K, R=0. By intersecting D with D, we find
1=KyoD,=DD,= —3b;+a,+ag+2c+RD,=a,+as+RD; -1,

so a;=ag=1 and RD;=0. Thus a,=1 for all « and RD;=0 for all . Similarly
RE,=0, RF, =0. Since the canonical divisor D must be connected ([1], §4), R is
empty. It also follows that E, ..., E, 5 are the only (—2)-curves on Y°. Indeed, by
the assertion used in the proof of the preceding proposition, any other (—2)-
curve would have to intersect some cusp, say the O-th, and would then be
contained in D, a contradiction.

In this way, we have constructed a canonical divisor D consisting of the
curves of the 0-th cusp resolution together with Fy, all with multiplicity 1. Let s,
be a section of Kyo with zero-divisor (s,)=D. By the action of a subgroup Z, of
A, which permutes the cusps cyclically we get 5 sections s5;e H°(Y®, Kyo), i
=0, 1, 2, 3, 4, where the zero-divisor of s; consists of F‘: and the curves of the i-th

cusp resolution. We claim that .

(i) the sections sg, 5y, ..., S, satisfy the linear relation Y s;=0 and no other
linear relation, i=0
(ii) any element meA acts on the s; by s, cs,(,, where ¢+ 0 depends on =
but not on i,
(iii) the sections s; do not have a common zero.
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4
Indeed, since p,(Y°) =4, there must be some relation Y A;s,=0 among the
i=0
s;, and this relation is unique (s, s,, 53, 5, are linearly independent, since exactly
one of them is non-zero at each of the four points p,;, 1<i<4). Applying the
action of the group Z to the relation, we see that all A; are equal. This proves
(i) but also (ii), since clearly n*s;=c;s,; for some number c;+0 (the two
4

sections have the same divisor), and the only way for the relation Y s,=0 to be
i=0

preserved is that c¢; should be independent of i. Finally, since the curve F, does
not intersect the O-th cusp, we have F, F, =DF, =Ky, F,=2, i.e. any two F, meet
in two points (which are outside the cusp resolution). On the other hand, on F,
we have 8 points corresponding to the quotient singularity of order three on
F,c$%/SL,(0), and these must be the intersection points of F, with the other
F,. Hence there is no point lying on all of the divisors (s;).

We have proved that the mapping (10) is a well-defined mapping from Y°

4

into the hypersurface IP; < IP, defined by ¢, = ) x;,=0 and that it is equivariant
i=0

with respect to the action of U on IP, defined by the permutation of the
coordinates. Since K,=35, it is either a holomorphic mapping of degree 5 onto a
surface of degree 1 in IP, or a holomorphic mapping of degree 1 onto a quintic
surface. But the first case would contradict (i) above, so the image of Y° is a
quintic surface. The defining equation of this surface is invariant under U, and
hence must have the form (11) for some constants 4, 4 not both zero. Finally, the
mapping (10) sends (—2)-configurations to rational double points and is other-
wise biholomorphic. Since we have already shown that the only (—2)-curves
on Y? are the 30 curves E,, this proves the last assertion of the theorem.

§ 4. Quintic Surfaces in IP, which are Invariant under

In this section we determine the coefficients A and p in the equation (11). We will
show that the equation of § is

0,=0, 205=0,0, (12)

(this is equivalent to the equations in (2)). This follows immediately from
Theorem 1 and the following result

Theorem 2. In the family of quintic surfaces S;.,, in IP, given by
Sam={(xo:...:x4)eP|0,=0, Lo, 0;+pn0os=0}

(where o, denotes the k-th elementary symmetric polynomial in x,, ..., x, ), all but
the following 6 are non-singular:

(i) 05=0 (reducible, consisting of 5 planes, meeting along 10 lines which in
turn meet 3 at a time in 10 points),

(if) 6,063=0 (reducible; consisting of a quadric and a cubic surface meeting
along a non-singular sextic curve),
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(il 205+, 65=0 (20 singularities, namely the Ss-orbit of (—2: —2:—2:3
+yY =-7:3=y =17),
(iv) 2565—120,05=0 (10 singularities, namely the & s-orbit of (—2:-2:
—-2:3:3)),
(V) 5005+ 0, 05=0 (5 singularities, namely the S,-orbit of (1:1:1:1: —4)),
(Vi) 205—0,03=0 (15 singularities, namely the Ss-orbit of (0:1: —1:1:

-1)).

4

Proof. It will be more convenient to work with the power sums S, = Y x¥, which
i=0

are related to the o, by the well-known formulas of Newton (here S; =0,=0, S,

=—20,, S3=30;, S4=—40,+203, Ss=505—50,0;). Then the equation of

S0 becomes

S,=0, tS,8,+18,=0 (13)

. A+ ) .
with t= —6—N. Since the cases A=0 and u=0 correspond to the obvious
u

reducible cases (i), (ii), we assume ¢+ -L
Let p=(x,:...:x,) be a singular point of §;.,,. Its coordinates must satisfy

0 0 .
é?i(tSzS3+§Ss)=ua(S1) (i=0,...,4)

for some u, i.e.

xt+(3tS) x}+2tS3) x;—u=0 (i=0,...,4). (14)
Summing over i, we find that u is given by

S,+3t82—5u=0. (15)

Since the five coordinates x; satisfy the quartic equation (14), at least two x;
must be equal (but not all x;, since §, =0). We can then distinguish the following
five cases

Case p is equivalent to Number of points
in &4-orbit
I (o, 0, 0, 00, B), doe=—fB+0 5
II (o, 0t 00, B, B), 3oo=—28%0 10
111 (o, 0,00, B, ), 3ae+ B +7y=0 20
Iv (o, 0, B, B,7), 2a+2B+7y=0 15
\% (o, 00, B, 7, 0), 20+ B+y+5=0 30

where a, f§,y and J are distinct. In cases I and II, (13) is satisfied only for t=
— 145 and t= —2;, respectively, giving cases (v) and (iv) of the theorem. As to
the other three cases, we observe that the coefficient of x? in (14) is 0, so the sum
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of the roots of the quartic equation is 0. This implies that the roots of the
quartic are o, f,y and 2« in Case IIl and «, B, y and a+f in Case IV.
Consequently, in Case III the quartic (14) is identically equal to (x —o){x — B)(x
—7)(x—2a); comparing coefficients (using Eq. (15)) we get

(16t +2) a3 —(6t+ 1) a fy=0,
(36t+7) a2 —(6t+1)fy=0

3y -7

and hence (since ¢+ —2 implies a#0) t= —1 and f, y=— , giving Case

2
(iii) of the theorem. Similarly, in Case IV the quartic (14) is identical with (x
—o)(x — B)(x —y)(x —oc— B) and comparing coefficients we find t=—7; and y=

—2(a+ B)=0, giving Case (vi) of the theorem. Finally, in Case V, the four roots of
(14) are o, f8,7,6 so we must have —a=o0+f+7y+5=0. Then S,=—20a,(f,7,9)
and S;=30,(f,7,0), so the quartic equation having the roots «=0, f, y and J is
xt—48,x2—48S,x;=0, which can agree with (14) only in the excluded case
t== —%. This completes the proof.

Observe that the surfaces S;.,, are the fibres of the projection map V1P,
where V<IP, xIP, is the threefold defined by

V={((xg:...:x4), (A:p))elPy xIP,|6,=0, Ao, 05+ pn05s=0}.
Each of these fibres contains the 15 lines
x+x=0, x+x,=0, x,=0 ({i,j,kLm}={0,1,23,4}) (16)

and the 5 conics
4 4
x=0, Y x;=0, Y x}=0 (i{0,1,2,3,4}). (17)
j=0 j=0

In order to determine the singularities of V, note that, if Au<+0, a point g
=((xg:...1x4), (A:p)eV is singular if and only if 6,06;=0, 0,=0 and the x;
satisfy (14) (with (= K
6u
(14) with t= —L and u=0. If =0, then ¢, 0,=0, 05=0 and the x; satisfy 35, x}
+2S8,x;=0(0<i=<4),s0 S,=0and S;=0. Therefore V has 75 singular points:

). If A=0, then 6,0,=0, 65 =0 and the x; satisfy

15 in the Ss-orbit of (0:1:1: —1:—1),(1: —2)),

20 in the S,-orbit of ((0:0:1:p:p?), (0:1)), where p=e>™/3,
30 in the S5-orbit of (0:1: —1:i: —i), (1:0)), and

10 in the Ss-orbit of ((0:0:0:1: —1), (0:1)).

Digression: The extended Hilbert modular group for Q(Vﬁ)

The methods introduced so far apply to another case. Until the end of this

section, let K =Q(1/2_1). Again there is a subgroup I'c SL,(0f) of index 60
defined by (1) and we can define a modular surface Y by compactifying $2/I’
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and resolving the cusp singularities; here the numerical invariants of Y are ¢ =
—10, y =15 and the resolutions of the five cusps are cycles consisting of six (— 5)-
curves. There is an involution « on $?/I" defined by (z,, z,)— (s 2, €' z,), where ¢
=55+12 Vﬁ generates the group U, of units =1 (mod 2). The quotient of $2/T"
by o is $2/I, where

R (W

is the extended Hilbert modular group. Let Y, be the minimal desingularization
of $?/I;u {cusps}; then Y, is isomorphic to Y/& where Y denotes the surface
obtained by blowing up the fixed points of « on Y and & the extension of the
involution a to ¥. By the Hurwitz formula, therefore,

o, 0l +20, B,ye20y, Ot5—ﬁ'))=8}

5 r
HX)==5, 1(Y)=3+g,

where r is the number of fixed points of « on Y. In particular, r40. But then
r=20 since the set of fixed points of o must be invariant under the operation of
G=SL,(0g)/T and the surface H*/SL,(0)=(H*/I')/G has quotient singularities
only of order 2 and 3. Hence x(Y,)=5. By blowing down F, (which again
consists of 10 exceptional curves) on Y, we get a surface Y.° with ¢2(Y,)=5 and
P(Y)=p,(Y,)=x(Y,)—1. By an argument like that in § 3 one shows that Y. is
minimal; now the inequality c¢f>2p,—4, valid for minimal surfaces of general
type ([ 1], Theorem 9) implies y(Y,)=35. Using the cusp resolutions and F, as in
the proof of Theorem 1, we conclude that the canonical map is a holomorphic
map of Y,? onto a quintic surface in IP; =P, having 20 singularities, each with a
resolution comsisting of one (—2)-curve. Theorem 2 then implies the following
result:

Theorem 3. The minimal model Y, of the Hilbert modular surface corresponding to
the congruence subgroup of level 2 in the extended Hilbert modular group for

Q(}/21) is isomorphic to the minimal desingularization of the quintic

M+

-~ n

4

_s 2 3
=33 x; xj}.
= j=o

i=0

4 4
{x=(x0:...:x4)eIP4((E) Y x=0, ) x
i=0 i=0

§ 5. The Involution 7 and a K3 Surface

The involution (z, z,)—(z,, z;) of  x H induces an involution t on Y. Since the

curve F, is transformed into itself under t we obtain an involution 7° of Y°.

From the definition of the involution it follows that the cusps 0, 1, and 2

(corresponding to oo, O and 1 resp.) are fixed and that the cusps 3 and 4 are

interchanged. Therefore (t°)* 5;= +s, for i=0, 1 and 2, and (t°)* s, = +s,, where

(z%* is the involution on H°(Y®, Ky.) induced by 7° and the sections s; are as in
4

Theorem 1. Since the relation ) s,=0 has to be preserved the signs are equal.
i=0
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Hence the involution of the quintic surface S which is induced by 1° is given by
Tt (XgiX1 X X3 X)) (Xg: X 1Xy:X4:X5).

The fixpoint locus of 74 can easily be determined. It equals:

{(xg:...:x)elPycIP, | x5 —x,=0} U {(0:0:0:1: —1)}. (18)

It is known ({4]) that the l-dimensional part of the fixed-point set of the
involution of $2/SL,(0¢) induced by (z,, z,)+>(z,, z,) consists of the two curves
F, and F, ;. Hence the 1-dimensional part of the fixed-point set of the involution
on $ x H/I' is contained in F, U F;; on H x H/I' One easily verifies that none of
the curves of the cusp resolutions in Y is pointwise fixed under 7. Also the
inverse image of the point (0:0:0:1: —1)eS in Y° is the point p;, obtained by
blowing down the curve F; < Y. It now follows from (18) that the image of F;3
in S is the curve given by x; —x, =0 (recall that F;; denotes the component of
F, ; which intersects the resolutions of cusps 0, 1 and 2) and that the fixed point
locus of 7 in Y consists of the two curves F;' and F;3. By virtue of the -
symmetry, it is clear that the image of Fy; in S is given by x;— x;=0.

Now consider the surface Y’ obtained by blowing down the nine components
F{ (i,j)%#(3,4) of F, in Y (or by blowing up the point p,, in Y°).The involution ¢
induces an involution 7’ of Y".

Theorem 4. The quotient Y'/t’ is non-singular. Its minimal model, obtained by
blowing down 3 exceptional curves, is a K3 surface, namely the non-singular model
of the double covering of P, branched along the sextic curve

(Z3+2,)2—42,(2, - ZD(Z;3 -2, Z,)=0, (19)

where X, X,, X, denote the elementary symmetric functions in the coordinates of
PZ-

Proof. The fixed-point locus of 7’ is 1-dimensional (it consists of the images of F,*
and Ff;), so Y'/t" is non-singular. We use the Hurwitz-formula for branched
coverings. The canonical classes of Y’ and Y'/t’" are related by

Ky =a* Ky, +F; +F3, (20)

6
where a: Y’ Y'/t’ is the natural map. The divisor F;'+F3+ Y, E,, where

i=1
E,,,...,E, are the images of the (—2)-curves in the cusp resolutions which
intersect F,3, is a canonical divisor on Y’ (namely the pull back of (x;—x,) on S
plus the exceptional curve). These six (—2)-curves E project down to three
exceptional curves on Y’'/t" and by (20) these three curves together form a
canonical divisor. Blowing them down, we obtain a K3 surface.

Now consider the projection of S from (0:0:0:1: —1) onto the (xq, x4, X,)-
plane. This projection factors through the involution 75 and exhibits S/zg as a
twofold covering of IP, branched along a curve R of degree 6. If we write
2,,2,, X, for the elementary symmetric functions in x4, x, and x,, then the
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equations of S take the form
X3+X4+Zl=0,
Zi(x3 x)* = (ZT+25) X3 x4 +(Z, - (2, X, Z,)=0.

The equation of the branch curve R is obtained by setting the discriminant of
the quadratic equation equal to zero.

Remark. Each component F; of F,, is isomorphic to $/I3*(52), where

. 0 1552
EE=rEhE (o))

and is a non-singular curve of genus 3. The equation for F;; on S enables us to
give a (singular) model for this curve in IP,(x,, X1, X,). In fact, F} is given by the
equations

X3—x,=0
g,=0

205—0,05=0.

Using the symmetric functions X; in x4, x,,x, as defined above, we find by
elimination

337-16232,+20223,+162, 22—-16%,%,=0.
This curve in IP, has 3 singular points: (0:1:1), (1:0:1) and (1:1:0).

§ 6. Defining Equations for Modular Curves

In §§3 and 4 we defined a map from the Hilbert modular surface Y onto a
quintic surface S <IP,. In this section we study the images of the modular curves
Fyc=Yin S and in particular prove that the image of any Fy (N 1) is a complete
intersection in IP,.

We have already determined, at least implicitly, the equation in S of the
images of several curves on Y. In particular, the ten components F;’ of F, are
mapped to the ten non-singular points p;; of S lying in the s-orbit of p,;, =(1:
—1:0:0:0) (since the image of F;' in Y? is the point p, ; where the three sections
s, (k=1i,j) vanish) and the thirty (—2)-curves of the cusp resolutions are mapped
to the fifteen singular points of S, i.e. to the points in the W,-orbit of (0:1:
~1:1: —1). We claim that the fifteen (—5)-curves of the cusp resolutions and
the five components of the curve F, are mapped to the fifteen lines and the five
conics on S given by Equations (16) and (17), respectively. Indeed, from the

construction of the s; in the proof of Theorem 1 it is clear that the divisor of g5
4

= [] x; consists of the image of F, together with all of the curves coming from
i=0

the cusp resolutions. Since 65=% 0,0, on S, this divisor is the union of the
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divisors of o5 and g,, which are given by Equations (16) and (17), respectively.
The intersection points of the various components of F, are the twenty points in
the Ws-orbit of (0:0:1:p:p?), p=e>""3, Finally, as we saw in § 5, the image of
F,; in S is the zero-divisor of the polynomial

J1a(x0,s -5 X4) = 1—[ (x; —Xx;). . (21)
Ogi<j<4
We now show that all of the modular curves Fy (N=1) are complete
intersections in S, i.e. that each such curve can be given in IP, by the defining
equations of § and one further equation. We will determine this equation for
several values of N in § 7.

Theorem 5. The image in S of each modular curve Fy, N#1, can be given by a
single equation of the form

In(xos -5 X4) =0, (22)

where fy is a homogeneous polynomial whose degree ay is given by

d\ /. N
Y syp=2Y (E) (d+-d—)—12H?3(N)—3aN—6bN, 23)
1

= d|N
dZ|N

with HY3(N), ay, by as in Equations (5) and (7). The polynomial fy is given by (21)
for N=13 and can be written as a polynomial in the elementary symmetric
Sfunctions 0,,0,,04 if N+13.

Proof. We will prove that for each Fy (N #1) there exists an effective divisor Sy
on Y consisting only of (—2)-curves from the cusp resolutions such that

FN+(°‘N+116FNF1)F1+SN (24)

is an ay-canonical divisor. The pull-back of the hyperplane bundle of S under
the l-canonical map (10) is the canonical bundle of Y°. Since S is a surface
whose only singularities are rational double points, each section of the ay-th
tensor power of the hyperplane bundle of Y can be extended to a section of the
ay-th tensor power of the hyperplane bundle of IP,. Hence, if the divisor (24) is
oy-canonical, its image in S is the divisor of some homogeneous polynomial fj
of degree ay. Since (24) is invariant under &, this polynomial is either invariant
under &, or else changes sign under odd permutations of the coordinates. In the
former case fy can be expressed in terms of the o, (and hence of 7,, 05, 0,); in
the latter case, fy is divisible by the polynomial (21) and hence its divisor Fy
contains F,;, so N=13.

In order to show that (24) is an ay-canonical divisor, note that H,(Y; @)
splits as the direct sum of Im(H,($*/T"; Q)— H,(Y; @)) and W, where W is the
subspace of H,(Y; @) generated by the homology classes of the 45 curves E, and
D,. We define Fy as the component of the homology class [Fy] of Fy in
Im(H,($*/T; Q)— H,(Y; Q). The Poincaré dual of Ff is invariant under the
action of A and hence comes from a class in

Im(H*($?/SL,(0); Q) H*(Y(13); Q)
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which is invariant under the involution t* and of type (1,1) in the Hodge
decomposition of H2(Y(13); €C). But the dimension of the space of such classes
was computed in [5] and equals 1. Hence there exists a Ae@ such that

Fy+(ay+10 Fy F) F{ = A(F; + 2 F)),
ie.
[Fy]+(oy+710 Fy F)[F]+Sy=A([F]+2[F]) (25)

with SyeW. On the other hand, the number ay defined by (23) is an integer

satisfying 5oy = Kyo Fy on Y° (this follows from (5) and (8) and a comparison of

Ky and Kyo; recall that T,,= u Fy,s2). Also, F, is a 2-canonical divisor on Y°,
dZ|N

because its image in S is the divisor of ¢,. Hence
F, Fy=100y (26)

(the intersection number is the same on Y and on Y?, since F, F, =0). Therefore,
intersecting (25) with F, and F, and using F; = —10, F,=20, we obtain

—100(N+SNF1=—-20)., IOOCN+SNF4=20,1

and hence Sy (F,+ F;)=0. On the other hand, S lies in the space W generated
by the classes of the E, und D, and is 2 s-invariant, so

15 30
SN:dNﬁZ [Dp]+eN Z [E,]
=1 a=1

for some dy,ey. Since (Fy+F;) Dy+0 and (F,+F,) E,=0, we must have dy=0.
Intersecting both sides of (25) with E, now gives ey=FyE,. In particular, eyeZ.
Using the well-known sequence

o HY(Y,0) > HA (Y, 0~ HX(Y; Z) -

and the fact that g(Y)=dimH!(Y,0y)=0 we see that homology implies linear
equivalence. Therefore (25) and the fact that F, +2F, is a 2-canonical divisor on
Y imply that (24) is an ay-canonical divisor. Q.E.D.

We observe that Theorem 5 and its proof can be used to obtain class-number
relations in the style of [5]. For example, from (6) and (26) we find

10 Y ayip=F, Ty="T, Ty— T, Ty=60(H{3(4N)— H}5(N)) 27

42N

if N is odd and not a square; in combination with (23) this gives
d N
2y (—) (d+——) = 6(HY(4N) + H3(N)) +3ay + 6by.
aw \13 d
As another example we take two curves T,,, Ty with T, compact, MN prime to
26 and not a square and M = 1. The intersection number of T, and Ty on Y is
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given by (6):

(Ty- Ty =60 3 ( 1 3> dHO,(MN/d2).

d|(M,N)

After blowing down we get for the intersection number on Y°

d
(Ty T)yo=60 ¥ (13> dHO,(MN /d2) +6HO (M) HO,(N).

d|(M, N)

By Theorem 5, this equals
5( Z O(M/dz z (xN/dZ

a2 M dZ|N

since K}o=5 and Ty is disjoint from the (—2)-curves of the cusp resolutions.
Using (27) we infer the following class number relation:

3(H(4M)— HY3(M))(H]3(4N) — H73(N)

5, (15) AN+ HE () HE(N)
af(M,N)

§ 7. Explicit Equations for Modular Curves

In this section we illustrate how the polynomials fy; of Theorem 5 can be
determined. Each such determination gives in principle an explicit (in general

singular) projective model for a modular curve like the model for $/IF (52) given
at the end of § 5.

The degree of fy for N <26 is given by the following table

N[3 4 9 10 12 13 14 16 17 22 23 25 26
aN{4 2 12 8 12 10 12 12 24 20 36 32 12

(28)

{Equation (27) implies that ay =0(mod4) for N #4,13). We will determine fy for
the 9 values of N with ay<12.
The equation of F, was determined in §6: we have (up to a constant)

fa=0,. (29)

The polynomial f,; is given by Equation (21). The polynomial f; has degree 4
and must vanish at the point (0:1: —1:1: —1)€eS, since F; passes through the
curves E,. Hence it is given by

fi=40,—03. (30

However, for other values of N it is not so easy to determine fy. For example,
f10 has degree 8 and must vanish quadruply at the 10 points p;;where 6;=0,=0
(since F, - F;,=40), so it has the form

fio=03+A0d30, (31)
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for some A, but there is no simple way to determine A. For other values of N,
where a, =12, there are even more unknown coefficients. To find them, we will
use the following two methods.

1. In [10], the intersection behaviour of curves Fy on Hilbert modular
surfaces was described completely: these intersections occur in “special points”,
and at each special one can say exactly which Fy pass through the point and
determine their tangent directions. Even though we do not know how to identify
the tangent space of the Hilbert modular surface at a point with the tangent
space of S at the corresponding point, we know that the cross-ratio of the
tangent directions of any four curves must be the same in both spaces, and this
gives conditions on the coefficients of the defining equations.

2. The components of the modular curves F, and F, are rational curves

which can be represented as branched coverings of $/SL,(Z) and hence para-
metrised by an algebraic function of j(z), ze$. The intersections of F; and F,
with other Fy at special points correspond to numbers z which are quadratic
over @, for which j can be calculated by well-known methods. On the other
hand, we can give explicit parametrisations of F; and F, on S, so by comparing
cross-ratios we can determine the coordinates on S of the intersection points of
any Fy with F; or F,. A similar argument works with F, instead of F, or F,: now
the points on F;’c Y correspond to tangent directions at p;;€S, so by computing
j-invariants one can determine the tangent directions of the branches of Fy
which pass through that point.

We now explain both methods in more detail.

Every branch of Fyc $?%/I" is the image of a curve in $? defined by

a,V13z,2,— 'z, + Az, +a, )/ 13=0, (32)

(all/ﬁ A
¥ a3

terminant N. Conversely, for each z=(z,,z,)e9? the skew-hermitian matrices
satisfying (32) form a Z-module M, of rank =<2, and the map assigning to such a
matrix its determinant 13a,a,+ 44" is a positive definite quadratic form ¢, on
M, whose values are the integers N for which zeFy. The map assigning to a
non-zero element of M, the tangent direction at z of the corresponding curve on
$? defines a projective map IP(M, ® C)—-IP(T,(H?). Also, since I' acts freely,
IP(T,(9%)——> P(T,(H*/I')), where 3eH?/I' is the image of z. Thus, if 3 is
“special”, i.e. if rk(IM,)=2, we obtain a map IP(M, ® C)—IP(T,(H*/I") which is
an isomorphism of projective lines. In this case, ¢, is a binary quadratic form
which can be written with respect to a Z-basis of M, as au’+buv+cv?, and
any parameter on IP(T,(H?*/T)) is related to u/v by a fractional linear
transformation.

For example, the curves F; and F, meet in a point 3¢ H%/I" with ¢, (u, v) = 3u?
+3uv+4v2 This point corresponds to the point p=(0:0:1:p:p?)eS (p=e>"3)
which is a common root of the polynomials (29) and (30). (Note that ¢,
represents 4 twice, in agreement with the statement in §6 that two components
of F, meet in p.) The form 3u®+3uv+4v? represents 3 and 13 once and 4 and
10 twice, while the polynomials (30), (21) (resp. (29), (31)) vanish simply (resp.

) (a;,a,€Z, Ae0) is a skew-hermitian matrix of de-
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doubly) at p, and we have the following table:

N In (%/%) (4,v),3u? +3uv
0xq/ 0x;
‘ +40°=N
3 40,03 1 +(1,0)
4 g, 0, co +0,1), +(1,-1)
13 H(xi_xj) -1 +(1,-2)

10 o2+Acie, 1+A+Y24+4% +(L1), £, —1)

Comparing the entries for N=3,4,13 we obtain

e/ )

and hence 1+ A4 +)/24+A*=14, 2 and A=%. Thus

u

p UtV

f10=ai+%0§02~ (33)

For the second method we must first describe the components of F;. Arguing
as in § 2, we find that F; has 10 rational components, each meeting 3 cusps in the
two (—2)-curves adjacent to some (—5)-curve D;. Let F,’ be the component of
F; not meeting the i-th and j-th cusps. For example, F is the image of the
curve

4—1/13)z, —=(4+1/13) 2, =0 (34)

in $2 and is isomorphic to $/I;(12). We claim that the image of F,’ in § is
contained in the divisor of x;+x;. Indeed, the canonical divisor on Y° cor-
responding to (x;+x;) has the form

12
ZD,3 +ZE +R (R20),

where the Dy, are the three Dy passing through p,, and the E, are the curves of
the (— 2) conﬁguratlons adjacent to these Dy. But F;’ meets ZE in 6 points and
Kyo- F;'=2, so F;’ must be contained in R. From the equations of S we deduce
that g, = —2x7} —2x x; on F;” and then obtain easily a parametrisation, e.g.

F* ={(@tu:3t* - 2tu—u*: - 31>~ 2tu
+u?: 3t +u?: =362 —u?)|(t: welP(T)}. (35)

On the other hand, the curve $/I;(12) can be parametrised by a certain function
k(z) (ze®) related algebraically to j(z); the functions k(z) and t/u must then be
related by a fractional linear transformation. It is, however, more convenient to
divide by the action of S (i.e. to work on ($2/SL,(0))/r instead of $?/I'), since
F;/€, is the simpler modular curve $/I;(3) and the set F;n Fy is Ss-invariant.
We represent F,/S; as F;4/63, where an element of &, acts by permuting
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X,,X3,%, in the obvious way and, if it is odd, also interchanges x, and x,. Then
we can take

(x5 = x3)(x3 —X4) (x4 —X,)
(xo—xx)3

A=4 ((xg:...:x)eF3") (36)

as a parameter on F,'/&,; it is related to 0,,0,,0, by

03+ 5403

2
4 3
03

(37)
In particular, the two cusps of $/I;(3) correspond to 4= +1 (since 6;=0) and
the fixed point of order 3 to 4= o0 (namely to the intersection of F; and F,). On

the other hand, the map $/I;(3) - 9H/SL,(Z) is a 4-fold branched covering with 2
points over oo (one unramified, the other triply ramified), two over p (again one
unramified and the other triply ramified) and two points over i (both doubly
ramified). The values of j at oo, p and i are oo, 0 and 1728, respectively.
Together, this implies that j and 4 are related by

@4-5)
Ad—Dd+1)*

A special point 3 on F; with associated quadratic form au®+buv+cv?* cor-

responds to a point ze$ satisfying a quadratic equation of discriminant d
b?*—4ac 0

=13 <0.

As a check of (38), note that 4 =0 corresponds to the intersection points of F;

and F,; not lying on F, (compare (21) and (36)), which have the quadratic form

3u?+13v? with d=—12, and the value of j(z) for z satisfying a quadratic

equation of discriminant —12 is 54000, in accordance with (38). Proceeding in

this way for other special points on F; we find the following table:

j=432 (38)

Point N d j a4 0,,03,0,
cusp 3,9,12,13,... - +1 -2,0,1
[3,3,4] 3,4,10,13,... -3 0" o 0,1,0
[3,0,13] 3,13,16,... —12 54000 0 6,29 (39)
[3,2,9]1 3,9,10,14,... —8 8000 +59/-2/2 —1,4,1
[3,1,12] 3,12,14,16,26,... —11 —32768 +1/-11/4 —2,4,1
[3,0,26] 3,26, ... —24 1399+988)/2 +y22 —-1,i1

In the first column we have indicated a special point ze$ with quadratic
form @,=au®*+buv+cv? by the symbol [a,b,c]. The second column gives the
values of N for which Fy passes through z. The values ¢,, 03, 0, in the last column
are obtained from (37) and are defined up to (d,,03,64)~(*0,,¢° 65,0*6,). For
example, the fact that F;, passes through the point with 6,=—1, 6;=%, 0,=%
gives another proof that the number A4 in (31) equals §.

Arguing similarly for F, we find that F,/S ;= $/SL,(Z), the parameter 63 /65 on
F, being related to j by
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j(z)=2"0a}/0%,

and obtain the table

Point N d j 0,,03,04

cusp 4 - o0 ' 0,0,1

[4,3,3] 3,4,10,13,... -3 0 0,1,0 (40)
[4,0,13] 4,13,... —4  1728=123 0,4,3

[4,1,9] 4,9,12,14,... —11 —32768=-32> 0,1,-2

[4,3,16] 4,16,26,... —19 —884736=-96% 0,1, -6

Finally, the tangent directions at the point py; =(1: —1:0:0:0)eS correspond

(after blowing up p,,) to pointson F'=$/I;(4). Again dividing by the action of the
isotropy group, we can take ¢3/03 o3 as a parameter for the tangent directions and
j(z) as a parameter for the modular curve. They are related by j= —2'°63/s3 03,

because j equals oo, 0, and 1728 at the cusp and the two fixed points on $/SL,(Z)
and these points correspond to the intersections of F; with the cusp resolution and
the curves F,, and F, ;, where ¢2/03 3 equals oo, 0 and —27/16, respectively. The
curves F; , and F, 4 intersect F, at the special points [1,0,13] and [1,0,26] whered =
—4, j=1728 and d= —8, j=8000, respectively. Hence

; 3,2 3__ _ 27 : 3,2 3_ _ 12

lim g,/0505=—%, lim o3/0505=—%2. 41)
z— Po1 z— o1

zeF1a4 zeFj6

We now use the information we have obtained to determine the equation of Fy
for the five values of N in (28) with oy =12, namely N =9, 12, 14, 16 and 26. Each
such equation has the form

fy=A0cl+Boioi+Co,05+DoS+Ec,030,+Fo303+Goh (42)

where the coefficients A, ..., G are determined up to a constant. To determine them,
we first use our knowledge of the way F), passes through the cusp resolutions. The
line D, of the cusp resolution (cf. (9)) can be parametrised as

0:1: —1:t: —t) (telP(C)=Cu{0}) 43)
with ¢,= —1—1?, ¢,=0, 6,=t% The points t= 41 correspond to the images of
curves E,, the points t=0, oo to the images of Fl12 and Ff", and the points t=-§—+—i

(¢ a primitive n-th root of unity, n> 1) to the intersection of E, with D, (cf. § 2). We
deduce that the restrictions of fy, f} 5, f14, f16 and f5¢ to the line (43) are given (up to
a constant) by

(P =D*(* +22 2+ 1), 4 (2~ 1)2, 15, 4 (t* + 612 + 1)

and t5, respectively. This gives the coefficients 4, B, C, D in (42). Then E+4F and G
can be determined by using the values of ¢,, 03, 0, at the intersection points of Fy
with F;, F, as given by (39) and (40), and the coefficient F can be determined for N
=14 and N =26 by using (41). This gives
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fo =(da,—03)*(4a,+303)+3203(03 +462)+Ey0,03(0,—%0d)
fi2=03(40,— ) +La3(03+3203)+E ,0,0%(0,—503)
fia=0i—30,030,+$ 030} +203 (44)
fie=0i(40,+063)+% 0,050, +21605+E, 0,05(0,— 503

frie=0i—% 0,050, +1F 6305+ 5403,

To determine the remaining coefficients E,, E,, and E,4, we use the cross-
ratios of the tangent directions of the curves Fy passing through the special points 3
given in tables (39) and (40). For example, since F;, Fy, F; o and F, , pass through the
point [3,2,9] and three of them are known, we can determine the tangent direction
of the remaining one. The values of (u, v) with 3u? +2uv+9v*= N for N=3, 10and
14 are (1,0), (1, —1) and (1, 1), respectively, and the limiting value T of ¢,(c3
—40,)/(63 +403) as 3 tends to [3,2,9] along these curves equals 0, 1/2 and —1/3,

. —2v . . 128
respectively. Hence T:FE‘ Since F, corresponds to (u, v)=(0, 1), we obtain —
9

=T=—2, E,= —64. Similarly, using the special point [3, 1, 12] and the equations

of F;, F,, and F,; we find that the limiting value of ¢,(63—40,)/(63+3203)

along the curve Fi2,.,+1202 €quals ﬁ; applying  this

to (u,0)=(0,1) and (1,1) yields the vaiues E,,=10, E,,=18 for the two re-

maining unknown coefficients in (44). We can now use the point [4,1,9]
in (40), where the limiting value of (63+20%)/0,050, along Fipiuyiop

Tu+2
equals —ul—z—v—li, to check the values of E5 and E;,. A further check is provided

by blowing up the point p,,€S and using the cross-ratios of tangent direc-
tions of curves at the special point [1, 1, 10] (the fixed point of order 3 on F)),

2u+v\?
).Wecan

where the limiting value of 63/0, 03 along F., ,, 10,2 €quals — (

also use the special point [9,3,10], through which F,, F,, and F,4 pass, or the
special point [9, 10, 10], through which F,, F,, and F, pass (and in fact F, doubly,
which gives an extra condition), or the cross-ratios of the intersection points of Fy
with the (—2)-curve E obtained by blowing up the singular points on S (and on
which we can take (46, — 62) 62/03 as a parameter). Thus we obtain the coefficients

., G for our five curves Fy with considerable “overkill”. Nevertheless, it is not
clear whether this type of argument would suffice to determine fy in all or even in
infinitely many cases. In §9 we will give a method with which one could in principle
calculate the defining equations of all non-compact curves Fy.

§ 8. The Ring of Hilbert Modular Forms of Even Weight

In this section we will determine the structure of the ring of modular forms of even
weight for I' and for the full Hilbert modular group SL,(®) by making use of the
canonical map @: Y°— S constructed in § 3. Let

R=C[xy,...,x,/01,205—0,03) (6,=0:(xo, ..., X))
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be the coordinate ring of S and
¥ Clxg, ..., x4] >R
the natural projection map.
Theorem 6. Let M, (I )=6k9M 2«(I) be the ring of Hilbert modular forms of even

weight for I' and let L, be the subspace of C[xq,...,x,] consisting of all
homogeneous polynomials of degree 4k which vanish with multiplicity =2k at the
points in the Ws-orbit of (0:0:0:1: —1). There exist five cusp forms &, (i=0, ..., 4) of
weight 2 on I such that the map

o: L,—>M,, (I
given by

F(o, .., )
0-3(505 LEEE 54)"

induces an isomorphism between y(L,) and M ,,(T').

F(xg, ..., x)—

Proof of Theorem 6. Each Hilbert modular form w=g(z,, z,)(dz, A dz,)* of weight
2k for I" defines a holomorphic section s of the k-fold tensor power of the canonical
bundle K g, of $?%/I'. This section can be extended to a meromorphic section 5 of
the k-fold canonical bundle of Y whose divisor (5) contains the curves of the cusp
resolutions with multiplicity = — k (cf. lemma in [4], 3.6) and is effective outside the
cusp resolutions. Let K denote the hyperplane bundle of S. Then we have the
isomorphisms

HO(Y, K%) <= HO(Y°, K%) £ HO(S, KY),

where n is the map Y— Y° which blows down F, and ¢ is the 1-canonical map
defined by (10) in § 3. Also, the curves of the cusp resolutions in Y correspond to the
divisor of ¢, in S. Hence 5 defines a meromorphic section s of K¥ such that

ok s eH°(S, K¥%).

An element of H°(S, K¥) can be given by a homogeneous polynomial of degree 4k in
Xg, .-, Xq. We claim: ¢% s’ vanishes with multiplicity > 2k in the points p; on .
Indeed, the divisor of the corresponding element in H°(Y, K3¥) has the form

n* ¢*(05s)+4k R,

while the divisor of the section of H°(Y, K3) corresponding to 6, equals

15 30

Y Dg+ Y E,+3F +3F
=1 =1

-4

(the first three terms form the total transform of (4;)). Hence the divisor (5) on Y
takes the form

w* ¢*(d% )~k Y. Dy—k Y E,— 2k F,. 45)
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Since (45) is effective outside the cusp resolutions, n* ¢*(d% ') contains F, with
multiplicity =2k%.

Conversely, if feC[x,, ..., x,] is a homogeneous polynomial of degree 4k such
that f vanishes with multiplicity =2k at the points p;; on §, then f /o% defines a
meromorphic section of the bundle K% on Y whose divisor is effective outside the
cusp resolutions and hence a Hilbert modular form of weight 2k. Clearly the five
sections x;e H%(S, K) define (up to a constant) five cusp forms &,e M, (I') with the
properties stated.

As the proof shows, the Hilbert modular forms of weight 2k which can be
extended holomorphically over the resolutions of the cusps correspond to elements
of the form (g o%) where g is a homogeneous polynomial of degree k, i.e. they
correspond to sections in the k-fold tensor product of the hyperplane bundle of Y,
Hence the dimension of the space of Hilbert modular forms that can be extended
holomorphically over the cusp resolutions equals the k-th plurigenus P,(S) of S. By
a well-known formula, we have:

Lkk—1)K2+y=5k(k—1)+5 if k=2,

B(S)=
"(S){ -1 = 4 if k=1.

On the other hand, the Shimizu dimension formula [12] gives
dim M, (I=20k(k—1)+10 if k>2.

For k=1 wehave dim M,(I')=dim S,(I")+5=P,(S) + 4 =9, since all cusp forms of
weight 2 can be extended holomorphically over the cusps. The space of cusp forms
of weight 2 is generated by the forms &; and has dimension 4. The meromorphic
sections

ni=0,(Eg, ..., E)/E=2&, .. & e alos oy Ey)

of K¢ determine 5 non-cusp forms. Since #; is holomorphic at all cusps but
the i-th, these 5 forms are linearly independent and are also independent of
the £;. We normalize the £;, which up to now have been defined only up to a
multiplicative constant, by the requirement that the constant term of the Fourier
expansion of n,=0,(&,, ..., £4)/¢; at the i-th cusp should be equal to 1. Thus
Theorem 6 permits us to give a basis of M,(I'). However, it seems to be quite
difficult to write down explicitly a set of generators of the ring M, (I") or even to give
additive generators of M, (I"), k>1.

By contrast, we can derive from Theorem 6 both additive and ring generators
for the modular forms on the full Hilbert modular group. Let M, (SL,(0)) be the
ring of symmetric Hilbert modular forms of even weight, i.e. modular forms f(z,, z,)
satisfying f(z,, z,)=f(z,, z,). It is clear that M (SL,(®)) is isomorphic to the S-
invariant part of M, (I') and hence by Theorem 6, the space M3, (SL,(0)) is
isomorphic to the image under  of all symmetric polynomials of degree 4k in
Xg, ..., X4 Which vanish with multiplicity 22k in(0:0:0: —1:1). An additive basis
of M: (SL,(0)) is given by the elements

a+3b+2c=2k, 3b+cgk}, (46)
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where 0,=0,({,, ..., £,). Indeed, since o, and o, vanish at p;; with the multiplicities
3 and 2, respectively, the monomials (46) certainly lie in M5, (SL,(0)). Conversely,
suppose that a polynomial

f= y Ny, bees 02(X0s s Xa) 63(Xg, -0y Xg)2 P 04 (X, -, Xg)
a;,b,,c, 20 .
ai+3bi+2¢,=2k
3bitci<k

vanishes with multiplicity =2k in the points p;; on S. Let 63 be the largest power of
¢, dividing f. Then for every monomial 6% 63% 6§ of f we have b,>d and hence

a;=(a;+3b;+2¢)—-203b;+c)+3b;>3d,

so f is divisible by 639" and we can write f=063"103%g, where o;.fg. The
intersection number of the divisor (o;) and (g) (which have no common
components) must on the one hand equal 30k —180d —30 (since g and o5 have
degree 2k —12d—2 and 3, respectively, and KZ=>5) and on the other hand be at
least 30k —180d (since g and ¢, vanish at each of the 10 points p;; with multiplicity
=2k —6d and 3, respectively). This contradiction proves our claim.

By counting the elements in (46) we deduce

k> +3k

dim M2 (SL, (0)) = [ ] (k>0). @7)

Also, any element of (46) can be written in the form

¢ 3\[a/3]
(?_'1) g4~ 314/31 4l(3b-a)6) (2)
2 3 ’
03 O3

where all the exponents are positive. This proves:

Theorem 7. The graded ring of symmetric Hilbert modular forms of even weight on
SL,(0) is isomorphic to C[ A4, B, C, C')/(B* — CC') where the generators A, B, C, C’
have degree 2,4, 6, and 6, respectively. The isomorphism is given by

c
A2, B—o,, Cioog;, Cr——7,
O3 03

where o, is the i-th elementary symmetric polynomial in the modular forms &, ..., &4
of Theorem 6.

We now determine the structure of the ring M., (SL,(0)= M., (™. The
elements of M,,(SL,(0)) have the form f/c%, where f is a polynomial in &, ..., &,
which is invariant under 9 and hence can be expressed in terms of ¢,, 05, 0, and
[1(&;—¢&). The latter polynomial has weight 10 and vanishes with multiplicity 3 at

i<j

each point p;;, so Theorem 6 tells us that

Ag=(IT E&=&W/o3o, ..., Eo)* (48)

i<j
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is a holomorphic modular form (in fact a cusp form) of weight 8 on SL,(0). We
claim that

M3, (SLy(0) = M3,(SLy(0) @ M3 5(SL,(0))- 4.

Indeed, any modular form is the sum of a symmetric and an anti-symmetric form,
and an anti-symmetric form must vanish on the fixed point set F, U F,; of the
involution t (cf. § 4). But the divisor of 44 in $ x $ is precisely F, U F,; (compare
Eq.(21)), so any anti-symmetric form is divisible by 44. By computing the
discriminant of the quintic polynomial x*+0, x*—6; x*+0, x—1 0, 05, we find
the relation

o] al
23=P (%00, 7).
8 o 502,03 p (49)

3
where

P(4,B,C,D)=256A°C—128 4* B>+ 16 4> BD — 656 A3BC +776 A2 B
—261AB2D +27BD*—27 A% C*+423 AB? C —941B* + 54BC>. (50)

This proves

Theorem 8. The graded ring of Hilbert modular forms of even weight on SL,(0) is
isomorphic to

C[4,B,C, C,D]/(B*~CC,D*~P(4,B,C, (),

where A, B, C, C', D have degree 2,4, 6, 6 and 8, respectively, and P is the polynomial
(50).

As a further application of Theorem 6 we determine the modular forms of even
weight on [, where

| e

It contains I" as a normal subgroup of index 12. If we compactify the quotient $?/I;
in the usual way and resolve the singularities we obtain a non-singular algebraic
surface Y([p). It is simply-connected. The isotropy group at oo of I' has index 12 in
the isotropy group at oo of I;. But the subgroup of U, which preserves the
resolution of cusp 0 has order {2 and is isomorphic to U .. Hence if we divide Y by
the action of this group and resolve the singularities created we obtain Y(I). From
Theorem 6 we deduce a descripion for the ring M., (I) of Hilbert modular forms of
even weighton Iy: M., (Ig) =M (1™, where A, actsoné,, ..., &,. Inparticular, we

y=0(mod 2)}

see that M, (I3) is generated by &,, 1, and Z n;. Since S, (Iy) = M ,(I;,) is isomorphic
=1

to HO(Y(F;), K yz,) we find py(Y(I;)=1.

Theorem 9. The Hilbert modular surface Y(I3) associated to the congruence subgroup
I3, of SL,(0) is a blown-up K 3 surface. The ring of symmetric Hilbert modular forms
of even weight on I is generated over M, (SL,(0)) by the forms &,, £363/05,
Edayfas, E8/os (of weight 2,6, 6,6, respectively) with the obvious relations.
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Proof. On Y(I}) there are two cusps (the images of cusp 0 and 1) both with a
resolution as in (3). The curve F; has two components, both exceptional curves,
namely the images of F;" and F; ; the former meets the (— 5)-curves of both cusp
resolutions and a (— 2)-curve coming from a quotient singularity, while the latter
meets the (— 5)-curve of the resolution of cusp 1. Also the image of F, on Y(I) is
exceptional and meets the (— 5)-curve of cusp 0. Blowing down F,*, F{"", F, and the
(—2)-curve meeting F,* we obtain an elliptic K3 configuration (namely two
intersecting cycles of (— 2)-curves). The resulting surface is minimal because K7,
= —4 and we have blown down 4 times.

cusp 0 cusp !

To prove the second statement, remark that in the coordinate ring R of S the
elementary symmetric polynomials in x,, ..., X, can be expressed in x, and 0,, 03
and o,. As in the proof of Theorem 7, one checks that

faotnet

o3

a+2b+3c+4d=4k, 3c+2d;2k}

constitute an additive basis of M$,(Iy) and that all of these elements can be
expressed as monomials in 6,/65, 6,, 05, 63/05, &y, E563/05, E4a,/05 and E§/oy.

As a final application of Theorems 5 and 6 we now show that every curve F is
the zero-set of a modular form on SL,(¢). For N =1, for instance, we can take
05(Eos ..., &), whose divisor in $ x § is 6 F;. Since $ x  is simply connected, this
function has a sixth root £, which lies in S,(SL,(0), ¢) for a certain character ¢ on
SL,(0) with £°=1. More generally:

Theorem 10. For every curve Fy there exists a Hilbert modular form of Nebentypus on
SL,(0), unique up to a constant, whose zero-divisor in § x § is the curve Fy. This form

1
. - ——Fn-F .
has weight ay —% Fy - F, and character ¢ ™" 10 " ", where oy and Fy- F, are given

by (23) and (5) respectively.

Proof. In the proof of Theorem 5 we showed the existence of a polynomial fy such
that the zero-divisor of the pull-back of fy(so»...,5,)eH(Y% Kyo) to Y is an ay-
canonical divisor of the form (24), where Sy is a divisor consisting only of (—2)-
curves coming from the cusp resolutions. Hence, by the identification given in the
proof of Theorem 6, fy(&,, ..., £4) is a modular form of weight 2ay whose divisor in
$H x $ equals

Fy+(ay+1gFy-F)F,.
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Consider the modular form of Nebentypus defined by

1
+-—FnNF
QszN(£0"~~,é4)/QTN 10~ 1'
_“N—I—FN~F1

This modular form is of weight ay — 5 Fy - F,, its character is 10 and its
zero-divisor in § x § is Fy. Suppose that @ is another Hilbert modular form on
SL,(0) such that the divisor of Q) equals precisely Fy. Then (2,/Q,)° defines on S a
meromorphic section of some tensor power of K, whose divisor is a combination
Y. mg Dy of the cusp curves D,;. Moreoever, since Qy and Q) come from SL,(0), this
section is invariant under 2, so all m,; are equal and the section in question is a
constant times ¢%. Since the divisors of 2, and @}, do not contain F,, we must have
m=0, so £2,/Qy is constant.

Remark. Both oy and {5 Fy F; are even for all N =1, 13. (Proof: By (5), 15 Y. Fyxa2 Fi
=6H?%;(n)=63 H((4N —x?)/13). The number 6 H((4 N —x?)/13) is an integer and
is odd only when (4 N—x?)/13 is a square, so 6 H?;(N) is odd ifand only if 13N is a
square.) Therefore o has even weight and a character of order at most 3 for all such
N.(In fact, we will show in § 10 that &* = 1, so that Q, has a character of order <3 in
any case.) If N =2 (mod 3), then ay and % Fy F, are also divisible by 3. (Proof: The
sum Y (%) (d+%) is divisible by 3, since = — N/d(mod3).
Also, 6H(n) is congruent to 2(mod3) if n is three times a square and is
divisible by 3 otherwise, so 15 ). Fye: F; =6 H((4N —x?)/13) is congruent to
twice the number of representations of N as (x2+39y?)/4, i.e. as a norm in
Q(/ —39). For N =2 (mod 3) there are no such representations.) Therefore Q, is of
Haupttypus in this case. In general, we can obtain a modular form of Haupttypus
which vanishes on F), either by replacing Q,, by its third power or by multiplying it
by Q¢ for some appropriate integer a<35.

§9. The Canonical Mapping in Terms of Eisenstein Series

The aim of this section is to show how the modular forms &, (i=0, ..., 4) can be
expressed in terms of Eisenstein series of weight 1 (with a character) and Eisenstein
series of weight 2. Thus we obtain a description of the modular forms &, as functions
on Hx$H and hence a more explicit description of the rings M, (I') and
M. (SL,(®)). The fact that the mapping

(21> 2) (Colz 1, 22) 1 E4(24, 25): €2(24, 2,5) 1 E5(24, 25) 1 Eal2y, 23))

is a birational map from $?/I" to its image on the quintic surface S can then be seen
as the analogue of the classical parametrisation

2 (E4(2)°: E(2)*)elPy(C)

of $/SL, Z by Eisenstein series.
Consider the five normalised Eisenstein series E} (i=0, ...,4) of weight 2 on
I' defined by
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. , 1 def , ,
E2(21,Zz)=,§m (N(ez+p) = (k2 + W) z, + 1)) (51)
where (x, ) runs over all non-associated relatively prime pairs of integers in @ such
that u/x represents the i-th cusp and the summation has to be performed according
to Hecke’s well-known procedure for obtaining convergence. Let x;e@ (i+0)

represent the i-th cusp. Then we have the Fourier developments

E{(zy,z))=1+% Y (166,(3vD)—0,(vD)) e>"ivz1+v'=2) (52)
"o
Eiz(zl,zz)-——% Z (—I)Tr("x")(al(vD)—40’1(%vb))e"i(”’“"“) 0<igd), (53)
ved~ !

v>0
where b =(]/E) is the different of K and

Y N(b) if aisintegral
oi(a)= ol

0 otherwise.

If F is a Hilbert modular form of weight k on I and A= (1 g) eSL,(0) we
denote by F|A the modular form of weight k defined by

(FIA)(z1,2)=(y 2, +0) (Y 2, + ) *F (a s Zz+ﬂ’)~

vz, +6" Y z,+6

Since the form F|A depends only on F and on the equivalence class of A mod I the
group U, =SL,(O}T acts on M (I'). This group acts on the E; (i=0, ..., 4) in the
same way as on the five cusps; in particular, E%, vanishes at all cusps except the i-th
(by (52) and (53)) and any modular form of weight 2 on I' is the sum of a cusp form
and a linear combination of the E%. The non-cusp forms 7,

=0,(g, ---» E4)/E;€ M ,(I") also have the value 1 at the i-th cusp and vanish at the
other ones. Hence E;, is related to ; and #; by

Eiz='1i+z Cij e

Since E; and 7, are invariant under the subgroup %, = U fixing i, the difference E}
—1; is a linear combination of §;and ) ¢;and hence,since ), &;=0,a multiplec; &,

J¥Fi
of &,. Moreover, the invariance also implies that the coefficient ¢, is independent of
i

Ey=n+cé. (54)

In order to determine the constant ¢ we will use Eisenstein series of weight 1. An
Eisenstein series of odd weight k (for a field whose fundamental unit has norm —1)
must be associated to some character. For example, the Eisenstein series of odd

-4 .
weight k=3 with the ray class character y(a)= (m) of conductor 4 is given by
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Ei(zy,2,)=Y" %
4 .
=1t N(q)—1) eritvzi+v'za)
+L(1 - k? X) véil (alzvb X(C() (0) ) e (55)

where the summation runs over non-associated relatively prime pairs k, u with y/x
representing the O-th cusp (i.e. 2|«). The functions Ef|4 (4eSL,(0)) depend (up to
sign) only on the class of 4 in SL,{(0)/I'=U,. We obtain in this way 20 functions

. .. . . e 10 .
(since E, is invariant under the matrices ( 0 ), which represent three elements of
P

. 0 —1 .
A,). For example, the function E} ( ; 0) , which has the same character as Ef, is

given by
e AR A (12)
Ef (1 0)“,§N(uz+.x)k
4k -1 mTi(vzy+v'zz
T LAk, (L NV g

v>0

Each function E}|A is non-zero at precisely one cusp.

For weight one, Hecke [3] showed how to define Eisenstein series by replacing
the factor N(k z+ u)* by N(xz+ u)|N(x z+u)|?* with Re(s)>4, computing the
Fourier coefficients as a function of s, and then extending analytically in s to obtain
for s=0 a function transforming like a modular form of weight 1. The result of this
computation is that the higher Fourier coefficients are the same as they would be if
the Eisenstein series were convergent, whereas for the constant term there is an
extra contribution coming from the analytic continuation procedure. Hecke
claimed (loc. cit.,, p.394) that this extra piece vanishes; if this were true, the
Eisenstein series of weight 1 would behave exactly like those of higher weight.
However, this is incorrect (cf. correction by Schoeneberg, loc. cit.). Indeed, there are
even situations where an Eisenstein series which is non-zero for k> 1 vanishes for k
=1, the contribution from the Hecke procedure in this case exactly cancels out the
constant term of the series. In our situation, if we define Ef by applying Hecke’s
procedure to the Eisenstein series (55), then the extra contribution to the constant
term vanishes and we obtain the same Fourier development

Ei(z,z))=1+4 ) p(vd)em=+v), p(a)=$x(b), (57
vep~ ! bla
v>0

as for k> 1, but when we calculate the Fourier series of EX

0 —~1
(1 0) , we find that

this function equals — E%, the constant term now arising solely from the analytic
continuation procedure (it is clear that this must be so, since the higher Fourier
coefficients in (55) and (56) coincide up to sign for k=1). As a result we find that the
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Eisenstein series E¥ is non-zero at two cusps rather than only at one as in higher
weight, and that (up to sign) only ten of the modular forms E¥|A (4eSL,(0)) are
distinct. More precisely:

Lemma. For each pair indices i, j between 0 and 4 there is a modular form E§ = E¥ on
I of weight 2 and with trivial character which takes on the value 1 at cuspsiand j and O
at the other three cusps and which has even divisor in $ x 9, namely E‘;{=(E’1‘)2|A,-j,
where A;; is any matrix in SL,(0O) mapping cusps i and j to cusps 0 and 1. The Fourier
developments of these forms are given by

E(Z)J=[1+4 Z (___ 1)Tr(vxj)p(v b) eni(v21+v'zz)]2 (0§]§4)’
veb~ !
v>0

Ej=[—4 Y "% p(yp)emitaitva]?  (0<i, j<4, i%))
veb~!
v>0

with p(a) as in (57) and x;€0 representing the j-th cusp.

We can now proceed with the determination of ¢. The modular form EY — E}
—E4 is a cusp form of weight 2 and is invariant under the subgroup ;<% of
permutations which fix or permute i and j. It is therefore a multiple of the cuspform

éi+‘fj:
—Ey—Ej=A(5+¢) (58)

(4 is independent of i, j because of the A ,-symmetry). Substituting (54), we find that
the modular form

m+m+@+meﬁf)(é+éw ) (59)

Cig;

equals (E%|A;;)* and hence has an even divisor in $ x §, so the corresponding
section of the hyperplane bundle of S has an even divisor outside the curve o, =0
corresponding to the cusps. Hence o, +(c +4) x; x; must vanish on the component
of the curve x;+ x;=0 which is not contained in the divisor of o, (and which, as
we saw in § 7, corresponds to F;’ < Y). In particular, o, +(c + 4) X, x, must vanish
at the point (]/3 —]/3 1:1: -2)eS SO

C+i==2 (60)

(cf. (35)). The component F, of F, given by (z,,z,)= (z+@,z—@) cor-

responds to the curve g, =0, x, =0 on S, so the restrictions of ¢ ; and 5, to F, vanish.
Hence (52), (58) and (60) imply

g (4 2 V) gy (VB VT v, v

4’ 4 4’ 4

E;(z+@ 1/—)= 1(H‘/.3 1/E).(ﬁn

~261(z+1/ﬁ ]/E)
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Using the Fourier developments given by (52), (53) and the lemma we find the
Fourier series

Y1 1
E$ (z+—%,z—ﬁ) =1+0qg+0g?+0g>—240g"* +---

4 4
Y ERRYSE) 2472 9% , 962
E;(z+ ,Z— )=0+ l/—q———qz———~1[q3+0q“+-~
4 4 5 G 5
JB Y
Eg‘(Z+T3,z—¥)=1—81/§q+32q2+32]/§q3—240q4+-~-, 62)

6 -1
Together with (61) this gives c=3 i:%. We have proved:

Theorem 11. The modular forms £, n, are related to the Eisenstein series of weight 1
and 2 by

i2 =’1i+%£i5
Ei2j=(E’f)2|Aij=’7i+’7j_2(£i+éj)'

Inverting these formulas, we can express the forms £,,#; in terms of the
Eisenstein series and hence obtain their Fourier expansions. We find, for example,

Colz,20)=—~¢1 -8, — &3¢,
=16(E}* +E3*—E}—E;—E3—Ej)
=8(x—x" 12 (x+x"Y{—g+(x*+3x+3x"1+x"3) ¢
—(xS+4x*—x2+4—x"2+4x"*+x%) g3
+(xtt —4x"—Tx>—10x3>—12x~12x~ 1 —10x~3
xS —dx T x— ) gt g (63)

where we have written
q=eni(zx+zz), x=e1ti(zl-zz)/1/13 (21,2265),

(i.e.g=e*™" x=e?""" withz,,z,=u+v 1/_1_3:); this way of writing the Fourier series
of Hilbert modular forms is convenient if one wants to see the effect of
interchanging z, and z, (corresponding to x+x ~?!) or of restricting to the diagonal
F, (corresponding to x=1). The Fourier developments of the other & can be
deduced from (63) using the relations (whose proof we leave as an exercise)

z z ,
G zd=to (3%, 24x)  (=123.9
where x; as before represents the j-th cusp. The forms £, £, and £, vanish doubly on
F'={z;=2,}={x=1}, while ¢, and ¢, vanish simply there. Computing the
elementary symmetric functions of the &;, we find
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0,=—8(x—x" 12 (x+x H{g+(Tx*—19x—19x"1+7x" ) ¢*
+(x—44x* +119x2 +100+119x "2 —44x~*+x~ %) g3+ ...},

0,=32(x—x"")°{g* —6(x+x"1)*¢*
F(27x6+ 114x* +237x2 +324+237x "2+ 114x 4 +27x %) g* + .-},

6,=16(x—x"1)5{q? +(18x>+78x+78x"1+18x"3)¢>
+(3x° — 582x* — 2019 x2 — 3084 — 2019 %~ 2— 582 x~4+3x) g* + ---}. (64)

4
The functlon = z is invariant under SL, () and takes on the value 1 at all

1
2
=0
cusps, so it must b 1 the normalized Eisenstein series of weight 2 for the full
modular group:

d ; '
2._4 =E2(21’22)=1+24 Z O'I(Vb) e2m(vz;+v 22)
O3 veg};
v

=14+24(x3+4x+4x 1 +x73)q
+24(5x°+13x* +20x2 +14+20x "2+ 13x"*+5x~ %) g* +---

The form o, is — 8 times the (unique) normalized cusp form of weight 4 on SL,(0)
and is also equal to &% (E, — E2), where E, is the normalized Eisenstein series of
weight 4 for SL,(®). Similarly we find

3
%: —16(x+x" 1) {g+(27x* —39x—39x~1 +27x~3) g2
3

+(285x6 —T92x* —45x2 +1356—45x 2 —792x 4 +285x~6) g +---};

this is a Hilbert cusp form of weight 6 on SL, (¢) whose restriction to F; = $/SL,(Z)
is —128A4(z). In this way we get an entirely explicit description of the modular forms
occurring in Theorem 7.

Finally, observe that the Fourier developments of the £; permit us to determine
the defining polynomials f,, of § 6 for any non-compact curve Fy: since we know the
degree of fy as a function of the &;, we can by computing sufficiently many Fourier
coefficients of &;(1z,, 4 z,) (where A 2’ = N) determine the polynomial fy(&,, ..., &,)
which vanishes along Fy. This is the algorithm we referred to at the end of §7.
However, even for N=9 the amount of computation involved seems to be
prohibitive.

§ 10. Hilbert Modular Forms of Odd Weight. Applications

In this section we will determine the structure of the ring of all modular forms on
SL,(0) and give some applications. We start with the following lemma.

Lemma. The modular form wy=y03(&,,...,&,) is a modular form of weight 3 of
Haupttypus on SL,(0).
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Proof. Tt is clear that o, is well-defined (up to sign), since the divisor of 6; on § x His
even, and that w;]A = t+w; for all AeSL,(0). We have to prove that the sign is

always +, i.e. that = 1, where ¢ is the character of Q, = ]6/ g5 (cf. Theorem 10, § 8).
By (64) we have

w3=4]/§(x—x‘1)3 {g—3(x+x"1)3¢*
+(9x%+30x*+51x*+72+51x"2+30x"*+9x" % ¢*+---}. (65)

From this it is obvious that w; is invariant under the translations

(21,29~ +1,2,+1), (21, 2))=(2,+1/13,2, -1/ 13),

+1+;m’22+1+;/ﬁ),

Gz (2

1 A . . 0
SO Wy (0 1) =, for all Ae0. We claim that w; is invariant under B= ( 80),

g O
3+7/13
2

agree at the fixed point (g, i, &5 i) of B. Since w, has no zeroes in § x $ outside F;,
their common value at this point is different from 0 and our claim follows. Finally,

where g,= . Indeed, the functions w; and w,|B are equal up to sign and

w3

0
(86) - 1) and w; are equal, since they are equal up to sign and (by (65)) have the
0

same coefficient of x*g. Since @ is Euclidian, the ring SL,(0) is generated by

1
(8(;’ s;)l)’ (2) 6(;)) and (0 i) The lemma foliows.

In § 9 we used the fact that E¥ has an even divisor on $ x $ to find the relation
between the &, (i=0,...,4) and the Eisenstein series EY (0<i<j<4) and E} (i
=0,...,4). We now show that the divisor of EY¥ is in fact divisible by 4. To show that

By =L 0 g, 020 -2608)

has even divisor on $ x 9, we proved that the divisor of a,(x,,...,x,)—2x;X;
contains the component of the divisor (x;+x;) lying outside the image of the
cusp resolutions. Hence o;(x,, ..., x,)(0,(Xo, ..., X,)—2x; x;) must be divisible
by x;+x; in the ring R=C[x,,...,x,]}/(6,,205—0, d;). Calculating we find
~303(0,—2x4x,)
=—05+XoX1 [ X3 X3 X4+ (Xg+X (X5 X3+X, X4 +X3 X, = X0 X,)]
=X0X(Xo+X1) [0, ~2%0 X, +(Xo+x,)*]

or
(0'2—2x0x1)(-%0'3 +X0X1(xg+X1))=—xq xl(x0+x1)3'

Consequently, the divisor of the meromorphic section of K given by
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0,—2XgX
xoxl(Z (4] 1)

consists of 4 times the divisor of (x, + x,) plus a linear combination of curves in the
image of the cusp resolutions. This section vanishes triply at py; =(1: —1:0:0:0)eS
and has a simple pole at the nine other points p;;. Therefore its pullback to Y is
a section of Ky whose divisor has the form

4F;' +4F +(curves of the cusp resolutions)

(recall that the divisor of x; +x; on S consists of the image of F,’ plus curves coming
from the cusp resolutions). This proves:

Theorem 12. The modular form E¥(z,,z,) is the fourth power of a modular form of
weight  on I' which vanishes with multiplicity one along the curves F,” and F;’ and has
no other zeroes.

Now consider the 8-series

0(zy,2,)= Y e?riteor?s —e04' 222)VT3 66
Ae0

This is a modular form on I' of weight 4 satisfying

9(3(2) Z15 562 2y)=0(zy,z2,),

0 ( L1 )_me(zl,zz)

(the latter by the Poisson summation formula). Hence 0* is a modular form in
M, (I') which (a) is invariant under the action of the six elements of 2 that fix or
interchange the cusps 0 and 1, (b) has the value 1 at cusps 0 and 1 and 0 at the other
three cusps, and (c) has an even divisor in § x $. It follows that *=EJ!. In
particular, 6 vanishes on F," and F; . Thus E¥ has been identified (up to sign) as the
square of the theta-series 8 and similarly EY as the fourth power of the theta-series

=0|A;; where A;; is some element of SL, (¢) mapping cusps i and j to cusps 0 and

Now consider &= [] 0,;, whichis a modular form of weight 5. By (59) and
(60), Ogi<js4

0t =T1Ei=T] (&+E)o,—28:¢ )
i<j i<j é é
The divisor of the corresponding section consists of F, + F; — 2 (image of the cusp

resolutions), so from (30) we obtain @2 =c*(c, —102)*/63 for some constant ¢ (in
fact c* = —219). In the notation of the lemma, therefore, we have

Osw;=clo,—La3), (67)

where 0;,=0,(&g, ..., £,). The lemma now implies that & is a modular form of
Haupttypus (i.e. without a character) on SL,(0).
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We now show that every symmetric modular form of odd weight can be written
as aw; +b@, with a,b symmetric modular forms of even weight. Together with
Theorem 8 this will permit a complete description of the ring of all modular forms
on SL,(0). Before giving our main result, we introduce the following notation. By
MY we mean the subspace of M,,(SL,(0)) of symmetric modular forms of weight
2k which vanish with multiplicity =2ion F, in § x $. A basis of MY}, is given by the
elements of (46) with 3b+ ¢ =k +i. By counting the elements of such a basis we find

k*+3k+6

2+k k2 —k
dimM‘2°,3=[——6—-—], dimM(Zl,3=[k; ] and dithzz,gz[ - ]

while MY, =M 3\ ¢, for i=3.
Theorem 13. The ring M _(SL,(0)) of modular forms on the full modular group for the
field Q(]/1-3) is generated by the modular forms

s -
04/63, V03, 05, Os, 03/03, Ag and 0,44 ]/63,

of weight 2,3,4,5, 6,8 and 9, respectively, with the relations (49) and (67) together with
the obvious relations implied by these relations and by the notation (e.g.

(0';/03) O3 =(0'2)3,
1
@52 =E [(0'4/0'3)2 O3 _%(‘74/‘73) ‘7% +ﬁ‘72(0'g/03)])-

Proof. Let M; = M;(SL,(()) be the space of Hilbert modular forms f of weight k on
SL,(0) such that f(z;,z,)=(—1)f(z,,z;) (“symmetric* forms). For example
wieM;5 (cf. (65). If feMs,,, then f-w; lies in M3, ., and vanishes with
multiplicity =3 on F, = $ x £. But, as one sees from (46) and the proof of Theorem
7, every element of M (SL,(0)) vanishes with even multiplicity on F;. Hence
f-w;eM$P, .. Conversely, if ge M?), , then g is divisible by w; (as a modular form)
and g/w,eM;, ;. Thus M5, ,—— M, where the isomorphism is given by

S . . . k*+3k+2
multiplication with w,. In particular, dimM3, , , = [—~+6—+~—] Thespace M3, , ;

contains the subspace M%) , -w;+MQ_, O, with MY _,-w;n M) _,- 6
=M{)_,- 05, and by comparing dimensions we find that these spaces coincide.
Hence My (SL,(0)) is generated over M} (SL,(0)) by w, and Oy with the relations
w305 =c(o,—%0%), w3=0; and 07 =c*(6,—103)*/05.

Next, let M4 be the subspace of M, (SL,(¢)) consisting of elements f satisfying
flz3,29)=—(—=1¥f(z,,2,) (“anti-symmetric”). If feM$%, ., then f-w;eM%, .,
=Mj,_4 4 (cf. Theorem 8). Since f- w; vanishes triply and 44 simply on F|

o _pw A8

M2k+1 _M2k-4 w5 .
But MY) ,=M$)_5-0,+MS)_,,- 05 (this follows by looking at the basis (46) or
by computing dimensions, using MY} _¢-0,nM$)_,o-03=M% _4-0a,). This pro-
ves the theorem.
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Incidentally, we have obtained the dimension formulas

dimM,, =dim M3, +dim M9,
[k2+3k+6]Jr [k2—5k+10]_ [kz—k+6
6 6 - 3

| .

dimM,,, ,=dimM;,  , +dimM},
B [k2+3k+2] N [kz—3k+2]~ [k2+2]
B 6 6 L3 I

This is in accordance with the formula

. (k=1* (% (keven) (% (k$1mod3)
dimS, =5 +{o (kodd)+{0 (k=1mod3)
2_
=[k 122k]+1 (k>2)

obtained from Shimizu’s dimension formula, since there is an Eisenstein series of
weight k for k even but not for k odd. It also agrees with the formula

dimS; —dim S}

k .
=2 H —1=1dimS,(L(13), (E)) +dimS,(SL,(Z)) (k even)

expressing the fact that all symmetric Hecke eigenforms of even weight for SL,(0)
are the Doi-Naganuma lifts of eigenforms on SL,(Z) or of eigenforms of
Nebentypus on I;(13) (see e.g. [11]). The nature of the Fourier coefficients of
w3€S5(SL,(0)) seems to indicate that the symmetric Hilbert eigenforms of odd
weight are also liftings of modular forms of one variable.

We end with two number-theoretical applications. The identity 0(z,,z,)*
= E%(z,, z,) for the function (66), together with the Fourier development (57), gives
the following.

Proposition 2. Let ue( be a totally positive integer in Q()/13). The number of

—4
representations of u as a sum of two squares in O equals 42 (—I\—I}_)
alp

This is the analogue of the well-known identity
1 (n=0)
= —4 8
SO () w0 (68)

dln d
d>0

for the number of representations of a natural number as the sum of two squares,
which is equivalent to the fact that the square of the ordinary f-series

0(z)=Y e™7  (ze9)

nel
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. . . . . . -4 .
is the Eisenstein series of weight 1 with character (—) By comparing the first few

Fourier coefficients, one shows that 0(z, z) and §(z)? (which are both modular forms
on I'(2)cSL, Z) are equal, so

EX(z,2)=0(z, 2)* =0(2)*.

Comparing Fourier coefficients and evaluating the coefficients p(a) of E¥ by the
method given in [13] (Lemma, § 3) for 4,(a), one gets as a further application

Proposition 3. The number of representations of a natural number as a sum of four
squares is given by

d>0
where
2
m—x
cm= % n(")
xeZ
x2<m

with r, as in (68).
This proposition can also be obtained by applying Shimura’s theorem on lifting

modular forms of half-integral weightto Y c(m) "™ which is a modular form of
weight 3. m=0

By restricting various modular forms on Y to other curves Fy, one can obtain
many further identities of this type.
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