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Let f(z) be a cusp form of weight 2k which is an eigenfunction of all Hecke 
operators, and denote by L(f, s) the associated L-series. It is known that L(f, s) 
satisfies a functional equation under s~--*2k-s and that the values of L(f,s) at 
integral arguments within the critical strip 0 <  Re(s)<2k can be expressed as 
algebraic multiples of certain "periods" associated to f .  A remarkable fact, first 
discovered empirically, is then the following: The algebraic number appearing 
at the particular argument s=k (the point of symmetry of the functional 
equation) is a perfect square. This is of course a somewhat vague statement 
whose precise formulation would depend on the particular situation. One well- 
known example is provided by the Birch-Swinnerton-Dyer conjecture, which 
says that for a cusp form f attached to an elliptic curve E/Q, the quotient of 
L(f, 1) by the natural period is either 0 (if E(~)  is infinite), or else, up to a 
"fudge factor", the quotient of the order of the Tate-Shafarevich group (known, 
if finite, to be a square) by ]E(~)I 2. 

Another example, for forms of higher weight associated to Grossencharac- 
ters of imaginary quadratic fields, was described in [3]; here as in the case of 
the Birch-Swinnerton-Dyer conjecture the numerical evidence is very convinc- 
ing. A natural question is then to try to explain the appearance of these 
squares. 

Another, seemingly unrelated but equally important question in the theory 
of modular forms arises from Shimura's theory of forms of half-integral weight 
[14]. This theory provides a correspondence between certain modular forms of 
even weight 2k and modular forms of half-integral weight k+�89 the cor- 
respondence is such that if f and g are corresponding forms, both assumed to 
be eigenforms of all Hecke operators, and if c(n) denotes the n th Fourier 
coefficient of g, then the ratio of c(n) to c(m) can be expressed in terms of the 
Fourier coefficients of f if n/m is a square. Shimura's theory, however, gives no 
information about this ratio if n/rn is not a square. A formula for the coef- 
ficients c(n) as integrals of certain differential forms attached to f over geo- 
desic cycles in ~/SL2(7I ) was given by Shintani [-17], who observed that this 
formula allows one to express these coefficients in terms of period integrals of 
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f and hence in terms of L(f, k) (see pp. 117-118 of [17], where the example k 
=6,  f = A  is discussed). However, the precise nature of this relation remained 
unclear. The question of describing the c(n) (n square-free) and in particular of 
relating them to the values of the L-series of f at integral points in the critical 
strip was also mentioned by Shimura in the "miscellaneous remarks" at the 
end of his paper [16]. 

Both of the questions just described were answered brilliantly in two recent 
papers of Waldspurger ([20, 21]; this work is reported on in [19]). The answer 
is unexpected and very satisfying: Given an eigenform f of even weight 2k and 
a f o r m  g=2c(n)e  2~inz of weight k+�89 which corresponds to it in the sense of 
Shimura, the square of c(n) (n square-free) is essentially proportional to the 
special value at s=k of the twist of L(f, s) by the character of the quadratic 

field II~((]~--l)kn). Thus one obtains simultaneously an explanation for the 
appearance of squares in the values of L(f, k) and a formula for the Fourier 
coefficients c(n) (up to sign; the sign of c(n) is still utterly mysterious). 

Waldspurger's proof, which was presented originally in the language of 
adeles and in terms of the representation theory of the metaplectic group as 
developed by Gelbart, Piatetskii-Shapiro, Flicker and others, is rather difficult, 
as is the translation back into the classical language of modular forms [21]; 
due to the variety of possible local behavior (at primes dividing the level, even 
primes, or primes at which the character ramifies), the statement of the final 
result is also extremely complicated. Furthermore, Waldspurger's proof does 
not seem to give the value of the constant of proportionality between the twists 
of L(f, k) and the numbers C(r/) 2, thus one gets information about the ratios of 
the various c(n) but none about the individual coefficients. In this paper we 
would like to present an elementary proof of a version of Waldspurger's 
theorem for the special case of modular forms on the full modular group 
whose statement is very simple and in which the constant of proportionality 
between the squares of the c(n) and the special values of the twists of L(f, s) is 
given explicitly. This will permit us to deduce as corollaries several results 
about the arithmetic nature of the c(n) and about the distribution of the values 
of the twists. 

One reason that we can obtain such a good result for forms of level 1 is 
that in this case a completely satisfactory version of the Shimura correspon- 
dence between forms of integral and half-integral weight is available. This 
theory, which was worked out by one of the authors [4], gives an isomorphism 
as modules over the Hecke algebra between the space Szk of cusp forms of 
even weight 2k on the full modular group SL2(TI) and the space S~-+~ of cusp 
forms of weight k+�89 on F0(4 ) having a Fourier development of the form 

g(z)=~c(n)q", c(n)=0 unless ( - -1)kn=0 or 1 (mod4) (1) 

(q=eZ~iz). If f(z)=~a(n)q"~S2k is a normalized eigenform (i.e. a(1)= 1) and g 
as in (1) the corresponding form of half-integral weight, then the Fourier 
coefficients of f and g are related by 

,/In 
(2) 
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where D is an arbitrary fundamental discriminant (i.e. 1 or the discriminant of 

a quadratic field)with (--1)kD>0, ( D ) t i l e  corresponding character (Kron- 

ecker symbol),/~(d) the M6bius function, and ~ a sum over the positive divisors 
din 

of n. The form g, which is determined by (2) only up to a scalar multiple, can 
(and will) be chosen in such a way that its Fourier coefficients c(n) lie in the 
field generated over I1~ by the a(n) (in particular, they are real and algebraic). 
We can now state the main result of the paper. 

Theorem 1. Let f ~S2k be a normalized Hecke eigenform, geS]+~ a form corre- 
sponding to f as above, D a fundamental discriminant with (--1)kD>0, and 
L( f ,D ,s )  the "twisted" L-series of f ,  defined by analytic continuation of the 

 ,er e, C) 
n= l  

c(IDI) 2 ( k -  1)' _ } g ( f , D , k )  
( g , g )  - zr k " IDI k ( f , f )  (3) 

Here (g, g) and ( f , f )  denote the Petersson scalar products 

(g ,g)  =61 S Ig(z)12Yk-~dxdy, 
5/Fo(4) 

( f , f )  = ~ I f(z)12y2k-Zdxdy 
~/SL2(~) 

(the "6" enters as the index of Fo(4) in SL2(77)). Notice that g is defined by our 
normalization up to a real scalar multiple, so the left-hand side of (3) is well- 
defined; in fact, (3) holds for any geSk+ ~ corresponding to f normalized or not, 
if we replace c(IDt) 2 by Ic(IDI)l 2. 

Before going on to state the corollaries and give the proof of the theorem, 
we give a numerical example for k=6,  the first non-trivial case. The one- 
dimensional spaces $12 and S~3/2 are generated by the functions 

A ( z ) = 8  0 0 0 G 4 ( z )  3 -  1 4 7 G 6 ( z )  2 =  ~ r(n)q" 
n = l  

and 

where 

6 (z) = 2~/(2 G 4 (4 z) 0' (z) - G~, (4 z) 0 (z)) = ~(n)q", 
n = l  

n~_O, 1 (rood 4) 

Gk(Z)=�89 ~ a k l(n)q", 0 ( z ) = l + 2  ~ q,2 
n = l  n = l  

(~rv(n)= ~ dr). The first few Fourier coefficients z(n) and c~(n) are given in the 
din 

accompanying table; we have given a fairly large number of the coefficients 
c(n) for the benefit of the reader who wants to try to guess the law of 
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Fourier coefficients of A and 6 

n z(n) n ~(n) n c~(n) 

1 1 32 5,760 92 312,960 
2 -24 33 -6,480 93 -231,120 
3 252 36 -504 96 311,040 
4 -1,472 37 -23,880 97 -357,360 
5 4,830 40 23,520 100 -95,480 
6 -6,048 41 16,320 101 -460,920 
7 -16,744 44 -43,680 104 -92,640 
8 84,480 45 59,400 105 272,160 
9 -113,643 48 -34,560 108 362,880 

10 -115,920 49 -33,551 109 505,800 
11 534,612 52 -10,560 112 -322,560 
12 -370,944 53 4,200 113 -188,640 

56 87,360 116 -31,680 
n ~(n) 57 65,520 117 -11,880 

60 -51,840 120 -123,840 
1 1 61 -141,240 121 373,561 
4 -56 64 131,584 124 -1,340,160 
5 120 65 -111,360 125 579,600 
8 -240 68 13,440 128 353,280 
9 9 69 64,800 129 -422,640 

12 1,440 72 -118,800 132 362,880 
13 -1,320 73 145,200 133 300,720 
16 -704 76 58,080 136 1,629,120 
17 -240 77 110,880 137 -46,080 
20 960 80 -268,800 140 -651,840 
21 5,040 81 -174,879 141 -1,982,880 
24 -12,960 84 40,320 144 -6,336 
25 1,705 85 137,520 145 428,160 
28 13,440 88 -153,120 148 -191,040 
29 -3,960 89 267,600 149 -59,640 

formation of their signs. The series L(A,s)=~z(n)n -~ diverges at s=6,  but 
using the integral representation 

O0 O0 

(2~)-sr(s)I4~,s)= ~ A(iy)y S-1 dy= ~ A(iy)(ys+ yl2-s) dy 
o 1 Y 

(convergent for all s) we find 

where 

o o  

(2n)-6 F(6)L(A,6)=2 ~ A(iy)yS dy =2 ~ ~(n)4~5(2nn), 
1 n=l 

oo X~ ( X 2 X 3 X 4 X5\ _ _ . _  q~5(x)=~ySe ~Ydy- e ~ 
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Similarly, the easily checked functional equation A(~ - 1/z)=z 12 Aa))(z) for the 
function 

t z ,  ' 

(D > 0 a fundamental discriminant) gives 

(2~/D)-6F(6)L(A'D'6)=2 ~ ~(n) Os(2~n/D)" 

Since the new series converge exponentially fast, these formulas can be used to 
compute the L-values in question numerically; using only a few values of ~(n) 
and a few minutes on a desk computer one finds the values 

11 
D L(A, D, 6) D~-L(A, D, 6)/L(A, 6) 

1 0.7921228386449 1 
5 1.632375257462 14,399.99999998 
8 0.4922889527919 57,599.9999994 

12 1.905551392180 2,073,600.000002 
13 1.030984081679 1,742,399.999994 
17 0.007793740670 57,600.000029 
21 1.075096596506 25,401,600.00005 
24 3.410677913003 167,961,600.0000 
28 1.57116537691 180,633,600.000l 

where within the accuracy of the computation the last column is 0~(O) 2. 
We now turn to the corollaries. Since c(D) is real, we deduce immediately 

from (3): 

Corollary 1. L(f, D, k) >= 0 for all D with ( -  1)kD > 0. 

(Here the condition ( -1)kD >0  could be omitted since L(f, D, k) vanishes in the 
contrary case because of the sign in the functional equation.) Notice that 
Waldspurger's result on the proportionality of L(f,D,k) and c([DI) 2 would 
imply only that the values L(f,D,k) for a given f are either all ~ 0  or all =<0; 
of course, one would expect them to be >__0 since the contrary would con- 
tradict the Riemann hypothesis for L(f,D,s). Even using the Ramanujan- 
Petersson conjecture there does not seem to be any direct way to prove 
Corollary 1, since the point s =k  lies half a unit to the left of the abscissa of 
absolute convergence of the L-series or its Euter product. 

Corollary 1 does not say when L(f,D,k) is strictly positive; of course, it 
follows from the theorem that this is equivalent to c(]D])4=0 (this was proved 
in [4] for the case k even, D =  1), but we do not have any general criterion for 
this. However, we can prove a partial result. In the table of coefficients for the 
form in S~'3/2 given above, one sees by inspection that, for D not a perfect 
square, ~(D)/120 is always integral and is odd if (and only if) D is a prime 
congruent to 5 (mod 8); in particular it is non-zero for such D. A similar 
statement holds for certain forms of higher weight. Using it, we will prove: 
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Corollary 2. For k = 2 ( m o d 4 )  and D a prime congruent to 5 (mod8), there is at 
least one Hecke eigenform f~S2k for which both L(f,k) and L(f,D,k) are 
different from zero. 

The next result concerns the arithmetic nature of the Petersson scalar 
product <g,g>. The corresponding question for forms of integral weight has a 
well-known answer: As was shown by Shimura [13] and Manin [63, one can 
attach to f two real numbers co+ and c o  such that the values of ~-'L(f ,s)  for 
integral s between 0 and 2k are algebraic multiples (in fact, multiples in the 
number field generated by the coefficients of f )  of either co+ or c o  depending 
on the parity of f On the other hand, a much earlier result of Rankin [11] 
implies that the product of zt-2k+lLf(2k-1) and 7c-mLf(m) (m even, k 
+2_<m_<2k-4)  is an algebraic multiple (in the same field) of < f , f ) ;  hence 
( f , f >  is an algebraic multiple of co+co.  On the other hand, the special values 
of the twisted L-series L(f,D,s) at integral arguments between 0 and 2k are of 
the form K s. (algebraic number), co• where the sign _+ is the same as for L(f,s) 
if D > 0  and the opposite if D < 0  ([15, 12]). Combining this with (3) gives 

Corollary 3. Let g~S~+~ be a Hecke eigenform with algebraic coefficients and f 
the corresponding normalized eigenform in S2k. Then <g,g> is an algebraic 
multiple of one of the periods co• attached to f 

As an example we take g=6~S~-3/2, f=A. The values co+, c o  can be 
chosen such that the values of L(A,s) in the critical strip are given by 

(2 re) -~ F(s) L(A, s) 

1,11 2,10 3,9 4,8 5,7 6 

192 384 16 8 
~ ] -  co + ~ - c o _  l ~ c o  + 40co_ 105o) + 32co_ 

(numerically co + ~ 0.0214460667068, co_ - 0.00004827748001); then (A, A > 
=co+co_, and the Eq. (3) with D =  1 gives 

~6 <A, A> 
<6,6) =2-11co+. 

120 L(A, 6) 

Observe that the statement L(A,D, 6)/~6VDco_Ol~ also follows from (3). 

Remark. Corollary 3 is also contained in some recent results of Shimura ("The 
critical values of certain zeta functions associated with modular forms of half- 
integral weight", to appear in J. Math. Soc. Japan). 

Our next corollary is in fact a strengthening of the theorem. In [23], an L- 
series Lo(s) was defined for all integers D in such a way that Lo(s) equals 

(ff-)n -s if D is a fundamental discriminant and that Z Ln(s) equals LDo(S) 
~ r l ,  i 

times a finite Euler product over the prime divisors of n if D is n 2 times a 
fundamental discriminant D O (LD(s) is defined to be identically 0 if D is not 
congruent to 0 or 1 (mod4), so this covers all cases D #0). The exact definition 
will be recalled below. We can now define L(f,D,s) for arbitrary D as the 
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convolution of L(f,s) with Lo(s ). Then L(f, Dn2, s) and L ( f D ,  s) (D a funda- 
mental discriminant) differ only in finitely many factors of their Euler products, 
and by an elementary computation we will show that their ratio at s = k  is the 
square of the sum appearing in (2). Combining this with formula (3) for 
fundamental discriminants gives 

Corollary 4. Formula (3) holds for arbitrary D~7Z, (-1)kD >0. 

This extension of the theorem is useful for analytic statements, since now 
we can use all the coefficients c(n). In particular, by applying Rankin's method 
to the form g we will prove 

Corollary 5. Let f ~S2k be a normalized Hecke eigenform. Then the Dirichlet 

series ~ f ( s ) =  ~ L(f , ( -1)kn,  k)n -s, absolutely convergent for Re(s)> 1, has a 
n=l 

meromorphic continuation to the entire complex plane, the only singularity being 
a simple pole at s = 1, and satisfies the functional equation 

~z - 2, F(s) F(s + k - �89 ((2 s) ~y  (s) = (same with s ~-* 1 - s). 

3 (4~) 2k 
The residue of ~s(s) at s = 1 equals - -  ( f, f ). 

( 2 k -  1)! 

By applying Rankin's method to f, we find that the residue of ~a(n)2n -s at 
3 (4~z) 2k 

the (unique) pole s = 2 k  is also given by ( f , f ) ,  so we can express 
( 2 k -  1)! 

the last statement of Corollary 5 more picturesquely as 

Corollary 6. The mean value of L(f,D,k) ((--1)kD>0) equals the mean value of 

a(n)2 (n~N). 
n2k-1 

Thus in our example with k = 6 we have 

~, 216~11 

lim-1 L(A,n,6)_33 52.7 l l ( A , A  ) 
x ~ o o  X n =  1 " ' 

1 ~ z(n) 2 12 :' 2 
= ~o~lim x ~ n ~ 5 - =  x.o~lim .~5- ~ z ( n ) x  ~ " 

The numerical value 0.3840840544358 of this limit can be compared with the 
following experimental data: 

X 

x 

- Z L ( A , n ,  6) 
X 1 

240 480 720 960 

0.387141325 0.390298507 0.380172606 0.383229191 

Corollary 6 is to be compared with the recent paper [-2] of Goldfeld and Viola, 
in which the authors give a conjectural formula for L(f, D, k) for certain cusp 
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forms. Their formula is more complicated than the statement in Corollary 6 
because they consider only the twists by fundamental discriminants, and this 
introduces extra factors. Indeed, using the above-mentioned elementary re- 
lation between L(f, D, s) and L(f, n 2 D, s) one finds 

( 
where the sum is now over fundamental discriminants D with (--1)kD>0, so 
Corollary 6 gives us the mean value of the numbers 

[ 
L(f, D, k) l~ |1 -~ p3 i l 

pJ'D \ 

With this observation our result is precisely that conjectured by Goldfeld and 
Viola (expect that we can treat only the case of level 1). 

We observe that Corollaries 1, 2, 5 and 6 all involve only forms of integral 
weight, even though their proofs need the theory of half-integral weight. 

To formulate the next corollary, we define for geS~-+�89 and D a fundamental 
discriminant with ( -  1)k D > 0 

n 2 

5PD+g(z)= =~1 ~1~ ( d ) d k - l c  ( ~ [ D I ) ) q " .  (4) 

Then 5eD + geS2, (this was proved in [4] and will also follow from our proof of 
Theorem 1; the map 5~D+ is a modification of the lifting map introduced by 

+ Shimura in [14]), and the map 5PD+: Sk+�89 commutes with Hecke operators. 
In particular, if feS2,  is a normalized eigenform and g the corresponding form 
as in (2), then 5eo+g is a multiple of f, and comparing the coefficients of ql we 
find 5:o+g=c([Dl)f Now let Pk+~,, be the IDl-th Poincar~ series in S~-+~. It is 
characterized by the formula 

r(k-�89 
(g'  Pk+~'~ =(4n  [D[) k-~ c([D[) (VgeS~-+~). 

The following statement is then easily seen to be equivalent to the main 
theorem. 

R + under the map 5fo + defined Corollary 7. The image of the PoincarO series k+~,D 

by (4) is the cusp form in Sek characterized by the formula 

( 2 k -  1)! L(f,D,k) (VfeS2k). (f,'SfD+ Pk+ ~'> -- (4 r0k- ,  

Next, we can compare the main theorem in the case k even, D =  1, with 
Shintani's description of the Fourier coefficients of the function in S~+~ corre- 
sponding to feS2k as integrals of f over certain geodesic cycles in .~/SL2(Z ). 
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More precisely, Shintani ([17]) defines for f C S z k  , and nclN, n - 0  or 1 (mod4) 
numbers 

h(n) 

C(n)= ~ S f(z)(aizZ +biz+ci) k-adz 
i = I  ~2~ 

where ai x2 + b i x y + c i Y  2 (i= 1 . . . . .  h(n)) are representatives for the equivalence 
classes of binary quadratic forms of discriminant n and (2 i is the image in 
~/SL2(7Z) of the semicircle ailzlZ+bixWci=O. For n---2 or 3 (rood 4) set C(n) 

=0. Then Shintani proves that ~ C(n)q" is a cusp form of weight k+�89 on 
n = l  

F0(4) (clearly in the space S++~) and that the map cb which sends f to 
( -1)  k/z 2 k ~ C(n)q" commutes with Hecke operators. Thus if f e  SEk and g c S++ 

n > 0  

are corresponding eigenforms, we must have ~ ( f ) =  2g for some 2c(E. Compar- 
ing the coefficients of q we find 

2 c ( 1 ) = ( -  1)k/22 a C(1)=(--  1)k/22 k ~ T(Z)Z a-1 dz=~-ar(k)L( f ,  k). 
x = 0  

Substituting for L(f,k) from Eq. (3) (we need only the easiest case D = I )  we 

( f ' f )  c(1) 2 and hence c(1)<cbf, g>=c(1)<f, SP~+g>. If c(1)~:0 find that 2 c ( 1 ) = ~ , ~ -  

(or equivalently L(f ,k)+O; this condition is fulfilled for all eigenforms if and 
only if ~ +  is an isomorphism), we can cancel it on both sides of this equation. 
We thus obtain: 

Corollary 8. If  5Px+ is an isomorphism, then it is the adjoint with respect to the 
Petersson scalar product of Shintani's map cp. 

The last corollary to Theorem 1 we wish to state involves the functions 

1 
fk(D,z)= ~ (az2+bz+c) k (k>2  even, D>0).  

a,b, cE7/ 
b 2 - 4ac  = D 

These functions were introduced in [22], Appendix 2, where they were shown 
to be cusp forms in S2R and their Fourier developments computed. We now 
have 

Theorem 2. The function 

(2k(Z,Z)= ~ Dk-~fk(D,z)e2~im (z, ze~) 
D > 0  

is for each fixed z a cusp form in S~+~ with respect to z. 

This is an immediate consequence of a result of Vign6ras [18] on theta 
series associated to indefinite quadratic forms. For z c ~  and x=(a,b,c)elR 3 
define 

q(x) k-~ 
q(x) =b2-4ac ,  Pz(X)=(az2+bz+c)k" 
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Then f2k(z , ~) can be written as 

~ k (  Z '  z') = 2 Pz( X) ezniq(x)r' 
x e Z  3 

q(x) > 0 

and the theorem of [18] then implies that f2 k transforms like a modular form 
on Fo(4 ) of weight k+�89 since it is holomorphic in z, has no constant term, and 
has D 'h Fourier coefficients equal to 0 for D~g0, I (mod4), we have 
~2k(Z, ") ~ S~+ ~ as claimed. 

Remark. Theorem 2 (for forms of arbitrary level, though not specifically for 
Sk++~) was also proved by Mich61e Vergne. See w (particularly Th. 2.7.17, 
p. 277) of Lion and M. Vergne, The Weil Representation, Maslov Index and 
Theta Series, Progress in Math. No. 6, Birkh~iuser, Boston-Basel-Stuttgart 1980. 

Our last corollary to Theorem 1 now states that, under the same restriction 
as in Corollary 8, the function (2k(Z,Z) is (up to a constant) the holomorphic 

+ kernel function for the lifting 5e1+: Sk+�89 

Corollary9. Let Ck--(--1)k/2~ (2k52 ) 23k_ ~ . Then the scalar product of (2k(Z, ") with 
g is given by 

d x d y  

.~/ro(4) 

for all forms g6S~-+�89 which are orthogonal to Ker(5~l+). Thus, if the map 5~1 + is 
an isomorphism, it is given by the kernel function C k x ~k(Z ' Z). 

Remarks. 1. The functions fk(D,z) were introduced in [22] for no particular 
reason other than that they exist. Their significance is made clear by Corol- 
lary9. It is amusing to compare the remark on p. 43 of [-22] that "these 
functions are modular forms having similar properties to the properties of the 
co,."; indeed, something much more formal was meant there, but in fact the 
formula in Corollary 9 is the exact analogue of the main result of [22], which 
said that the functions co,. are the Fourier coefficients of the kernel function for 
the Doi-Naganuma correspondence between elliptic and Hilbert modular 
forms. 

2. The fact that the same assumption on ~ +  was needed in Corollaries 8 
and 9 is no coincidence, for one can show without any hypothesis that f2 k is 
the kernel function for Shintani's map �9 (i.e. that the scalar product of f e S z k  
and fk(n, ')  is proportional to the integral C(n) defined above). In fact, both 
corollaries can be proved without any assumption by comparing the Fourier 
expansions of the fk(D,z) as given in [22] and the Fourier expansions of 
Poincar6 series in S~+~ (i.e. by the method used in [22] to prove the corre- 
sponding result for the co,.). The proof is given in [5]. In any case, the 
assumption that 5el + is an ismorphism is probably always fulfilled (it certainly 
is whenever S2R is irreducible as a module over the rational Hecke algebra, 
which has been checked up to quite large values of k). 

3. Kernel functions for 5~ + and q, were previously given by Niwa [7] and 
Shintani [17], respectively; however, both are non-holomorphic (Niwa's with 
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respect to z, Shintanrs with respect to z). All three constructions of kernel 
functions fit into the theory of theta series and the Well representation as 
developed, among other places, in Oda [9] and Rallis-Schiffmann [10]. 

We now turn to the proofs of Theorem 1 and its corollaries. We must first 
recall some of the results proved in [4] about the spaces S++~ and Mff+~ 
(which is defined similarly but with "cusp forms" replaced by "modular 
forms"). 

The space S~-++ has a basis {g~} corresponding by (2) to the canonical basis 
{f~} of normalized eigenforms in SZk. The spaces Ms is generated by the g~ 
and an Eisenstein series + Gk+ ~ (found by Cohen [-1]) whose constant term is ~(1 
- 2 k )  and whose [DI TM Fourier coefficient for ( - -1)kD>0 is LD(1-k  ). The map 

+ 5Po + defined by (4) extends to a map Mk++~M2k if we add the constant term 
�89 c(0) to the right-hand side of (4). 

There is a canonical projection operator pr + from the space of all modular 
forms of weight k+�89 on F0(4 ) to Mk+~, given by 

p r + = ( _ l ) t  2 jZ-kW4U4+�89 

where U4, W 4 are the standard operators 

U4(~c(n)q")=~c(4n)q", (W4g)(z)=(2~-~)-k-~g (~z ). 

We now introduce two special functions 

~-D(z) = Tr~(Gk,D(z)2)eM2k, 

No(z)= ~ ( 1 - - ( D ) 2 _ k ) - l p r  + Tr~O(Gk,4D(z) O(lDl z))eM ~+~ ' 

where Gk, o and Gk,4O are the Eisenstein series 

Gk, o(z)=lLv(l_k)+ ~= 1 ~ (d)dk_l)q,6M k (Fo(O) ' (.D__)), 

and Tr~(M,N~2g\{O},NIM) denotes the trace operator (adjoint to the in- 
clusion map) from modular forms on Fo(M ) to forms on Fo(N ). Then we have 

Proposition 1. Let f =  ~ a(n)q" be a normalized eigenform in SZk. Then 

o~ 1 (2k-2) !  Lo(1-k) 
( f ,  ~*D> =~ (4rc)2k-~ Lo(k ~ L(f, 2k - 1)L(f, D, k). 

Proposition 2. Let f be as above and g = ~ c(n)q"eS~+�89 an eigenform correspond- 
ing to f as in (2). Then 

1 F(k-�89 LD(1 -k)iDik_~L(f, 2 k -  1) c(IDI). 
( g , ~ D ) =  4 (4~)k-~ LD(k ) 
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Proposition 3. o~ is the image of fqo under the mapping 5PD +. 

All three propositions are proved in the case k even, D =  1 in [4], 2.4. The 
proofs of Propositions 1 and 2 in the general case are very similar and will 
therefore only be sketched here. By a standard property of the trace operator 
we have 

( f , ~ o ) =  S f (Z)Gk, , (z)2y2k-2dxdy " 
~lro(D) 

By a result of Rankin [ l l ] ,  as reformulated and generalized in [23], the scalar 
product of any cusp form f with the product of an Eisenstein series of smaller 
weight and a modular form h of complementary weight is given (up to an 
elementary factor) by the value at s = ( w t . f ) - 1  of the convolution of the L- 
series of f and of h. Applying this here and observing that the convolution of 
the L-series of f and Gk, D equals L ( f , s ) L ( f , D , s - k + l ) / L D ( 2 S - 3 k + l )  we 
obtain Proposition 1. Similarly, since the operator pr + is hermitian on cusp 
forms (this was proved for the operator W~ U 4 by Niwa [8]), we obtain for 

= ~ g(Z)Gk,4D(z)O([D[z)Yk-~dxdy, 
.~/ro(4D) 

and by Rankin's identity this equals a certain constant times the value at s= 
k - � 8 9  of the convolution of the L-series of g(z) and O([DI z). But this convolution 

2c(ID[) L(f,2s) 
equals - -  by virtue of Eq. (2). This proves Proposition 2. 

IDI ~ L o ( 2 s - k  + l ) 
The proof of Proposition 3 for D =  1 is a very simple and beautiful calcu- 

lation, due to H. Cohen and apparently found earlier by Selberg, which we 
reproduce here. The proof for D > 1 is based on the same idea, but requires 
explicit calculations of Fourier coefficients of Eisenstein and theta series at the 
various cusps of Fo(D); since these are tedious and of a routine nature, we have 
relegated them to an appendix. We have 

~l (Z )=Gk(4Z)O(Z)=  ( E fTk_ l (n )qn  =~ - 
\ n ~  0 r 

(where we have set a,_ 1 (0)=�89 i.e. 

Hence 

(ffl(Z) = c(n)qn, C(H) = E O'k-1 - -  " 
n ~ 0 r6Z 

r2 <_n 
r 2 --= n ( ~ a o d 4 )  

~ In2\\ . 
~l+(ffl(Z)=CTk_l(O)c(O)-~'n~=l d k - l c  ~ " ~ ] l q  

{ n g - r 2 d : ~  =~k-,(0)2+E (E dk-~ E ~-~- ~ /! 
= ~ l n  I r l - <  Vn-Td - 

r -= n(mod 2 ) 
a 

q". 
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n - r d  n+rd  
Writing n l =  2 ' n2= 2 , we see that the coefficient of q" (n>0)  equals 

E E dk-l~Yk [n'n2~ 
..... >0 ,t]~ .... 2) -1 k d 2 ]" 
nl  + n 2 = n  

By the multiplicative properties of ak_ 1, the inner sum here equals 
Ok_ l (nl)~k_ l (n2), SO 

~l+(ffl(Z) ~-- ~ ( E f f k - - l ( n l ) f f k - - l ( l ' 1 2 ) ) q  n 
n = O  /11,~2 > 0  

n 1 + n 2 ~ n  

= G k ( z )  2 = ~% (z),  

as was to be shown. (Note that the same proof shows that 5~l+ ( f  (4 z) O(z)) 
= f ( z )  2 for any normalized Hecke eigenform f~Mk,  a fact also noticed by both 
Cohen and Selberg.) 

Proof of Theorem 1. Let 

ffD(Z) = 2 G~+�89 + ~ 2  v g~(z) 
v 

be the expansion of ffv with respect to the basis of M~-+, described above. By 
the remarks preceding Corollary 7 we have 5PD+(gv)= cv(]Dl)fv, so Proposition 3 
implies 

~ . (z )  = 2LD(1 - k)G2k(z) + ~ 2~ cv(I D ]) f~(z). 
v 

Therefore we have 

and (3) now follows immediately from Propositions 1 and 2 and the fact that 
L ( f , 2 k - 1 )  and L o ( 1 - k )  are non-zero. 

We now give the proof of Corollaries 2, 4, 5 and 9 (the other corollaries of 
Theorem 1 are either obvious or have already been proved). 

Proof of Corollary 2. For k even we define 

k--4~i  - ,=1 

(Thus 6 6 is ~ times the function 6(z) used earlier.) Then 6keS~+ ~ and for g as 
in (2) the Petersson product (6k, g) is up to a non-zero constant factor equal 
to c(1) (this follows from the generalization of Rankin's method given in 1-23], 
Prop. 6, p. 147). The function 6 k is therefore a linear combination of those 
eigenforms g,~S~+~ for which c~(1)#0. Hence we have 

L(f~, k):# 0 and L(f~, D, k) # 0 for some v 

,=-c~(1)#0 and c~(D)#O for some v 

~k(D)#O. 
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The Fourier coefficients ~k(n) of 6 k are given by 

n ~ k 2 x 2 --  n~ 
~ k ( n ) =  - - 8 0 " k - 3  (4 ) - ] -O<x<F,  ~ ( ( ~ - - 1 )  ~ +~-) 

W. Kohnen and D. Zagier 

(with the conventions O'k_3(0)=�89 ) and CTk_3(n)=0 for nq~Z). We need 
only consider the case that n=D is a fundamental discriminant > 1. Using the 

?/ . 
fact that ak_3(n ) is odd if and only if n or ~ is a square, we find after a little 

calculation involving the number of representations of an integer as a norm in 
Q(i) or Q( I /~2)  that the first term is always even except for D=8  and that the 

k 
second is odd if and only if D=8  or D=p=-5 (mod 8) and ~--1 (rood 2). Thus 

ak(O) is odd and hence nonzero for D a prime -- 5 (mod 8) and k -  2 (mod 4). 

Proof of Corollary 4. Write D as n2Do, where n e N  and D o is the discriminant 
of Q(I/D). In view of Eq. (2), it suffices to prove the identity 

n zk-1L(f,D,k)=L(f, Do,k ) ~ # ( d ) ( ~ - ) d k - l a  (d))2" 

According to Prop. 3, iii) of [23], the L-series LD(S ) is given by 

r = l  din 

(this can be taken as the definition of LD(S)). Denote the coefficient of m-S in 
LD(s) by ~D(rn). Then from the above equation we find 

 o o,o s_  Z 

or, using a well-known property of the M6bius function, 

(o0) 
eD(m)= ~ p(d) ~ g= ~ g 

r,d,g>O g>O 
gd]n, gZdr=m g[n, g2lm 

n m x  1 g,~S = 

(the final sum is either empty or contains exactly one term). Hence the 

convolution L(f, D, s)= ~ ~D(m)a(m)m -s is given by 
m=l 

L  ,o,s =Zg 1-2  
gin r = l  

(,,~-)= 1 
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Since f is a Hecke eigenform, we can compute this as an Euler product 
[ I  L:,D,p(P-'), where 
P 

v-1 oo @ )  
Lf, o,p(t)= ~ pUt2Ua(p2U)+pVt2v ~=o a(pev+x)tz 

/a=0 

(here p* is the exact power of p dividing n and we have set g=p", r=pZ). Let 
and fl be the roots of x2--a(p)x+pZk-l=o. Then a(p i) can be written as 
~i+1 __~i+1 

, and summing the geometric series we find 

1 (r 1-p~c~z~t2~ 1-pvflz~t2~] 
LY, o,p(t)=~_fl l_paZt2 fl 1 _ ~ [ 2  ] 

+ ~ - ~  \-~--~ ~W~ I '  

where e - - ~ ) .  For p~/n we clearly have L:,D,p(t)=L:,oo,v(t ). Therefore 

L(f, D, s) and L(f, Do, s) differ in only finitely many Euler factors, and continu- 
ing analytically to s = k we find 

L(f, D, k)=L(f, Do, k)[ I Lr176 
- - k  " 

pl. L:,Do,~(P ) 

But an elementary computation with the above formula at t=p-k=(pafl) -1/2 
gives 

-k (fl~+ ,(l_e~p-k)_~+ ~ (l_efip-k))2 Lf,o,p(P )=(afl)-~ _ 
-k Ly,oo,p( p ) 0r 

=p-v(2k-1)(a(p~)--~pk-1 a(p~-X)) 2. 

Multiplying these expressions together for all pin gives the desired formula. 

rc k (J; f )  
Proof of Corollary 5. Corollary 4 gives ~ : ( s )= (k  - 1)! (g ,g)  ,,~- c(n)2/ns+k-�89 

By Rankin's method we find for sufficiently large s the identity 

c(n) 2 
(4rc)-s-k+~r(s+k-�89 Y nS+k_~ - ~f. lg(z)12YS+~-~dxdy 

n > 0 . 5 / F ~  

= [,~ yk+~lg(z)]2 (4) dxdx 
~/ro(4) E s (z) y2 �9 

Here z=x+iy, F~ is the group of matrices +(10 ~ ) ( n e Z ) ,  and E]4'(z) 

= ~ Im(Tz) s denotes the non-holomorphic Eisenstein series for Fo(4 ). 
y ~ F ~  \ F o ( 4 )  
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Since this Eisenstein series is known to have a meromorphic continuation to 
all s, holomorphic except for a simple pole at s = 1 with residue 

1 1 3  1 
rest= 1 E~4~(z) = [SL2(Z): Fo(4)] ress= 1 E,(z)= 6 

~ 2 ~  7~ 

(independent of z), where E~(z)= ~ Im(yz) ~ is the Eisenstein series for 
~eF~\  SL2(Z) 

SL2(Z), all of the statements of the Corollary except for the functional equa- 
tion of s follow immediately from this identity. These properties would 
hold for ~fc(n)2/n ~+k-�89 for any function g=~c(n )q"  in Sk+~(Fo(4)). To prove 
the functional equation, however, we must use the fact that g6S2+~, because 
this implies relationships among the Fourier expansions of g at the three cusps 
of Fo(4), and the function E~4)(z) is mapped by s ~  1 - s  to a linear combination 
of the Eisenstein series of these cusps. More specifically, one has 

where ~1 = ( - 1 )  [~-!]  2k and go and gl are defined by 

gj(z)= ~ c(n)q "/4 ( j=0,  1). 
n~- j(mod 2) 

(The first of these identities is Prop. 2 of [4], and the second is an easy 
consequence of the first, namely: 

=~g --Cq X go(Z)=~ll  gl(z). ) 

Applying Rankin's method to the functions go and gl (which are modular 
forms with multiplier systems of weight k+  1 on Fo(4)), we deduce the two 
identities 

c(n) 2 
~-s-k+~r(s+k-1) ~ nS+k-~ 

n~j (mod2)  

(4) d x d y  = SS yk+~lgj(z)12Es (z) 
,~/ro(4) 

y2 
~/ro(4) \ ~  ~ T . ~ J  l 

( j=0,  1). Adding them, comparing with the identity given at the beginning of 
the proof, and using the two easy formulas 
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4 1 
E] )(z) = ~ ] -  (Es(4z)-Z-SEs(Zz)) , 

~ - ~ )  = ~ (2 E~(2 z ) -  E,(4 z)), 

we obtain the two new integral representations 

c(n) z 2 zk _ ~ yk+~lg(z)lZE~( 4 dxdy ~-s-k++r(s+k-�89 n " + k - +  3 .~/ro(,, z) ~5 

22k 
- 2 ~ + 2 1 - ,  ~ yk+~lg(z)12 Es(2z) dxd~y y2 

.~/ro(4) 

Since ~-~F(s)((2S)Es(Z) is invariant under s~--~l-s, either of them implies the 
desired functional equation. 

Proof of Corollary 9. By Theorem 2, Ok(Z , Z) is a cusp form in S2k with respect 
to z and a cusp form in S~-+~ with respect to z. Therefore we can write O k as 

Ok(Z, z)= ~ ?v,f~(z)gu(z) 
V, lt 

for some coefficients 7~,eC. We first claim that 7~,=0 for v+# ,  i.e. 

a~(z, ~) = Z ~ L(z) gv(~). 
v 

Indeed, in view of the "strong multiplicity 1" theorem proved in [4], this 
assertion is equivalent to the statement that the map Sk+~-~Szk defined by 
scalar product with O k commutes with Hecke operators, i.e. 

Qk[Zk T(P)=QkIk+{ T+ (P2), 

where T(p) on the left is the pth Hecke operator in Szk, acting on the variable z 
and T+(p 2) on the right the pth Hecke operator in Sk++, (as defined in [4]), 
acting on the variable z. By the definition of T+(p2), this is equivalent to the 
identity 

fk(D, " ){2k T(p)=p2k-l fk(DPZ, " )+ (D) pk-l fk(D, " )+ fk ( ~ ,  " ) 

(with the usual convention fk ( ~ , z ) = O  if p2~/D). The proof of this relation, 

which is quite elementary, is exactly the same as the proof of the analogous 
statement for non-holomorphic modular forms of weight zero given in [24-] 
(proof of Eq. (36)) and will not be repeated here. 

Finally, we must compute the coefficients 7~. The statement that 
Ck I Ok(Z, z) is the kernel function for 5~1 + is equivalent to the identity 

Yv=Ck Cv(1) 
(gv, g~)" 
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We will prove this identity with both sides multiplied by c~(1), which is 
equivalent to the statement of Corollary 9. By comparing the coefficients of 
e z'~i~ in both sides of the identity defining the 7~, we can write that identity in 
the form 

c~(D) 
fk(D, z)=~Tv ~ f,(z). 

We apply this identity with D = n 2 and sum over all n > 0, obtaining 

2 1 ~Tvcv(1)L( f .  2k-1) f~(z ) .  
n = l  

(The identity ~ c,(n2)n-S=Cv(1)L(f,s)/((s-k+l) was already used in the 
n_>1 

proof of Proposition 2.) On the other hand, a quadratic form a zZ+bz+c 
whose discriminant is a non-zero square factors as r(mz+n)(m'z+n') with 
reiSl, (m, n)=(m', n')= 1, mn'4:m'n; this factorization is unique up to the possi- 
bility of interchanging the two factors m z+n and m'z+n' or changing both 
their signs. Hence 

fk(n 2, z)=�88 ~ 2 (mz+n)k(m,z+n,)k 
n= 1 m ,n~Z  m' ,n '~Z  

(re, n)= 1 ( m ' , n ' ) = l  
(m, n) * •  

= ( ( k )  ( e k ( Z )  2 - -  E2k(Z)) , 

2 
where Ek(Z)= �89 ~ (mz+n) - k -  Gk(Z ) denotes the normalized Eisen- 

~m, .~=l  ((1 -k) 
stein series in M k. Taking the Petersson scalar product of both sides with an 
eigenform fveS2k and using the case D =  1 of Proposition 1, we find 

1 
( (k)  2 7~c~(1)(fv, f~) L(f~, 2k - 1) 

4 2 (2k-2 ) !  1 - 
~ ( 1 - k )  2 (fv, 17= (4g)2k-~ ((k)((1 -k) L(f~2k-1)L(f~, k) 

and hence, by the case D = 1 of Theorem 1, 

2 (2k-2) !  ((k) n k Cv(1) 2 Cv(1) 2 
7~c,(1)= (4rt)Ek_ 1 ( ( 1 - k ) ( k - 1 ) !  (g~,g~) Ck(g~,g~"  

This completes the proof of Corollary 9. 

Appendix. Computations of Fourier Coefficients 

We introduce the following notations. For Dr, D E relatively prime fundamental 
discriminants with (-1)kD1D 2 > 0 set 

-1 . 1 ~ ,  
Gk, D1,D2(Z)-~-~/k,D, 2m,, (-~-) (~-~) (mDlz+n) -k 
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( _D--~I~I ) r ~ '  the meaning. The where 7k, DI= [Dll ( k - l )  I and has usual 

function Gk.D,,Dz is an Eisenstein series in Mk (Fo(D), (D)) (D=DlD2) for the 

1 
cusp ~ .  Its Fourier expansion is given by 

Gk, OI,D2(Z) = ~ ~k--l,D1,D2(n) q n n>=O 
[--LDI(1 -k)Lv2(O ) (n=0) 

~k-l'Dl'D2(n): ldl, ~d2 >0 (Ul ) U(d22 ) dl (n~O, 
dld2=n 

(the constant term is zero unless D 2 = 1). 
For m e n  and f ( z )=  ~ a(n)q" we define Umfby 

n>0 

Vmf(z'=lvm~odmf (~--)=n~>=oa(mn)qn" 

Finally, for D a fundamental discriminant we define three functions u, v and w 

by u(D)=(D, 8), v(D)=~r~'ztv, ~ and w(D)= ~4)2,8)2 i.e. by the table 

w(D) 

D = 1 (mod 4) D = 4 (mod 8) D = 0 (mod 8) 

u(D) 1 4 8 

v(D) 1 2 4 

1 1 4 

The following lemma describes the Fourier developments of o~ o and Uu(D)~D, 
where JD and ~D are the functions defined before Proposition 1. 

Lemma. Let D be a fundamental discriminant with (-1)kD >0. Then we have 

'~D(Z) : Z (~l)  Uv(D,)ID2[(Gk,D1,Dz( Z)2)' D=DID2 

Uu(o)~o(z): 2 ~ Uu(D)w(D1)IO21(Gk, o~,DE(4Z) O([DI [z)) D=D1D2 
where ~ denotes summation over all decompositions of D as a product of 

D= Dt D2 
two fundamental discriminants. 

Let us first show how the Lemma implies Proposition 3. Suppose D is odd 
(the case of even D is similar). The 2 ~d equation of the Lemma says that the m th 
coefficient of ff~ equals 
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D 2 
r ('~I~)x~ZGk-I,D~,D2 tD'IID2'~ 'DI'X2 ) 

where we have put ak_,m,,/)~(n)=O for nCNw{O}. For m=n2lDI the ex- 
mlD2l-lD,]x 2 n]De]-x nlDalWX 

pression factors as IDol , so the inner sum 
equals 4 2 2 

~7k_l,/)~,/)2(lOl[ala2)= --'O(?~S ) ~ ffk-1,/)~,/)~(ala2) . y 
aba2>0 \12tYll ! al,a2>=O ax +a2=nID2[ al +a2=nlD2] 

Hence we find for n > 0 

dln 

= Z (~)d~[n(D) dk-1 2 ~k-l,Di,D2(ala2) 
D=DID2 al,a2>O 

al +a2 =~]D2[ 

= Z (__~) 2 ~" ( d )  dk-1 (ala2~ 
D=DID2 al a2>=O d (al,a2) 

al +a2=n /)2 

which by the first equation of the Lemma is the n-th coefficient of ~/), if one 
takes into account the identity 

z  ala2  ~-~,o~,o~ ~-d~]  = o~-~,~.~(aO ~-~,~,,/)~(aJ �9 
dl(al,a2) 

Also 1LD(1-k)ak_l,/), .v~(0) is the constant term of ~/). Thus we have shown 
& + ( % ) = ~ >  

It remains to prove the Lemma. Since the Fourier expansions of the theta 
series 0 and the Eisenstein series Gk, m,/) 2 in every cusp of F0(4D ) are known, it 
is clear the Fourier coefficients of ~/) and ~/) can be computed. However, the 
calculations are rather tricky, so we will sketch the main steps. 

The trace operator from Fo(D ) to SL2(~ ) is given by 

[az+b~ (Tr~f)(z)= • (cz+d)-kf ~c--~/" 

As a system of representations for Fo(D)\SL2(7Z) we can take the matrices 

(d-1;Dl] ~ ) ( ;  Pl) (D=D1D2,dlv(D1),#mOdaaDj 

d 
where D1, D2 and v(Dj are as in the Lemma and %=(d- -~  (=1 or 2). Now 

one shows as an easy consequence of the definition of Gk,/),,/) ~ that 
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(d-llD1]z+l)-kGk, o (-d_ll~[zq_l) 

where IOl1" is an integer with [Dll ID1L*-1 (mod D2) and 

v rnodd 

From identity (5) we deduce 

~ (d-l[Dl[(z+#)+l)-ZkGk, o d-l lDil(z+#)+l 
d lv (DD t~ mod  ~aD2  

and this immediately implies the first equality of the Lemma. 
Now let us prove the second one. The operator pr + from Mk+�89 to 

M~+�89 is given by 

(pr + g)(z) - 1 - ( -  1)ki 6 (Tr146 Vg)(z)+�89 (g~Mk++(Fo(4))) 

where V is the map sending g(z) to g(z+�88 This definition of pr + is more 
convenient for us than the one given previously. That they are equivalent is 
implicit in [8] (proof of Lemma, p.200-201) or [4] (w p.260). Now we 
distinguish the cases of odd and even D. 

i) D odd. 
We have 

VTr4~ g= Try66 ~ Vg (geMk+~(Fo(4D)). 

Substituting this into the definition of f~o we find 

f #n=3(1- (D)  2-k)-lTr~~ (6) 

with 

go(z) - 1 - ( -  1)ki T,.x6o V(Gk 4D(z)O([DI z))+�89 z). 6 I F 4 D  ' 

( 1 ~), where v runs over integers mod4,  form a set of The matrices 4IDly 

representatives for Fo(16D)\Fo(4D ). Using this one obtains after some calcu- 
lation 
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As a set of representatives for Fo(4D)\Fo(4 ) we choose the matrices 

(4[1Dl1 ~ ) ( ;  1)  (D=D1D2'ym~ 

where D 1 and D 2 have the same meaning as in the Lemma. Using (5) and well- 
known transformation formulae of 0 one can check that 

4z ( fDI z 
(41DIIz+I)-'-*G~,D (-4ID,Iz+I) 0 \41Dllz+ 1) 

= ( _ ~ a [ )  1 [4z+lDll* ] / [D,Iz+4* 
Gk.o,,D~\ ~21 I0\ ID21 ) 

(where a*e  77 with aa*-1 (modD2)). From this and (6) and (7) the first equa- 
lity of the Lemma for odd D follows immediately. 

ii ) D even. 
We shall sketch only the proof for D - 4  (mod 8), since the case D - 0  (rood 8) is 
similar. From 

D 4D VTr 4 = rr16 Vg (geMk+~(Fo(D))) 
we obtain 

3 D ~D = ~ Tr4 gv 

go(z) = 1 - ( -  1)ki 6 Tr~ ~ VTr~D(Gk,4o(z)0([DI z)) 

+�89 Tr~D(Gk,4o(Z) 0(IDI z)). 

01t As a set of representatives for Fo(4D)\Fo(D) we choose the matrices ID]v ' 
v mod 4. Using this we obtain 

g o ( z ) =  ~ Tr~~ ( G k, 4 o(z) O([ DI z)) + ~ Gk, _n, -4 (z) O (~-  z ) . 

Hence 
~ , ( z ) -  2 4o -~  Tr4 (Gk,4o(z) O(ID] z)) 

+ (31)~ Tr~ (Gk._~,_4(z)O ([-~z) ). (8) 

To calculate Tr] ~ we use as a system of representatives of Fo(4D)\Fo(4 ) the 
matrices 

1 

v runs over integers mod4,  d 1 runs over all decompositions -D~=dld 2 where 
q 

..-with 
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(dl, d 2 fundamental  discriminants) and for d 1 fixed # runs modulo d 2. One now 
checks that for each v, d~, d 2 there is an identity of the form 

1 1 (]dll(yd2~-l) ~)~X(svldll ~) (10 21) 

with sv=(4, v + l )  and some X~Fo(D), 2c7Z. Therefore multiplying the above 

representatives by (40 O) on the left gives the matrices 

X (s~lldl[ 01 ) ( ;  214/~ ) .  

But Gk,4o(z)O(lDlz)=Gk, D(4z)O ( ~  4 z ) a n d  Gk, o(z), O (~)-z) are forms on 

Fo(D), so we can absorb the X into these functions and then calculate the effect 

of rid11 on Gk, D(Z) and 0 z by using Eq.(5) (with Dl=d 1 or - 4 d  1 

and d =  1 or 2 depending on s~) and the standard transformation equations of 

0. The effect of the remaining matrix (~ 2 1 4 #  ) on the Fourier developments 

is, of course, trivial. Carrying out the computation,  one finds 

U4 Tr4O(Gk, ,o(z) 0(IOl z)) 

D1 odd 

D2 
+o=~,o2 (-~D-~I)UlD2t(Gk'~176 

Dl odd 

Finally one shows that 

----(--l)k Z D(_~I]) UID21(Gk,D1,Dz(4Z) O(IDIIZ)). D=DID2 
Dt odd 

Together with (8) these formulas imply the desired result. 
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