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I. Introduction and statement of  results 

The main theorem of this paper gives a relation between the heights of 
Heegner divisor classes on the Jacobian of the modular  curve Xo(N) and the 
first derivatives at s = 1 of the Rankin L-series of certain modular  forms. In the 
first six sections of this chapter, we will develop enough background material 
on modular  curves, Heegner points, heights, and L-functions to be able to state 
one version of this identity precisely. In w 7 we will discuss some applications to 
the conjecture of Birch and Swinnerton-Dyer for elliptic curves. For example, 
we will show that any modular elliptic curve over Q whose L-function has a 
simple zero at s =  1 contains rational points of infinite order. Combining our 
work with that of Goldfeld [12], one obtains an effective lower bound for the 
class numbers of imaginary quadratic fields as a function of their discriminants 
(w 8). In w 9 we will describe the plan of proof and the contents of the remaining 
chapters. 

Many of the results of this paper were announced in our Comptes  Rendus 
note [17]. A more leisurely introduction to Heegner points and Rankin L- 
series may be found in our earlier paper [13]. 

w 1. The curve Xo(N ) over 

Let N > I  be an integer. The curve X = X o ( N  ) may be informally described 
over Q as the compactification of the space of moduli of elliptic curves with a 
cyclic subgroup of order N. It is known to be a complete, non-singular, 
geometrically connected curve over ~ .  Over a field k of characteristic zero, the 
points x of X correspond to diagrams 

(1.1) 4: E-~ E' 

where E and E' are (generalized) elliptic curves over k and 4~ is an isogeny over 
k whose kernel A is isomorphic to Z/NZ  over an algebraic closure k. The 
function field of X over Q is generated by the modular  invariants j(x)=j(E) 
and j'(x)=j(E'); these satisfy the classical modular  equation of level N: qSN(j,j' ) 
= 0  [2]. 

The cusps of X are the points where j(x)=j'(x)= o~. They correspond to 
diagrams (1.1) between certain degenerate elliptic curves, where A = k e r  q~ meets 
each geometric component  of E [7, 173 ff.]. There is a unique cusp where E has 
1 component  and a unique cusp where E has N components;  these are denoted 
oe and 0 respectively and are rational over Q. 
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.~'2. Automorphisms and correspondences 

The canonical involution ws of X takes the point x =(qS: E--* E') to the point 

(2.1) wN(x)=(qS': E' -~E)  

where qS' is the dual isogeny. This involution interchanges the cusps oo and 0. 
The other modular  involutions w a of X correspond to positive divisors d of 

N with (d, N / d ) =  1. Let D and D' denote the unique subgroups of ker ~b and 
ker qS' of order d, and define We(X ) by the composite isogeny 

(2.2) w a(x ) = (E/D o E / k e r  r ~- E'-~ E'/D'). 

These involutions form a group W_~AutQ(X) isomorphic to (Z/27/) ~, where s is 
the number of distinct prime factors of N. The group law is given by w aw e, 
= wa,,, where d" = dd'/gcd(d, d') 2. 

For an integer m > 1 the Hecke correspondence T m is defined on X by 

(2.3) T m ( x ) = ~ , ( X c )  , 
C 

where the sum is taken over all subgroups C of order m in E which intersect 
ker q5 trivially, and x c is the point of X corresponding to the induced isogeny 
(E /C~E' /4 ) (C) ) .  This endomorphism of the group of divisors on X is induced 
by an algebraic correspondence on X z X which is rational over Q. When 
(m, N ) =  1 the correspondence T m is self-dual, of bidegree ~ l (m)=  ~ d. 

aim 
Let J be the Jacobian of X: its points J(k) over any field k of characteristic 

zero correspond to the divisor classes of degree zero on X which are rational 
over k. The correspondences T m induce endomorphisms of J over •; we let 
]1?___ EndQ(J) be the commutat ive sub-algebra they generate. 

,4 3. Heegner points 

Let K be an imaginary quadratic field whose discriminant D is relatively prime 
to N. Let C be the ring of integers in K, let h denote the class number of 
K ( = t h e  order of the finite group Pic((r and let u denote the order of the finite 
group (9 • + 1}. We have u = 1 unless D = - 3 ,  - 4 ,  when u = 3, 2 respectively. 

We say x = ( E ~ E ' )  is a Heegner point of discriminant D on X if the elliptic 
curves E and E' both have complex multiplication by (9. Such points will exist 
if and only if D is congruent to a square (mod 4N). In this case, there are 2 s. h 
Heegner points on X, all rational over the Hilbert class field H =-K(j(E)) of K. 
They are permuted simply-transitively by the abelian group W x GaI(H/K) .  We 
remark that there are also Heegner points with non-fundamental discriminants 
and with discriminants not relatively prime to N on X [13], but we will not 
consider them in this paper. Also, we shall assume throughout that D is odd, 
hence square free and congruent to 1 (mod 4). 



228 B.H. Gross and D.B. Zagier 

Fix a Heegner point x of discriminant D; then the class of the divisor c 
= (x ) - (oo )  defines an element in J(H). A fundamental question, first posed by 
Birch [3], is to determine the cyclic module spanned by c over the ring 
~[Gal(H/K)], which acts as endomorphisms of J(H). Our approach to this 
problem uses the theory of canonical heights, as developed by N6ron and Tate, 
as well as the L-series associated by Rankin to the product of two modular 
forms. We will show (Theorem (6.3)) that the eigencomponent c:.z of c is non- 
zero in J(H)| if and only if the first derivative of an associated Rankin L- 
series L(f, Z, s) is non-zero at s = 1. (Here f is an eigenform of weight 2 for the 
Hecke algebra II7 and Z a complex character of Gal(H/K).) 

w Local and global heights 

For each place v of H, let H~ denote the completion and define the valuation 
homomorphism I Iv: H j  --,H+ by: 

= ) ' ~ = l ~ [  2 if H~_ tI; 

if H~ is non-archimedean, with prime x satisfying 
v(x) = 1 and finite residue field of order q~. 

For any cteH• we have the product formula: [ I  lel~ = 1. 
t; 

N6ron's theory gives a unique local symbol (a, b)~ with values in H, 
defined on relatively prime divisors of degree zero on X over H~ [27]. His 
symbol is characterized by being bi-additive, symmetric, continuous, and equal 
to 

(4.1) (a, b)~ = log I f(a)l~ = ~ mx log I f(x)l~ 

whenever a=~mx(x) and b = d i v ( f ) .  One can obtain formulae for the local 
symbol using potential theory when v is archimedean and intersection theory 
when v is non-archimedean [14]. 

If a and b are relatively prime and defined over H, the local symbols 
(a, b)~ are zero for almost all places v and the sum 

(4.2) (a, b) = ~ (a, b)~, 
V 

depends only on the images of a and b in J(H), by (4.1) and the product 
formula. The symbol ( , )  defines the global height pairing on J x J over the 
global field H and the quadratic form 

(4.3) ~(a) = (a, a)  

is the canonical N6ron-Tate height associated to the class of the divisor 2(0), 
where O is a symmetric theta-divisor in J. Since this divisor is ample, ~ defines 
a positive definite quadratic form on the real vector space J(H)| [24]. This 
form may be extended to a Hermitian form on J(H)|  in the usual manner. 
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w L-series 

Let f(z)= ~ a, e 2~inz be an element in the vector space of new forms of weight 
n > l  

2 on Fo(N) [1, 34]. Thus f is a cusp form of weight 2 and level N which is 
orthogonal to any cusp form g(z)=go(dz), where go has level N o properly 
dividing N and d is a positive divisor of N/N o. We define the Petersson inner 
product on forms of weight 2 for Fo(N ) by 

(5.1) ( f , g ) =  ~ f(z) g(z)dxdy z = x + i y  
ro(N) \~  

where the integral is taken over any fundamental domain for the action of 
Fo(N ) on the upper half plane .~. 

Let cr be a fixed element in Gal (H/K). This group is canonically isomorphic 
to the class group CI~ of K by the Artin map of global class field theory. Let 
o~r be the class corresponding to a, and define the theta-series 

1 
(5.2) 0_~(z)=~uu + ~ eZ~in"-'= ~" rd(n ) e 2~i"-" 

aeo~/ n>O 
n integral 

1 
where r ~ ( O ) = ~  and r~(n) for n > l  is the number of integral ideals a in the 

class of .~' with norm n. This series defines a modular form of weight 1 on 
FI(D), with character ~" (Z/DZ)• { _+ 1} associated to the quadratic extension 
K/Q (see e.g., [19]). 

Define the L-function associated to the newform f and the ideal class ~ by 

(5.3) L_u(f, s)= ~ f ;(n)  H l - 2 s .  ~ a,r~(n)n -~. 
n > l  n > l  

(n. DN)= 1 

The first sum is the Dirichlet L-function of e. at the argument 2 s - 1 ,  with the 
Euler factors at all primes dividing N removed. (These factors were not 
removed in our announcement [17], which is in error. Also, there we denoted 
this L-series by L~(f, s), and 0~(z) by O~(z).) 

If f is an eigenform under the action of the Hecke algebra "IF, normalized 
by the condition that a t = 1, and Z is a complex character of the ideal class 
group of K, we define the L-function 

(5.4) L(f, Z, s) = ~ Z(~4) L e(J; s). 

This has a formal Euler product, where the terms for pXND have degree 4. The 
terms where p lD or p]IN have degree 2, and the terms where p21N have 
degree 0 [13]. 

It is not difficult to show that the series defining L~(f, s) and the Euler 
product for L(f, Z,s) are absolutely convergent in the right half-plane Re(s)>3.  
Using "Rankin 's  method",  we shall show 

(5.5) Proposit ion.  The functions Ld(f,s ) and L(f, Z, s) have analytic conti- 
nuations to the entire plane, satisfy functional equations when s is replaced by 
2-s ,  and vanish at the point s = 1. 
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w 6. The main result 

We recall the notation we have established: x is a Heegner point of discrim- 
inant D, which we have assumed is square free and prime to N, and c is the 

class of the divisor (x)- (oo)  in J(H). The quadratic field K = Q ( t / D  ) has class 
number h and contains 2u roots of unity; the element a in the Galois group of 
H/K corresponds to the ideal class d under the Artin isomorphism. Finally, 
( , )  denotes the global height pairing on J(H)@II~ and ( , )  the Petersson inner 
product on cusp forms of weight 2 for Fo(N ). 

(6.1) Theorem. The series gd(z)= ~ (c, Tmc~)e 2~imz is a cusp form of weight 
2 on Fo(N ) which satisfies ,,>>-1 

u2[DI �89 
(6.2) (f, g~r 8n 2 / ~ ( f ,  1) 

for all f in the space of newforms of weight 2 on Fo(N ). 

By using the bilinearity of the global height pairing, we can derive a 
corresponding result for the first derivatives E(f,  X, 1), when f is a normalized 
eigenform and X is a complex character of the class group of K. We identify X 
with a character of Gal(H/K),  and define cx= ~ X- l (a )c  ~ in the z-eigenspace 

o 
of J(H)| (This is h times the standard eigencomponent.) Finally, we let cx, I 
be the projection of cz to the f-isotypical component of J(H)| under the 
action of 11"[13]. Then we have 

8n2( f , f )  
(6.3) Theorem. /J(f, Z, 1)--hu2 IDI1/2 #/(cx, f). 

Here h" is the canonical height on J over H, as in (4.3). The discrepancies in 
the constants of (6.2) and (6.3) from those in our announcement 1-17] come 
from the fact that there we were considering the global height on 3 over tl). 
The heights over H, K and Q are related by the formula 

(6.4) (a, b)n=h(a ,  b}K= 2h(a, b}Q. 

We remark also that the quantity 8n2( f , f )  is equal to the period integral 

II(ofll2= ff~ %Ai%, where ~oj.=2nif(z)dz is the eigendifferential associated to 
X(C) 

f Thus (6.3) may be re-written in the more attractive form 

I1%H 2 
(6.5) E(f, Z, 1) u2 iO[~ ~K(%f)" 
We recall that u = l  when ID[>4. 

.~ 7. Applications to elliptic curves 

Let E be an elliptic curve over Q. The L-function L(E, s) is a Dirichlet series 
~" a, n -s defined by an Euler product which determines the number of points 

n>=l 
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on E (modp) for all primes p [35]. This product converges in the half plane 
Re(s)>~, but it is generally conjectured that the function f ( z ) =  ~ a,e 2~i"z is a 

n > l  
newform of weight 2 and level equal to the conductor N of E [35, 38]. In this 
case, the function 

is entire and satisfies a functional equation 

(7.1) L*(E, s)= + L*( E, 2 - s). 

This conjecture may be verified for a given curve by a finite computation, and 
we will assume it is true for all of the elliptic curves considered below. 

The conjecture of Birch and Swinnerton-Dyer predicts that the integer r 
=ords= ~L(E, s) is equal to the rank of the finitely generated abelian group 
E(Q) of rational points. This conjecture also gives an exact formula for the real 
number/2r)(E, 1) of the form: 

(7.2) /2r~(E, 1)=c~. f2-R, 

where f2 is the real period of a regular differential on E over Q, R 
=det ( (P~,~))  is the regulator of the global height pairing on a basis 
(P1 . . . . .  P~) of E((I))| and c~ is a non-zero rational number (for which there 
is also a conjectural description in terms of arithmetic invariants of the curve) 
[35]. We will combine Theorem (6.3) with a theorem of Waldspurger to obtain 
the following result, which may be viewed as a contribution to the problem of 
finding rational solutions of cubic equations: 

(7.3) Theorem. Assume that L(E, 1)=0. Then there is a rational point P in E(~)  
such that E(E, 1)=ct. ~2. ( P , P )  with ~ •  In particular: 

1) I f  E(E, 1)=I=0, then E(ff)) contains elements of infinite order. 
2) I f  E(E, 1)4=0 and rank E(II~)= 1, then formula (7.2) is true for some non- 

zero rational number ct. 

If the sign in the functional equation (7.1) is - 1  and the point P con- 
structed in Theorem (7.3) is trivial in E(tI~)| then the order r of L(E,s) at 
s = 1 must be at least 3. One example where this happens is the following (for a 
proof that P is trivial in this case, see [17] or [39]): 

(7.4) Proposition. The elliptic curve E defined by the equation 

- 139y 2 = x  3 + 10X 2 - - 20x+  8 

has ords= 1 L(E, s )=rank E(Q)=  3. 

~" 8. Application to the class number problem of Gauss 

As well as providing some support for the conjecture of Birch and Swinnerton- 
Dyer, Proposition (7.4) furnishes the final step in Goldfeld's attack on Gauss's 
class number problem for imaginary quadratic fields [12]. Suppose K has 
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discriminant D and class number h =h(D); then Goldfeld's theorem and Propo- 
sition (7.4) together imply 

(8.1) Theorem. For any ~>0 there is an effectively computable constant ~c(c)>0 
such that h(D) > ~c(~)(log ]D[) 1 -~. 

For the analytic details of Goldfeld's method, see Oesterl6 [28]. In fact, 
Oesterl6 gives a sharper final result, a slightly simplified formulation of which 
is the inequality 

(8.2) C(t) h(D) > log LDI, 

where C(t) is an explicitly given function of t, the number of prime divisors of 

4 ~ l o g  D, with logC(t )~  as t--*oo. This implies Theorem (8.1) since 2 '-~ 
t 

divides h(D) by genus theory and hence log C(t),~(logh(D)) -~ ~elogh(D).  How- 
ever, the actual value of C(t) in (8.2) depends heavily on the particular elliptic 
curve used, and the curve E of Proposition (7.4) does not give a very good 
value. It has recently been shown by Mestre [26] that Proposition (7.4) is also 
true for the elliptic curve y 2 - y = x 3 - 7 x + 6 ,  which has much smaller con- 
ductor than E (5077 rather than 714877), and this gives (8.2) with a considera- 
bly smaller value of C(t), but only for D prime to 5077. In particular it implies 
(8.2) with C(1)=55, i.e. h(D)>~logLDI for D prime [28]. In combination with 
previous results of Montgomery and Weinberger, this suffices to show that the 
largest value of IDI with h(D)=3 is 907. 

w 9. The plan of proof 

We will now summarize the contents of the remaining chapters, and will 
indicate how these results fit together to yield a proof of Theorem (6.1). 

We begin with the question of calculating the global pairings (c, TmC ) for 
those m which are prime to N. Set d = ( x ) - ( 0 ) ;  since the cuspidal divisor 
(0)-(oo) has finite order in J(tl~) we have @,T,,c~)=(c,T,,d~). On the other 
hand, it is easy to show that 

(9.l) Proposition. The divisors c and Trod a are relatively prime if and only if 
N > I  and r~c(m)=0. 

In the cases where the hypotheses of (9.1) are met, we may calculate 
(c, T md a) as the sum of N6ron's local symbols (c, T,,d~)v. The general case 
can be treated using (4.2) and a mild extension of N6ron's local theory [14]. 
We will treat the case when rd(m)+O, but will assume for simplicity that N >  1 
throughout. For  a detailed consideration of the case N = 1, see [18]. 

In Chap. II the archimedean local symbols (c, T,,d~)v are expressed in 
terms of a Green's function for the Riemann surface X(II2)=Fo(N)\~* with the 
two distinct points ~ and 0 marked. In Chap. III the non-archimedean local 
symbols (c, T,,d~)~ are determined using intersection theory on a modular 
arithmetic surface with general fibre X. In both cases, there is considerable 
simplification when we consider the sum ~ <c, Tmd~)~, over all places of H 
dividing a fixed place p of I1~. rip 
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In Chap. IV we will use Rankin's method and the theory of holomorphic 
projection to find for each k > l  a cusp form Od(z)= ~ am.o4e 2=im'- of weight 
2k on Fo(N ) which satisfies m__>l 

(2k-2)! 
(9.2) (J; ~b~e)=24k 1 ~z2k IDI a/Z~(f, k) 

for all f in the space of newforms of weight 2k and level N. (The function 
L~(f ,s)  for k > l  is defined as in (5.3) but with n ~-zs replaced by n2k-a-z~; it 
satisfies a functional equation for s ~ 2 k - s  and vanishes at s=k. )  The exis- 
tence of some cusp form satisfying (9.2) follows from the non-degeneracy of the 
Petersson inner product on the space of new forms, which also shows that ~b d 
is well determined up to the addition of an old form. We shall give explicit 
formulas for the Fourier coefficients a,,,~ for those m_> 1 which are prime to N. 
The computations are independent of those in Chaps. II and llI and are 
carried out in more generality: not only is k arbitrary, but the condition 
D - s q u a r e  (mod 4N) is relaxed to ~:(N)= 1. These more general results are also 
interesting as discussed in w167 3-4 of Chap. V. In the case k = 1 and D----square 
(mod 4N), the formula for a~. d turns out to be identical (up to a factor u z) to 
the sum of the local height contributions (c, T,,d~)~,, so we have the identity 

(9.3) (c, Y m c a )  : U  2 a~,.~t (m > 1, (m, N ) =  1) 

for the global height pairing. A formal argument (w 1 of Chap. V) shows that 
the series g~(z)= ~" (c, T m c ~} e 2=imz is a cusp form of weight 2 on Fo(N), and 

m > l  
(9.3) shows that g,~ differs from u 2 q~ by an old form. Theorem (6.1) then 
follows from Eq. (9.2). The rest of Chap. V is devoted to the proofs of its 
various corollaries and to generalizations. 
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lI. Archimedean local heights 

In this chapter we compute the local symbols (c, T,,d~ as defined in w of the 
Introduction for archimedean places v of H. We recall the notation: c =  
( x ) - ( m ) ,  d = ( x ) - ( 0 )  where 0 and 0o are cusps and x a Heegner point 
of discriminant D = D  K on X o ( N  ), aeGal (H/K) ,  a=~.~ for some ideal class 
d e C l g .  

,~ 1. The curve X o ( N  ) over (U 

In Chap. I we gave the modular  description over ~ of the curve X = X o ( N ) ,  its 
automorphisms and correspondences, and of Heegner points. We now describe 
this all over the complex numbers ~ ;  this is of course the most classical and 
familiar description. 
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An elliptic curve E over ~ is determined up to isomorphism by the 
homothety type of its period lattice L: E((U)~-~/L. If x = ( E ~ E ' )  is a non- 
cuspidal point of X, and we write E(~) = ~/L, E'(C) = G/E, then we can modify 
by a homothety to obtain E ~ L ,  ~o=identity. Then E/L"~Z/NZ, so we can 
choose an oriented basis (01,~02) of L over Z ("oriented" means 

1 
Im(~ol&2)>0 ) such that ( 0 1 , ~ 0 2 )  is a basis for L'. The point z=(Ox/m 2 then 

lies in .~, the complex upper half-plane, and the point x~X(~) uniquely 
determines z up to the action of 

Conversely, any zeF\ .~ determines a point x=(ll?/(z, 1 ) ~ / ( z ,  1 ) t  o f  

X(~). Thus I \ ~ lV  l 

(X \ {cusps})(r  F o (N) \~ .  

The compactification is given by X(C)~-Fo(N)\~ *, where $5"= ~ ~IpI((I)) with 
the usual topology. We have 

({cusps})(r = F o (N)\ IP '  (~) ~ IrI ~ (TZ/f d Z)* 
d>O 

where fd----(d, N/d) and the map is given by 

m 
--(m,n~TZ,(m,n)=l) ~ (n/d)-lm(mod f~), d=(n,N) 
n 

(one easily checks that n/d is prime to fd and that the definition depends only 
on the class of m/n modulo F). In particular, the number of cusps is 

Z qS(fd)= 1N[ (p[V/2]+pt(V-1)j21). 
din pvtlN 

v>O 

The curve X over I1~ has the following automorphisms and correspon- 
dences: The action of complex conjugation c~Gal(ll~/~) on X(~)  is induced by 

c(z)= - z  (z~5*); 

the minus sign arises because for a lattice L c ~  with oriented basis (~o 1, o 2 )  
the conjugate lattice c(L) has oriented basis ( - ~ o l ,  ~%), and the formula is 

compatible with the projection map .~--, F \ .~  because 0 normalizes F. 

The canonical involution w N of X is induced by the Fricke involution 

WN(Z ) = -- 1/g z (ze.~*); 

more generally, for any positive divisor d of N with (d, N/d) = 1 the involution 
wde W is induced by the action on .~* of any matrix 
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dZ Z ) det w d = d. (1.1) wee NT/ dZ ' 

The Hecke correspondence T,, (meN, (m, N ) =  1) acts by 

(1.2) Tin(z)= ~ 7z, 
?EF\RN 
det 7= rn 

w h e r e R N = (  ZNg ~ )  It is easily checked that these descriptions over (F agree 

with the modular interpretations of wN, wd and T,, given in Chap. I. 
Finally, we give the description over ~; of the Heegner points. Let K be an 

imaginary quadratic field, D its discriminant, C its ring of integers; we suppose 
N is prime to D. Recall that a Heegner point on X was a non-cuspidal point x 
=(E ~-% E') such that both E and E' have complex multiplication by 6'. Then 
E(II2)=II2/L, E'((12)=II2/E where L and E~II2 are rank 1 modules over (9'; we 
can change by a homothety to ensure that L and E are in K, and then both 
are (fractional) ideals of K. If we choose E ~ L ,  q)=id, L/E"~TI /NZ  as before, 
then n = L E - '  is an integral ideal of norm N and is primitive ("primitive" 
means (9/n~7/../NTI or equivalently that n is not divisible as an ideal by any 
natural number  > 1). Thus L = a, E = a n -  ' for some fractional ideal a of K and 
some primitive ideal n ~ (9 of norm N. Conversely, given any such a and n, the 
elliptic curves IIJ/a and 112/cm-' over (I~ have complex multiplication by (5' and 
the isogeny II~/a--*(l?/cm -~ induced by id C defines a Heegner point on X. 
Clearly two choices al ,  n~ and ct 2, n 2 define the same Heegner point iff 
% = 2 %  for some 2 e K  • and n , = n  2. Hence we have a 1:1 correspondence 

Heegner points'~ ~ pairs (s/,  n), J eC1K,  n c ~  

xeX(ll2) ) ( a  primitive ideal of norm NJ  

([~/Cl i d ~  I~ / l l l l -  1)~---t([Q], n), 

where CI~ is the ideal class group of K. The action of c on x corresponds to 

while GaI(H/K)~_CIK acts by multiplication on ~ and trivially on n (H 
=Hi lber t  class field of K). The Atkin-Lehner involutions on X o ( N  ) permute 
the possible choices of n. More specifically, let N =p] '  ... p;s (r~ >0) be the prime 
factorization of N. The existence of Heegner points for K on X is equivalent to 
the requirement that all Pl split in K (if N were divisible by an inert prime, it 
could not be the norm of a primitive ideal, and we are supposing N prime to 
D), so there are precisely 2 s primitive ideals n of norm N, namely the ideals 
p'~' ... p~ where pi is one of the two prime ideals of K dividing Pi. The effect of 
w e (dll N) on a Heegner point is to map it to another Heegner point with d 
replaced by sg[b] ,  where b=(d ,  n), and an n obtained by making the opposite 
choice of p~ for all p~ dividing d. In particular, 
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i) w N acts on Heegner points by ( d ,  n ) ~ ( d [ r t ] ,  fi); 
ii) the group Gal(H/K)x W (W~(Z/2Z)  s the group of Atkin-Lehner in- 

volutions) acts freely and transitively on the set of all Heegner points of 
discriminant D on X. 

It will also be useful to have a description of Heegner points in terms of 
coordinates in ~. There is a 1:1 correspondence between primitive ideals n ~ C 
of norm N and solutions fl of 

(1.3) fleZ/2NZ, f12 = D(mod 4N) 

(notice that f12 is well-defined modulo 4N if fl is well-defined modulo 2N) 
given by 

The point in ~ corresponding to a Heegner point x=(~/c t~ /an  -1) with 
an -  1 integral is then the solution ~ of a quadratic equation 

A'cZ+Bz+C=O, A>O, BZ-4AC=D, 
(1.4) 

A - 0 ( m o d  N), B=-fl(mod2N), 
with 

B +I/D B +~/D 
(1.5) a = Z . A + g ~ - - - ,  a n - I = T I . A N - ~ + Z - - ~ - - ,  N~/~(a) =A. 

Indeed, a point r e ~  gives rise to an elliptic curve ~ / Z r + Z  with complex 
multiplication by (9 iff ~ is the root of a quadratic equation A'cZwBz+C=O 
with integral coefficients and discriminant D, and the requirement that Nr  
have the same property implies that NIA; then B2=-D(mod4N) and one 
checks easily that the class of B(mod 2N) is an invariant of z under the action 
of Fo(N ) on .~ and that this invariant corresponds to the choice of n as in (1.3). 
As a convention, we will always use z to denote an arbitrary point in ~3 or 
Fo(N)\.r and T for a Heegner point. 

For  more details on the contents of this section we refer the reader to [13]. 

w 2. Archimedean heights for Xo(N ) 

Let S be any compact Riemann surface. Recall from w of Chap. I that a 
height symbol on S is a real-valued function {a, b ) e = ( a ,  b) defined on di- 
visors of degree 0 with disjoint support, and satisfying 

(2.1) a) (a, b) is additive with respect to a and b; 

b) (a,~mj(y)) is continuous on S\]a[ with respect to each variable yj (]a[ 
J 

denotes the support of a); 

c) (~  ni(xi), b) =~  n i log If(x3[ 2 if b = ( f ) ,  a principal divisor. 
i 
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Such a symbol is unique if it exists since for fixed a the difference of any two 
symbols b~+(a,b) would define a continuous homomorphism from the com- 
pact group Jac(S) to F,. and hence vanish identically. Now fix two distinct 
points x o, yoeS and set 

G(x, y)= ( ( x ) -  (x0), ( y ) -  (Yo)) (x, yeS, X+Yo, Y+Xo, x#:y). 

Then the biadditivity of ( , )  implies the formula 

(2.2) (a ,b)=~nimjG(x l ,  yj) for a=~ni(xi) , b=~mj(yfl ,  

at least if ]al~bY0, [bl~bx 0. Conversely, a function G(x, y) will define via (2.2) a 
symbol satisfying (2.1) if for fixed xeS the function yw-+G(x, y) is continuous 
and harmonic on S'-. {x, xo} and has logarithmic singularities of residue + 1 
and -1  at y=x and y = x 0 ,  and similarly with the roles of x and y in- 
terchanged. (Here the terminology "g has a logarithmic singularity of residue 
C at xo" means that g(x)-  C log Ip(x)[ 2 is continuous in a neighborhood of xo, 
where p(x) is a uniformizing parameter at x0. ) To prove this, we note that the 
symbol defined by (2.2) is obviously bi-additive and is continuous in all y~r 
because the logarithmic singularities of G(xl, y) at y=x  o cancel (since dega 
=0), so (2.1a), (2.1b) are satisfied; Eq. (2.1c) is also satisfied because the 
function x~-+log [ f (x)12-(x , ( f ) )  is harmonic and has no singularities (the 
logarithmic singularities at x=yj~l(f)l  cancel) and hence is a constant, and this 
constant drops out in (2.1c) because ~ ni=O. Notice, however, that the axioms 
we have imposed on G determine it only up to an additive constant (which of 
course has no effect in formula (2.2)); to make sure that G(x, y) is exactly ((x) 
-(Xo), (Y)-(Y0)) we must impose one extra condition, e.g. G(xo, y)=O for 
some y e S \  {x0}. 

Now take S=Xo(N)(C)=Fo(N)\~w{cusps } and x0=  ~ ,  y 0 = 0  (we assume 
N > I ,  so Xo+Yo). We want to construct a function G(x,y) satisfying the 
properties above, i.e. a function G on .~ • .~ satisfying 

(2.3) a) G(Tz, 7' z')=G(z,z' ) Vz, z'e~, 7,7'eFo(N); 
b) G(z, z') is continuous and harmonic for Zr 
c) G(z, z')=e~ loglz-z '[2+O(l) as z'--*z, where e~ is the order of the stabil- 

izer of z in F0(N); 

d) For ze.~ fixed, G(z, z')=4rcy'+O(1) as z ' = x ' + i y ' ~  o~ and G(z, z')=O(1) 
as z ' -~any cusp of Fo(N ) other than or; similarly, for z' fixed G(z,z') 

=47z Y +0(1)  as z = x + i y ~ O  and G(z,z')=O(1) as z ~ a n y  cusp ofF0(N ) 

other than 0. 

The conditions in c) and d) come from noting that a uniformizing parameter 
for Xo(N ) at a point represented by z e ~  has the form p(Z')=(Z'--z)e=(I+ 
O(z'-z)), while uniformizing parameters at c~ and 0 a r e  e 2niz and e - 2 ~ i / N z ,  

respectively. The most obvious way to obtain a function with the invariance 
property a) is to average a function g(z, z') satisfying 

a') g(2z, ~z')-----g(z, z') VTePSL2(~I. ) 



238 B.H. Gross and D.B. Zagier 

over Fo(N ), i.e. to set G(z, z')= ~ g(z, 7z'). To achieve the properties b)-c) we 
would also like ~.~ro(N) 

b') g(z,z') is continuous and harmonic in each variable on 
.~ x . ~ \  diagonal; 

c') g(z,z')=log[z-z'[2 +O(l) for z'-*z. 

A function satisfying a')-c') is given by 

L z - z ' l  2 
(2.4) g(z, z ' )=log i~_z,l 2. 

Unfortunately, the sum of g(z, 7z') over Fo(N ) diverges (although only barely) 
for this choice of g. To resolve the difficulty, we modify the condition of 

[ 82 82 \ 
harmonicity to Ag=eg with e>0,  where A=y2 ~-xZ + ~ 2  ~ denotes the La- 

place operator on S5, obtaining a function for which ~g(z ,  7z') converges and 
which is an eigenfunction of the Laplacian with eigenvalue e, and then take the 
limit as e--*0, subtracting off any singularities. Condition a') requires that g be a 
function only of the hyperbolic distance between z and z', or equivalently a 

function Q of the quantity 1 + ~  (which is the hyperbolic cosine of this z y y  
distance). The equation Ag=eg then translates into the ordinary differential 
equation 

( ( l_ t2 )  d t g - 2 t ~  - + d  2 d ~)Q( t )=0 .  

This is the Legendre differential equation of index s - 1 ,  where ~=s(s-1) with 
s >  1. The only solution (up to a scalar factor) which is small at infinity is the 
Legendre function of the second kind Qs- l (t), given by 

(2.5) 

or  

Q,_, ( t )=~( t+~ coshu)-~du (t>l,~>O) 
0 

.,,2 ( 2) 
(2.6) Qs_l(t)-2F(2s) ~ [  F s , s ; 2 s ; ~  ( t> l ,  sc•), 

where F(a, b; c; z) is the hypergeometric function (cf. any book on special 
functions). From either of these closed formulas one easily deduces the asymp- 
totic properties 

(2.7) Qs_ l( t)= - � 8 9  O(1) ( t~  1), 

(2.8) Qs- 1 (t) = O ( t  - s )  (t --~ 00). 

The first implies that the function 

(2.9) gs(z,z')= -2Qs_~ (l + ~  (z,z'~, z4=z') yy / 
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satisfies axiom c') above and the second, that the sum 

(2.10) GN.~(z, z')= ~ g~(z, 7 z') (z, z'6~, z'(~Fo(N) z) 
yeFo(N} 

converges absolutely for s > 1. The differential equation of Q~_ 1 implies 

(2.11) Az Gu. s(z,z')=Az, Gu,~(z,z')=s(s-1)GN,,(z,z') (z'g/Fo(N) z), 

while the property 

(2.12) GN. ~(7 z, 7' z') = Gu, s(z, z') (V 7, 7'eFo(N)) 

is obvious from the absolute convergence of (2.10) and the property a') of 
gs(z, z'). 

The function GN,~(z,z' ) on (~/Fo(N))2\(diagonal) is a well-known object 
called the resolvent kernel function for Fo(N); its properties are discussed 

1 
extensively in 1-20, Chaps. 6-7] (note that Hejhal's normalization is 4~  times 

ours). In particular, the series defining GN, ~ converges absolutely and locally 
uniformly for Re(s)> 1 and defines a holomorphic function of s which can be 
extended meromorphically to a neighborhood of s--1 with a simple pole of 
residue 

(2.13) KN= [SL2(TZ): F0(N)] -- - 1 2 N - 1  1-I 1 + 
pIN 

(independent of z, z') at s=  1. We could thus "renormalize" at s=  1 by forming 

the limit lira [G~,s(Z, z ' ) -  KN ] .  But this function would not be harmonic in z 
s ~ l  I- S - -  1 J 

or z', since 

A (lim [GN, s(z, z ' ) -  KN ] ) = l i m  [s(s-1)GN.~(z, z')] =KN@0. 
\ s ~  I S - -  l s ~  1 

To get a harmonic function of z, we should instead subtract from GN, s(Z, z') a 

F0(N)-invariant function of z having the same pole ~cN at s=  1 and the same 
s - 1  

eigenvalue s(s - 1). Such a function is --4hEN(z, s), where 

(2.14) Eu(z , s)= ~, Im(Tz) ~ (zc.~, Re(s)> 1) 

is the Eisenstein series of weight 0 for the cusp oo of Fo(N ). Since we want our 
function G(z, z') to have its singularities at z = 0  and z '=  oo, we should in fact 
subtract - 4 n E ( w u z  , s) and --4nE(z', s) from GN, s(z, z'), where wu: z~--. - 1 / N z  
is the involution of Xo(N ) interchanging 0 and Go; we must then add back a 

term ~c-~-N since we have subtracted off the pole of G u twice. We therefore set s - 1  ' ,s 

(2.15) G(z,z')=lsim ~ GN,~(z , z')+4nEN(wNz, s )+4nEu(z ' , s )+~_ 1 + C, 
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with a constant C still to be determined, and claim that it possesses all the 
properties (2.3). Indeed, (2.3a) and (2.3b) are obvious from the definition of 
GN, s(z, z') and the preceding discussion, and (2.3c) follows from (2.7). It remains 
only to check the behavior of the function (2.15) at the cusps, i.e. that it has the 
correct logarithmic singularities as z goes to 0 or z' to oo and is bounded at all 
other cusps; we would also like to choose the constant in (2.15) so that 
G(z, z')~O as z ~ o o .  We must therefore know the expansions of GN, s and E N 
at all cusps of Xo(N ). For  E u this is easily obtained from the elementary 
identity 

where/~(d) is the M6bius function and E(z, s)=El(z, s) the Eisenstein series for 
SLz(Z), because for SL2(Z ) all cusps are equivalent to oo, where E(z, s) has the 
well-known expansion 

(2.17) E(z,s)=y~+(o(s)yl-~+O(e -y ) (y= Im(z) ~ oo), 

F(�89 r(s -�89 ~(2s - 1) 
(2.18) (b(s)= 

r(s) ~(2s) 

(By O(e -y) in (2.17) and below we mean a function which is not only O(e -y) - 
actually, O(e -~y) for any c < 2 ~  - for fixed s >  1 but is holomorphic in s at s =  1 
and is O(e -y) uniformly in a neighborhood of s = l . )  For Gu, ~ we have the 
expansion 

4~z 
(2.19) Gu'~(z'z')- 2 s - 1  Eu(z"s)Yl-~+O(e-Y) ( y = I m ( z ) - - . ~ )  

at oo (see [20], (6.5); this expansion is obtained by calculating the Fourier- 
development of GN, s(z, z') with respect to z). At  other cusps there is a similar 
expansion, so that  GN,~(z,z')=o~(s)Yl-~+O(e -Y) where Y=Im(Tz)  for some 
7ESL2(~ ) transforming the cusp in question to oo. Hence as z tends to any 
cusp other than 0, the expression in square brackets in (2.15) has the form 
~(s) Yl-~+~(s)+O(e-t), where e(s) and /?(s) have at most  simple poles at s =  1 
and ~z(s)+~(s) is holomorphic there; letting s ~  1, we obtain a function of the 
form c~log Y+/~+ O(e-r), and the harmonicity of this requires that ~=0 .  Hence 
(2.15) is bounded as z tends to any cusp other than 0. At 0, we find from (2.16) 
and (2.17) 

EN(WsZ, S)=Im(wNz)S+O(Im(wNz) 1-~) (z-*O), 

SO the same argument shows that G(z, z') has an expansion 4rcY+e  log Y+/? 

+O(e -Y) as Y=Im(WNZ)=~YlT(~--,oe, where again c~ must be 0 (by direct 

computat ion or because G is harmonic). This proves the assertions of (2.3d) for 
z, and the assertions for z' are proved similarly or by noting the symmetry 
property 

(2.20) G(z, z') = G(w N z', w N z). 



Heegner points and derivatives of L-series 241 

Finally, we must determine the constant in (2.15) so that G(z, z') vanishes as 
z ~ oo. By (2.19) we have 

G(z, z')=lim~ [4nEs(z '  , s)(1 --2s-- l ] J y~-~ ] ]+  lim~_~ �9 , S,+sK~Ul]+ C+O(e -y, 

as y ~ oo. Since 
yl  s 

4nEu(z  , s )=-~cu  O(1), 1 -  = ( l o g y + 2 ) ( s - 1 ) + O ( s - 1 )  2 
s - 1  + 2 s - 1  

as s--*l, the first limit equals -~cu(logy+2). The second limit is evaluated by 
(2,16)-(2.18) (recall N >  1): 

II(d) E(dz, s) Eu(wNz , s ) = N - "  H (1 --p-2 9-~ . ~_, ~ -  
pin din 

=N-S H (1 - p  z~)-~(F[ (1 -p-2~+~)q)(s)y~-'~+O(e-Y)), 
p]N p[N 

lira 4nEu(WuZ , s ) + s _  1 =~c Nlogy+2N+O(e -y) 
S~I 

with 

S~I l __p--Zs ~-~--1 
(2.21) plu 

(' p log p] 
=K N l o g N + 2 1 o g 2 - 2 7 + 2  -( (2) -2  

pIN P 2 - 1 ]  

( F (;t here 7 = Euler's constant and we have used ~ ( 1 ) = - 7 ,  F- = - 2  log 2 - 7 ,  
1 

~(2s - 1)=2~T_~+7+O(s - I ) ) .  Hence 

G(z, z')= --2~CN+2N+ C + O(e -y) 

as y ~ oo, so we must have C = 2 ~ u -  2u. Summarizing, we have proved: 

(2.22) Proposition. Let x, x' be distinct non-cuspidal points of Xo(N)(IE ). Then 

((x)-(~), (x')-(o))r 

= lim [ Gm~(z, z') + 4 n EN(wN z, s) + 4 n Eu(z', S) +sK~N1] -- 2s + 2~cN, 
S41 

where z, z 'E~ are points representing x and x' and Gu, s, EN, ~cN, 2 u are defined 
by (2.10), (2.14), (2.13) and (2.21), respectively. 

We would also like a formula of the same kind for ((x)-(oo),  Tm((x' ) 
-(0)))r where T m is the m th Hecke operator (m>0 prime to N). Since T,, maps 
each cusp to itself, we have 

((x)-(oo), T,,,((x')-(O)))r z')L:, T,,,= ~ G(z, 7z') 
~eI'\RN 

det y=m 
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(cf. (1.2)). The operator T,, acts on constants by multiplication with 

# { ~ F \ R N ,  det ~,=m} = a l ( m ) =  ~, d, 
dim 
d>O 

and on EN(z' , s) by multiplication with 

m~a-2s+l(m) =ms ~ d 1-2s 
dim 

(this can be seen easily from the definition or from (2.16) and the correspond- 
ing statement for SL2(TZ)). Finally, it is clear from the definition of GN, s that 

~N, siZ, z')l=, T~= y~ g,(z, ~z'). 
yeRzv/{• 1} 

det y = m 

Putting all this together, we obtain 

(2.23) Proposition. Let m > l ,  (m, N)=I ,  x , x ' e X o ( N ) ( ~  ) non-cuspidal points 
with xg~T=x'. Then 

((x)-(c~),  Tm((X' ) -(0)))r 

=l im [G~,,(z, z')+ 4ha,  (m)EN(wNz, s) 

+ 4 nms a~ -2s(m) EN (z', s) q a ~(rn)f N ] _ a~ (m) 2N + 2 a~ (m) te N 
s - 1  J 

with z, z', EN, teN, 2N as in Proposition (2.22), a~(m)= ~ d ~, and 
d[m 

(2.24) G~.s(z, z')=�89 2 gs z, cz~7~ ]. 
a,b,c,d~E 

Nlc, ad--bc=m 

As a final remark, we observe that the functions GN, , and G~,~ have the 
invariance property 

(2.25) G"~, s(waz, WdZ')= G"~, ~(z, z') 

for any dllN, where w e are the Atkin-Lehner operators as in (1.1). This 
property, which follows easily from (2.24) and the invariance of gs(z, z') under 
z-+Tz, z'--+TZ' (TeSL2(F,)), is compatible with the fact that the height pairing is 
invariant under automorphisms. 

~ 3. Evaluation of the function G~v,~ at Heegner points 

According to the results of w 2, in order to compute the height pairing 

(c, Tmd~)~, c=(x)-(oo) ,  d=(x)- (0) ,  (reGal(H/K) (x= Heegner point) 

at an archimedean place v of H, we must evaluate the functions G~v,~ at the 
corresponding points of X(Hv)=X(C).  These points were described in w 1 and 
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shown to be parametrized by pairs (~/,1~), where d~C1K and r t c C  is a 
primitive ideal of norm N, the corresponding point "c~,,.~Fo(N)\.~=X(II;) (or 
rather, a representative of it in .~) being a root of a quadratic equation as in 
(1.4). Since ~r=~r~Gal (H/K)  acts by ~ , , ~ - - ~ z e j - ~ , , ,  we need only consider 
values 

(3.1) GT~.~(~, . . . .  ~,~,.) 

where the arguments are Heegner points associated to the same n and to ideal 
classes d ~ , d  2 satisfying d ~ d z ~ = d .  Here we must assume rd(m)=0 since 
otherwise the value (3.1) is not defined; we will discuss the modifications for 
the case rd(m)#:O in w 

The expression (3.1) depends on the choice of n. On the other hand, the 
function G~,s is invariant under the action of the Atkin-Lehner operators w a by 
(2.25), and we saw in w 1 that these act on the Heegner points by 

Z ~ C t , t I ~ " ) ' Z ~ , [ ' 0 }  1 i i ~  I ~  where blbn, N(b)=d. 

We can therefore replace ,~'~ and d 2 by ~/1 [b]-~,  ,~'2 [hi -~ and 1t by n b - ~ b  
in (3.1) without affecting the value of this expression. This substitution does not 
change either ~ ' l  sr ( = ~r or ,~r sr 2 In] 1. Hence the sum 

(3.2) 7~, ~(sJ; ~ )  = ~ 6~. ~(ze . . . .  Lr .) (re(m) = 0) 
~/t ,,s4 2eC1K 
d i d 2  1 = ~  

is independent of n . -The  summation here is very small: If K has prime 
discriminant, so that IC1KI is odd, it reduces to a single term (i.e. we have just 
re-indexed the quantities (3.1)), while in general it has 2 t-  ~ terms if {sO} = {Mn} 
and is empty otherwise; here t is the number of prime factors of D and {~r 
denotes the genus of d ,  i.e. the class of sr in Clr/2C1K~--(~E/27Z) ~- ~. (Notice that 
all ideals n with N (n)= N belong to the same genus, so the condition on sO, ~ is 
independent of rt, as it should be.) In this section we will obtain formulae for 
(3.1) and for the slightly cruder invariant (3.2); the latter will be much nicer (as 
can be expected since the dependence on the choice of n has been eliminated). 
By summing further we obtain an even simpler expression for the yet cruder 
invariant 

(3.3) "" td~  . . . .  
~1 ,,3~ 2eCIK ~eCIK 

Of course, (3.3) is all we need to compute the total contribution ~ (c, d~)~ to 
v ] ~  

the global height pairing from all of the archimedean places of H, since these 
places are permuted transitively by Gal(H/K)~-CIK . However, in Chap. V we 
will see that some interest attaches also to the individual terms (3.1). 

We now start the calculation of (3.1). In (2.24), suppose that z = z  1 and z' 
---z2 are Heegner points with the same n, i.e. that they satisfy quadratic 

equations Aiz2+Bi ,c i+ C i as in (1.4)with the same ft. Then for ?=/a_ ~  N 
1 1 - -  

\C a ]  
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we have 

with 

(3.4) 

I-Yrl --z212 ] =  -2Qs_ (1-~ 2aN 
g~(TZ~., "c2)= -2Q~_~ (1 4 2im(Tz~) im(z2) ! ~ [Dide((Ti] 

A1 A2 n- .=.~-  [czl z2--}-d'c2-az t -b[ 2. 

Since n is a rational multiple of the norm of an element of K, it is rational. In 
fact, a direct calculation gives 

(3.5) n = ~  c 2C 1Ca+(ad-bc ) D-BtB2+a22 CtA2+d2A1C2-cdB~ C2 

+ac C 1 B 2 +b 2A 1 A 2 +bdA1B2-ba  B1A2], 

and this is integral because A 1, A 2 and c are divisible by N and B 1 B 2-~ fl2_ D 
(rood 2N). Hence 

a~'s('L'l ' "C2) = --2n=1 Pm(ll) Qs--1 l - ~ m ~ )  

wherepm(n) is thenumber o f y = ( ~  ~)eRN/{+_I} satisfying a d - b c = m a n d  

(3.4) or (3.5). To see what kind of an expression p"(n) is, consider the simplest 
case when N = I ,  D = - 4  and r l = % = i ,  so A~=A2=C~=C2=I,  B~=B2=0.  
Then (3.5) becomes 

n = a  2+b  2+c 2+d  2 - 2 ( a d - b c ) ,  

so pro(n) counts the number of 4-tuples (a, b, c, d)eT/~ (up to sign) satisfying 

(a-d)2 +(b+c)2=n, (a+d)2 +(b-c)Z=n+4m, 

i.e. (apart from a congruence condition modulo 2) p"(n) is the product of the 
numbers of representations of n and of n+4m as sums of two squares. The 
answer in general will be similar. However, since (3.5) is so complicated we will 
stop using the language of quadratic forms and shift to that of ideals in 
quadratic fields. 

We start by redoing the proof that the number n defined by (3.4) is inte- 

gral. Given 7= (~ bd)~RN we define two numbers ~, fl~K by 

(3.6) o~=cZl f z + d f 2 - a z  1 -b, f l = c ' c l ' c 2 + d z 2 - a ' c  1 -b. 

From ziEATl ~i = a[ -1 (compare (1.5)), ce(N)=nil and n] a i we have 

(3.7) a~a? 1 fi~ 1, flea? 1 a~ 1 n. 

It follows that the two numbers 

(3.8) l=A 1A 2 N(c0, n = N - 1 A 1  A2 N(fl) 
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are in 7Z. Also 

(3.9) 

and 

6( 
l - N n = A ' A 2 d e t ( - f i  ~) 

=AIAzde t I ( -1 -1  

= [DI det (7) 

(3.10) A 1 A2  ~ ~ A1 A 2 / 3 ( m o d  b), 

where b=(]/D) is the different of K (the last equation holds because A 1 z t, 
A2 ~2 are integral and 2 -2 (modb)  for any 2E(9). Conversely, given any 6( and/3 
in K, we can think of the real and imaginary parts of (3.6) as a system of 4 
linear equations with rational coefficients in 4 unknowns a, b, c, d and solve for 
a, b, c, d. The simplest way is to notice that 

c'c, + d =  f i -  ~ A2 

- fl .C26( - A 2 
a~' +b=r2(c*' +d)- /3=r%2-g 2 l / ~  (~2fi-~26()" 

If c( and /3 satisfy (3.7) and (3.10) then the right-hand sides of these two 
equations are in h a l  I = N Z ~  + Z  and a 7t = Z ~ + Z ,  respectively, so 
a,b,e, deTt and N[c. If also the integers l and n defined by (3.8) satisfy l=nN 
+m ID[ then (3.9) shows that det(7)=m. We have proved: 

(3.11) Proposition. Let d~, N 2 be two ideal classes of K, n a primitive ideal of 
norm N and n i (i=1,2) an integral ideal in ag i with nlai, N(ai)=A i. Then .for 
meN, (~r ~(m)=0 we have: 

( 2nN~ 
G~,~(T d . . . .  E~,2,,,) = -2n=l  ~ Pm(n)~s-- l l~-m~D/] 

where 

p"(n)=p~:,~2,,,(n) 

1} Nn+m[DI 
= #  ( 6 ( , f l ) e ( a ~ l d ~ l • 1 7 7  N(6() = A I A 2  , 

Nn 
, A 1 A 2 6(-A, A 2/3(mod b)}. N(/3)-A 1 A2 

(The condition r~,,~21(m)=0 is required to ensure that n in (3.8) is strictly 
positive.) 

To understand the expression p'(n) better, consider first the case when n - 0  
(modD). Then A 1A2~ and A 1 A2/3 are automatically 0 (modb), so p"(n) breaks 
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up as a product 

(3.12) p~l,~2,,(n)=l:#-{~c,~l~ ~ N(~) = A~A~ } 

x # { / 3 ~ a ~ ' % ' n  N(f l )=A--~  } 

=2u2r~g~tf,(I) r~j2t,l ,(n) (n=--0 (mod D)) 

where u= �89  of units of K, l=Nn+m[D] and, as usual, r~(n) denotes the 
number of integral ideals of norm n in the class d .  Another easy case is when 
n ~ 0  (modD) but D is prime. In this case, exactly half of the pairs 7, fl~ai -~ f i~  
x ai- l ct2 lrt satisfying AIA2N(cO=nN+mID[, A1A2N(fl)=nN satisfy 
A 1 A20:-A 1 A 2 fl(modb), namely exactly one of (c~, fi) and (c~, -/3) for an 3, cr fl 
(this is because a quadratic residue modD has exactly two square roots 
mod D). Hence 

(3.13) 

{12 D"~n (Dprime). p~,,~,.(n)=uZr~j~,(nN+mlD])r~j~t.l ,(n) x Din 

A formula generalizing (3.12) and (3.13) is 

(3.14) ~I,'~2ECIKE P'x41,~r ,(n)= { u20 6(n) rd(nN 
+mLDl)r~(n) if {d} = {~n}, 

otherwise, 

where now D is arbitrary, d and ~ are any two ideal classes of K, {d} and 
{Mn} denote the genera to which s~' and MIni  belong, and 

(3.15) 6(n)= l~ 2. 
pl(n,D) 

Indeed, if D is prime then the sum in (3.14) reduces to a single term (since C1K 
has odd order) and (3.14) is identical with (3.13), while if n-=-0 (modD) the sum 
in (3.14) has 2 t- t or 0 terms according as {d}  = {Mn} or not and these terms 
are all equal to the expression in (3.12) (note that 6(n)=2 t in this case). To 
prove (3.14) in general, we fix some d 1, ~ 2  satisfying the conditions on the 
left (if there are no such then {d} # {Mn} and the formula is trivial). The other 
classes in the sum are obtained by replacing ,~'~ and ~5~ 2 by d ~  and dzCg 
with cs trivial, i.e. by replacing representatives at, (i 2 of ~1 ,  ~t2 by al c, %c 
with c 2 principal, say c2=(7), 7~K • If we also replace c~ and fl by ~/N(c) and 
ill? we obtain a new solution of (3.7) and (3.8). Thus the only question is how 
many of the 2 t-~ choices of [c] lead to ~, fl satisfying the congruence (3.10). 
This congruence is equivalent to a congruence modulo p for each of the primes 
p dividing D; each of these t congruences is true if p[n (both sides are 0) and 
true up to sign if p,~n (both sides are non-0 and they have the same square). 
But the change of at, az, c~, fl described above changes the ratio c~:fl by a 
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factor ?/N(c) of norm 1, i.e. by a number of the form r+s l /D  with r and s p- 
integral and r 2 - 1  (modp) for all piD. The 2 '-~ classes of c with [c] 2 trivial 
correspond in this way to the values _+r (modD) with r 2=1 (modD). The 
formula (3.14) is now obvious. Combining it with Proposition (3.11), we find: 

(3.16) Proposition. The invariant 7~,,(sr M) defined by (3.2) is given by 

2nN~ 
7~,s (SJ; ~'~)= --2u2 z.., c](n) r~(nN+m IDI)r~(n)Qs-1 l 

n = l  

(6(n) as in (3.15))/f {d}  = { ~ n }  and is 0 otherwise. 

Summing over all ~3, we obtain: 

(3.17) Corollary. The invariant ?~,~(d) defined by (3.3) is given by 

2nN\  
?~, ~(~r - 2 u  z.=,~ 6(n)R~.}(n) r~(nN + m IDI)Qs-~ 1 + m ~ ) '  

where R~,}(n) is the number of integral ideals of norm n in the genus {~n}.  

Since a number cannot be the norm of an ideal in more than one genus, 
R~,l(n ) is either R(n) or 0, where 

�9 ~r ClK m [ n 

is the total number of representations of n as the norm of an ideal of C. Which 
of these two alternatives occurs depends only on values of genus characters. In 
particular, if (n, D)= 1 then R~.}(n) can be replaced by R(n) in (3.17) because 

r~(nN + m [ D ] ) # 0 ~  (A(nN pmlDI))  = +1 (V p[D) 

= + 1  (VplD) 
\ p / 

R ~ . t ( n  ) = R(n). 

(A=any integer prime to D which is the norm of an ideal in the genus {d}). 
In general, there will be one genus condition to be satisfied for each prime 
dividing (n, D), and we could replace the product 

6(n)R~c,l(n ) r~(nN +m[DI)=( 17 2). R~c.}(n) r~(nN +miDI) 
pl(n,D) 

by 

pl(n,D) 

where ~p is the homomorphism from the group of norms of fractional ideals of 

K to {_+1} defined by ~p(NO)=l for a principal, ~p(n)=(~) for n~Z, p,gn. 

However, for later purposes we will prefer to leave the formula for ?~v,~(d) in 
the form given in (3.17). 
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w 4. Final formula for the height (r~(m) = O) 

Let c=(x)-(oo) ,  d=(x)- (0) ,  a=aeeGal(H/K), m prime to N. We still assume 
that r~c(m)=0, so that the divisors c and T~d ~ have disjoint support. We want 
to compute 

<c, T~d~)~:= ~ (c, T,.d~)~, 

where the sum is over the h K archimedean places of H. Since these places are 
permuted simply transitively by Gal (H/K)~-CIK, this equals 

y~ ((~,,.)-(oo), Tm((~.2,.)-(0))>e, 

where rt is any integral ideal of K of norm N and the Lr are the points in .~ 
described in w 1. Applying Proposition (2.23), we find 

<c, T. ,d~>.=l im [7~,s(d)+41tat(m) ~ EN(WNZ ~ . . . .  s) 
s ~  1 ~ I E C I K  

hKat(m) Ks] 
+4rtmSa,_2,(m) ~ EN(z.~c2,,,s)+ s~ll 

,~t 2e C1K 

--hg ~ l (m) 2N + 2hK ~r l (m) ~cN. 

Using (2.16), we have 

EN(W N z~,., s) = ~ EN(r~r ,., s) 
~ E C I K  d ~ C I K  

(4.1) = N - S l - I ( 1 - P - 2 9 - '  2 ~ ~ E r~c.,,s 
p [ N d j N , ~ C I K  

where E(z,s) is the Eisenstein series for SL2(TZ ). Since each Lr solves a 
quadratic equation az2+bz+c=O of discriminant D with Nia, the points 
N 
~- z~,, for diN also satisfy quadratic equations over Z of discriminant D. It is 

then easy to see that the inner sum on the right-hand side of (4.1) is inde- 
pendent of d and equals ~ E(z~r s), where z~, is any point in ~ satisfying a 

quadratic equation of discriminant D corresponding to the ideal class ~'. As is 
well-known (and elementary), E(z~r s) is a simple multiple of the partial zeta- 
function 1 

~(d,s)= Z U(.r' 
a i n t eg ra l  

[a] = ~  

namely 
E(zd, s)= 2-s ]DI S/2 u ~(2s) -1 ~(~r s) 

where u as usual is one-half the number of units of K. Since ~ ~K(d, s)= ~(s), 
the Dedekind zeta-function of K, we deduce o~r 
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2 2-s IDI ~/2 rcu ~K(S) 
(C, T,,d~)o~ =lim~l 7~,,(d)-~ N~ lq (1 +p ~) (al(m)+m~al-z~(m)) {(2s----~ 

piN 

hKa_ 1 (m) ~cu ] _hKal(m) 2s+Zhi~al(m)Ku. 
+ s - 1  J 

Substituting into this the expansion 

(' ) = s _ ~ - + 7 + O ( s - 1 ) ( L ( 1 , e ) + E ( 1 ,  e)(s-1)+O(s--1)  a) 

and the formula L(1, e)=~h~/u]//~], we obtain 

(4.2) Proposition. Let x~Xo(N ) be a Heegner point Jot the full ring of integers 
of an imaginary quadratic field K, c = (x)-(oo),  d = (x)-(0),  a~Gal  (H/K), m e n  
prime to N, and ~r the ideal class corresponding to a under the Artin 
isomorphism. Suppose m is not the norm of an integral ideal in d .  Then 

(c, T,,d") =lim hKa'(m)~CN]s_l 

 l(m)log +2 

dim 

with 7~,~(~4) as in Corollary (3.17). Here D, hn and L(s, e,) denote the discrim- 
inant, class number and L-function of K and ~c N the constant defined in (2.13). 

w 5. Modifications when rd(m ) 4:0 

Since the point x occurs with multiplicity r~(m) in the divisor T,,(x~), the 
divisors c and Trod ~ are not relatively prime in the case when r~(m)+-O. 
Although the global height pairing (c, T,,d ~) is well-defined, N6ron's theory 
does not give a canonical decomposition into local terms (c, T,, d~)~. We will 
first discuss how a local symbol can be defined by choosing a tangent vector at 
x, then calculate this symbol when v is an archimedean place of H. 

We recall a procedure for defining a local symbol for two divisors a and b 
of degree zero on a general curve X over H, whose common support is equal 
to the point x [14]. Let g be any uniformizing parameter at x, i.e., any function 
on X with ordx(g ) = 1, and define 

(5.1) (a, b)v =lira {(ay, b)~-ord;(a) ord~ (b)log Ig(Y)[.}, 
y ~ X  
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where a v is the divisor obta ined  f rom a by replacing every occurrence of the 
point  x in a by a nearby point  y which does not  occur  in b. This limit exists by 
the s tandard  proper t ies  of local heights. If  g' is ano ther  uniformizing pa rame te r  
and g/g' has the value ~ at x, then 

(5.2) (a ,  b)'~ = (a,  b)~, + ord x (a) ord x (b) log Icily. 

In part icular ,  the sum ~ (a,  b)~ is independent  of the choice of  g, by the 
v 

produc t  formula ;  this sum is equal to the global height pair ing of the classes a 
and b [14]. 

8 
Let  ~ -  be the non-zero  tangent  vector  at x which is de termined by 1. 

Another  consequence of (5.2) is that  the local symbol  (a,  b)~ depends only on 

the tangent  vector  ~ -  and not  on the full choice of  g. By (5.2), this pair ing is 

unchanged  if we mult iply ~ by a root  of unity c~, since [c~[~ = 1 for all v. 

We now apply this procedure  to the compu ta t ion  of the local symbols  
(c,T,~d")~ on Xo(N ). We have o r d x ( c ) = l  and ordx(T,,d~)=rr if g is a 
uniformizing pa ramete r  at x, then 

(5.3) (c, T m d ' )~  = l im {(cr,  T m d~)~ -rd(m ) log Ig(Y)l~}, 
y ~ x  

where c r = ( y  ) - (oo ) .  The  trick is to normal ize  the function g at x so as to make  
the compu ta t ion  of each local symbol  as simple as possible. To  do this, we 
int roduce the differential 

(5.4) co = t/4(z) dq= 2hi rl4(z) dz, 
q 

1 

where t ](z)=q 24 l - l ( 1 - q " )  is the Dedek ind  eta-function. This differential is 
n 

well-defined only up to a 6th root  of  unity, but this will be sufficient for our 
purposes  by the r emark  above.  If x is not  an elliptic point  on Xo(N), so u =  1, 

8 
then co is non-zero at x and we may  take our  tangent  vector  ~ to be dual to 
co. The  uniformizing pa rame te r  g then satisfies 

c o = ( g + a 2 g 2  + a 3  g3 + . . . )  dg  
g 

1 
in a ne ighborhood  of x. In general, co has order  - - 1  at x and we may  
normal ize  g so that  u 

co = (g ~/~ + higher degree terms) d g 
g 

in a ne ighborhood  of x. The  reasons for this normal iza t ion  will become  clearer 
when we compute  the heights at non-a rch imedean  places in the next chapter.  
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Here we observe that for a complex place v we have 

(5.5) log [g(y)[o - u  log 12rri q4(z)(w -z)[~--+ 0 

as y--, x, where z and w are points in the upper half-plane which map to x and 
y on Xo(N)(~ ). 

From Proposition (2.23) and the formulas (5.3), (5.5) we find 

I- 
(5.6) <c, T,,d~ ~ g~(z, yz')+4~al(m)EN(wuz, s) 

s ~  1 ) ' ~ R N / •  l 

d e t  y -  m 

~2 '  #" Z 

+ u re (m) lim {gs(Z, w) - log 12 = i ~4(z)(w - z)l~,} 
w ~ z  

+ 4 rc mS a l _ es(m) EN(Z ', s) -} ~ (m)-KN] s - 1  _1 -al(m)(2u +2KN)' 

(z, z' points in .~ mapping to x, x ~) 

because in the terms g,(w, 7z') with Vz'+z and in the term EN(WNW, S) we can 
carry out the limit w-+z simply by replacing w by z, and there are ur, c(rn) 
values of ? with yz'=z. Formula (5.6) is identical to the formula in Proposition 
(2.23) if we define G~,,(z, z') (which was previously defined only if z~ T,, z') for 
all z, z ' ~  by 

(5.7) GT, s(z, z')= y~ gs(z, ~,z') 
y ~ R N i  + - 1 
d e t  7 =  m 

y z ' + z  

+ ~ lim(g,(z, w)-logl2rciq(z)4(z-w)[2). 
Y ~ R N / •  w ~ z  

d e t  y = m 
~ z  = z  

Hence Proposition (4.2) is true without the restriction (~(m)=0, provided that 
im m we define 7N,,~(~4) by (3.3) but with the new definition of GN, s. In calculating 

this invariant, we find that the terms in (5.7) with 7z'4=z give exactly the 
expression in w 3 and that their total contribution to 7~,,s(sg) is the infinite sum 
in Proposition (3.11) (the condition 7z '+ z translates into the condition n >0  in 
this sum). The second sum in (5.7) equals ags(Z ), where a is the number of 
7eRN/+_I of determinant m with 7z'=z (for z,z' as in (5.6) this number is 
urn(m)) and g~(z) is the renormalized value of g~(z, z) defined by the limit in 
(5.7). Using the asymptotic expansion 

Q~_,(t)=�89 (U U )  ~ -  ( s ) -~ -  (l) +O(1) (t",,1) 

we find 
F' F' 

g~(z) = - l o g  127t(z -z-) r/(z)~l 2 + 2 F- (s ) -2  ~- (l). 

By Kronecker's first limit formula, this is equivalent to 

F ! 
gs(z)= - 2 1 o g 2 = + 2 / =  (s)+ F' 2 lim [2 ~{(2r  rt ] 

2 F- (1)+7 ~ 1  a - 1  ' 
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where E(z, s) as usual denotes the Eisenstein series of weight zero on SL2(Z). 
The identity 2 ~ ((2s)E(z~, s)=u IDI ~/2 (K(~r s) mentioned in w now gives 

g~(Lr = 2h [ U  (s) + ~-  (1) - l o g  2zt] + l im ]D, ~/2 ~ ( c r ) - ~ -  1 _[ 
~ECIK 

=2h ( s ) - log  2~ + ~  (1, e) +~  log IDI . 

The total contribution to ?~, , (d)  of the terms with ?z'=z is the product of this 
with the number a = urn(m). Summarizing, we have: 

(5.8) Proposition. Proposition (4.2) remains true when m is the norm of'an ideal 
in d ,  provided that the local symbols (c, T,, d~)~ in the definition of (e, T,, d~)~ 
are defined by (5.3) with the choice of g explained above and the invariant 
?"~, ~(d) is defined by (3.3) with G~. s as in (5.7). This invariant is given by 

(expression in ] (~ '  /A l ) 
7~v,~(d)= \Corollary (3.17)! +2hKur~(m) (s)--log 2z~+~- (1, r  log [D[ . 

IlL Non-archimedean local heights 

In this chapter we will compute the local symbols (c, Tmd")~ for all non- 
archimedean places v of H, always under the assumption that m is prime to N. 
Assume that v divides the rational prime p; let A,, denote the ring of integers in 
the completion Hv, ~z a uniformizing parameter in A~, and q=pl  the cardi- 
nality of the residue field Av/~. Let W denote the completion of the maximal 
unramified extension of Av; then ~z is a prime element in W and IF = W/zc is an 
algebraic closure of Aj~.  

We first reduce the calculation of N6ron's local symbols (a, b)~ on relative- 
ly prime divisors of degree zero on X over H~ to a problem in arithmetic 
intersection theory. Let X be a regular model for X over A~, and let A and B 
be divisors on X which restrict to a and b on the general fibre. If A has zero 
intersection with every fibre component of X, we have the formula [14] 

(0.1) (a, b)~= - ( A - B )  logq. 

In the next section we will describe a regular model X for X over Z which 
has a modular interpretation; we will then discuss the reduction of Heegner 
points on X and use (0.1) to obtain the intersection formula 

(0.2) (c, Tmd~)~= -(3.. Tmx ~) logq, 

where x and x ~ are the sections of X|  corresponding to the points x and x ~ 
over H. 

The rest of the chapter is devoted to a calculation of the intersection 
product ~ .  Tmx~), which is unchanged if we extend scalars to W. We first 
identify the components of the divisor Tm x~, then establish the formula 

(0.3) (3. ~ 1 - T~x )=~  ~ Card Homw/~d~, x )d~g . . . .  
n=>l 
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where Homw/, , (x ,x  ~) is a suitable group of homomorphisms between the 
diagrams of elliptic curves representing x and xL 

Using (0.3) and Deuring's results on singular liftings of ordinary elliptic 
curves, we show that (_x- T,,x~)=0 when p is split in K. When p is non-split in 
K, the curves corresponding to x and x ~ have supersingular reduction and the 
groups Homw/~ ~,  x ~) can be calculated using the arithmetic of certain orders 
in the definite quaternion algebra over Q of discriminant p. Next we discuss 
the modifications necessary in the computation of {c, T m d~>v when the divisors 
c and Trod ~ are not relatively prime. Finally, we make the orders in our 
quaternion algebras completely explicit and obtain a formula for y '  {c, Tmd~>~, 

rip 
in terms of the ideal theory of (9. For example, when r~(rn)=0 and p is inert in 
(9, our final formula is 

<c, T,,d">,,= - u  2 logp ~ ordv(pn ) rd(mlD [ - n N )  6(n)R~q.}(n/p) 
ulP O<.n<mlD[ 

N 
n -= 0 (mod p) 

where q is an ideal of 6~ with ( ~ q ) =  (@P) for all primes /lD. 

Because we must treat all non-archimedean places of H, including those 
dividing N, m, or D where there are some complications, the argument often 
becomes fairly intricate. Here we will illustrate the main ideas in the case 
where m = 1 and v divides a rational prime p which is prime to ND. We shall 
also assume that r~(1)=0, so ~ 1 and the points x and x ~ are distinct over H. 

By (0.2) and (0.3) we have 

(0.4) ( (x) - (  ~ ), (x ~) -(0)>,, = ( c, d">~. 

= - �89  ~ Card (Isomw/~,(x ~, _x)) log q~,. 
n > l  

The sum in (0.4) is zero unless x and x ~ intersect (mod ~). Deuring's theory 
shows (x -x~)=0  when p splits in K;  since we are assuming that (p, D)= 1 we 
must have p inert in K and hence log q,, = 2 log p. The endomorphism ring R of 
x (mod re) is an Eichler order of index N in the definite quaternion algebra B of 
discriminant p, and the group Homw/~(x", x) is isomorphic to the left R-module 
Rsr The points x and x" will intersect (mod ~) if and only if this module is 
principal; if this is so, the integer Card(Isomw/~(x",x)) is the number of 
generators. 

Each generator gives a solution to a certain equation in ideals of (9, as we 
will now show. Let q be a prime with q - - p ( m o d D ) ;  then (q )=q -~  splits in 
the field K and B is the algebra K + K j  with the relations jc~={j for c~eK and 
j2= -Pq.  Using reduction theory, one can show that for some place v dividing 
p the order R is given by the set of all et+~jeB with c~eb -~, / ? e b - ~ q - ~ n ,  and 

~ - ~  integral at all primes dividing b. (Here b = ( l / D )  is the different of K 
and n the primitive ideal of norm N corresponding to x, as in Chap. II.) If a is 
an ideal in the class of ~r then 

(0 .5 )  Homw/~(x~, x) ~ R a  

= {c~+/3j: c~b -~ a , / ~ b  -~ q - '  n~, c~-/? integral at b}. 
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This module is principal if and only if it contains an element b=c~+flj with 
reduced norm N b =  Na+pqNfl= Na. Assume b is a generator: if we define the 
integral ideals 

c=(~)ba -1, 

(0.6) r =(/~) bqn -  1 ~- 1, 

these satisfy the identity 

(0.7) Nc +pNNc'=]D[. 

Letting n = p N c '  a n d / = N o ,  we have a solution to the equation l+nN=lDI 
with n-= 0 (modp) and r~(1)+ O. Conversely, such solutions will yield generators 
for Ra and contribute to the height in (0.4). We remark that this method is quite 
similar to that used in evaluating GN, s at Heegner points in Chap. II. Indeed 
the function p"(n) introduced in Proposition (3.11) of Chap. II counts certain 
elements of norm m in an Eichler order of discriminant N in the split quater- 
nion algebra over Q. 

w 1. The curve Xo(N ) over 71. 

A model X for Xo(N ) over Z was proposed by Deligne-Rapoport [7], and 
given a modular interpretation when N was square-free. The general case was 
treated by Katz-Mazur [21], using ideas of Drinfeld [9]. We review this theory 
below. 

Let ~r be the algebraic stack classifying cyclic isogenies of degree N 
between generalized elliptic curves over S 

(1.1) ~b: E--,E' 

such that the group scheme A=ker~b meets every irreducible component of 
each geometric fibre. The condition that q5 is cyclic of degree N means that 
locally on S there is a point P such that 

N 

(1.2) A =  ~. [aP] 
a = l  

as Cartier divisors on E. When N is invertible on S, this hypothesis is 
equivalent to the assumption that A is locally isomorphic to Z/NZ;  when N is 
square-free it is equivalent to the assumption that A is locally free of rank N. 

Let X be the coarse moduli scheme associated to the stack J/r~,~m ([7], 
234-243, [21] 407ff.). The scheme X |  is smooth and proper over 
Z[1 /N] .  On the other hand, i fp  is a prime dividing N, the scheme X Q Z / p Z  is 
both singular and reducible over Z/pZ. We will need a modular interpretation 
of its irreducible components. Write N=p"M with ( p , M ) = l .  Then XQ:~/pZ 
has (n+l)-irreducible components o~, b, indexed by pairs of non-negative in- 
tegers with a+b=n. The component ~,,b is isomorphic to Xo(M)| and 
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occurs with multiplicity q~(ff) in X| where c=min(a ,  b). In terms of the 
modular equation, this decomposition of the fibre is reflected in Kronecker's 
congruence 

ff)N(J'J') ~ [ I  (~M(jpa r pb c)~btpc ) ( m o d p ) .  
a+b=n 

c = min (a, b) 

All of the components Y,,b intersect at each supersingular point of X: these 
are the points x=(qS: E~E') where E and E' are supersingular elliptic curves. 
The non-supersingular points of ~,b correspond to diagrams where the group- 
scheme A = ker ~b is isomorphic locally to/~p~ x 7'l/pbT/X 7//M7/. 

For a geometric point x=(qS: E--*E') of X over an algebraically closed field 
k, we define Aut k (Z) to be the group of all isomorphisms (f,f ') which make the 
diagram 

E ---*-~ E' 

commutative. This is a finite group, which contains (_+1); it may also be 
described as the automorphism group of the pair (E,A). The strict Henseli- 
zation of X at the point _x is isomorphic to the quotient of the strict Henseli- 
zation of Jlro~m at the corresponding point m by the group AUtk(X)/{ • 1) [7, 
p. 172]. Using this fact, and results of Drinfeld [9] and Katz-Mazur [-21, 
p. 166], one obtains the following 

(1.4) Proposition. X is regular over Z, except at the supersingular points x in 
characteristics piN where Aut k (x) :~ ( • 1). 

The subscheme Cusps of X is finite over 7/, with one irreducible component 
Cusp(d) for each positive divisor d of N. The component Cusp(d) corresponds 
to diagrams of N4ron polygons where A=ker~b is isomorphic to /~d x dTl/NZ. 
It has qS(f) geometric points, where f=g.c.d.(d,  N/d), and one has an isomor- 
phism Cusp (d) ~- Spec 7/[/uj.]. 

The section ~ of X is the component Cusp(N) and the section 0 is the 
component Cusp(l). These sections reduce to the components ~,,0~ and ~0,, in 
characteristic p respectively. In general, the reduction of the multi-section 
Cusp(d) lies on the component ~ ,b  (modp), where a=ordp(d) [21, Chap. 10]. 

w 2. Homomorphisms 

Let S be a complete local ring with algebraically closed residue field k, and let 
x--(q~: E-~E') and _y: (~b" F-~F') be two S-valued points of X which are repre- 
sented by diagrams of cyclic N-isogenies. Assume further that the points x and 
y have non-cuspidal reduction. We define the group Homs (y, x) to be set of all 
homomorphisms ( f , f ' )  over S which make the diagram 
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(2.1) 

F_Z___. F' 

E - - - - - ~  E' 
4, 

commutative. Addition of homomorphisms is defined using the group laws in 
E and E'. Then Homs (y, x) is a left module over the ring End s (x)= Horn s (x, x), 
and a right module over Ends(Y); in these rings multiplication is defined by 
composition of homomorphisms. Using the fact that k is algebraically closed, 
one can check that the definition of Horn s(y, x) is independent of the diagrams 
chosen to represent the points x and y. 

The ring Ends(x ) is either Z, an order in an imaginary quadratic field, or 
an order in a definite quaternion algebra of prime discriminant over Q [8]. We 
define the degree of a non-zero element ( f , f ' )  in Homs(y,  _x) to be the positive 
integer d e g f =  degf ' .  Then the set of elements Horn s(y, X)deg,, of a fixed degree 
m >  1 is finite, and admits a faithful action by the finite group Auts(X ). 

5 ~ 3. Heights and intersection products 

Let x=(qS: E~E' )  be a Heegner point of discriminant D on X over H, and let 
x denote the corresponding section of X |  A~. We recall that A~ is the ring of 
integers in the completion Hv, and that the place v has residual characteristic p. 

Since N is prime to Dh=disc(H/~), the special fibre X |  v has the shape 
described in w 1. Since elliptic curves with complex multiplication have poten- 
tially good reduction, the sections x and x ~ do not intersect the divisor Cusps 
in the special fibre. They reduce to supersingular points if and only if the 
rational prime p is not split in K [29]. 

Now suppose p divides N; then p is split in K and x and x ~ have ordinary 
reduction (modn). We wish to determine the component ~ ,b  of the special 
fibre which contains the reduction of x. Let n c(9 be the ideal annihilating 
kerq~; since this isogeny is cyclic of degree N, we have C/rt~-Z/NZ. Hence the 
place v divides n or fi, but not both. 

(3.1) Proposition. The sections x and x ~ reduce to ordinary points in the 
component 

~o,,  if rift 

4 , 0  /f vim 

Proof. If rift the group scheme ker4~ is 6tale over A~,, so is isomorphic to 
~g/NZ over IF. Hence the reduction lies in ~o.~, the component containing 
Cusp(I )=0.  If vlrt the group scheme ker~b is isomorphic to pv, x Z / M Z  over 
IF, so the reduction of x lies in the component o~, o containing Cusp(N)= ~ .  
Since a fixes K, the kernel of the isogeny (q~: E~--,E '~) defining x ~ is also 
annihilated by n. Hence x ~ reduces to the same component as _x. 

(3.2) Corollary. One of the divisors c=(x ) - (oc ) ,  d=(_x~)-(_Q) has zero in- 
tersection with every fibral component ff,,b of X |  A~. 
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Proof. Indeed, c has this property if v[n, and d has this property if rift. Since v 
divides n- fi = N, one of these possibilities must occur. 

We now return to the general case, and reduce the calculation of the local 
height symbol to that of an arithmetic intersection product. 

(3.3) Proposition. Assume m> l is prime to N and r~(m)=0. Then we have the 
formula 

(c, T,,d~)~ = - ( x .  T,,x_")logq. 

Proof. By resolving the quotient singularities at the supersingular points on X 
over Z, we may obtain a regular model X ~eg. Neither the Heegner points nor 
the cusps are affected by this resolution, so by Corollary (3.2), one of the 
divisors c and d have zero intersection with each fibral component  of 

r eg  X | The same is true for c and T~d, as the Hecke operators preserve fibral 
components when m is prime to N. The general theory of heights then gives 
the identity (cf. (0.1)) 

(c, Tmd~)~,= -(c_. Tm d~) logq. 

We now use the additivity of the intersection product to obtain 

(_c. T,,d~)=(x �9 Tmx~)-(x �9 Tm0)-(oo.  T,,x~)+ (oo -TmO ). 

But ~ .  T,,_0)=(~. T~_x~)=0, as _x and the points y in the divisor T,,_x" have 
potentially good reduction, and (oo. T,,0)=cr,(m) ( ~ . _ 0 ) = 0  as we have as- 
sumed that N > 1. This completes the proof. 

,~" 4. An intersection formula 

In the computation of the product (_x-T,,x") in Proposition (3.3), we may 
extend scalars to X| W, where W is the completion of the maximal un- 
ramified extension of A~. We may then apply the considerations of w to the 
points x and _x" over the complete local rings W and W/n" for n >  1, as these 
have an algebraically closed residue field IF = Wire. 

For example, we have 

(4.1) End w (x) = End w (~) = (5, 

(4.2) Homw(x*,_x)-~d as a left ~(;-module 

where ~r is the ideal class of K which corresponds to a under the Artin 
isomorphism. Formula  (4.2) is usually proved by embedding W into 112 and 
using the theory of lattices [23]. A direct algebraic proof  was given by Serre 
[29] where the curves E ~ and E '~ in x ~ are denoted Hom(a ,  E) and Horn(a,  E') 
respectively, for an ideal a in the class of d .  

If we identify the elements g, in Horn w (xL x) with elements c~ in the ideal a, 
then the degree of the isogeny g, is equal to N e/N a. We have the following re- 
finement of Proposition (9.1) of Chap. I. Assume as usual that m is prime to N. 
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(4.3) Proposition. The multiplicity of the point x in the divisor Tm x~ is equal to 
r~(m). 

Proof. By the definition of T,~ ((2.3) of Chap. I), the multiplicity of x in Tmx ~ is 
equal to the number of isogenies g~ of degree m in a~-Homw(3J,  x) 
= Hom~7 (x ~ x), modulo the left action of the group (9 • - Aut w ~)  which iden- 
tifies isogenies with the same kernel C. This number is therefore equal to the 
number of integral ideals b =(~)/a of norm m in the class of ~ ' - ~ ,  or equiva- 
lently to the number rd(m ) of integral ideals b= I~ / f i  of norm m in the class of 
d .  

In the next two sections we shall establish the following intersection for- 
mula (0.3). 

(4.4) Proposition. Assume m is prime to N and r~c(m)=0. Then 

(x. Tmx~)=�89 ~ Card(Homw/~-~,X)degm) - 
n > l  

Since the reduction of homomorphisms gives an injection [15, 30] 

(4.5) Homw/~,+,(x~,x)~--*Homw/~,(x~,x) for n > l ,  

and H o m  w (x ~ x) = ('] Homw/~, (x ~, x), 
n > t  

the terms in the sum (4.4) are all zero for n sufficiently large. We shall 
henceforth use the notation h,(y, X)deg ~ for the integer �89 Card Homw/~,(y, x)o~g m. 

j}" 5. The divisor Tmx ~ 

To prove Proposition 4.4 we need a concrete description of the components of 
the divisor Tmx ~ over W, and some knowledge of their intersection products. 
To obtain this, we will use the theory of canonical and quasi-canonical liftings, 
as developed in [15]. 

Since m is prime to N, the points y in the divisor Tmx ~ are all Heegner 
points over /4 in the sense of [13] and End~(y)=(gy is an order of conductor 
dividing m in K. When m is prime to p, the residual characteristic of v, the 
points y are all rational over W |  and each is the canonical lifting of its 
reduction y 1-31, 15]. In this case, we also have the formula 

(5.1) hn(x~ ~ h,(y,X)degl, 
y~ Tmx ~ 

as any isogeny f of degree m between x ~ and x over W/g" is determined by its 
kernel, which lifts uniquely to an 6tale group scheme C of order m on_x ~ 
over W. Then f induces an isomorphism between y = x ~  and x over W/g": 

\ /  
x~ =y 
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Assume now that m=pt .r ,  where t > l  and ( r ,p )= l .  The points z in the 
divisor T,x" are rational over W |  but the points y in the divisor T,,,x" 
= ~  Tp,(z) are rational over ramified extensions of W|  and the correspond- 

z 
ing sections y over the ring class extensions Wy are quasi-canonical liftings (of 
level f ,  with 0<_s_<t) of their reductions ([15], Prop.(5.3)). Let _y(s) be the 
divisor over W obtained by taking the sum of a point of level s with all of its 
conjugates over W. We then have the decomposition 

(5.2) Tp~z = 

,-s+l if p splits in K 
~ y(s)j degy(s)j=pS-p "-1 s > l ,  

O<=s<=t j= 1 

if p is inert in K _y(s) 
o<_~<_, d e g y ( s ) = f  +p ~-1 s > l ,  
s~ t (2)  -- 

y(s) if p is ramified in K 
o<-,<-, degy(s)=p s s>O. 

Eichler's congruence [11] 

(5.3) Tp ,=-Ft+U-1F '+Ft -2F 'Z+. . .+F  't (mod p), 

where F is the Frobenius correspondence and F' is its transpose, shows that 
each point y in the divisor y(s) is congruent (modny) to a canonical lifting Yo 
of level zero over W. The fundamental negative congruence of [15] then gives 

(5.4) Y ~ Y0 (rood n~) when s > 1. 

When p is split or ramified in K, the point Y0 occurs in Tp, z. 

w 6. Deformations and intersections 

(6.1) Proposition. Let x and y be sections which intersect properly on X over W 
and reduce to regular, non-cuspidal points in the special fibre. Then 

(y. x) = ~ h,(y, X)deg , . 
n_>l 

Proof. In the case when Autw/~(x)= (+_ 1), Proposition (6.1) follows from the 
fact that the completion of the local ring of X at _x is the universal deformation 
space for the diagram (~b: E--,E') over W. Hence ( y . x ) = k  if there is an 
isomorphism between x and y over W/zc k, but not over W/n k+l. This agrees 
with the right hand side of (6.1), as 

�89 Card Homw/~,,(y, X)deg 1 
n>k.  

When Autw/~(x)+(+_l ) one can modify the above using the local ring of 
the stack Jgro(m' Alternatively, one can consider the pull-back of our situation 
to a modular cover Y ~ X  over W where the corresponding objects are rigid. 
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For example, _Y could classify data of the type (4>: E~E') together with a full 
level M structure, for an integer M > 3 which is prime to N and p. Here we do 
have the identity 

(6.2) (~- :2) = ~ Card (lsomw/~, 03, :2)) 
n > l  

by the arguments above, where y and :2 are sections of Y. Let ~ be a section 
with f ( ~ ) = y  and write f*(x)=~( :2 , )  on _Y. By the general behavior of the 

i 

intersection pairing under finite proper morphisms, 

(y. x )=  ( f .  ~, x) = (~ , f*  x ) = ~  (~, 92,). 
i 

Using (6.2) and re-arranging the sums, we find 

(y. x)= ~ (~  Card(Isomw/~.(~, 92/))). 
n > l  i 

But ~ Card (Isomw/,, (~, x,)) = �89 Card (HOmw/~.(y, X)deg l) which establishes the 
i 

proposition. 

The case m=  1 of Proposition (4.4) is an immediate Corollary of 6.1, and 
the case where m is prime to p follows from Proposition (6.1) and formula (5.1). 
The real miracle occurs at the places v which divide m. Write re=ft ,  r as in w 
We split into three cases, depending on the behavior of p in K. 

When p splits in K, Proposition (4.4) follows from the fact that both sides 
of the identity are equal to zero. The right hand side vanishes because _x and x ~ 
have ordinary reduction, so Deuring's theory I-8] gives an isomorphism 
Homw(X",x)~-Homw/~.(3_~,x) for all n > l .  Since we have assumed that r~(m) 
=0,  these groups contain no elements of degree m. The left hand side is zero 
as every component y(s)j in the decomposition (5.2) of Tm x" is congruent to a 
canonical section _Y0 of level zero in this divisor. If x intersects y(s), then X=yo 
(mod re). This forces x to be equal to Y0, as they are both canonical liftings of 
their reductions. Hence x = y  o occurs in T,,x", which contradicts our hypothesis 
that r~(m) = 0. 

Now assume that p is inert in K, and let y(s) be the components in Tp~Z 
with s = t(2) as in (5.2). All of these components are congruent to a fixed Y0 of 
level zero and by (5.4) we have 

[ z e en 
(T,,z - x) = ~,_>1 z X)deg 1 [..y.o = Z, 

- | ~ + l h  z x ~'t odd 
[ ~ -  , (Z,_),og, 

[_~0 -=--z(P)" 

Summing over all ze  T~x and using (5.1) for r prime to p, we obtain 

a t 
[ ~ h , ~  ,X)deg~+~hl(x~,X)deg~ t even, 

~ .  T,._x')= ~._>1 z 
/ t + l  
[ ~ - -  h 1 ~ ,  X)degpr t odd. 
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In the first case, an isogeny f :  x ~ x  of degree r over W/rc" yields an isogeny 
pt/2f of degree m over W/rc "+t/z. In the second case, an isogeny f :  x~--,x of 

t - - I  t + l  
degree rp over W/~ yields an isogeny p ~ - f  of degree m over W/~ 2 . 

Finally, assume that p is ramified in K with prime factor p. For each 
zeT~x ~ we have the decomposition Tp~z= ~ _y(s) as in (5.2); each y(s) is 

O<s<_t 
congruent (mod ~,) to _z if t is even, and to z% if t is odd. Thus 

h.(z ,x)~l  +th1(z,x)d~g ~ t even, 
n > l  

(T., z .  x )=  
2 hn(Z%'X)degl+th(z%'X)degl t odd. 

n>=l 

Summing over all z~ T~x ~ and using (5.1) for r prime to p, we obtain 

2 hn(-~a,x)d~gr+thl(x~r,X)degr t even, 
n > l  

Tm x") = 
h,(x"%,X)d~g~+thl(X~ t odd. 

n>=l 

In the first case, an isogeny f :  x ~ x  of degree r over W/~" yields an isogeny 
#f=p, /2f  of degree m over W/~ "+'. In the second case, an isogeny f :  x~176  
of degree r over W/~r" yields an isogeny # f :  x"~_x of degree m over W/zr TM. 

This concludes the proof of Proposition (4.4). 

.4 7. Quaternionic formulae 

We now turn to the calculation of the right hand side of Proposition (4.4). 
First, we record an important  result which was established in its proof. 

(7.1) Proposition. I f  p splits in K and r~c(m)=0, then (x. TmX~)=0. 

Prooji In this case, Homw/~,(x~,x)=Homw(X~ for all n > l .  This group 
contains no elements of degree m, by the assumption that re(m ) =0.  

Henceforth in this section, we will assume p has a unique prime factor p in 
K (in particular, p does not divide N). Then x and x ~ have supersingular 
reduction (modTr) and Endw/~(3_)=R is an order in the quaternion algebra B 
over Q which is ramified at oo and p. The reduced discriminant of R is equal 
to Np; R| is maximal in B |  and for all l+p R| is conjugate to 

theEichlerorder{(~ ~)~M2(Tlt):c-O(modN)}inB| 

The embedding (9=Endw(x_)~R=Endw/,(x) given by reduction of endo- 
morphisms extends to a Q-linear map K- -B .  This in turn yields a decomposition 

(7.2) B=B+ +B_ = K + K j  

where j is an element in the non-trivial coset of N~x (K •215 The decom- 
position (7.2) is respected by the reduced norm: N(b)= N(b+)+ N(b ). 
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(7.3) Proposition. 1) Endw/~,~)= {b~R: D. N b_ - 0  modp(N p)"- 1}. 
2) Homw/~,(x ~, x) ~ , Endw/~,(x ). a in B, where a is any ideal in the class d ,  

I f  the isogeny qS: x " ~ x  corresponds to b~B, then degq~= Nb/Na. 

Proof. Let ~=(~ :  / ~ / ~ ' )  be the diagram of p-divisible groups over W corre- 
sponding to x. Since x has supersingular reduction the p-divisible groups/~ and 
/~' are both formal groups of dimension 1 and height 2. Since p is prime to N, 

is an isomorphism and Endw/~,~_)=Endw/~,,(ff~ ) for all n > 1. 
The ring Endw/~_)=Rp=R|  p is the maximal order in the quaternion 

division algebra B p = B |  Qp over lI~p. By the results of [15] we have 

Endw/,,~_)={b~Rp: DNb - O m o d p ( N p ) "  1}. 

But a fundamental theorem of Serre and Tate [31, 40] states that 

Endw/., (~) = Endw/~ (_x)c~ Endw/~, (_~), 

which gives 1). Part 2) follows from the fact that x ~ H o m ( a , x )  for any ideal 
a in the class ~r 

(7.4) Corollary. Assume r~(m)=0. 1) I f  p is inert in K and v is a place dividing 
p in H, then q =p2 and 

~,T,,x~) = Z �89 )). 
hERo~++- 1 
Nb=mNa 

2) I f  p is ramified in K and v is a place dividing p in H, then q v = p  k where k 
is the order of [p] in CI~ and 

(x-T~x~) = ~ ordp(DNb ). 
hERa~+- 1 
Nb = mNa 

Proof. We will use Propositions (4.4) and (7.3). Combining these results yields 

~-T, ,x")=�89 ~ Card{beRa ,  Nb=mNa,  ONb =-OmodpNp "-~} 
n > l  

~�89 +ordp(Nb )) p,l/D, 

= b~R./+E, (ordp (O n b_) P I D. 
Nb=mNa 

We remark that when p.gD, ord~(Nb ) is always odd. 

w 8. Modifications when r~ (m) 4:0 

In this case, the divisors c and Trod ~ are not relatively prime, and the computa- 
tion of the local symbol (c, T,,d ~) uses the tangent vector ~/(3t at x which is 
defined in w 5 of Chap. lI. Recall that ~/~t is defined up to a 6th root of unity, 

and is dual to the 1-form o)= t/4(q)dq at x when u = 1. 
q 
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We will adopt  the convent ion that  

(8.1) (x.  x) = ord,, (a) 

where ac~/Ot is a basis for the free W-module T xX. Then the intersection 
formula  (0.2) continues to hold. The  reason for our  par t icular  choice of  tangent  
vector  is the following. 

(8.2) L e m m a .  I f  v does not divide N, then 

ord~, (c 0 = �89 ~ Card  (Autw/~, (_x)) - Card  (Aut w ~)) 
n > l  

, new = �89 ~ Card  (Autw/~, (x)). 
n_>_l 

In part icular,  we see that  8/#t generates ~ X  if and  only if Autw/ , , (x  ) 
=Autw(X ). This is a complete ly  general fact, which like (6.1), has nothing to do 
with x being a Heegner  point. It only requires that  x reduce to a non-cuspidal  
point  of the special fibre. 

Proof. The differential ~o is defined on a cyclic cover  Y' of degree 6 of the 
curve Y = X o ( 1  ), which corresponds  to the c o m m u t a t o r  subgroup  of PSLz(Z ). 
The compos i t um X'  over  X still is cyclic of degree 6, as it is totally ramified 
over the rat ional  cusp o~. 

X p 

X Y' 

\ / 
"x a ~/ 

Y 

Over  7Z[1/6], Y' is an elliptic curve with good  reduct ion and co is a N6ron  
differential. Since the covering X'--*Y' is ramified only at the cusp of _Y' and 
the fibres dividing N, we may  calculate the relat ionship between ~o -W and 
~ X  for pr imes v X 6 N  via an analysis of the ramificat ion in the cover  X ' - - ,X 
over the section x. This  comes  from extra au tomorph i sms  (modn) ,  and we 
recover the formula  of  (8.2) exactly as in (6.1). 

The  a rgument  for pr imes  dividing 2 and 3 is more  involved, and  we will 
not give it here. We simply note that  when N = I ,  so X = Y  and X ' =  Y', we 
have the explicit formulae  

(8.3) c~ =- j (x)~( j (x)-  1728) ~- j(x) 4=0, 1728, 
mod #o 

- 2 6  �9 34 j(x) = 1728, 

~ 2  9" 3 ~ j (x )=O.  
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If  v does not divide raN, then Propos i t ion  (4.4) and L e m m a  (8.2) give 

(8.4) (x ~ _ 1 �9 Tmx ) - ~  ~, Card(Hom~/W,~~ 
n > l  

The quaternionic  formulae for the right hand  side Corol la ry  (7.4) remain  true, 
provided we sum over  those b ER with br Ano the r  way to express this 
condi t ion is to insist that  b + 0 ;  this is necessary if the terms ordp(Nb ) in 
Corol lary  (7.4) are to make  sense! 

When  vim, formula  (8.4) must  be modif ied slightly, as the ure(m) elements 
in Homw(X% X)degm/(_+l ) which do not appea r  on the right hand side actually 
contr ibute  to intersections of x with its quasi-canonical  liftings y which occur  
in TmXL A count  of these liftings, together  with their levels, as in w 5 gives the 
correct ion term. 

(8.5) Proposition. Assume that v does not divide N. 
1) I f  p is inert in K then 

(x-Tmx~)= ~ � 8 9  )) + �89 ). 
b~Ra/+_ 1 
N b - m N o  

b - 4 : 0  

2) I f  p is ramified in K then 

(x.T, .x '~)= ~ ordp(DNb ) + urd(m)ordp(m) 
b~Ra/-k 1 
Nb=mNa 
b -  4:0 

3) I f  p = p  �9 ~ is split in K and r ip  then 

(x" T,,x ~) = urA(m) k ~ 

where k~>=O and k~+kp=ordp(m). 
When v]N Lemma(8 .2 )  remains true, provided x_ reduces to the same 

componen t  as the cusp ~ .  In our  case, this occurs when vln. Using the act ion 
of w N on co, one can show that  the tangent  vector  c~/St spans the submodule  
( N ) " ~ X  when v[fi. Hence  

(8.6) Proposition. Assume that vlN. Then 

0 if  v[n 
(_x-T,,x~)= _urd(m)ordp(N) if viii. 

~'9. Explicit quaternion algebras 

We now seek a formula  for the sum 

(9.1) (e, Tmd~ gf  ~ (e, T,,d~)~. 
vlp 

The case when p splits in K can be handled immediately.  
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(9.2) Proposition. I f  p splits in K, then 

(c, Trade)p= -ur~c(m)h ordp(m/N) logp. 

Proqf. By Propositions (8.5) and (8.6), (c, T,,d")t,= -ur ,  c(m)j~ logq~, with j~+j~ 
=ordv(m/N ). On the other hand ~ logq~,=h logp. 

rio 

We now assume that v divides a prime p which remains inert in K. Fix an 

prime q with ( q ) =  (~P-/P) for all primes liD. Such primes exist by auxiliary 

Dirichlet's theorem and must split (q)=q .  ~ in K. The quaternion algebra B 
with Hilbert symbol (D,-pq)  is ramified only at oc and p, and we have a 
splitting: B =K + Kj with j2 = _pq. 

We wish to find a convenient model for the order R=Endw/~(x) of Corolla- 
ry (7.4) as a subring of B. Recall that R has reduced discriminant Np and is 
locally an Eichler order at all finite l+p. A global order S with this local 
behavior is given by 

S={~+13j: 0~eb - l ,  f l e b - l q - l n ,  ~=/~modCf} 

where the congruence is for all primes ~ of (9 dividing b. By a fundamental 
result of Eichler [10, p. 118] there is an ideal b of (9 such that R b = b S  inside 
B. If a is an ideal in the class ,~r corresponding to o (as in (7.4)), we have 

(9.3) Ra={~+[3j: ~ E b - l o ,  

flEb l q  lll~b lfi, O~(_l)ordflb)flmod(gf}" 

The class ,~J of the ideal b depends on the place v which divides p, If v' = v "~ 
we find b ' = b c ,  so ~ ' = ~ .  (g. Hence the different classes of ideals which arise 
are permitted simply transitively by Gal(H/K). If we sum over all primes v 
dividing p, this class will drop out of the final formulas. 

We now consider the local sums in Corollary (7.4). Assume b=c~+fijERa 
satisfies 

~Nb = Nc~ + pqN fl=mNa. 
(9.4) [ N b _  =pqNf i ,O .  

If we define the integral ideals of C 

(9.5) c=(~)ba  1 

c'=(fl)bqn- 1])- lb ~ -1 

then c is in the class ~r and c' is in the class . J ~ 2 [ q n - 1 ] .  Furthermore,  we 
have the identity 

(9.6) Nc + NpNc'=m[DI. 

The integer n = p N c '  is non-zero and ordp(n)=ordp(Nb ). For any integer 

n define 3(n)= [ I  2 as in (3.15). We shall prove 
ll(n.D) 
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(9.7) Proposition. I f  p is inert in K, then 

(c, T,.d~)p = -r~(m)hu ordp(m) logp  

--U 2 1ogp ~ ordp(pn)r~(mlDl-nN)3(n)R~eo,}(n/p). 
O<n<mlND] 

n =- 0 (mod p) 

Proof. We will use Propos i t ion  (8.5) and the fact that  (c,T,,d~)v= 
- 2 1 o g p ~ .  Tmx~), as %=p2. The first term is clear, so it remains to calculate 
the sum over  b in the different R a. 

Let us start  with a pair  of ideals c and c' in the classes d -1 and 
sO' [q n -  1 ] ~ 2 which satisfy (9.6). If n = p N c' = p2 k- 1 n r then N c = m I DI - n N. 

We will t ry to construct  elements  b = c~ + flj in Ra satisfying (9.4) by reversing 
formulas  (9.5). This defines c~ and fl up to units in (9 • whatever  generators  we 
take, the fact that  m N a = N e + p q N [3 is integral implies that  c~_= +_ fl m o d  (gf for 
all ~lb. If  we m a y  adjust  the signs so that  C~--(--1)~ we will obtain an 
element in R a. But we will always get an element in R ' a ,  at a place v' 
conjugate  to v by an element  of order  2 in G a l ( H / K ) .  Thus  each pair  (c, c') 
contr ibutes  to the sum ~ ( A "  T, ox ~) some elements  of weight a ( l + o r d p ( N b  )). 

vlp 
The total  numbe r  of  elements  which arise f rom this pair  is equal to 2 - u 2 �9 3(n) 
since we only count  b up to sign. This gives Propos i t ion  (9.7). 

The  case when v divides a pr ime p which is ramified in K is quite similar. 
Let  p be the pr ime which divides (p) in K and let f be the order  of [p]  in 
C1K. There  are h/f factors v of p in H, each of residual degree pl.  To  obtain  
models  for the orders R =Endw/~(A ) in (7.4), we let q be a rat ional  pr ime with 

( q ) =  (--s for all p' 4 p  which divide D and ( @ q ) = - 1 .  Then  q = q . ~  splits 

in K and B has Hi lber t  symbol  (D, - q ) .  We have a splitting B = K + Kj  with j2 
- - q .  

Here  we find that  

(9.8) Ra={c~+[3j: ~x~pb- la ,  [ 3 6 p b - l q - l n b b  lfi, cz=(_l)Ora~(b)mod(9/} 

where ~ divides b. The  class of  b is well defined in the quot ient  g roup  
C1K/[p ] by the place v. An element e+[3j=b~Ra with Nb=mNa and 
N b  4= 0 gives integral  ideals 

(9.9) c = (a) b a 1, 

r  1]~ l b a - 1  ' 

which lie in the classes d -~ and d [ q n - ~ ] ~  z respectively. Both are 
divisible by p, and their no rms  satisfy 

(9.10) N c +  N N c' = m[DI. 

The  integer n = N c '  is non-zero,  and ordp(n)=ordp(DNb ). Arguing  as in the 
p roof  of  Proposi t ion  (9.7), we find: 
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Proposition. If  p is ramified in K, then 

(c, T~d~)p= --rd(m)hu ordp(m) logp 

- u  2 logp ~ ordp(n)r~(mlD[-nN)O(n)g~p,l(n/p ). 
O<n<ml D] 

n ~ 0(modNp) 

IV. Derivatives of Rankin L-series at the center of the critical strip 

In this chapter we will study the values of a certain L-series of Rankin type 
and of its first derivative. This L-series is determined by the following data: 

i) An ideal class ~r in an imaginary quadratic field K. We fix the following 

notations: D is the discriminant of K, e(n)= ( ~ ) t h e  associated Dirichlet 

character (an odd primitive character of conductor [D]), CIK the class group 
and h=  #C1K the number of K, w=2u the number of units of K, r~(n) the 

1 
number of integral ideals of norm n in the class -~' if n > 1, r~(0) =- - .  

W 

new N ii) A cusp form f~Szk (fro()), where k is any positive integer and N is a 
~neWtE tNn is the space of positive integer which we assume prime to D. Here ~zk ~ o~ - 

cusp forms of weight 2k and level N which are orthogonal (w.r.t. the Petersson 
product) to all oldforms (=forms g(dz) with g of level M<N, dMIN); it is 
spanned by newforms (Hecke eigenforms) but we do not assume that f is a 

newform. We write ~ a(n)e 2~i"z for the Fourier expansion of f(z) and L(f, s) 
n = l  

oo 

for the Hecke L-series y'a(n)n -k~. 
1 

Given this data, we define a Dirichlet series L~(f, s) by 

(0.1) L~(f, s)=~N~(2s--2k+l, ~) ~ a(n)r~(n)n -~, 
n = l  

i.e. as the product of the Dirichlet L-function / J n ( 2 s - 2 k + l , e )  
= ~ e(n)n -2~+2k-1 and the convolution of L(J~s) with the zeta-function 

(n, N) - 1 

~'r~(n)n -~ of the ideal class J .  We will show that L~(f, s) extends analytically 
to an entire function of s (this is the reason for the inclusion of the factor 
/Js) (2 s -  2 k + 1, ~) in (0.1)) and satisfies the functional equation 

(0.2) L~,(L s):=(2z)-Z~N~lDl"r(s)2 L,( f ,  s)= -e(N)L*~(L 2k-s) .  

In particular, if e(N)= +1 then L~(f,s) vanishes at s=k; the main result of 
this chapter will be a formula for the derivative / ~ ( f ,  k) in this case. We will 
also obtain a formula for the value of Le(f ,  k) if ~(N)= - 1 (and more general- 
ly for all the values L~(f,  r), r =  1, 2 . . . . .  2 k - 1 ) ;  this case is much simpler. The 
case which is related to Heegner points on Xo(N) is k = l  and e(p)= 1 for all 
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primes p dividing N (i.e. D a square modulo 4N). However, doing the com- 
putations for arbitrary even weight not only involves no extra work, but 
actually simplifies things, since for forms of weight 2 there are extra technical 
difficulties (connected with the non-absolute convergence of Eisenstein series 
and Poincard series in this weight) which obscure the exposition, so that it is 
convenient to first treat the general case and then discuss the modifications 
necessary when k = 1. The case when k =  1 and s (N)= 1 but s(p) is not 1 for all 
pIN is also interesting, since it turns out that the formula we obtain for 
E~,(f, 1) in that case is related to the height of a Heegner point on a modular 
curve associated to a group of units in the indefinite quaternion algebra over 
II~ ramified at the set of primes p with ordp(N) odd and s(p)= - 1 .  The case k 
--1, s ( N ) = -  1 is related to special points on a curve associated to a definite 
quaternion algebra over Q. (For details, see w 3 of Chap. V.) 

One case of the theorem is particularly striking and should be mentioned, 
especially as it permits one to understand the presence of the factor 
L(m(2s+2k-l ,s)  in (0.1) and the form of the functional equation (0.2). If 
:g: C I ~ I I ~  • is an ideal class character of K, then we can form the function 

(0.3) LK(f,z,s)= ~ ; ((~)L~(f,s) ,  
~ E C I K  

and clearly the properties of these functions (analytic continuation, functional 
equation, derivative at s=k) can be read off from those of the functions (0.1) 
and conversely. Now suppose that Z is a genus character, i.e. a character with 
values -+ 1. Recall that such characters correspond to decompositions of D as a 
product of two discriminants of quadratic fields (one real and one imaginary), 
the character X~)I.D2 corresponding to the decomposition D=D 1 .D 2 being 
characterized by the property X(a)=sD~(N(a))=sD2(N(a)) for integral ideals a 

prime to D (here sl) ~ is the Dirichlet character associated to Q(I/DI) ). The L- 
series LK(s, X) of such a character is equal to the product of the two Dirichlet 
L-series L(s, eD, ). On the other hand, if f~S2k(Fo(N) ) is a Hecke eigenform, then 
the L-series of f has the form 

1 {0 2k-1 (plN),(P'~N)' 
L(f,s)=I~p (l_o~pp-S)(l_fipp-S), ~ ~pflv = 

and a simple calculation shows that the convolution of this with LK(S, Z) equals 
L~N)(2s+2k-l,s) -1 times the product of the two "twisted" Hecke L-series 

L(f, so,, s) = ~ eo,(n) a(n) n- t Hence we have the identity 
n 

(0.4) Lr(f ,  ~(o~. 02, s) = L(f, so~, s) L(f, so~, s) ( f  an eigenform). 

On the other hand, it is well-known that the twisted L-series L(f, so,, s) has an 
analytic continuation and a functional equation with gamma-factor  
(2rc)-SN~/EIDil~F(s) and sign (--1)keo,(--N)w, where w=_+1 is the eigenvalue 

of f with respect to the Atkin-Lehner involution W s" f(z)--~S--kz-2kf (~__~l~. 
, 4 x 

\iv z! 
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When we multiply these two functional equations we obtain a functional 
equation for LK(J; Z, s) with gamma-factor and sign as in (0.2), independent 
both of the value of w and of the choice of (genus) character. (The fact that the 
sign of the functional equation does not depend on the eigenform chosen 
shows that this functional equation is true for any element of S"2~W(Fo(N)), 
unlike the situation for the Hecke L-series L(f,  s) which has a functional 
equation only if f is an eigenfunction of W N.) If e.(N) = 1 then one of the two L- 
series on the right-hand side of (0.4), say the first, will have a functional 
equation with a minus sign and the other a functional equation with a plus 
sign, and our main result will specialize to a formula for the product 
E(f ,  eD~, k)L(f,  ~D2, k). If k = l  and the eigenform f has integral Fourier coef- 
ficients, then the value of this product will be related to the height of a point 
defined over Q on the twist by D 1 of the elliptic curve associated to J~ This is 
the situation which was studied extensively (numerically) by Birch and Ste- 
phens [4, 5-]. 

The plan of this chapter is as follows. In w we will apply "Rankin 's  
method" to obtain a formula for L~c(f, s) as the Petersson scalar product of f 
with the product of a theta series and a non-holomorphic Eisenstein series. 
This product is a modular form on Fo(ND ) and must be traced down to Fo(N ) 
to get a (non-holomorphic) modular form ~s of level N whose Petersson 
product with f also gives the desired L-function. This is carried out in w 
while w contains the calculation of the Fourier coefficients of q5 s. In w we 
check that each of these Fourier coefficients satisfies a functional equation in s 
and calculate their value or derivative (depending on the sign of the functional 
equation) at the symmetry point. This establishes the functional equation (0.2) 
and gives a formula for L~(J~ k) or E_4(f, k) as the scalar product of f with a 
certain non-holomorphic modular  form ~ of level N. The final step, carried 
out in w 5, is to replace ~ by a holomorphic modular form �9 having the same 
scalar product with f ;  this is done by means of the holomorphic projection 
operator of Sturm [33]. The modifications needed to treat the case k = l  are 
described in w It is suggested that, at least on a first perusal, the reader 
mentally restrict to the case N = 1, k > 1, IDI prime, since the ideas of the proof 
are the same here as in the general case but many of the calculations (e.g. 
those of w and w can be omitted or drastically shortened. Even the case N 
= 1, k = 1 is interesting, for even though there are no cusp forms f in this case, 
the function ~ still makes sense and the fact that its Fourier coefficients are 
identically zero gives non-trivial information about the value of the classical 
modular function j(z) at quadratic imaginary arguments; this simplest case is 
discussed in [18]. 

Conventions. For z ~ ~ we write x, y for the real and imaginary parts of z and q 
for e 2~i~. The functions e 2r~ix (X~I~,) and e 2~iam (aeZ/nZ)  will be denote e(x) 
and e,(a), respectively. If a is an integer being considered modulo another 
integer n to which it is prime, then a* denotes the inverse of a (modn); thus 
the notation e,(a* b) implies that (a, n)= 1 and m e a n s  e 2~ic/n with a c - -b  (mod n). 

If f is a function on .~, k ~ Z  and 7 =  (a o] ~GL~(~,), then f]k7 has the usual 
\c a] 
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meaning in the theory of modular forms: (flkY)(Z)=(ad--bc)k/Z(Cz 
(az+b] 

+d) kf \C--Z~I " If N is a natural number and Z a Dirichlet character modulo 

N, then we denote by ~lk(FO(N), )0 the space of functions f :  .~--.~ satisfying 

f lkT=Z(d)f  for all T= (~ bd) eFo(N) and having at most polynomial growth at 

the cusps (i.e. (f[kT)(z)=O(y c) as y ~ o e  for all 7eSLE(Z) and some C>0)  and 
by Mk(Fo(N), Z) and Sk(Fo(N), Z) the subspaces of holomorphic modular forms 
and holomorphic cusp forms, respectively; the character Z is omitted from 
these notations if it is trivial. 

~}" I. Rankin' s method 

The assumptions are as in w D is a fundamental discriminant, ~ an ideal 
class of Q(I/D), and f ( z )=~a(n)q  n a cusp form in S~ek"(F0(g)) for some integer 
N prime to D. Let 0~r denote the theta-series 

(1.1) 0~(z)= ~ r~(n)q"= 1 ~ qU(~,/A, 
n = 0  2~a  

where a is any ideal in the class d and A = N(a). It is known that 0~ belongs 
to MI(Fo(D), O. (In w we will give the transformation behavior of 0~r under all 
of SL2(]g). ) Hence we have (for Re (s) large) 

F(s+2k -1 )  a(n)r~(n) 
(4n)s+2k-1 ~ nS-~gV-i---~ ~ a(n)r~(n)e-4~ryS+2k-2dy 

n = l  0 n = l  

oe 1 

=~ ~f(x+iy)O~(x+iy)dxy~+Ek-edy 
0 0 

= ~ f(z)O~(z) y~+2k d~,dzY ' 
Y 

where F~ = {_+ (10 ~), n e Z},  acting on .~ by integer translation. A fundamen- 

tal domain for this action can be chosen to be U 7 ~ where o~ is a fundamen- 
? 

tal domain for the action of Fo(M ), M=NIDI, and 7 runs over a set of right 
coset representatives of Fo(M ) modulo F~o. Hence the last expression can be 
rewritten as 

ak dxdy 
~, ~ " - ~+ =~j~f(Tz)O~t(Tz)Im(Tz)~+ .1 (z)O~(z) y y2 .~,~ y2 

),~ F ~ \ F o ( M )  yo, ~ 

e(d) Y~ 2k dxdy 
E ~f(z)O~(z) (cZ+d)Zk_l icz+dlZS y -~ , 
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dxdy 
where we have used the invariance of ~ - -  under SL2(lR ) and the transfor- 

mation properties of f and 0.e under Fo(M ). In the last expression we can 
interchange the summation and integration. We obtain: 

V(s+2k-1)  
(4~y+Zk_ ~ Ld(f, s + 2 k -  1)=5~f(z)O~(z)E~(z)yZk dxdy .~ y2 

= (L 0 .  E,)ro~M~, 

where Es denotes the Eisenstein series 

Es(Z)=EM,~,2k 1,s(Z) 

=Lr 0 ~ +d)2k- f  [cz+dL 2~ 
+_(; " . ) ~ r o ~  (c z 

e(d) y~ 1 
"=2 E (c z + d)2k l lcz+dl2~ c,d~7 

c~O(modM) 
(d,M)- l 

in /Q2k I(Fo(M),O and ( , )roIM) the Petersson scalar product on F0(M ). (The 
reason for including the factor L(m(s-2k+l, e) in the definition (0.1) is now 
clear.) The process we just used to express the convolution of the L-series of 
two modular forms as a scalar product involving an Eisenstein series was first 
used by Rankin and Selberg in 1939 and is commonly referred to as "Rankin's 
method". 

We now use the principle (f,g)roiM)=(f, Tr~g)rotm for any feS2k(Fo(N)) 
and g e~/2k(Fo(M)), where Tr~ is the trace map 

Try :  M2k(ro(M))~ ~Izk(Fo(N)), g~--~ ~ gl2k ~'. 
7e Fo(M)\Fo(N) 

This gives 

(4r0 -S- 2k+ 1 r ( s  + 2 k -  1) L_e(f, s+ 2 k -  1) = (f, Trff(0dEs)), 

where now the scalar product is taken on Fo(N ). In the definition of E s, the 
condition (d, M)=  1 can be replaced by (d, N)=  1 since e(d)=0 otherwise, and 
this condition in turn can be dropped if we insert a factor ~ #(e) (# 
= M6bius function) which vanishes if (d, N)>  1. Hence el~d, u) 

e(d) y* 
E~(z)= �89  E (cz+d)2k-1 ]cz+dlZs 

elN c,dETL 
Mlc, eld 

E e2s+2k--1 
elN 

where E(~ 1) is defined like E~ but with N replaced by 1 (i.e. M by D); the last 
line is obtained by replacing c,d by c/N, d/e. Note that the only non-trivial 
terms are those with e square-free and prime to D. Now when we form 
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Tr~(0.~Es) the terms with e > 1 contribute terms of level N/e < N, because any 
system of representatives of Fo(M)\Fo(N ) is also a system of representatives for 

F0 (M)~Fo ( N) .  Since f is orthogonal to modular forms of level smaller than 

N, these terms contribute nothing to the scalar product and can be omitted. 
(Actually, the definition of S~, w involves only the scalar products with holo- 
morphic forms, but the scalar product of f with any non-holomorphic form 
is equal to its scalar product with a holomorphic form g of the same level, as 
we will see in w so this doesn't matter.) We have proved: 

(1.2) Proposition. Let D be a fundamental discriminant, N >  1 prime to D, and 
define a function ~s = ~s,d 6 ~/2k(Fo(S)) by 

~s(z) = TruU D(0~,(z) E~s 1~ (N z)), 

where O~ is the theta-series defined in (1.1) and 

E(1)t.~_• e(d) 1,~ 
s ,",--2 2 (c2+d)2k 1 [cz+di2S 

c,d~7 
DIc 

the non-holomorphic Eisenstein series of level [D], weight 2 k - 1  and Nebentypus 
new N e. Then for any f~S2k  (Fo( )) we have 

(4 7c)_~_ 2k+~ N s r ( s + 2 k  - 1) L~(f ,  s + 2 k  - 1) = (f, t~). 

Remark. The proof used only the orthogonality of f with modular forms g of 
level strictly dividing N and not the orthogonality of f with functions g(dz) 
with d > l  and g a form of level dividing N/d. The effect of this second 
property of fEsn2~k w is that in Proposition (1.2) only the Fourier coefficients of 
~ with index prime to N are relevant. Thus to prove the functional equation 
(0.2), for instance, it suffices to prove the corresponding functional equation for 
the coefficients Am(S, y) defined by 

(1.3) ~ ( z ) =  ~ Am(s,y)e(mx) 

for m prime to N, since then the difference between ~ and its image under the 
asserted functional equation is automatically orthogonal to f .  In the same way, 
in giving formulas for the values of L~( f , s )  at special points or for its 
derivative at s = k  it will suffice to study the corresponding values or deriva- 
tives of A,(s,  y) for (m, N)=  1. It would not, in fact, be difficult to study the 
coefficients with (m, N)>  1 as well, or to retain the terms with e > 1 which were 
omitted in the proof of (1.2), and thus obtain formulas valid for all 
f ~ S 2 k ( F o ( N ) )  , but this would complicate the notations and calculations and is 
pointless since one can always reduce to the case of newforms. 

w 2. Computation of the trace 

The function ~s(z) is defined as a trace from Fo(ND ) to F0(N ). To compute its 
Fourier development, we will need the expansions of 0~(z) and E (1) -x s (~) at the 



Heegner points and derivatives of L-series 273 

various cusps of Fo(D ). These cusps are in 1 : 1 correspondence with the positive 
divisors of D. (This is because D is not divisible by 16 or the square of an odd 
prime; in general, to describe a cusp of Fo(n ) one must specify a divisor n' of n 

and an element of Z n , ~  7/ . We write 3 for LD[, 61 for the divisor, 32 

=3/3~ for the complementary divisor. The numbers 31 and 32 can be written 
uniquely as the norms of integral ideals b I and b 2 of K which are products of 
ramified primes. If (3~, 32)= 1, then we can uniquely write 3i=[Dil with D 1 and 
D 2 discriminants of quadratic fields and D 1 D 2-- D; we then have the associated 
Dirichlet characters ei=eD, (mod3i) and genus character ~o~.D2 as in w For 
odd D this is always the case, while for even D we can also have (3~, 32)=2. 
Since the latter case is more complicated, we will assume from now on that D is 
odd (and hence squarefree and congruent to 1 modulo 4). 

It will be most convenient for our purposes to have formulas for the 
behavior of 0~ and E~ ~) for all matrices in SLE(TZ ), not just a system of 
representatives for Fo(ND)\Fo(N), since later on we will need information 
about the Fourier development of ~ at all cusps of Fo(N) rather than just at 
oo. We begin with E~ ~. For each decomposition D=D 1 �9 D 2 we define, with the 
notations just introduced, 

Cl (m) e,2 (n) yS 
(2.1) E~f~189 ~ (mz+n)Zk_l imz+nl2S; 

m, n ~lZ 

021m 

this is compatible with the notation E(~ ~) and belongs, as is easily checked, to 

~/12k_l(Fo(D),g ). For 7 = ( a  ~)GSL2(7Z ) with (c, D)----- 32 we have 
\c 

~,(n) yS 
~sr(1)ltEk-l?=�89 ~ [m(az+b)+n(cz+d)]Zk 1 im(az+b)+n(cz+d)iZs 

m, n e Z  

D i m  

e (an -bm)  yS 1 

=2 ~ (mz+n)Zk 1 imz+n]2~, 
m, n ~ Z  

md =- nc(D) 

where in the second line we have replaced (m, n) by ? l(m, n). Now 

m d - n c  (modD) ~ d ( a n - b m ) - ( a d - b c ) n = n ,  

c ( a n - b m ) - ( a d - b c ) m = m  (mod D) 

and hence, since (c, d )=  1 and (c, D)=32 imply (c, D 0 = ( d ,  D2)= l, 

~(an-bm)=~l  (an -bm)e2 (an -bm)=e~  (c)e.l (m)e.E(d)eE(n ). 

The condition m d - n c ( m o d D )  is equivalent to the two conditions D2im and 
n - c *  md(modD1), where c* is an inverse of c (modD1). Replacing n by c*md 
+n31, and choosing c* to satisfy c * - 0 ( m o d D 2 ) ,  so that eE(mC*d§ ) 
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E x)L = �89  ~l(C)~l(m)e2(d)ez(6t)ez(n)Ys 
s Izk-,? (mz+mc, d+61n)2k 11mz+mc, d+61n]2S , Z 

D2]m 

1 ( Z - ~ - c * d ~  E S" f 

( 7 = ( :  bd)~SL2(Z), (c,D)=ID2I, D,D2=D ). 

We now turn to 0~. Here the corresponding formula is: 

(2.3) Lemma. For y= (~ ~)~PSL2(Z), (c,D)=[D2] , D, . D2=D we have 

0~t[1 • = g D , ( C / b 2 )  e D z ( d ) K ( D 1 ) _  I ,~ ~_ , (z +c* d] 

where ~c(D1) denotes 1 or i according as D I > 0  or D I < 0  and ~ is the ideal 
class of the ideal b 1 with b2=(D1). 

It will suffice to treat the case c=62. Indeed, let 7 = (  a bd)be Proof. a n  
k ~  

arbitrary element of SL2(7l ) with (c ,D)=b 2 and choose x ~ Z  so that 

cx-d62 (modD1)and  (x, D2)=l. Then we can find a matrix 71= t~ i.) in 
\ o  2 

SL2(~),andthematrixTo=7711=(~ x-b~2 i) x_d62 is in Fo(D), so 

0dll  ~, = 0~,h ~ 'o~  =e(ax-ba2)O~l~)'l 

=~l(c)e1(c~2)e2(a)e2(x)" e2(x)tc(D1) -1 1 ZD,.,2(~r ~ - 1 !  

by the special case c = 3  2 of (2.3), and this proves (2.3) in general. So assume c 
=6 2 and write 

a a - 1  
O e \cz+d] 

with A, w as in (1.1). The number N(2)/A is integral and its value modulo c=62 
depends only on 2 (mod a~)2). Hence 

(az+b~ 1 ~ e~ ( a ~ )  ~ e ( N ( 2 + # ) ~ ) .  

On the other hand, the Poisson summation formula gives 

, ~  N ( b ) z ~ , ~ - , e  - e(Tr2v) 
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for any z e.~ and any fractional ideal b of K (consider the left-hand side as a 
periodic function of 2el12/b and compute its Fourier development), so this can 
be rewritten 

(az+b]_ -i(cz+d) 

or, replacing v by V/(32, 

~ G ( a ~ )  ~ e(AN(v)c(cz+d))e(Tr2v) 
Aea /ab2  yea  t b~ 1 ~ -  i 

w6�89 ~ C(v)e AN(v) z+  c 
veo l b f l  

with 

.~ea/ab2 

Choose 2oea  so that the ideal (2o)a -1 is prime to b:. Then as # runs over a 
set of representatives for C/b 2 ((9=ring of integers of K) the numbers 2o/~ give 
a system of representatives for a/ab 2, so 

C(v)= ~ %2(RN(#))%2(Tr2ov#) 
# e ~/b2 

with R=aN(2o)/A. Note that Tr(2oVl~)eZ because AoV#eb~-Icb 1 and that 
R is prime to 62 . Hence, choosing an inverse R* of R(mod62) which is 
divisible by D~, we find 

%~(R N(#)+ Tr(2oV~))= e0~(R N(10+RR* Tr(2o v~) ) 

= % (R N (~ + R* 2 o v')) %( - R* N (,I o v)), 
SO 

C(v)=%2(-R*N(2oV)). ~ eo2(RN(#)). 
~ / ~ z  

Because 6 2 is square-free and completely ramified, one can choose the integers 
modulo 6 2 as a system of representatives for (9/b2, so 

ea2(RN(#))= ~ ea2(Rn2)='r 
.ue~)/b2 nc-Z/b2Z 

by the usual evaluation of Gauss sums. Also, 

z + c* d\ 
=e (N(abl)N(v)~-i ) 

because d-R* N(2o)/A is - 0 ( m o d 6 2 )  and ~ d ( m o d 6 0 ,  and e.~(R) 
=eD~(d)Zo,.D2(al) because R=a N(b) with b=(2o)a -1 in the class d -1. There- 
fore 

~ i ~ ~D 2~ d 1 (N(abl)  N(v z+c*d\ eD2(d)z.,..2( )-- Z e )~ - l  )' 

and this completes the proof of (2.3) since K(D1)K(D2)= i and 0~_, ~ f , =  0 ~ .  
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/a h\ 
From (2.3) and (2.4)we find for 7= [ ;  d) eFo(N)with (c,D)=62 

r 

E~I)(Nz) O~(Z) I2k7 

--(E~)IZk_ 1 (c/aN b N ) ) ( N z )  (0,~[1 (~ bd))(z) 

=e 1 (c/N) g2(d 61) (}l s- 2k+ 1 el (c/(52)g2(d) ~c(D1)- 1 67 ~ )~D,. D:(~qg) 

. E,sO,) (Nz+(c /N)*d]  (z+c*d  
�9 \ ~1 ] 

1,~ s - 2 k + { ~ t  [ c ~ , E , D ,  ) (NZ-l-c*d~__ ( z + c * d ~  =81(N) K(DI) t~D1.D2~+ / s 

where we have used 8DI(O2)~:D2(31) = 1. The trace from Fo(ND ) to Fo(N ) is given 

by summing over ~ 81 representatives (a o ) o f  Fo(ND)\Fo(N), the repre- 
/ 

\ c  

sentatives being characterized by the value 8z=(C, D) and by the residue class 
of c* d modulo 61 =(5/62. Hence 

$~(z) = Tr~D(E~a)(N z) O~(z)) 

~,, (N) )~o~ . D~ (a) 
= ~ K(D1)6]+2k-�89 

D=DI " D2 

(z+j  
j(mod~,) 31 I \ 61 ] 

= E g ~1 ) ~+2  ~ (E~D"(Nz)O~,(z))] U~,, 
D= Dt " D2 

where U n (neN) is the usual operator 

j(mod n) rn~Z m~Z 

on functions on .~ of period i. But for any function f on ~ of period 1 we 
have 

(f(z) 0 ~ ,  (z)) I Ua, = (f(32 z) 0 ~ ,  (62 z))l Ua = (f(62 z) 0~ (z))l Ua 

because 0 ~ , ( 8 2 z  ) and O~(z) have the same n-th Fourier coefficient for any n 
divisible by 62 (since s J ~  1 = ~ 2  and any integral ideal of norm n is b z times 
an integral ideal of norm n/bz). Hence we obtain finally: 

(2.4) Proposition. Assume (D, 2N)=  1. Then the function ~s(z) defined in Propo- 
sition (1.2) is given by ~ = ( ~ ( N  z) Od(z))IUi, I, where 

em ( N) )~o~ . o~ ( s~) -wo "' O ' z" 
D=DI'D2 

Here the sum is over all decompositions of D as a product of two fundamental 
discriminants D 1 and D 2, ZD,.O2 is the corresponding genus character, g(D1)=l  
or i according as D a >0  or D 1 <0, and E~ ~ is the Eisenstein series (2.1). 
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Note that ~'~ depends on N and ,4 (or at least on N modulo D and on the 
genus of ~r however, we omit this dependence in our notation. In the case 
k= 1, ]D[ =p prime and g(N)= 1, as(z ) is simply E s(1)(pz) - i--~l a ~E(P)I'*s v;y. 

3. Fourier expansions 

Let ds(z ) be the combination of Eisenstein series defined in Proposition (2.4) 
and write 

Es(z)= ~ es(n,y)e(nx ) ( z = x + i y 6 ~ ) .  
n~71 

Then Proposition (2.4) gives the Fourier expansion 

( 3 . 1 )  ~,.~r y, e, n, rr 2~zty/O e \ r ] 
ne~ 
I>0 

Nn+l=-O(modD) 

(a=[D[ as before). The coefficients es(n, y) are described by the following two 
propositions. 

(3.2) Proposition. The n th Fourier coefficient of g~(z) is given by 

es(O, y ) = L ( 2 s + 2 k -  1, s ) ( a y ) S + ~  V~(O) L ( 2 s + 2 k - 2 ,  ~)(6y) . . . .  2k+2 

if n = 0 and by 

~ i ~  s ( n , d) e~(n, y)= (6),)-~ 2k+2 Vs(ny ) ~ d 2s+2k-2 
aln 

d>O 

if n+O, where e(n, d)=~r d) is defined by 

e(n, d)= [ {o 

/ 

and Vs(t) (seC,  telR) is defined by 

(3.3) 
ties: 

n D 

.D~(oc~) if d ,~ ,D =1,  

(d, D) = ]D2] , D 1 D  2 = O, 

e -  2 niXt d x 
v,(t)  1.  

�9 ~, (x + i) ~ ~ (x 2 + ly (Re (s) > 1 - k). 

Proposition. The ]'unction V~(t) occurring in (3.2) has the following proper- 

a) ~ ( 0 ) = ( -  1)k~i2 2 s - 2 k + 3  r ( 2 s + 2 k - 2 ) / r ( s ) r ( s + 2 k -  1). 

b) For t +O the function Vs(t ) continues holomorphically to all s and satisfies 
a locally uniform (in s) estimate V~(t)=ltl~ 2~1,1 ( I t [ ~ ) .  
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c) For t 4=O, set V~*(t)=(TzltD-~- Zk+ l F(s+ 2 k - 1 )  V~(t). Then V~*(t) is entire 
in s and satisfies V~*(t)= sign (t) V2* 2k- ~(t). 

d) Let r be an integer satisfying 0 <- r < k - 1. Then 

V ~(t)= rci(- 1) k ~pk,~(4rct)e -2~  (t >0), 

~ ~)(2k-2r-2+j),'(-t)J where pk,,(t) is the polynomial (t/2)2k- 2-2"j~ ~ 

e) For t<0, the derivative with respect to s of Vs(t) at the symmetry point of 
the functional equation is given by 

0 
0s V~(t)l~= l -k=  --27riqk-l(4~[t l)e-2"'  (t <0), 

where 
(x 1) k- 1 

q k -  1 ( t )  = j 
1 x k  

Proof. We have 

e~(n, y)= 
D= DI " D2 

D2ln 

where etf ') is defined by 

e-Xtdx (t>O). 

eo~ (N) Zoo. o~(d) 
~:(D,)f]+ Zk-3 e~O~)(n/62, 62y), 

E] D'' (z) = ~ e(s D') (n, y) e(n x). 
nETq 

The computation of the Fourier development is standard. The terms with m =0 
in (2.1) give 0 unless D l = l  (since [DI[>I ~el(0)=0) ,  while if D l = l  , D2=D 
they give L ( 2 s + 2 k - l ,  Oy ~. On the other hand, the Poisson summation for- 
mula gives the identity 

1 
(z+l) 2k-11z+ll z~ =y-2,-Zk+2 ~ V,(ry)e2~irx 

leZ reTL 

with Vs(t ) as in Proposition (3.2), so 

E,O,)r  2 k - 1 ,  0y s if D, =1 
" ).0 otherwise 

r el(rob2) Z ez(n) Z m z +  +l + +l 
.(mod02, 

~;l(~2)y-s-2k+2 ~, ~;l(m) ( r~n2n ) 
- -  ( ~ 2 2 s + 2 k - 1  m 2 s + 2 k - 2  2 e2(n) 2 V~(rmy)e r m x +  . 

m =  1 n(mod 62) r e Z  

But 
ee(n)e = e2(r)tc(Dz) ~5~ 

n(mod 62) 
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(Gauss sum), so this equals 

Hence 

while 

el(62)g(D2)A2s+2k-~ Y - s - 2 k + 2  E el(m)ez(r)m2s+2k-2 Vs(rmy)e(rmx). 
~2 m>0 

r~2~ 

e(D1).U-'~ . ~__  
s ', ,Y? - -  

{ L(2s+ 2k-l,~)y~ 
2 k - 2 ,  e) 2 k + 2  /~,(O)L(2s+ y s 

if DI=I, Dz=D, 
if DI=D, D2=I, 
otherwise, 

e~DO(n , gl(O2) K(D2 ) ( el(m)e2(n/m)] y s-2k+ 

m>O 

for n #0 .  For the coefficients of g~ this gives 

es(O, y)=L(2s+ 2k -  1, e)(fy)s+~N~)~ V~(0) L(2s+ 
iVo 

2 k - 2 ,  ~)(~ y ) - s -  ek+ 2, 

~ l~D,(m~2)eDz(rt/m~2)\ 

Dzln m>O 

.y  s-2k+2 V~(ny), ( n .0 ) ,  

where we have used K(D2)/tc(DO=ieo,(-1 ). The inner sum can be rewritten 
em(d)e.D2(n/d)d -2S-zk+2, since the only non-zero terms here are those of 

0<din 
the form d=m6 z (D2ln and D e must be prime to n/d). This gives the formula 
stated in Proposition (3.2)�9 

We now give the proof of Proposition (3.3). The integral defining ~(t) can 
be found in several standard tables, where it is expressed in terms of Whittaker 
functions, but the results found in various tables do not agree and we prefer to 
give direct proofs of all the properties needed. We start with a). We have 

V~(O)= ~ (x--i)2k ldx k-, (2k - l ]  ~ xEk-2J-2dx 
( x 2 + 1 ) s + 2 ~ i = - - 2 i  ~ (--1) j (x2+l)s+2k_l ,  j=0 \ 2 j + l !  o 

where we have expanded ( x - - i )  2 k - I  by the binomial theorem and discarded 
the odd terms in the integrand. The integral occurring in the sum equals 
�89189189 (beta function), so using the dupli- 
cation formula for the gamma function, we find 

V~(O)-(-1)k23-2k-z~TtiF(2s+2k-2)F(s+2k-1)F(s+k-1) k~V~ol (-(2j+l/4)k-l-J(2k-1)!(k- 1-j)!l)! 

�9 (s+k-�89 

That the sum equals s(s+l)...(s+k-2) can be checked by hand for small 
valves of k and by a tedious induction argument in general. A different 
method, which is less elementary but works directly for all k, uses the Hankel 
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integral formula for 1/F(s): 
c~j d x 

Vs(O)=(--1)ki-oo ~ (l+ix)S(1--ix) ~+2k-1 

(--1)ki ~ ' 1 i ' __ e - U ( 1 - i x ) u s + 2 k  2 d u d x  

F(s+2k-1)  ~ ( l + i x )  S o 

--  (__l)k ~ e _ 2 U u S + 2 k _ 2  (1 + ioo 
r ( s + 2 k - 1 )  o q~<,zSe"~dz) du ( z=l+ix)  

- (--1)k ~e  2"U*+2k 2 [2=iu* l) du 
r(s+2k-1) o \ r ~  
2rci(-- 1)k 2 -2~ 2k+2F(2s+2k-2) 

V(s) V(s+ 2 k -  1) 

This proves a) and the meromorphic continuation of Vs(t ) when t=O. 
Now suppose t >0  and define V~*(t) as in c). Then 

V~*(t)= (x_i)2k 1 J 'U s+2k 2e-nttx2+l)Udu e 2~itxdx 
oo \ 0  

=Su*+2k-2e -"('+l/u) e-""(x+i/")2(x-i)2k "dxdu. 
0 ac 

In the inner integral we move the path of integration from Im(x)=O to Im(x) 
1 i v 

- and make the substitution x . . . .  ~-~= (v e N.) to obtain 
U U g .  

o~ ~ ( u~+u-~)2k-ld d u 
V~ , I -  fu  s+k-le =t(,+l/m e -=t~2 v+ i V--u. 

0 --oo 

This integral converges for all s and is clearly an even function of s + k - 1  
(replace u by 1/u), so we have obtained the meromorphic continuation and 
functional equation of V,(t) for t > 0 ;  the proof for t < 0  is exactly similar. If we 
wish, we can use the last formula to write Vs*(t) in terms of standard functions: 

expanding v-~ by the trinomial theorem we obtain the ex- 
pression 

( -  1)k-q2k - 1)! r(a+�89 =,(,,.+ .1) 
u 2 e- - u-du Vs*(t)=i E (2a)ibf. ci (Tot) a+�89 ~ s+k+b-c 2 

a,b,c>=O 0 
2 a + b + c = 2 k -  1 

--2(--1)ki ~ a i~ .c i  4~7 Ks+k-'+(b-~)/2(27tt) (t>O) 
t�89 a, t , ,c>O �9 . 

2 a + b + c = 2 k -  1 

for ~*(t) as a linear combination of K-Bessel functions, the functional equation 
now following from K~(z)= K_ ,(z) by interchanging b and c. For k = l  the 
formula simplifies to 

V**(t)=- (K�89189 (k= 1, t>O). 
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In any case, we have proved the functional equation c). The estimate ~*(t) 
=[tl~ -=~t~1 in b) follows easily from the above integral representations or 
from the explicit formulas in terms of K~(2r~t), 

For d), we note that 

~~'oo (x - i) ~ 2~ix, dx V r(t)= (x+i)2k 1 r e  

for r ~ •, 0_< r <_ k - 1 (for r = k -  1 the integral is only conditionally convergent; 
we could also treat the cases r=k, k + l  . . . . .  2 k - 2  by using the functional 
equation). The integrand has a pole only at x - -  - i, so if t < 0 we can move the 
path of integration up to + i ~  to get V r(t )=0, while if t > 0  we can move it 
down to - i ~  to get 

V r( t )=-27ziRes~ i({ (x-Or ) =- x+i)Zk 1 r e 2~ixt 

r ~]) (_(xe-g,~ixt ) 
= - 2 7 r i  ~ ( -  2 i)/ Re sx -i / ~ i - - 2 r + j  

j = O  = - ~  

= ( _  1)k ~2=ipk.r(4~t) e -2=,. 

Finally, suppose t < 0  and consider the integral defining V,(t) near s = 1 -  k. 
The integrand is well-defined in the x-plane cut along the imaginary axis from 
- t o o  to - i  and from + i  to +ioc,  and we can deform the path of integration 
upwards to a path C circling the half-line [i, too) in a counterclockwise direc- 
tion (from - e + i o c  to i - i e  to +e+ioo). The new integrand converges for all s 
(this, by the way, shows that V,(t), and not only V~*(t), is entire in s for t < 0 ,  
and a similar argument applies for t > 0  if we deform the path of integration 
downwards to circle ( - t o o ,  - i ] ;  this completes the proof  of (3.3b), which up to 
now we had only established with "meromorphical ly"  in place of "holomor-  
phically'),  and we can differentiate under the integral sign to obtain 

g] (x__i}k 1 1) e-2=itxdx 
?sV~(t)l~=,_k- ! (x+i)k log(x2+ (t<0).  

The function log(x2+ 1) is continuous on C and changes by 2 =i as one passes 
from one side of C to the other across the branch cut [i, too). Therefore 

i i (x--i)k-1 e 2=i'xdx ( t<0),  -~')S Vs(t)ls=l-k= -27~i . (x +i)k 

and replacing x by 2 i x - i  we obtain the formula given in e). This completes 
the proof of Proposition (3.3). 

From Eq. (3.1) and Propositions (3.2) and (3.3d) we obtain a finite formula 
for the Fourier coefficients of ~ ( z )  at arguments s =  - r  ( r=0 ,  1 . . . . .  k - l )  as 

polynomials in 1 of degree r: 
Y 

(3.4) Corollary. For rEZ,  O<_r<_k-1, we have 

~ ,(z)= ~ ( ~ e,,r{y)r4(ma-nN))e 2=i'':, 
m-O O<<n<m6 
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where 

[ L ( 2 k - 2 r - l , O ( N y )  ~ if r < k - 1 ,  
! 

e , .~(y)=(_l )k_~e(N )~2~ (Ny)~_2k+2pk, ~ _ _  ~ ~ ,  , , 

1/~ " ~ " ~>oet" (n>O) 

with Pk,, as in (3.3d), e~(n,d) as in (3.2). (We have written e,,~(y) for 

e_ ,(n, ~ - )  e z ~N,,/~.) 

In particular,  ~o,~ is a ho lomorphic  modular  form; this, of course, was 
clear a priori since the definition of the Eisenstein series ~s(z) shows that it is 
holomorphic  in z at s = 0. 

w 4. Functional equation; preliminary formulae for L~ ( f  k) and l~e (J', k) 

We wish to prove the functional equation for Ld( f, s) given in (0.2). In view of 
Proposi t ion (1.2) and Eq. (3.1), this will follow from the identity 

(4.1) e * ( n , y ) : = n - S ~ S F ( s + 2 k - 1 ) e s ( n , y ) = - ~ ( N ) e *  2k_s(n,y) 

for n~Z satisfying 

(4.2) N n + l - O ( m o d D )  for  some l=N(a ) ,  a= in t eg ra l  ideal in d .  

F rom the first equat ion of Proposi t ion (3.2) and (a) of Proposi t ion  (3.3) we 
obtain 

e*(O, y)=(s + k)(s + k + l ) . . . (s  + 2 k -  2)[~ -s 6S F(s + k) L(2s + 2k - 1, e)](6y) S 

- e (N) (2 - k - s)(3 - k -  s). . .  ( -  s) 

. [ n ~ - ~ 6 S - ~ F ( s + k _ � 8 9  ~)](~y)2-Zk-s, 

and this proves (4.1) for n = 0  since the two expressions in square brackets are 
interchanged under s ~ 2 - 2 k - s  by the functional equat ion of L(s, O. For n + 0  
we have 

e*(n, y ) =  -ie(N)]nlkz~ 2k-1 6-Zk+~ yV~*(ny) Y" ed(n, d)(ln[/d2) s+k 1 
d[n 

d>O 

with V~*(t) as in (c) of  Proposi t ion (3.3). In view of the functional equat ion of 
V~*(ny), therefore, (4.1) will follow from the identity 

(4.3) ~(n,  ]n[/d)= - ~(N) sgn (n) ~ ( n ,  d) 

n D for n satisfying (4.2) and d a positive divisor of n. We can assume that  (d, ~, ) 
= 1 since otherwise bo th  sides of (4.3) are zero. Then D decomposes as 
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D=DoD'D", ID'I=(d,D), ID"I= (d, D ) 

with D o, D', D" discriminants and D O prime to n. The discriminants D 1 and D 2 
in the definition of ~(n, d) are then Doff' and D', respectively, while the 
corresponding discriminants for e(n, Inl/d) are D o D' and D". Hence 

~(n, d)= eoo (d) eo,,(d) ~o, ( -  N d ) Zoo~,,. o,(,;r 

All terms in these two expressions take on values in {+ 1}, and the product is 

e(n, d) a (n, ~ / I )=  %o(In')~o" o " ( -  N sgn (n))Zoo. o, o" (d) ,  

which equals eo(-N)sgn(n ) because (4.2) implies that ZOo,O,o,,(eg)=eOo(l)= 
~Oo(- Nn). This completes the proof of the functional equation. 

The functional equation suggests that we look at the symmetry point s=  
1 - k  or, more specifically, at the value or derivative of L~(f, s) there, depending 
whether e , ( N ) = -  1 or ~(N)= 1, We consider first the former case, Here we can 
apply Proposition (1.2) and Corollary (3,4) with r = k - 1  to find: 

(4,4) Proposition. Suppose e ( N ) = - 1 .  Then the value of L~(f, s) at the sym- 
metry point of the functional equation is given by 

,~2k+ 1 7~.k+ 1 

Lr k ) -  ~ (f, ~) 

where q~EM2k(Fo(N)) has the Fourier expansion 

m = O  \ 0  < n ~ mv~ U 
with 

k-1 ( k - l )  J' 
din "= J 

d>O  

Note that the coefficients of (b are polynomials in y-~ of degree k - 1 .  For  
k= I the function (~ is a holomorphic modular form (but not a cusp form). 

Now consider the case r l. Here we have to compute the derivative of 
G(n, y) with respect to s at s = 1 - k. There are three cases, according to the sign 
of n. If n = 0 then the formulas at the beginning of this section give 

7~l--k ~) k -  I 

(~s G(O'Y)I~-I-k-- ( k - l ) [  ~s e~*(O,Y)l~=l_k 

r ? -~6  k-~ 
= 2 IF(s+  2 k -  1) Ir-~b2~y~L(2s+ 2 k -  1, ~)]1~= a -k 

(k-- 1)! 0s 

=2L(1, e)(6y)~-k[F~F (k)+log62~Y-+2 E (1, e)]. 
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If n is positive, then the sum ~ ( n ,  d)d 2s-2k+2 in Proposition (3.2) vanishes 
at s = l - k ,  so dl, 

--Os 2i 6 -k+ ~ y-k+ I ~ e(n, d) logd. e~(n, y)]~=l_k= V1 k(nY)dl" 

If n is negative, then it is instead the factor V~(ny) in (3.2) which vanishes at s 
= 1 - k, so 

a e~(n,Y)ls=l k = - -  --i6 k+~y-k+l ~ K(n,y)k=l_k.~e(n,d)" 
~s " ~s dl, 

Substituting for Vl_k(nY ) (n>O) and ~ V~(ny)}s= 1 k (n<O) from parts (d) and 

(e) of Proposition (3.3), and combining with (3.1) and Proposition (1.2), we find: 

(4.5) Proposition. Suppose e(N)= 1. Then the derivative of L~(f, s) at the sym- 
metry point of the .functional equation is given by 

22k+ l 7rk+ 1 

where ~ M  2k(Fo (N)) has the Fourier expansion 

cb(z)= - ~ <u(n) r~(m6-  Nn) Pk--1 - -  
m= --~, O<n%m6 

- N  

+-u r~(m), log y + ~ -  (k) +log N ~ - l o g  ~ + 2 ~ (1, ~) 

_ ~ r 1 ( 4 ~ ) ]  y~_ke2~Sm z 

with ~ ( n )  and Pk 1(t) as in Proposition (4.4), qk-1 as in Proposition (3.3e), and 

o~(n) = ~ e~(n, d) log n dl. U (n>0). 
d>0 

N k - 1 ] / ~  
~s]~=1 In the formula for its m th Fourier 

0 
The function ~ is 2~ ds -k" 

coefficient we have replaced n by - n  in the third term; the first two terms are 

absent if m<0.)  

Propositions (4.4) and (4.5) are the preliminary formulas for L~c(f, k) and 
E~(f, k) referred to in the section heading. We now make them more explicit 
by giving a simple closed formula for the arithmetical functions <~(n) and 
o~(n). Let {n} be the genus of any integral ideal n of K satisfying 

N(u) -a (N)N (mod D) 
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(this is independent of the choice of n), {sen} its product with the genus of the 
ideal class sr and (as in Chap. II) 

R~e,t(n)=number of integral ideals of norm n in the genus {t in} 

(n) = 2 ~, s = number of prime factors of (n, D). 

Then we have 

(4.6) Proposition. a) Let n be an integer satisfying (4.2) and e(N)n < O. Then 

~ ( n )  = (5(n) R~_~./(I nl). 

b) Suppose n>O and e(N)=l .  Then 

~ ( n )  = ~ ap(n) logp 
pin 

with 

ap(n)= (~ if e ( p ) = - l ,  

ordp(n) 6(n) R~,c~ P if e(p)=0, 

where in the last two cases {c} is the genus of any integral ideal with N(c) -=-p  
(mod D). 

Remarks. 1. The genus of c in b) is well-defined, since if e ( p ) = - 1  then - p  is 
prime to N and determines a genus by the usual correspondence 

{genera of K} 1 : 1  {xe(Z/DZ) • l e(x)= 1}/(TI/DTL) • 2, 

while if e(p)=0 then the genus characters of c corresponding to all prime 
o 

divisors p '#p  of D are determined (we must have (~t ,c)]= - (__] ]  and the 
\ \ p  ! \p ll 

genus character corresponding to p is therefore also fixed (the product of the 
genus characters corresponding to all prime divisors of D is the trivial charac- 
ter). Explicitly, we could take c=q  when e ( p ) = - I  and c=q p  when e(p)=0, 
where q is a prime ideal satisfying N(q ) -  = - p  (modD) in the first case and in 
the second case p is the prime divisor of p in K and q any prime ideal with 
N (q) =- - 1 ( m o d  D/p). 

2. The numbers ap(n) in (b) are all even, since 6(n) is even if n is divisible 
by a ramified prime and ordp(n)+ 1 is even if n is divisible by an inert prime p 
with R(n/p)#O. This is of course as it should be, because under the assump- 
tions of (b) we have ~ e ( n , d ) = 0 ,  as shown at the beginning of this section, 

din 
and consequently or) (n) = - 2 ~ e,,~ (n, d) log d. 

din 

Proof a) We assume for definiteness that e ( N ) = -  1 and n is positive (i.e. the 
case needed for Proposition (4.4)); the opposite case is exactly similar. If n is 



286 B.H. Gross and D.B. Zagier 

prime to D then the formula is very easy: in this case we have ed(n, d)=e,(d) for 
all divisors d of n (since D2= I, D 1 =D in the definition of r and consequently 
%,(n)= ~e(d)=R(n), the total number of representations of n as the norm of 

an integral ideal of K;  from (4.2) it follows that any such representation 
belongs to the genus {tin}. In general, write n=p]~...p~'no with (no, D ) = l .  

divisor d o f n  with ( d , ~ - , D ) = l  has the form d=p~'...pU~do with Any doLno 
\ 

a n d / ~ = 0  or v i for each i. The function ~e(n, d) is multiplicative in d for n fixed, 
i.e. e~(n,d'd")=~e(n,d')e~(n,d") for d'd"ln, (d ' ,d")=l .  Indeed, let D=D'~.D' 2 
=D'~.D2=D ~ .D 2 be the splittings of D occurring in the definition of e e for 
d', d" and d' d", respectively; then D2=D2D ~ and consequently 

e~(n, d') e~(n, d") 

n N n 

(l any norm from the ideal class sJ prime to D) 

=em (d' d") eD~ ( -  N l d , ~ )  =ed(n, d' d"). 

Hence 

~ { 0 ,  vl} #se{0, v~} dolno 

-- I5I (l+~,r Pr'))' E e(do)" 
i= 1 dolno 

The sum equals R(no), and this in turn equals R(n) because there is a 1:1 
correspondence between integral ideals of norm n o and of norm n given by 
multiplication with p]l.. ,  p~,, where pZ=(pi). If R(n)=0 then both sides of our 
identity are zero and we are done. If not, then the ideals of norm n all belong 
to the same genus. To complete the proof, we must show that e.~(n, pT')= 1 for 
all i if and only if this genus coincides with {tin},  i.e. if and only if the values 
of every genus character )~ on these two genera agree. It suffices to consider )~ 
associated to prime divisors p of D, since these generate the group of genus 

characters. If pXn, then the condition to be checked is just ( ; )  =(~_)-Nl for 

some l prime to p representable as the norm of an ideal in d ,  and this follows 
from (4.2). If p divides n, then p is one of the p~. Every ideal of norm n has the 
form p~"m with N(m)=n/p[', and the value of )~ on this ideal is given by 

X (P~" m)=  X (P~") x(m)= em (P~') eD~(n/P~ '), 

where D z is the prime discriminant associated to p~ (i.e. IDzl=pi, D~=-I 
(mod4)) and D I = D / D  2. But these are the same Da and D 2 a s  occur in the 
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definition of e~c(n, d) for d=p~', so 

ed(n ' p~,)= eD 1 (p~Z) eo2(_ Nn/p~') )~Ol. D2(~)  = ~(p~' m) z ( n ~ )  

and we are done. 
b) This case is rather similar. By Remark 2, we have a~,(n)= ~ap(n) logp 

pin 

with ap(n)=-2~ed(n, d)ordp(d). Write n=pVnl with p,,~n 1. The divisors of n 
dLn 

have the form p~'d I with O<#<v, dlln 1, so using the multiplicativity proved in 
part (a) we find 

v 

ap(n)= -- 2 ~ #a~r pU) �9 ~ ~,~(nl, d 0. 
tt=O dl[nl  

If e(p)= + 1 then ed(n, p")=e(p")= 1 for all/~, so 

(v+ l ) .  Z ~d(n, dl) = ~ e.A(n,P ~') Z e~,(n, dO=a~(n), 
dl ln l  l~-O dl lnl  

and this was shown at the beginning of the section to be zero under the 
hypotheses of (b). Hence ap(n)=O in this case. If e ( p ) = -  1, then the same 
argument shows that ~ ~(n ,  dl)=0,  and consequently ap(n)=0, if v is even, 

dl ln l  
v v 

since then ~ ~(n,  pU)= ~ (-1)~'#0.  If v is odd, then 
/1=0 ~=o 

~ # ~ ( n ,  p U ) = - l + 2 - 3 + . . . - v = - - ~ ( v + l ) ,  
/~=o 

so ap(n)=(v+l) ~ e~i(n, dl). If dl is a divisor of n t and D=DID 2 the corre- 
dllnl 

sponding decomposition of D, then 

~(n, dl) = ~(n l p~, dx) = eo~(p ~) e~c(n 1, dl)= Zoo, 02(c) ~t( -/'/1, dl)=  ~ , (  - nl, dl), 

with c as in the statement of the proposition. Therefore ~ e~(n, d~)=a~,(-n~) 
dllnl  

=6(nl)R~r by part (a), and this is what we want since c](nl)=b(n ) and 
R~r162 ). Finally, suppose plD. Then e~(n,p") vanishes lor 
0 < # < v ,  so 

ap(n)=-2ve~c(n,p ~) ~ e~(n, d 0 = - 2 v  ~ ~,~(n,p~dl)=2v ~ ~(n, dl), 
d~ln~ d~lna d~ln~ 

where for the last equality we have used the identity e~,(n,d)=-e~(n,n/d) 
proved at the beginning of the section and replaced da by n~/d~. A com- 
putation like the one above gives e~,(n, dO=e~,,~-,(-nl ,d 0 in this case, so 
using part (a) again we find 

ap(n) = 2va~r162 , ( -  n~) = 2vb(n 0 R~r ,}(n 0, 

and the desired result follows in this case because 5(n)=26(nt) and 
R~c.~p~_,~(n~)=R~c.~(n/p). This completes the proof of Proposition (4.6). 
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We remark that the formula in b) implies that a)(n) is always a multiple of 
the logarithm of a single prime number. (Specifically: It is 0 if n is divisible to 
an odd power by more than one prime inert in K and equals (ordp(n) 
+l)6(n)R~,~(p)logp if there is a unique such prime p. If there is no such 
prime, then n is the norm of some ideal; let q be the norm of an ideal prime to 

D lying in the genus of the product of this ideal with { t in};  then ( ~ ) = - 1  

for an odd number of prime divisors p of D, and a'd(n) equals 
6(n) ordp(n)R(n)logp if there is exactly one such p and 0 if there is more than 
one.) Actually, this property of a~, can be seen a priori: under the hypothesis 
of b), the sum ~,e~(n,d)d " vanishes at s = 0  and has derivative equal to 

din 
1 , ~v~(n) there, and since this sum has an Euler product (by the multiplicativity 
of dw-~e~(n, d) proved above), we see that a~,(n) can be non-zero only if exactly 
one Euler factor of this sum vanishes at s =0,  and is then an integer multiple of 
the corresponding log p. 

w 5. Holomorphic projection and final formulae Jor L~u (f, r) and E~g(J~ k), k > 1 

In Sects. 3 and 4 we obtained formulae for special values of L~c(f, s) and of its 
derivative in the critical strip as the scalar products of f with certain non- 
holomorphic modular forms. We would like to have instead formulae express- 
ing these values as scalar products of f with something holomorphic. To do 
this we will use a "holomorphic projection lemma" due to Sturm [33] which 
we now state and, since our hypotheses are slightly different from Sturm's, 
prove. 

(5.1) Proposition. Let ~eA/lzk(Fo(N)) be a non-holomorphic modular .,form of 

weight 2k>2 and level N with the Fourier expansion ~(z)=  ~, am(y)e 2~i~, 
m = 0~3 

and suppose that (~[2k~)(z)=O(y ~) as y=Im(z)- - ,oo  for some ~>0 and every 
o~SL 2 (Z). Define 

(4/rm)2k- 1 !am(Y) e-4~myy2k-2dy (m >0). 
am-- (2k--2)! 

Then the function ~(z)= ~ a,,e 2~i'~ is a holomorphic cusp form of weight 2k 
m = l  

and level N and satisfies (f, 4))= (j; ~) for all feS2k(Fo(N)). 

Proof. For m > 0  define the Poincar6 series Pro(z) by 

2rHm az+b 
Pro(Z) = 2 2zHmz e 2k V  = Z (cz+d)-2ke ,.~+a 

where F~=+(10  ~ ) a s  earlier. The series is absolutely convergent because 

k >  1, and the function P,. belongs to  Szk(Fo(N)). Let P* be the series obtained 
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by replacing every term in the series defining P,, by its absolute value. Then we 
have the estimate 

a z + b  
P*(z)<= ~ [(cz +d)-2k e z~i" ~+d I 

< [e2=i~l-t- ~ Icz+d1-2k 

c # : O  

=e-  2'~" + y-k(E(z, k ) -  y k) 
=o(y '-2k) (y--,~) 

since for any s > l  the Eisenstein series E(z, s) for SL2(7/) satisfies E(z , s )=y  ~ 
+O(y 1-~) as y ~ m .  Moreover, since we have replaced Fo(N ) by SL2(TE ) in the 
above estimate, we automatically have the same estimate on P*12k,~ for any 
~eSL2(Z ). It follows that the Fo(N)-invariant function P*(z)[cb(z)[y zk is 
bounded by O(y 1-~) as y ~ m  and similarly for its composition with any 
element of SL2(TZ ). Hence in the integral defining the Petersson scalar product 
of Pm and ~ it is legitimate to replace P,, by its definition as a series and 
interchange the summation and integration. This gives 

co 

($, P,,) = 5 e 2aim~ 4 ( z )  y2k- 2 dy = .[ e -  4=,,y am(y ) y2k -  2 dy 

by the standard unfolding trick. On the other hand, the map fw-+($,f) is an 
antilinear map from S2k(Fo(N)) to r  so is represented by (r for some 
holomorphic cusp form r ~ b,. qm. The above computation with ~ replaced 
by r shows that 

(4~ p=)=i~ 4n~Ybmy2k 2 d 
( 2 k - 2 ) !  

o Y=(4~rn) z~1  bin' 

so the equality (q~, P,~) = ($, P,,) gives b,, = a,, as desired. 
As a special case of Proposition (5.1), if $ is a non-holomorphic modular 

form of weight 2k which is small at the cusps in the sense of the proposition 
(i.e. ($ lc t ) (x+iy)=O(y- ' )  as y ~  ~ for all a), and if the Fourier coefficients of 

are polynomials of degree < 2 k - 2  in 1, then we obtain a holomorphic 
Y 

modular form having the same scalar product with all feS2k(Fo(N)) by drop- 
ping any terms y-~ and replacing any term y-Je  z~'= (m>0, 0 < j < 2 k - 2 )  by 

( 2 k - 2 - j ) !  (4am)~eZ=~,, L We can apply this special case to the functions of 
( 2k -2 ) !  

Corollary (3.4) and Proposition (4.4). 
In Corollary (3.4), the function ~ r is already holomorphic if r=O, as we 

remarked there, so there is nothing to do. If r >  l, then k>  1 (since O<_r<_k-1) 
and , b ,  is small at the cusps in the above sense (this is clear at m since the 
constant term of ,~_~ is a multiple of y-~ and the other terms are O(e-2"Y); at 
the other cusps it can be seen by going back to the definition of ,~_, as the 
trace of the product of a theta function and an Eisenstein series and looking at 
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the expressions for their Fourier developments at the cusps). Hence Proposi- 
tion (5.t) applies to show that the holomorphic projection of ~ is the 

function q,_, = ~ am, r q" with 
m > l  

(47tm)2k- 1 [m~/N] oo 

- e . ,  ~ ( y )  e ' y dy. a,,,., ( 2k -2 ) '  2 rd(m&--nN)~ -4,~,,v 2k-e 
�9 n = O  0 

Since e,,,(y) is a polynomial in 1/y of degree < 2 k - 2 ,  the integral is a sum of 
ordinary gamma integrals. Performing the calculation we find 

( __ 1 )k - r  22k-- t g(N) r ! x 2k 1-~ 

am, r-- ( 2 k - 2 ) !  N'IDI 2k . . . .  -~ b . . . .  

where 

(5.2) 

with 

(5.3) 

b,,,r= ~ re(m[Dl--nN)Pk,~(Nn, mlDl)a2k-2r-z,,~(n) 
O<_n<_mlDl/N 

r 

if n=0,  
(5.4) a21'~(n)=l~.~(n,d)(n/d)2t if n>0.  

hid 

(We have used the functional equation of L(s, 0.) Now Proposition (1.2) gives: 

(5.5) Theorem. Let d be an ideal class in an imaginary quadratic field of 
discriminant D, N an integer prime to D, and r and k two integers satisfying 
0 < r < k - 1 .  For m>O define bin, , by Eqs. (5.2)-(5.4). Then ~ b,,,rq '~ is a 

m>=O 
modular form of weight 2k and level N (and a cusp form if r +O) and 

(_l)k-r(2rC)2(2k-l-r) 2Zk 1 e(N)r! 
Z~(f, 2 k - l - r ) -  ( 2 k - 2 - 2 r ) !  ( 2 k - 2 ) !  [O[ 2k-r--~ (J;~b,,,~q") 

for any f in the space spanned by newforms of weight 2k and level N. 

Here we have omitted the case r = k - 1 ,  since the formula is slightly 
different (cf. Proposition (3.2)) and we will treat this case in a moment, but we 
have included the case r=0 ,  which, as just observed, can be treated without 
holomorphic projection. Note that the coefficients b,,,~ are rational numbers 
and in fact that all summands in (5.2) except the end terms n = 0  and n 
=mIDI/N are integers, and even the end terms are not too far from being 

1 1 
integers) (we have r~(0)=~uu=2 for any D < - 4  and O ' 2 / , , f f ( 0 ) ( ~ 7 ~  for any D <  
- 4 1 - 3 ) .  

For r = k - 1 ,  corresponding to the central point of the critical strip, the 
formula is similar but there are various simplifications. We can suppose that 
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~(N)= - 1 since otherwise L~(f, k)=0 by the functional equation. Then Propo- 
sition (3.2), and consequently Theorem (5.5), are the same as before except that 
the terms with n = 0  must be doubled. However, the function ao.~(n ) can be 
evaluated by the formula in Proposition (4.6), and the polynomial Pk.k-1 is 
expressible in terms of a well-known function, namely 

Pk.k_t(x,y)=y~-l Pk x(1--2x/y), 

where Pk-i denotes the (k-1)st  Legendre polynomial. (Actually, the poly- 
nomials Pk.~ can always be expressed in terms of standard orthogonal poly- 
nomials, namely 

Pk, r( X, Y) ~- yr p r ( 2 k  - 2 - 2 r ,  0 ) ( l  __ 2 x / y ) ,  

where P,(=" ~) are Jacobi polynomials, but these are much less familiar functions.) 
Thus Theorem (5.5) for r = k - 1  takes on the form: 

(5.6) Theorem. Let D, d ,  N be as in the last theorem, r , (N)=- 1, and let k be 
any integer > 1. For m > 0 define 

[ h b,..~=(mlDI) k- ~ r~(m[O[) u 

+ Z a(n)R~.~(n)r~(m]Dt-nN)P k ~ (1 
2nN]]  

0 <n<m[Dl/N 

with 6(n), Rt~.~(n ) as in Proposition (4.6). Then ~ b,..~q m is a modular form of 
m>O 

weight 2k and level N (and a cusp form if k#: 1) and 

(2g)2k 2 2g- l ( k -  1)! 
L~(f, k) (2k_2)! [Dlk _~ ( f ,~bm.~q m ) , ,  

Jbr any f in the space spanned by newforms of weight 2k and level N. 

Theorems (5.5) and (5.6) give all values of L~( f  s) at integral points within 
the critical strip, since the points to the left of s = k can be obtained by applying 
the functional equation. Note that the expression for b,,,ov in Theorem (5.6) can 

be simplified by dropping the term re(mlDI)h and changing the summation 
U 

conditions to O<_n<_mlDl/N, since a(0)=2' ( t=number  of prime factors of D) 
and R~,~(O)=h/2'u (each genus contains h/2' ~ ideal classes, and ~)(0)= 1/2u 
for each ideal class). 

As an example of Theorem (5.6), take N = 5, k = 2 and D = - p, where p is a 

prime satisfying p = 3  (mod 4), ( ~ ) = - 1 ,  and sum over all ideal classes d .  
k i l l  

Since $4(F0(5)) is spanned by a unique eigenform f =  q - 4 q  2 + 2 q 3 +  8q 4 -  ... we 
have (f, ~ b~ qm)=b, ( f , f )  for any form ~ b,, qm in this space. Also ~. L.~(f, s) 

m ,~,/ 

= L(f, s)L~(f s), where e =(-y-), and Pl (x)=x. Hence Theorem (5.6) gives 

p~- L(f, 2) L~(f, 
64n--- ~ (f , f)  2 ) - ~ b , , . ~ = p h ( - p ) +  ~ (p- lOn)R(n)R(p-5n)  

al 1 <n< p 
5 
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din 
of the expression on the right-hand side of this formula are 

P I 3 7 23 43 47 67 83 103 107 127 163 167 223 227 263 283 

{9~ I 1 1 1 49 25 121 361 25 289 25 169 81 121 2025 1 121; 

in accordance with Waldspurger's theorem, they are all squares. 
In general, there is some simplification in Theorem (5.6) if we sum over d .  

Indeed, for any n, lMN we have 

R~,v,.,}(n) r,r ~ R,a,.,} R~}(I)= R(n) R(1) or 0, 

where R(n)= ~ e(d) is the total number of representations of n as the norm of 
din 

an integral ideal of K and we must take R(n)R(I) or 0 depending whether the 
genus of an ideal of norm nl (if there is one) is {n} or not. This is a question of 
the values of genus characters associated to the primes p dividing N. For  l 
= m I D ] - n N ,  - N  ==- N(n) (modD) these conditions are automatic for pXn since 
1= N(n)n (modp). Hence we have 

,~ p l(n, D) nN 

where ~p is the homorphism Q •  defined by ~p(n)= (~) for p)In, ~p(P) 

= -  -([D]/P I (cf. remarks at the end of w of Chap. II). Thus the formula for 

y" L~c(f, k)= L(f, k)L~(f, k) is a little simpler than the formula for the individual 

L~c(f, k), as might be expected. 
This completes our discussion of the values of L,c(f, s) at integer points in 

the critical strip. We turn now to the derivative at s=  k, under the assumption 
that e(N)= 1, so that L~(f, k) vanishes. We must apply Proposition (5.1) to the 
function ~ of Proposition (4.5). We assume k> 1 (the case k=  1 will be the 
subject of the next section). Then the growth conditions at the cusps required 
in Proposition (5.1) are satisfied. Indeed, at ~ this follows from the Fourier 
expansion given in Proposition (4.5), since (denoting by am(Y ) the coefficient of 
e 2nimz and using the estimates pk_l(t)=o(tk-1), qk l(t)=O( tk le-t), ~(n) 
=O(n~), r~(n)=O(n~)) we have 

[ O(m k+~) (m >0), 

am (Y) = / O (yl - k log y) (m = 0), 

[O([m[k+~e 4~tmiy) ( m < 0 )  

and hence 4)(z)=O(y ~ k 1ogy). At the other cusps, ~ has an expansion of the 
same type and satisfies the same estimate, as we can see by going back to the 
definition of ~ in terms of theta and Eisenstein series. Hence we can apply 
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Proposition (5.1) to get (f, ~ )=( f ,  y" amq m) with 
m > l  

(2 k - 2) ! ~' 
(4rcm) 2k-1 am= ~ ,~,,yyZk 2 dy 

(4rc~Ny) yk_l e_4~y  dy = -  ~, q'~(n)re(m6--Nn) ~ Pk , w 
0 < n _ < ~  0 

+u r~c(m) yk-1 logye-4~,,Ydy 

N6 E 

0 

- a,~c(n)r~c(m6+nN)~qk 1 - -  
n = l  0 - 

The first integral is elementary and was already evaluated for the proof of 
Theorem (5.6): 

~Pk 1 yk_le_4~,,Ydy = _--1 Pk 1 1 - 2 " N ~  
o t ~m) m6] '  

where Pk-1 is the (k-1)s t  Legendre polynomial. The values of the next two 
integrals follow immediately from the definition of the gamma function: 

b \(4zcm)S ! (4nm)k (k ) -  , 

oo 
.[ yk 1 e ,~ , ,Ydy=(k -1 )  ! 
o (47zm) k" 

Finally, substituting into the last integral the formula for qk-~ given in Propo- 
sition (3.3 e), we find 

i yt, le-4~, ,Ydy = yk-1 e 4~,,y~ 
(x_ l )  ~-1 4 ~ n N y x  

qk-1 - -  x k  e ~ d x d y  
0 1 

( k - l ) !  ~' ( x - l )  k - l d x  

--(4~m)k ! : ~ n n N  f "  x ~ l + ~ x  

The last integral is clearly elementary, since we can write the integrand by 
a partial fraction decomposition as a linear combination of terms x ~ and 

1 nN \ J 2 nN + ~ 6 x )  with l < j < k .  Explicitly, if we set z = l +  ~ ,  then the substitu- 

tion x = l  + i / z - - 1  et gives 
[/ z + l  

( x - l )  k-~ _ dx dt 

1 ( z - 1  \k _o~ ( Z + I / ~ = I  t) k' x k 1 + - T -  x)  cosh 
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and this is the standard integral representation of 2Qk l(z), where Q,_I is the 
Legendre function of the second kind as in Chap. II. This function is indeed 
elementary; it is defined by the properties 

. z + l  
Qk 1 (z)=�89 1(z) log z-- 1 +(polynomial in z), 

(5.7) Qk_l(z)=O(z -k) (z~oo). 

1 z + l  _1 z + l  1.) all this The first values are Qo(z)=~ log z ~ - ,  Q1 ( z ) -~z  log z -  1 Putting 
! 

(4~)k- 1 (k -- 1) ! 
together, and renormalizing slightly by writing (2k -2 ) !  am, d for am, we 

obtain the following theorem; since this is the basic result of this chapter (for 
k > 1), we have repeated our assumptions and notations. 

(5.8) Theorem. Suppose k> l, N>=I, and d an ideal class in an imaginary 

quadratic field K of discriminant D with e(N)= l (e= (D)). For each m>O define 

am,.e=m k 1 [ _  ~ a'~(n)r.e(m[DI--Nn)Pk 1(1 2nN] 

h ( r, 21og2 +logUIDl+  ( , l) +u  re(m) 2 ~ (k ) -  m L 

( 2nU]] 
- 2,= a e(n)r~(mlDl+nN)Ok_ 1 1 +m~D~/], 

where h, u and re(n ) are defined as usual, a_e(n) and a.'~(n) are the arithmetical 
functions occurring in Propositions (4.4)-(4.6), 

Pk_I(Z)=2' k ~ ( - 1 ) " ( k - t ) ( 2 k k 2 1 2 n ) z k - l - 2 "  
O < n < = ( k  - 1 ) / 2  n - -  

is the (k-1)st  Legendre polynomial, and Qk 1(z) is the (k-1)st Legendre Junc- 
tion of  the second kind, defined by the properties (5.7). Then the function 

a,,,~q ~ is a cusp form of weight 2k and level N and we have 
m>=l 

k)= 0, 
24k- 1 /~2k 

/~,(f, k)=  ( f  ~ am..cq m) 
( 2 k -  2)!1/1~ ,.>=o 

Jor all f in the space spanned by newforms of weight 2k and level N. 

w The case k= l : final formula for Ed( f, 1) 

Theorem (5.8) breaks down for forms of weight 2 for several reasons: Proposi- 
tion (5.1) is not true for k = 1, the function ~ of Proposition (4.5) is not small at 
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the cusps, and the infinite series in the definition of a,,,.~ is no longer con- 
z + l  . 

vergent (because the function Q~176  z - 1  is only O(z -1) as z--.oo). In 

this section we will discuss the modifications needed to take care of these 
difficulties. 

In the Fourier expansion of ~ in Proposition (4.5), all terms with m4:0 are 
exponentially small as y = I m ( z )  goes to infinity, while the m = 0  term has the 
form (A logy+B)y l -k+O(e  -cy) for suitable constants A, B and c>0.  Thus 
when k = 1 the function ~ grows like A log y +B  rather than having the decay 
behavior O(y -~) required in Proposition (5.1). The same is true at the other 
cusps, as we shall see, i.e. we have 

(6.1) (~I2~)(z)=A~ logy+B~+O(y ~:) as y ~  

( ~ e S L  2 ( Z ) ,  o~(oo) = ~, g > O) 

at a cusp ~cQu{oo}.  A priori, for a function q~]~/z(ffo(N)) satisfying this 
growth condition there are 2H constants A~ and B~ to deal with, where H is 
the number of cusps of Fo(N). This number is the sum over all positive divisors 

a 
N 1 of N of 4)((N1,N/N1) ) (qS=Euler function), the invariants of a cusp ~= 

C 

being N 1 =(c, N) and the class of (c/N1) l a modulo (N 1, N/N 0. However, for 
our particular function ~ the coefficients A~ and B~ will turn out to depend 
only on the first invariant N 1. We now formulate the analogue of Proposition 
(5.1) for functions of this type. 

(6.2) Proposition. Let 45(z)= ~ am(y)e 2~i'~ be a function in ]~/2(Fo(N)) sat- 
ra -- oo 

isfying the growth condition (6.1) at all cusps ~, and suppose that the coefficients 
A~ and B~ depend only on the greatest common divisor N 1 of N and the 
denominator of ~, say A~=A(N1), B~=B(N O. Let {~(M), fl(M): MIN} be the 
solution of the non-singular system of linear equations 

.~... (M, NI) 2 
(6.3) M ~  ~(M)= A(Nx) (N~ IN), 

 64, MIN M2 fl(M)+~(M) log =B(N 0 (N~ IN). 

2rcimz~s "E "N" satisfying Then there is a holomorphic cusp form ~= ame 2t ot )) 
m - 1  

(cb,f)=(4),f) for all feS2(Fo(N)) and with a,, given by 

[ f am(y)e y y+24e(1)cr~(m)s 1 (6.5) a, ,= lira/4rcm J -4~,,, s d 
s ~ 0  k 

+ 24 fl(1) al (m)+ 48o~(1)[a'l (m)-al  (m) (log 2m + l + ~  (2))] 

./or (m, N)=  1 (al (m)= ~ d, a'l (m)= ~ d log d). 
dim dl m 
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Proof. Suppose first that A(N1)=B(NO=O for all NI lN ,  i.e. that 45 satisfies the 
growth conditions of Proposition (5.1). The proof of Proposition (5.1) goes 
wrong for k = l  because the series defining the majorant P* diverges (due to 
the pole of E(z,s) at s= l ) .  To get around this, we use "Hecke's trick": we 
replace Pm (m > 1) by the absolutely convergent series 

Pro, s(2) = 2 yS e2nimz[2 ,y 
F~\Fo(N) 

Z 1 yS 2 him az + b 
= e c2+d (Re(s)>0) 

(a ~)~r~\ro(u) (cz +d)2 Icz +d12S 

and then continue analytically to s=0.  The series P*s=P*~ (a=Re(s)) ob- 
tained by replacing every term of P,.,s by its absolute value is majorized by 
O(y -~-~) by the same calculation as in the case k>  1, the O( )-constant being 
itself O(a 1) as a ~ 0 .  Hence if 0 < a < e ,  45=0(y ~) at each cusp, then the 
calculation used for (5.1) is justified and gives 

ct3 

(45, Pm,~) = ~ e - 2 ~ i ~ t ~ ( z ) y S d y = ~ e  4~myam(y) y~dy 
r~ \.9 o 

(we have replaced s by ~-in the Petersson scalar product to get a holomorphic 
function of s). As before, we know a priori that there is a holomorphic cusp 
form q~= ~ a,. q" having the same scalar products with holomorphic forms as 

m>=l 
45, and replacing 45 by q~ in the last formula gives 

4~,, ~ F ( l + s )  
(4~,P,,,~)=%! e- Y y d y = ( ~-m~-~ s a m . 

Furthermore, the function P,,=lim Pm,~ is known to be a holomorphic cusp 
s ~ 0  

form of weight 2 (this is proved by computing the Fourier coefficients of P,,,~ as 
functions of s), so by the defining property of ~ we have 

a,.=41rm lim ((b, P,,,~)=4rtrn(~, Pro)= 4rcm(45, Pm) 
s ~ 0  

=4~m lim ~ e -'*'~my am(Y) y~ dy, 
s~O 0 

where the limit is taken through values of s tending to 0 with Re(s) positive. 
This is equivalent with (6.5) since all ~(M) and/~(M) are 0 in this case. 

We now turn to the general case, where 45 satisfies (6.1). Consider the 
Eisenstein series 

1 yS 
Ez, s(z) -- ~ Y'Iz7--�89 Z (cz+d)Z [cz+d[2~ 

7eF~\SL2(~ (c, d)= 1 

which is absolutely convergent for Re(s)>2 and defines a non-holomorphic 
modular function of weight 2 on SLz(Z ). This function is orthogonal to 
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holomorphic cusp forms by the calculation above (E2,  s is just the function P,,,~ 
for N = I  with m=0)  and has the form yS+c(s)y t-~+O(e-Y) as y--, oo, where 
c(s) and the coefficients in the O( )-term are holomorphic near s=0.  Hence the 
two functions 

e(z):  E2,s(z)l~= o ,  F(z) E~,,(z)l~_ o ,  

where I~=o is defined by holomorphic continuation or simply as the limit for 
s'-~0, belong to/~2(SL2(Z)), are orthogonal to cusp forms, and satisfy 

as y--,oo. Hence if we have a function 43 in M2(SL2(Z)) satisfying 43(z) 
=A logy+B+O(y -~) for some constants A and B, then we can subtract AF(z) 
+BE(z) from 43 to obtain a new function having the same scalar products with 
holomorphic forms as 43 and which is O(y -~) at infinity, so we can find the 
holomorphic projection of 43 by applying the result already obtained to this 
function. For a function of higher level satisfying (6.1) with arbitrary A~ and 
Be, we would in general have to subtract off the analogues of E(z) and F(z) 
defined using the analogue of Ez,,(z) for all cusps of Fo(N ). However, under the 
hypothesis of (6.2) that Ar and Be depend only on the g.c.d, of N and the 
denominator of 4, we need only work with the functions E(Mz) and F(Mz), 
where M runs over the positive divisors of N. To see this, we must compute 

their behaviour at the various cusps. Let ~=a ,  (a ,c )= l ,  (c,N)=N 1. Then for 
a a' M c 1 

MIN we have M c =  ~ with a'=(M ' N1 ~ a, c'=(M, N1) c, (a',c')=l. Complete 

( : )  (a') ( :  ~) (a' b') 
and to matrices e =  , e '=  c' c' d' in SL2(Z ) and let z, z' be 

(M,N 0 a'z'+b' az+b 
related by c ' z ' + d ' -  M (cz+d). Then c ' z ' + d ' - M c z + ~  and y' 

y, so as y ~ oo we have y'-* oo also and 
( M ,  N1) 2 

M 

Ez, s(Mz)12 ~=(cz+d) -2 E2 (M az+b~cz+d] 

(M, N1) 2 {a'z'+b'~ 
- M2 (c'z'+d')-2E2,skc, z,+d,] 

(M, N1) 2 
t 

- -  Mz E2, s( z ) 

(M, N1) 2 
_ M 2 ( y , s + O ( y , -  1 s)) 

(M, N1) 2+2s 
M2+~ y~+O(y 1-~). 
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Setting s = 0, or differentiating in s and then setting s = 0, we find 

E ( M z ) I 2 o t -  M 2  + 0  , 

(M, N1) 2 ( M ~ t )  2 ) 1 
- M2 (log y+log +O (y logy) F(Mz) I2~ 

as y~oo.  It follows that the function ~ {c~(M)F(Mz)+fl(M)E(Mz)},  which is 
MIN 

orthogonal to cusp forms, has the expansion A(N1) logy+B(NO+O(y  1 logy) 
at ~ if e(M) and /~(m) satisfy Eqs. (6.3) and (6.4), and hence that we have a 
decomposition 

~(z)= ~*(z)+ ~ {~(M) F(Mz)+ It(M) E(Mz)} 
MIN 

where ~*ff/~Iz(F0(N)) has the same Petersson scalar products with holomor- 
phic cusp forms as ~ does and is small at the cusps. Hence ~ and ~* have the 
same holomorphic projection cb, and, by what has already been proved, the mth 
Fourier coefficient of 4~ is given by 

a , , = 4 n m l i m  S -4~,,r . e am(y) y dy 
s~O 0 

where $*(z)= * 2nimz am(y ) e . Let 
m 

E(z)= ~ e(m,y)e z"im:, F(z)= ~ f ( m , y ) e  2"i": 

be the Fourier developments of E(z) and F(z). Then for m prime to N we have 
a*(y)=a, ,@)-~(1)f(m,  y)- f l (1)e(m, y). Hence to establish (6.5) we must show 
that for m > 0 

~ e(rn, y)e_4~,,Y yS dy = 6 - - -  al(m)+o(1), 
0 lcm 

oo 

[. f(m, y) e -4~"'  y~ dy 
0 

6 12 12 (log 2m +~+~ '  ) 
- -  0"1 ( m ) S  - 1  - - - -  a'l(m)+ a,(m) ~m ~m ~m ~- (2) +o(1) 

as s-+0. The first equation is trivial since e ( m , y ) = - 2 4 a l ( m  ) for m>0. To 
prove the second we need to know the Fourier coefficients f(m, y), which we 
compute by working out the Fourier expansion of E2,~. The identity 

1 yS 2i 0 ( yS+l ] 
(cz+d) I c z + d l Z S - s + l  O-z \[cz+dl 2 ~  ! 
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2i 
implies E2,,(Z)-s+ 1 ?~z E(z,s+l), where E(z,s) is the Eisenstein series of 

weight 0 on SL2(Z); the well-known Fourier expansion 

n~ F(s-�89 ~(2s-  1) E(z, s)= y~ 4 yl -s 
F(s) {(2s) 

2 n s y{ 
r(s)~(2s) ~ Iml~ ~62s-l(m)Ks--~(2n[mly)e2~i"~ 

m~O 

(where a~(m)= ~ d ~, K~(x)= K-Bessel function) then gives 
dim 

E2,.(z)=yS n�89189 1 ~+ 2~i.,~ 
F(s+2)~(2s+2) Y m.o~ e2"~(m'y)e ' 

2ns+a ,m, ~-~ (,3 ) 
(]/ y K~+ ~ (2n lm[ y)). e2's(m' Y)=F(s +2) ff(2s +2) a2'+ 1 (m) e 2"'~' ? y - 2 n m  

Integration by parts gives 

27rl +tm-~-t  ~, 
,[ e2. t(m~ y) e-4~,,r y~ d y= F2 ' t'~'2 ' 2t al+2t(m)sj o ( -t-)~.t • ; 0 

for m > 1 and 0 < t < Re (s). The integral is tabulated and equals 

F(s+t + 1) ['(s-t) rc ~ 
F(s+ 1)(4rim) ~+~ 

Since f(m, Y)=?t e2't(m' Y)lt=o, we get 

[ ] ~ f(m,y)e ,~myyS 8 -2n~+'m-~- 'V ( s+t+l )F(s - t )  
o d y = ~  (4nm)~+~F(2+t)F(s)~(2+2t) 0"1 + 2 ' ( m )  , = o  

/ '(s+l) 2~r'l(m)+al(m) log + 7 - 1 - 2  (2)+ = - 24 (4nm)S+T 

(7 =Euler 's constant), and the Laurent expansion of this near s = 0  begins as 
given above. 

This completes the proof of Proposition (6.2), except that we still have to 
verify that the system of Eqs. (6.3) and (6.4) always has a solution, i.e. that the 
ao(N ) x Cro(N ) matrix 

(M, N1) 2 
CN={CN(N1, M)}N~,M[N, CN(NI, M)= M 2 

is invertible. Since the coefficients CN(N1, M) are multiplicative (i.e. 
Cnpvp(Iqp ~p, I~p.p)=Iqcpvp(p~p, pU.), the matrix C N for N=~Ip  ~ is the 
Kronecker product of the matrices Cpvp, so it suffices to check this for N =pL 
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But 

t l  p-2 p 4 p 6 ... p 2v \ i 1 p-2  p -4  ... p-2V+2 

Cp~= 1 1 p. 2 . . .  p-2V+4 

1 1 1 ... p -2  

1 1 1 ... 1 

and one sees by inspection that this is invertible with 
tridiagonal matrix 

1 
(6.6) Cpv ~ - p 2 _  1 

p~ - 1 0 0 ... 
- -  2 p2+1 --1 0 ... 

0 __p2 p 2 + l  --1 ... 

0 0 0 ... __p2  p 2 + l  

0 0 0 ... 0 _p2 

reverse given by the 

o\ 
0 

0 

This completes the proof of (6.2). Moreover, since we know the inverse of CN 
we can solve the Eqs. (6.3) and (6.4) explicitly and in particular give a formula 
for the numbers c((1) and fl(1) occurring in (6.5): 

(6.7) Proposition. Let the notations be as in Proposition (6.2). Then 

#(NO a(1)=p 1 ~" _ _ _  A(NO ' N, tN N( 
fl(N1) fl(1)=p a y '  - -  (B(Nx)-2A(N1)logNO-2~(1) ~ l ogp 

N, IN N1 z p IN P 2 ~] '  

#(N1) 
where #( ) is the gSbius function and p= I~ (1 _p-2)= ~, 

pIN NIIN N1 z 

I P(N1) by (6.6) and the multiplicativity proper- Proof We have C~ 1(1, N1)= p N~ 

ty of CN, So the formula for ~(1) follows immediately from (6.3). Rewrite (6.4) 
in the form 

Cu(N1, M) fl(M) = B(Nx)- ~ CN(N1, M) c((M) log (M, N1) 2 
MIN MIN M 

= B(N1) + ~ Sp(N1) log p, 
P 

where ~ denotes a sum over all primes dividing N and 
P 

Sp(NO= ~ CN(N1, M) a(M)(vp(M)- 2 rain {vp(N1), Vp(M)}). 
MIN 

- 1  
p2 
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The formula for C~ 1(1, N~) just given yields 

~ ( N x )  
f l( l )=p-t  ~ - -  [B(N1)+ ~ Sp(N1) logp] 

NI IN N( p 
We must show 

/~(N 0 #(N1) ( 1 ) 
N, IN ~ N/ sp(Nl)=-2u, lu ~ --N2 A(NO % ( N O + ~  -1-1 " 

By definition of ~(M) we have 

sp(NO = ~ ~ CN(N1, M) C~ I(M, N2)(vp(M)- 2 min {Vp(M), vp(N0}) A(N2). 
M[N NztM 

Write N =pV N' with p,fN' and N1 = p~N; with N~IN'; then the multiplicativity 
property of C N and C~ ~ gives 

sp(N1)= ~ [ ~ CN,(N;,M')CN, I(M',N~)] 
N'21N" M'IN" 

O<=K<,~ 

• [ ~ Cv~(p ~, pU) Cv~ ~ (pU, p~)(/~- 2 min {p, 2})] A (p~ N~). 
1 <,u<v 

The first expression in square brackets is 6N]N~ (Kronecker delta) by definition. 
Hence 

P(N~) {sv(N~)-~ sv(pN;) } ,u(NO s,,(NO= Y~ N; ~ 

NIIN" u=l N~ 2 A(p~N~) 
0<~<v 

The expression in square brackets equals 2 p-a.,  and 

l - 1 (K=0) 

pZ-~_, - P(P")(tc+ 1 ) 

"=' / :  2 -1  (K>I) 

by (6.6). This completes the proof. 
To apply Propositions (6.2) and (6.7) we need the coefficients A(NI) and 

B(N~) for our particular function ~. They are given by the following: 

(6.8) Proposition. Let c~ be the function of Proposition (4,5) for k= 1, e(N)= 1. 
Then ~ satisfies the hypotheses of Proposition (6.2) with 

A(NI)= h ~(NON1 8(N0=A(N0 logN~--~+2s (N~IN), 
2u 2 N ' 

where h, u, e have the usual meaning, 7 = Euler' s constant. 
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Proof The case N 1 = N follows directly from the Fourier expansion at infinity 
given in Proposition (4.5), since, as remarked already, all terms in this expan- 

h ( N6y_7+2E(1,~))e2~im~form=Oareexpo_ sion except the term - r~(m) log 
u 

nentially small as y--* ~ .  To obtain the corresponding result at other cusps, we 

]/6 ~ ~l~=o, with ~ must go back to the definition of q3 as 2n ~s �9 

=Tr~~ as in Proposition (1.2), and use the formulas given in 
w167 for the Fourier expansions of 0~ and E] 1) in the various cusps. 

Let ~ I p I ( ~ )  be a cusp, N 1 the greatest common divisor of N and the 
denominator of r and choose a matrix c~SL2(Z ) sending ~ to ~. By defini- 
tion of the trace operator we have 

4s12 ~ = E O~(z) E~I)(N z)l 2 ~2. 
7~Fo(ND)\Fo(N)c~ 

F o r e a c h T = ( ~  bd) in the sum we have (c,N)=Nl since 7ct-leFo(N). Let a' 

=Nea, c'=c/N1, where Nz=N/NI; then a'--=N a_ and (a ' ,c ' )=l .  Choose a 
C' C 

matrix 7 ' = (  a' b') ~_~ c' d' GSLz(Z) and define z' by N?z=7'z', c'z'+d'= (cz+d) 

as in the proof of Proposition (6.2). Then 

1 
O~(z) E(~')(Nz)12 ? = (0d(z)[ , V)(E(~a'(Nz)I, y)=(0d[ , ?)(z) �9 N22 

By Lemma (2.3) and formula (2.2) we have 

(~.~l 7')(z'). 

(c) 
(0~r ?)(z)=~~ 622 eDz(d) K(D1)-I 61~ZD' "D2(~r 0~,(2),  

(1) , , r , (Es I, ~ )(z )=%,(c )~o2(d 3,)6C-'  E~ ~ [z' +c* d~ 
\ 61 1' 

where D=D 1 .D 2 is the decomposition of D into fundamental discriminants 
with (c, D)=[D2] and 6i=JDi]. Note that (c', D)=(c, D) because N is prime to D. 
As y ~ 0 0  we have 

1 
0 ~ , ~ , ( z ) = ~ +  ... .  

[L(2s+l, Oy~+... if D I = I  , 

~)(z~-- [ ... E~ , , -  ~(0) L(2s, ~) y-S + if D 2 = 1, 

... otherwise, 

(here ". . ." denotes exponentially small terms), the first by definition of the 
theta-series and the second by the calculations in the proof of Proposition (3.2). 
If D I = I  then c and c' are divisible by D, so d=a-l=N2a' - l=Nz d' (modD) 
and em(dd')=e(N2). If D 2 = l  then c and c' are prime to D and eo,(cc') 
=e(c2/Nt)=e(NO. Also e(NO=e(N2) since we are assuming e(N)=l ,  and ~:(1) 
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= 1, ~c(D)= i. Hence 

Zb/ 1~/2 

(Ou(z) E:')(Nz))[2 7=i '~ ~. e,(Nj) V~(0)L(2s, Q(N, y /N2)~+  ... 

if DIG 

if (c, D)= 1, 

otherwise. 

Since the collection of left cosets Fo(ND)\Fo(N)~ contains one coset of ele- 
ments 7 with D Ic and LDI cosets of 7 with (c, O)= 1, we deduce 

[ iVy(O) L(2s, Q(N~ y/N2) -s] +... 1 e(Na) L(2s+I,e)(N~y/N2) ~ ID[ ~ (~12 c0(z)=2u N2 - -  

as y---,~, and the result follows by substituting V~(0)= rt~F(s+�89 i and 
computing the derivative at s = 0. F(s + 1) 

Combining Propositions (6.7) and (6.8), we find 

~(1)= N lp-~ ~ #(N~)~(N~)_ h N - ~ [ I  1+ , 
N,[N N1 2u2 piN P / 

6 E log p '~ 
/?(1)=~(1) (log ~ - 7 + e  ~ (1, ~ ) - e  ~ s p2_l  ! 

for our function 45. We still have to calculate the integral in (6.5). From 
Proposition (4.5) we have 

n = |  

for m > 0, where we have made the abbreviations 

Hence 

Am= h r~r (m), 
U 

Bm=A m l o g ~ - - 7 + 2 ~ ( 1 ,  e ) -  ~ a~(n)r~(m6-Nn), 
1 < - n < - ~  - 

C,..  = - a~(n) r,e(m6 + Nn). 

F ( s + l )  ( F' ) 
~ am(y)e-4~mY y~ Am F-(S+ l ) -Aml~  Bm 

~ ( 4 ~ N  Y) e_4~m~,y ~ + ~=lC,,,!qo - -  dy. 

1 
The first term has the finite limit ~ ( - A m 7 - A m  log4nm+Bm) as s ~ 0 .  The 

integral in the infinite sum is given by 
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1 e - -  

0 X 

At s = 0 this equals 

47~m 1 

while as n ~ oo it equals 

(4~zm)~+ 1 t 

'*~"Nrx \ F(s+I) S(1 nN )-s l dx 
dx) e-4'~"ry~dY=(47zm) ~+1 i +~-~ x --x 

1 )  1 t x+n~6/nN d x = ~ m  log l + n N  ' 

+O(n-~-2x ,-2)] dx 1 F(s+l )  
x s + l  (47rnN/6) ~+I 

+O(n-s-2), 
the O( )-constant being uniform near s=0. On the other hand, the Legendre 
function Qs(x) satisfies 

F(S + 1) 2 
Q,( l+2t )=  It ~-1+O(t-~-2)] as t--*~, 

2F(2s+2) 

so we can write 

09 

e YY dY=(4mn)S+~F(s+2) Qs + ~ - )  +e.(s) 

with ~.(s)=O(n -s z) as n ~ o e  and e.(0)=0. Since C.,.=O(n c) for any c>0, the 
series ~ C,..e.(s) converges uniformly near s =0 and vanishes at s = 0. Hence 

n 

oo 

4~m ~ am(y) e- 4,~,,,y yS dy = B,. - A,,,(?, + log 4~m) 
0 

2r(es+2) ~ c,..Qs(1 2nN\ 
-+ (47zm)SF(s+ 2) .=1 + ~ - )  +o(1) 

as s---,0, and putting this into (6.5) we obtain 

a,. = B m - Am( 7 + log 4ztm) 

+l)m [(4g~m)~F-~2 ) [  2F(2s+2) .=x C.,.Q~ ( 1 ~  +m~)2nN\ -~ 24~(l!a1(m)] 

t 
an expression which can be further simplified by multiplying the expression in 

(4rcm)~ C(s + 2) 
square brackets by to replace the lim term by 

F(2s+2) ~ o  

[ ( 2rtS~ 240~(11o1(rn) ] 
limo 2 ~  C,..Q~ l+~-~-)q-  - +24~z(1)at(m)(log4~m+7-1 ). 

n = l  
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(The argument just described was already used in the case N = m =  1 in [18], 
p. 218.) Putting into this the expressions for c~(1), /3(1), A,,, B,, and C,,, given 
above, and combining the resulting formula with the assertion of Proposition 
(4.5), we obtain our main result: 

(6.9) Theorem. Let D, ~ ,  h, u, ~ have their usual meanings, N a natural number 
with e,(N)=l. Then there exists a holomorphic cusp cusp form O,r 

oo 

= ~ am, ~ e 2rdmz o f  weight 2 and level N such that 
m = l  

8g 2 
i) Ld( f, 1)=0, /~+4(f, 1 ) = ~  (J; cb.~) for any cusp form f in the space span- 

ned by newforms of weight 2 and level N, and 
ii) the mth Fourier coefficient of O~ for m prime to N is given by 

a,,+~= - ~ a'~(n)re(mlDI-nN ) 
1 <_n < m I D ]  

- N 

+ure (m)  l o g 4 ~ z ~ - 2 7 + 2 ~ ( 1 , e )  

+lim++o - 2 . =  1 qe(n)re(mJDl+nN)Q" 1 + m T D [ ) - ~ -  ch(m) s 

h~c[al(m)(log N logp ~' E 
§  2- L , /D/§ 2pl~x ~ -  1 § 2 4 7  ~- ( 2 ) - 2  L ( l 'e))  

+ ~ d log , 
dim 

whererrl(m)= ~d'tc=-12//Np[Ilu ( l + ~ - )  'qeand 

V. Main identity, consequences and generalizations 

In the first section of this chapter we combine the results of Chaps. II-IV to 
prove the theorems stated in w of Chap. I. The proofs of their various 
consequences for the Birch-Swinnerton-Dyer conjecture are given in w The 
application to the problem of estimating class numbers of imaginary quadratic 
fields was described in Chap. I and will not be discussed again. 

These results involve only the special case of the calculations of Chap. IV 
when the weight of the modular form f is 2 and its level is a norm in the 
imaginary quadratic field K. The corresponding results when these assump- 
tions are dropped are discussed in w (weight 2 but arbitrary level) and w 
(higher weight). The results described in w relating the values of L~(f, 1) or 
E~(f, 1) to heights of Heegner points of more general types than those dis- 
cussed so far in this paper, have been essentially proved; the proofs will be 
given in a later paper. The case k>  1 is discussed in w where we describe a 
conjectural interpretation of the formula for /~+~(f,k) in terms of heights of 
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higher-dimensional "Heegner cycles" and state a conjecture according to which 
certain combinations of special values at Heegner points of the resolvent kernel 
function G~.~(z, z') of Chap. II are logarithms of algebraic numbers belonging 
to the Hilbert class field of K. 

w 1. Heights of Heegner points and derivatives of L-series 

The notations and assumptions are again as in Chaps. II and III: it is assumed 
that every prime divisor of N splits in our imaginary quadratic field K, 
xeXo(N)(H ) is one of the Heegner points associated to K (H as usual the 
Hilbert class field of K), c denotes the class of (x)- (oo)  in Jac(Xo(N))(H ), d is 
an ideal class of K and a the corresponding element of G = Gal (H/K). The first 
assertion of Theorem (6.1) of Chap. I was that the function g,~(z) 
= ~ (c,T, ,d)  qm is a cusp form of weight 2 on Fo(N ). This in fact has 

r n ~ l  

nothing at all to do with Heegner points: if y and z are any two points of 
Jo(N)(H), then ~ (y, Tmz)q m is a cusp form of weight 2 and level N. In fact, 

m > l  

if ~ is any Q-linear map from the Hecke algebra 11" to ~, then ~ ~(Tm)qm is 
m > l  

such a cusp form. The proof of this is a simple formal argument; since it may 
not be familiar to all readers, we give it here. 

If J is any abelian variety over Q and S its cotangent space at the origin, 
then endomorphisms of J act faithfully on S. Take J to be the Jacobian of 
Xo(N); then S can be identified with the space of cusp forms of weight 2 and 
level N having rational Fourier coefficients. Hence the map ][ --* End~(S) is 
injective (recall that 31" is defined as the subalgebra of End~J spanned by the 
Hecke operators T,,). In particular, d i n ~  is finite and bounded by d 2, where d 
=din~S=dimr For each m e n  let am: S ~ Q  be the map sending a 
cusp form to its m-th Fourier coefficient, and define a mapfl:  J I 'xS- - ,Q by 
fl(T,f)=al(Tf). We claim that fl is a perfect pairing (and hence that dirn~Jr 
=d). Indeed, if for some f eS  the map fl(.,f) vanishes identically then am(f) 
=al(T,.f)=fl(T,.,f)=O for all m, so f = 0 ;  conversely, if for some TeJr  the 
map fl(T, .) vanishes identically then for any f sS  we have a,.(Tf)=a~(TmTf) 
=al(TTmf)=fl(T, Tmf)=O for all m and consequently Tf=O, so the injectivity 
of "ff-,EndQ(S) implies T=0 .  The fact that fl is a perfect pairing means in 
particular that any eeHon~(11",~) can be represented as fi(.,f) for some 
f eS |  and then ~ a(T,.)qm=f 

m__>l 

This proves that g~r is a cusp form on Fo(N ) as claimed. To identify it, we 
must look at the formulas for its Fourier coefficients. With d - - (x ) - (0 )  as usual 
we have (c, T, ,d)=(c,  T,,d ~) because c and d give the same class in J(H)| 
by the Manin-Drinfeld theorem ([4], Cor. 3.6). For  the latter symbol we have 
the decomposition (c,T,,d~)=~(c,T,,d~)~ where if ]clc~[r,,d~l#:O the local 

v 

symbols (c, T,~d~)~, must be defined as in w of Chap. II. The formula for the 
sum of the archimedean local symbols given in Propositions (4.2) and (5.8) of 
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Chap. II can be written more simply by using the first part of Proposition (4.6) 
of Chap. IV as 

[ ~ ( 2nN\ hK~l(m)] 
(C'Tmd~)~=lim~' -2uZZa~(n)r~(mlDl+nN)Q~-~.=l l+m~D~) s - 1  J 

logp + 2 + 2  (2 ) -2  ~ (1, e)) +h~c [a, (m) (log N ~' E 

+ ~ d l o g  m]  
dim d2 

E 0 _ 2 7 _ 2  log2n+log  [DI] +hure(m) [2 ~ (1, 

for (m, N)= 1, where • (n )=  ~ ~e(n, d) with e~(n, d) (=0,  1 or -1 )  as in Propo- 
din 

sition (3.2) of Chap. IV and 

h=h K, D=D K, u=u K 

the class number, discriminant, �89 number of units of K; 

~ = K u =  - 1 2  1 + , a~(m)= ~ d ,  7=Euler's constant; 
dim 

Q~- 1 (t) = Legendre function of the second kind. 
Similarly, we can combine the formulas for ~" (c, T,,d~)v given in Pro- 

t'lp 
positions (9.2), (9.7) and (9.i 1) of Chap. III for all p and rewrite the result using 
the second part of Proposition (4.6) of Chap. IV as 

N 
(c, Zmda')finite "=-u2 2 a'~(n)r~(mlDI-nN) + hur~(m) log-- 

O <n<mlDl/N m 

for (m, N) = 1, where ~r)(n) = ~ e~r d) log n 2 . Adding the last two formulae, w e  
aln 

find the identity (c, T m c ~ = u 2 am..e for (m, N) = 1, where a,,,~ is the rn TM Fourier 
coefficient of the cusp form defined in Theorem (6.9) of Chap. IV! But this 
means that g,~ and u 2 ~a,.,,~q" differ by an old form in S2(Fo(N)), so they have 
the same Petersson scalar product with any f in the space spanned by new- 
forms of weight 2 and level N, which is just assertion of Theorem (6.1) of 
Chap. I. 

As an aside, we mention that the function g~ is not quite independent of the 
choice of Heegner point x (as erroneously asserted in our announcement [17]), 
but this is true up to the addition of an old form, which is all we need. That 
(c, T,, c ~) is independent of the choice of x when (m, N)= 1 follows from the 
fact that any two choices of x are related by the action of an element of G x W, 
where W is the group of Atkin-Lehner involutions, and this action commutes 
with that of T,, for (m, N)= 1. (It also follows, of course, from our computation 
of the height.) 
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We now turn to the second main result of w of Chap. I, Theorem (6.3), 
which is a consequence of the first and of the formalism at the beginning of 
this section. For  5~ a character of G set c x = ~ )~- ~ (a) c ~; then 

o'~G 

(Cz '  rm Cz) = ( 2  Z - 1  (~) Cz, 2 Z - 1  ((7) W m (..'~) 
z a 

= y,  x(~ -1  (7)(c ~, r ~ c  ~ ) 
dr, z 

=h ~ Z((7)(c, Tmc") 

by the invariance under G of the height pairing on J(H) (which we have 
extended to J ( H )@ ~ as a hermitian pairing). Now let fcS2(Fo(N)) be a 
normalized newform. In our basic identity E~(f, l )=8rc2u-2[D[ �89 (J;g.~) we 
can replace (f, g~,) by (g~,f)  because both f and g~ have real Fourier coef- 
ficients. Hence 

8~ 2 
E(f,  Z, 1 ) = ~  Z(ad)E~(f, l)--u2lDl~ (~,~(ad) g.,e,/). 

! 
On the other hand, ~ Z ( s r  h ~ (c x, Tmcx) q" by the calculation just 

o~/ m>l  
given. Extend {f} to a basis J'l =J~ f2 . . . .  ,fd of S2(Fo(N)) consisting of the 
normalized newforms together with a basis of the space of oldforms (chosen for 
convenience to have real Fourier coefficients). Then the formalism at the 
beginning of this section implies that c x (or any element of J ( H) |  can be 

d 
�9 ~J~ with written as a sum of components transforming like the Ji, say c x = ~ c x 

j=l 
T m (J)-- (j) C(1) C x --am(fj)c x (in particular, -x is the f-isotypical component cx, I of cz). 
Then 

C)~ ~, 
I,,I 

1 
so ~ Z(d )g .~=~  ~,,c.)\ x,~x'~J>'/jJ'C Combining this with the last identity and ob- 

d i,j 
serving that (fj, f )  = 0 for j 4= 1, we find 

8rc2 d 
E(f, Z, 1)=hu2 IDI, ~ (c~ ~, c~l))(f , f )  - 

i = l  

�9 (0 and c It) are eigenvectors with different But (c~),dxl~)=O for i4=1 since c x x 
eigenvalues of some T m, (m ,N)= l ,  so the sum reduces to a single term 
ff(Cx, j.)(f, f ) .  This gives Theorem (6.3) of Chap. I. 

We end this section by giving three important corollaries of the main 
theorem which were already mentioned in our announcement [17]. 

(1.1) Corollary. Let f~S2(Fo(N)) be any newform and X any character of 
Gal(H/K). Then E(f,  Z, 1)>0. 
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This follows immediately from the formula for E(JI ~, 1) since both the 
Petersson product and the global height pairing are positive definite. Notice 
that Corollary (1.1) is what would be predicted by the Riemann hypothesis for 
L(.s Z, s), according to which the largest zero of the real function L(f, Z, s) on 
the real axis should occur at s = 1. 

(1.2) Corollary. Let f~S2(Fo(N)) be any newform and Z any character of 
Gal(H/K). Then either all conjugates L(f~,x~,s) (~Gal( l l~/~))  have a simple 
zero at s = l or else all have a zero of order > 3. 

Indeed, each L ( f  ",)ff, s) has an odd order zero at s=  1 by the functional 
equation, and E ( f ' , z  ~, 1)=0 iff the Heegner point cx~y,~J(H)| vanishes 
(again by the formula for E(f,  Z, 1) together with the positive-definiteness of the 
height pairing). But cz, ,y~ equals c~,y and hence vanishes if and only if cz, y 
does. 

A consequence of Corollary (1.2), also mentioned in [17], is the analogous 
statement for the ordinary Hecke L-series: 

(1.3) Corollary. Let f be any newJorm of weight 2 and f ~ ( ~ G a l ( Q / ~ ) )  any 
conjugate o f f  Then 

ords=l 

ords=l 

ords=l 

ords=a 

L(f, s) = 0 <=> ord~= 1 L ( f  ~, s) = O, 

L(L s) = 1 ,r ord,= ~ L ( f  ~, s) = 1, 

L(f, s) > 2 ~ ord s = 1 L ( f  ~, s) > 2, 

L(f, s) > 3 ~ ords= a L ( f  ~, s) > 3. 

Indeed, L(J; 1) is known to be equal to the product of a non-vanishing 
period with an algebraic number which is conjugated by ct when f is, so the 
first statement is clear. Since L(f,s)  and L ( f  ~, s) satisfy the same functional 
equation, their orders of vanishing at s = 1 have the same parity. Hence all the 
statements of Corollary (1.3) will follow if we show that L(f,  1)=0, 
E(f,  1)+-O~E(f~ , l )+O.  The assumption implies that L(f ,s )  (and hence 

L ( f  ~, s)) has a functional equation with a sign - 1. Then for any K = • (I/D) as 

in this paper the twisted function L , ( f , s , = ~ ( n , a ( n ) n  -s, where e(n)= (~-) a s  

usual, will have an even order zero by virtue of the functional equation of 
L(f, s) L~(f, s) = L(f, 1, s). According to a theorem of Waldspurger ([36], Th. 2.3, 
[37], Th. 4), we can choose K so that L~(f, 1) (and hence also L , ( f  ~, 1)) is non- 
zero. Then the result follows from Corollary (1.2) and the identity 
E(f, 1)L~(f, 1 )=E(f ,  I, 1). 

Corollaries (1.2) and (1.3) are interesting in view of a general conjecture 
that the order of vanishing of an odd-weight motivic L-function at the sym- 
metry point of its functional equation should be invariant under Galois con- 
jugation [6]. 

w 2. Comparison with the conjecture of Birch and Swinnerton-Dyer 

In w 7 of Chap. I we described several applications of our main theorem to the 
Birch-Swinnerton-Dyer conjecture for an elliptic curve E over Q, under the 
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assumption that the L-series of E coincides with that of a modular form f We 
recall that this condition can be verified by a finite computation for any given 
elliptic curve E/II~. If it is satisfied, the modular  form f is necessarily a Hecke 
eigenform of weight 2 with Fourier coefficients in Z;  conversely, given any 

such f, the periods of the elliptic differential co~=2rrif(z)dz= ~ a,q" d q define 
n>l  q 

an elliptic curve ("strong Weil curve") Eo/q) with L(E o, s )=L( f ,  s) [25], and by 
Faltings' isogeny theorem any elliptic curve with L(E, s)= L(f,  s) is isogenous to 
E o and hence admits a covering mapTz: Xo(N)~E (N=leve l  o f f )  defined over 
II~ and sending the cusp oo to 0eE(Q). For  the rest of this section we suppose 
given a newform f of weight 2 and level N and an elliptic curve E over Q 
related in this way. 

The assertion of Theorem (7.3) of Chap. I was that, if L(E, 1) van- 
ishes, the quotient of L'(E, 1) by the real period of a regular differential of 
E/Q is a non-zero rational multiple of the height of some point in E(Q). This 
implied in particular that r k E ( Q ) > 0  if E(E, 1)+0 and showed that, if 
E(E, 1)4=0 and r k E ( Q ) = l ,  then the Birch-Swinnerton-Dyer conjectural for- 
mula for E(E, l) holds up to a non-zero rational factor. In this section we show 
how to prove this by applying the results of the last section to the trivial 
character Z =1. Since L(f, Z, s) in this case is equal to the L-series of E over the 
imaginary quadratic field K, we will actually be working over K rather than Q, 
and here our result will be even more precise: if ords= 1 L(E/K, s)= 1, then 
rk E(K)> 1, and if ords= a L(E/K, s ) = r k  E ( K ) =  1 then the Birch-Swinnerton- 
Dyer conjectural formula for E(E/K, 1) holds up to a non-zero rational square. 
This last result will suggest a conjecture relating various arithmetical invariants 
of ElK which can sometimes be verified by descent arguments. 

Finally, we will give some consequences of our main identity for the Birch- 
Swinnerton-Dyer conjecture for certain abelian varieties over Q of dimension 
larger than 1, as stated in our announcement [17]. 

Let E, f, col and zt be as above and let co be a N6ron differential on E (this 
is unique up to sign). Then 7r*(co)=cco I for some non-zero integer c, and we 
normalize the choice of co so that c>0 .  It is generally conjectured [25] that c 
divides the index of ~,HI(Xo(N),Z) in H I ( E , Z )  (for the strong Weil para- 
metrization, this is the conjecture that c o = 1), but we will not assume this here. 

Let x be a Heegner point of discriminant D on Xo(N ). Then the point 

PK= Z Z 
o'EGal(H/K) oEGaI(H/K) 

where the sum is taken with respect to the group law on E(H), belongs to 
E(K). Up to sign, it is independent of the choice of the Heegner point x, and 
we have the formula 

~(P/r = ~(Cl, f ) .  deg (it), 

where the canonical heights are taken on the abelian varieties E and 
Jac (Xo(N)) over K. The degree of rt also appears when we compare periods: 

Itcoll 2 - c3l=c 2 ggf I I I  coA Ilcof[12/deg(~z) �9 
E(•) 

Consequently, Theorem (6.3) of Chap. I with Z =1 gives the identity 



Heegner points and derivatives of L-series 311 

(2.1) Theorem. E(E/K,  1)= ]bcoll 2 [[(PK)/C 2 u 2 IDI ~. 

N o w  assume that  PK has infinite order,  so E(E/K,  1)=1=0. The conjecture of 
Birch and Swinner ton-Dyer  then predicts that  E(K)  has rank 1 over  Z and 
gives an exact formula  for the first derivative in terms of ar i thmetic  invariants  
of E. Fo r  each place p of K which divides N, let mp be the order  of the finite 
group of connected componen t s  in the N6ron model  for E over  C~. Since p .  
= p  is a rat ional  prime, we have mp=rn~ and hence (writing mp for this 
c o m m o n  value) r%.m~,=r@. Put m =  [ Imp .  Finally, let I///KI denote  the order 

pIN 
of the Tate-Shafarevich group  of E over  K;  this integer is conjecturally finite 
and, if so, is a square [35]. Then  the conjecture of Birch and Swinner ton-Dyer  
predicts that  

E(E/K,  1) ? ILcoLI 2- m 2" ~(PK)" IIIIKI/IDI~[E(K) : ZPK] 2 

[35]. T h e o r e m  (2.1) confirms this up to a rat ional  square and suggests: 

(2.2) Conjecture. I f  P K has infinite order in E(K), then it generates a subgroup 
of  finite index and this index equals c.  m.  u K �9 IIIIKJ-~. 

Notice  that  in Conjecture  (2.2) the integer m is an invariant  of E over  (1~, 
the integer UK=Card(C*/+_l ) is an invar iant  of K, and the group ///K is an 
invariant  of E over  K. The  integer c is an invariant  of the pa ramet r i za t ion  lr of 
E over (I), which also enters into the definition of the point  PK. However ,  if n' 
is another  paramet r iza t ion  of E we have n'Eon'=neo~z for some integers 
n , n ' > l .  Hence n ' c ' = n c  and n ' P ~ = n P  K, so Conjecture  (2.2) is independent  of 
the paramet r iza t ion  chosen. We henceforth assume that  ~ is the paramet r i -  
zation of minimal  degree for E; this minimizes the index of Z P  K in E(K). 

Since the index of Z P  K in E(K)  is certainly divisible by t =  IE(Q)torl, Conjec-  
ture (2.2) implies the simpler 

(2.3) Conjecture. i f  E(K)  has rank 1, then the integer c. m . u  K �9 IIIIKI -~ is divis- 
ible by t. 

(Notice that  this makes  sense even without  knowing t h a t / / / ~  is finite, since 
in considering the divisibility of I///KI by a natural  number  n we may  replace 
///K by its n-torsion subgroup,  which is known to be finite.) 

Conjecture  (2.3) can be a t tacked using descent techniques. In many  cases, t 
divides the t e rm c .m,  which depends only on E over  (I~. For  example,  when N 
= 11 there are 3 curves to consider. 

E c m t 

E 0 = J o ( l l )  1 5 5 
Eo/p5 = J l ( l l )  5 1 5 
G / ( z / 5 z )  1 1 1 

However,  the identity t = c m  does not always hold;  when N = 6 5 = 5 . 1 3  we 
have 2 curves, with invariants :  
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E c m t 

Eo=,lo(65)/(w s, wl3)  1 1 2 
Eo/(7Z/2Z ) 1 4 2 

Conjecture  (2.3) for the curve E = E  o predicts that  if K is imaginary  quadra t ic  
where 5 and 13 are split, then either 

a) K = Q (i) (so u K = 2), or 
b) IJI(E/K)z#O, or 
c) rank (E(K)) > 1. 

Using results of K r a m e r  [22], one can show that  for K+-Q(i) the 2-Selmer 
group  of E over  K has rank  > 4  over  7/./2Z, and then either b) or c) is true. 

We now show how these results concerning the Birch-Swinner ton-Dyer  
conjecture over  K can be used to prove  the s ta tements  concerning the same 
conjecture over  Q stated in Theo rem (7.3) of Chap.  I. This theorem is trivial if 
E(E, 1 ) = 0  (take P = 0 ) ,  so we can assume ords= 1 L ( E , s ) = I .  In part icular,  the 
sign of the functional equat ion of L(E, s) = L(f, s) is - 1, so f I wN =f .  As in w 1 
we choose a K by Waldspurger ' s  theorem so that  L~(f, 1)~=0. The  function 
L~(f, s) is the L-series of  E'  over  11~, where E' is the twist of E by K (i.e. the 
elliptic curve defined by DyZ=x3+ax+b,  where y2=x3+ax+b is a Weier-  
strass equat ion for E). By the theory of modu la r  symbols  [25], we have 

L(E', 1) = ~' g2', 

where f2' is the fundamenta l  real per iod of  the N6ron differential co'=~o/~]/~D~ 
on E' and ~' is a ra t ional  number ,  which by our choice of K is non-zero.  We 
also have the identity 

IIo~1/2 
lOll - [ E ( ~ ) :  E ( ~ ) ~  �9 f2- f2'. 

If  we take P=PK+fiKeE(Q), and combine  T h e o r e m  (2.1) and the last two 
formulas,  we obta in  the desired formula  E(E, 1)=~f2~'(P) with c ~ Q  • 

Finally, we recall that  the Bi rch-Swinner ton-Dyer  conjecture applies to 
abel ian varieties defined over  number  fields, not  just  to elliptic curves;  our 
result says someth ing  abou t  this more  general case. Namely ,  let f - Y '  a ,  q" be a 
Hecke  eigenform of weight 2 and level N whose Four ier  coefficients do not  lie 
in Q but instead generate  a total ly real number  field My of degree m (i.e. f lies 
in an m-dimensional  irreducible representa t ion of the Hecke  algebra over  Q). 
Then  one can associate to f an m-dimensional  abel ian variety Ao/Q which is a 
quot ient  of  the Jacob ian  of Xo(N ). The  L-series of  A o, or  of  any abel ian 
variety A isogenous to A o over  Q, is given by 

(2.4) L(A/II~, s)= I~ L( f  ~, s). 
c~: Mf~,F, .  

N o w  assume that  f [ w  N--f, so that  the sign of the functional  equat ion of 
L(f ,  s) is - 1 .  Then  by Corol la ry  (1.3) we know that  the order  of  vanishing of 
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L(A/tI~, s) at s =  1 is either m or >3m, depending wheter E(L 1) is non-zero or 
zero. Moreover, (2.4) gives the identity I2")(A, s ) = I ~ E ( f f  , 1). We now imitate 

the argument for the case m = 1 to show that ord~= ~L(A/tI), s)=m implies that 
rk A ( ~ ) > m  (the space A(II~) |  contains the m-dimensional subspace spanned 
by the C~.s, ) and that if equality holds the Birch-Swinnerton-Dyer formula for 
I2"~(A/Q, 1) is true up to a non-zero rational multiple. 

5 ~ 3. Generalized Heegner points and their relation to L-series 

In w 1 we related the main theorem of Chap. IV, under the assumptions k =  1 
and 

(3.1) e (p)= l  for all pIN, 

to the computations in Chaps. II and III  of heights of Heegner points on 
Xo(N ). However, a glance at Theorem (6.9) of Chap. IV shows that the formula 
for E~c(f, 1) when k =  1 and e (N)= 1 is of essentially the same nature when (3.1) 
is not fulfilled as when it is. Moreover, Theorem (5.6) of Chap. IV (for k =  1), 
giving L~(f, 1) when e(N)= - 1 ,  also has a similar (though much simpler) form. 
We would therefore expect that  there is again a connection with the heights of 
some Heegner-like points on some curve. This is indeed the case and will now 
be described briefly. The detailed proofs, which follow the lines of the height 
computations in this paper, will be given in a later paper; the simplest case, 
when N is prime and ~(N)= - 1, is worked out in detail in [16]. 

Let S be the finite set 

S =  {p[p prime, ordp(N) odd, e(p) = - 1). 

Then ( - l )  Isl =~(N), so the parity of ]S[ corresponds to the sign of the function- 
al equation of L~c(f, s). If [SI is even, so that Ld(f, s) has an odd order zero at s 
= 1, we define B to be the indefinite quaternion algebra over Q ramified at S 
("indefinite case"), while if ]S[ is odd, so that  ords= 1L~c(f, s) is even, we take 
for B the definite quaternion algebra over Q ramified at S~{oo} ("definite 
case"). Since every prime which ramifies in B is inert in K, there is an 
embedding z: K ~ B .  Let R be an order in B which contains l((;:) and has 
reduced discriminant N. Such global orders exist [15]; in the indefinite case 
they are unique up to conjugacy whereas in the definite case there are finitely 
many conjugacy classes. The group F = R •  embeds as a discrete sub- 
group of the real Lie group G = ( B | 2 1 5  • 

In the indefinite case, the group G is isomorphic to PGL2(N) and F + 
=Fc~PGL~(IR) is an infinite Fuchsian group which acts discretely on .~. If 
(3.1) holds then F + ~-Fo(N ) and we are in the case studied in this paper; in any 
case the quotient F + \ , ~  is an algebraic curve over IE (complete iff S+r An 
important theorem of Shimura [32] states that this curve has a canonical 
model X over tI~. This model is characterized by the fields of rationality of its 
special points and has a modular description as the coarse moduli of polarized 
abelian surfaces with endomorphisms by R. The Hecke correspondences are 
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rational over I1~ and determine the zeta-function. The embedding t: (9~R gives 
rise to a Heegner point x of discriminant D on X, rational over the Hilbert 
class field H of K. The group Pic((9) acts freely on the set of Heegner points of 
discriminant D, the action being described via conjugation in Gal(H/K) by 
Shimura's reciprocity law. The generalization of our main identity says that the 
coefficients a , ,~ in Theorem (6.9) of Chap. IV are given by a fixed multiple of 
(x, T,,,x~'), where ( , )  is the height pairing on Pic(X) defined using the N6ron- 
Tate theory. The necessary height computations are similar to those in 
Chaps. II and III  of this paper. For instance, the number ~ c = - 1 2 N  -1 

�9 which occurs in Theorem (6.9) of Chap. IV arises (just as in 
pIN P ] 

the special case, (2.13) of Chap. II) as the residue of the resolvent kernel func- 
tion G s for X(~) at s = 1. 

In the definite case, G~-SOa(~)cPGL2(I~) and F is a finite group which acts 
on IPI(~). The quotient F \ I P I ( ~ )  is a compact  Riemann surface of genus 0, and 
here one can construct a canonical model of this curve over Q simply as F \ Y ,  
where Y is the curve of genus 0 over Q which corresponds to the quaternion 
algebra B. To define Hecke operators one must work with the disjoint union X 

= I~I F/\Y,, where n is the class number of R and F/ is the projective unit group 
i = 1  

of the right order of the i TM left ideal class. (This union is a natural double coset 
space in the ad61ic point of view.) The representation of the Hecke algebra on 
P i c ( X ) ~ . "  then gives rise to the classical theory of Brandt matrices [-16]. 
Again t: C--*R gives a Heegner point x of discriminant D on X, this time 
defined already over K, and Pic(C) acts freely on the set of such Heegner 
points. We define a height pairing ( , )  on Pic(X) by setting (x, y )  equal to 0 
if x and y are on different components of X and to IF~I if x and y are both on 
the component  F~\Y. Our main identity in this case says that the coefficients 
bm, ~ occurring in Theorem (5.6) of Chap. IV (for k =  1) are fixed multiples of 

~, (x~,  T m x ~ ) .  An argument like that in w 1 of this chapter permits us to 
i n Pie  (db 

deduce a relationship between L(f ,z ,  1) and (Xx, l, xz, y ) for a newform 
feS2(Fo(N)) and character z:C1K--,C • where Xx, I is the obvious eigencom- 
ponent. Since x~, l lies in a fixed 1-dimensional space as K varies, the theorem 
of Waldspurger and Vigndras (cf. [36]) that L(f, IK, 1) is proport ional  to the 
square of an element of My follows immediately. 

w 4. The case k > 1: higher weight cycles and an algebraicity conjecture 

We now return to the hypothesis (3.1), but assume that k > l .  Recall that for 
s e C  and m e n  prime to N we defined an invariant 7~.s(d) in Chap. II by 

7~, s(d)= ~ G~, s(X ~, x""), where 
z ~ G  

x is a Heegner point of discriminant D, 
a is the element of G = Gal (H/K) corresponding to d ,  and 
G~,~=GN s T,,, GN, ~ the resolvent kernel function for Fo(N ). 
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If r#(m)+0, then some of the terms in the sum defining 7~,,(d) become infinite 
and the definition of 7~,~(s~') has to be modified as explained in w of Chap. II. 
The final formula obtained for 'mYs.~('~) (Proposition (5.8) of Chap. II) can be 
expressed using Proposition (4.6a) of Chap. IV as 

( 2nN\ 
7 ~ , ~ ( J ) = - 2 u  2.=,~ ~#(n)re(nN+m[Dl)Qs , l+m~D~ ~ 

+ 2hur~(m) (U (s)-log2~z + �89 +E (1, e,)). 

Comparing this with the formula for a , , j  in Theorem (5.8) of Chap. IV, we see 
that we have the following analogue for higher weight of the main identity 
proved in w 1: 

(4.1) Theorem. Suppose (3.1) is satisfied, k an integer greater than 1. Then there 
is a holomorphic cusp form cI)= ~ am,~q"~Szk(Fo(N)) satisJying 

m<=l 

24k- 1 g2k 

E~(J; k ) - ( 2 k _ 2 ) !  i ] / ~  (f, q~) for all feS~W(Fo(N)) 

and with a.,,.~ (m prime to N) given by 

ink-1 
7" +h_ r~(m)mk_ 1 log 

N 
(4.2) am'"~ = U 2 N ' k ( ~ )  U 

, ( _2nU  
-m  u-a ~ <~(n)r~(mlDl--nN)Pk_a 1 mlDI]" 

0 <n<mN-- ~ 

_2nN] is rational and is rational linear Since Pk-1 1 mlDl! ' r~(mlDI ~ n N ~ a 

combination of logarithms of primes (indeed, by the remark following Proposi- 
tion (4.6) of Chap. IV, a nonnegative even integral multiple of the logarithm of 
a single prime), Eq. (4.2) expresses a,,,~ as a finite sum of values of GT, k at 
Heegner points plus a finite sum of rational multiples of logarithms of prime 
numbers. This is reminiscent of the situation for k=  1 and suggests that there 
should be an interpretation of the right-hand side of (4.2) as some sort of a 
height. In fact such an interpretation has been provided by Deligne, who found 
a definition of Heegner vectors s x in the stalks above Heegner points x of the 
local coefficient system SymZk-Z(H 1) (_H_ 1 =first cohomology group of the uni- 
versal elliptic curve over Xo(N)) and of a height pairing ( , )  such that 
(s~, T, ,s~)=a, , j .  The height pairing is defined as the sum of local heights 
characterized by axioms similar to those of w of Chap. I, and these can be 
calculated using intersection theory at the finite places and values of a certain 
eigenfunction of the Laplace operator (which turns out to be GN,R) at the archi- 
medean places. Moreover, the definitions can be carried over to the case when 
(3.l) is not satisfied (now with Xo(N ) replaced by the curve discussed in w and 
Sym zk 2(Hi)  by the local coefficient system F + \ ~  x W or LIF/\(IPI(II~)x W), 

i 
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where W is the unique (2k - 1)-dimensional irreducible representation of B • • ), 
and one again gets a formula relating the heights of the Heegner vec- 
tors to the values of L~,(f, k) or L) ( f ,  k) as calculated in Chap. IV. However, 
the global significance of the sum of the local heights is not yet understood 
(e.g.: under what circumstances does the height pairing vanish?), so that we do 
not get applications of the sort given for k = 1. 

However, even in the absence of a complete height theory, the identity (4.2) 
is not devoid of interest. Suppose, for instance, that there are no non-zero cusp 
forms of weight 2k on Fo(N ). Then a,,,d must vanish for each m, and (4.2) gives 
us an explicit formula for 7~,k(d) as a rational linear combination of logar- 
ithms of rational primes. If Szk(iVo(N)) is not 0, we replace G~, k by the function 

GN, k,~.(Z1, Z2) = ~, ~mmk-lG~v,k(Zl ,Z2),  ~'={'~'ra}">l 
"=1  

with 

i) )~.,~Z, 2 , .=0  for all but finitely many m, 
ii) ~, 2 , . a , .=0  for any cusp form ~a,,q"eS2k(Fo(N)), 

m->l 

and (for convenience) 

iii) 2 , ,=0  for m not prime to N. 

We call such a ;. a relation for Szk(Fo(N)). Then (4.1) implies that the invariant 

'~N,k,~-( "5~)= ~ mk-1 )~m~)~q,k ( ~ ) =  L GN, k,Z (X~' Xt~ 
m= 1 ~G 

is a rational linear combination of logarithms of prime numbers: 

(4.3) Corollary. Suppose (3.1) is satisfied, k > l .  Let 2 be a relation S2k(Fo(N)) 
and ~r an ideal class of K. Then 

m 
7U, k,X(z~') = ~ 2"mk-lhurd(m) l o g ~  

m>0 ( 2nU  
"~-U2 E 2mmk-la'~(n)r~(mlDI--nN)Pk_l 1 mlDl]" 

m, n~Z 
m [D[ >=nN > O 

{ Ok-1 ) 
In particular, exp \ - ~  7N, k,z(d)  is a rational number, and in fact a rational 

square unless ID[ is prime. 

To prove the last statement, multiply both sides of the formula by D k- I/u 2. 
Then the terms in the second sum with mLDl>nN>O are even integral corn- 

( _ 2 n N ]  
binations of logarithms of rational primes, because mk-lDk-~P k_l 1 miD[]' 

r~(rn[DI-nN) and ~," are integers and a~(n) is an even multiple of the logar- 
ithm of a prime. In the terms with m[Dl=nN (these can occur only for N = I ,  
since we are assuming both m and D prime to N) we lose a factor 2u because 

r~,(0)--- ~1 but gain a factor of rn k- ~ D k- a (cancelling at least the u) because 
2u 
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pk_l(__l) (=(__l)k 1) has no denominator. If D has more than one prime 
factor, then the extra factor of 2 in these terms is gained because the numbers 
ap(n) in Proposition (4.6) of Chap. IV are divisible by 4 rather than just 2 when 
Din (because 4]6(n)). Similarly, the first sum in (4.3) multiplied by D k-1/u2 is 

always an integral multiple of log m and this multiple is even if ID[ is not 
prime because 2lb. n 

Let us return for a moment to the case k=  1, and consider the interpre- 
tation of the formula for 7N, k,Z(d) there. We know from Chap. II that the 
individual terms GN, l,z(x',x ~) in the definition of 7N, l , z (d )  are the local 
height pairings at archimedean places of the divisors ~ 2,. Tm((X)-(~-o)) and 

m > l  

(x ")-(0).  On the other hand, the action of the Hecke operators on Jo(N)) is the 
same as that o n  S2(/'0(N)) , so the fact that it is a relation for S2(Fo(N)) means 
that ~ 2,. T ma is a principal divisor for any divisor a of degree 0. In particular, 

m 

2 m T"((x)-(~))=(qS) for some rational function q5 on Xo(N ) defined over H, 
m 

and then the axioms for the local height pairings imply 

( E Am Tm((X)-(~176 I x~ 
m>l v 

for any place v of H. In particular, the numbers GN, 1, z( x~, x'~) are the logar- 
ithms of the absolute values of the conjugates of an algebraic number lying in 
the class field H. It is then natural to expect that the same thing happens for 
k > l :  

(4.4) Conjecture. Let the hypotheses be as in Corollary (4.3) and fix a Heegner 
point x and an embedding H~--~(E. Then there exists a number ct~H • such that 
GN, k,~(X ~, X~)=U 2 D 1 -k log [o~[ for all z ~G=Gal (H/K). 

This conjecture is at least compatible with Corollary (4.3), which, if the 
conjecture is true, gives an explicit formula for the prime decomposition of the 
absolute norm of the number cc In fact, one can give a more precise version of 
Conjecture (4.4), based on the form of the expression for ~'N,k,z(~r in (4.3), 
which predicts which ideal e generates and hence specifies e up to a unit. 
Together with (4.4), which specifies the absolute values of c( at archimedean 
places, this determines c( up to a root of unity and also allows numerical 
computations to check the conjecture. We end with numerical examples to 
illustrate (4.3) and (4.4). We take the simplest case: D =  - p  with p > 3  a prime 
congruent to 3 (mod4), ,~/=[C] the trivial ideal class, N = I ,  k = 2  and it 
=(1, 0, 0 . . . .  ) (this is permissible since S4(SL2(Z))= {0}). Then 7N,k,X(d) equals 

G(z) where the sum is over all h(-p)  points ze.~/SL2(TZ) satisfying a qua- 

dratic equation of discriminant - p  over Z and G(z)=G1,2(z, z) (defined as in 
w of Chap. II by a limiting procedure). For primes with h ( - p ) =  1, Corollary 

(4.3) gives a formula for G ( ~ ) ,  e.g. 
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= - l o g 7 - 2  log3 _12 log5, 

~33 56729 
= -log43 + log 2117354, 

2 22335673719125 
= - log  163 +163 log 3 1 6 3 ~ ~ 2 7 9 ~ .  

The reader can check these numerically using the Fourier expansion (whose 
proof will be given in a later paper) 

27t 119~(3) 2+ ( 480 240 ] e_Z~Ycos2rc x 
(4.5) G(x +iy)= - ~ -  y 2rc2 y 8 ~Y ~2 y~2] 

(282876 + 283968 + 70992'~ e- 4 ~r 7zy rc2 y 2 ] COS 47~X + O ( e -  6rtY) 

(with an O( )-constant of about 108). For the prime p=31 with class number 
h ( -p )=3 ,  Corollary (4.3) gives 

= - log  31 _ 2  log 31161 18233o 176 

and Conjecture (4.4) (or rather, the more precise form of it mentioned above) 
predicts 

[1+i1/31, , 2 54 31 131 ;L177t23--6 _30 
G k 2 ] -  -- - - l o g  rc31 - - ~  log n3 ~z9 nl  

7t.~8 n 10 

for some n~7Z., where 0~ 1.465571232 is the real root of 03 - 0 2 - 1  =0 and the 
zq are the prime elements (of norm q) 

~ 3 : 0 + 1 ,  7Z9 ----- 3/rC3, ~zll = 3 0 - 4 ,  7t121 = 11/7z11, 

~17 ~-~- -0+3,  T~23~--- -30+5, ~z31 = 3 0 +  1 

in the field ~ ( 0 ) = ~  (j (1 + ~ l / ~ l ) ) ,  the real subfield of the Hilbert class field 

of ~ ( ~ ) .  Using (4.5), the reader can check that this holds numerically to at 
least 15 decimal places with n=61. 
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