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1. Introduction and statement of results

The main theorem of this paper gives a relation between the heights of
Heegner divisor classes on the Jacobian of the modular curve X,(N) and the
first derivatives at s=1 of the Rankin L-series of certain modular forms. In the
first six sections of this chapter, we will develop enough background material
on modular curves, Heegner points, heights, and L-functions to be able to state
one version of this identity precisely. In §7 we will discuss some applications to
the conjecture of Birch and Swinnerton-Dyer for elliptic curves. For example,
we will show that any modular elliptic curve over @ whose L-function has a
simple zero at s=1 contains rational points of infinite order. Combining our
work with that of Goldfeld [12], one obtains an effective lower bound for the
class numbers of imaginary quadratic fields as a function of their discriminants
(§8). In §9 we will describe the plan of proof and the contents of the remaining
chapters.

Many of the results of this paper were announced in our Comptes Rendus
note [17]. A more leisurely introduction to Heegner points and Rankin L-
series may be found in our earlier paper [13].

§ 1. The curve X ,(N) over Q

Let N=1 be an integer. The curve X =X (N) may be informally described
over Q as the compactification of the space of moduli of elliptic curves with a
cyclic subgroup of order N. It is known to be a complete, non-singular,
geometrically connected curve over Q. Over a field k of characteristic zero, the
points x of X correspond to diagrams

(1.1) ¢ EE

where E and E’ are (generalized) elliptic curves over k and ¢ is an isogeny over
k whose kernel A is isomorphic to Z/NZ over an algebraic closure k. The
function field of X over @ is generated by the modular invariants j(x)=j(E)
and j'(x)=j(E'); these satisfy the classical modular equation of level N: ¢, (j, j')
=0 [2].

The cusps of X are the points where j(x)=j'(x)=co. They correspond to
diagrams (1.1) between certain degenerate elliptic curves, where A =ker ¢ meets
each geometric component of E [7, 173ff.]. There is a unique cusp where E has
1 component and a unique cusp where E has N components; these are denoted
oo and O respectively and are rational over Q.
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§ 2. Automorphisms and correspondences

The canonical involution wy of X takes the point x=(¢: E—> E’) to the point
2.1 wy(x)=(¢": E'> E)

where ¢’ is the dual isogeny. This involution interchanges the cusps co and 0.

The other modular involutions w, of X correspond to positive divisors d of
N with (d, N/d)=1. Let D and D’ denote the unique subgroups of ker ¢ and
ker ¢’ of order d, and define w,(x) by the composite isogeny

(2.2) w,(x)=(E/D—E/ker ¢ ~ E' > E'/D).

These involutions form a group W < Auty,(X) isomorphic to (Z/2Z)", where s is
the number of distinct prime factors of N. The group law is given by w,w,
=w,., where d'=dd'/gcd(d,d')*.

For an integer m=1 the Hecke correspondence T, is defined on X by

(2.3) T (x)=> (x,),

C

where the sum is taken over all subgroups C of order m in E which intersect
ker ¢ trivially, and x. is the point of X corresponding to the induced isogeny
(E/C—E'/¢(C)). This endomorphism of the group of divisors on X is induced
by an algebraic correspondence on X x X which is rational over @. When
(m, N)=1 the correspondence T, is self-dual, of bidegree o, (m)= Y d
d|lm

Let J be the Jacobian of X: its points J(k) over any field k ofI characteristic
zero correspond to the divisor classes of degree zero on X which are rational
over k. The correspondences T, induce endomorphisms of J over @Q; we let
T <Endg(J) be the commutative sub-algebra they generate.

§ 3. Heegner points

Let K be an imaginary quadratic field whose discriminant D is relatively prime
to N. Let ¢ be the ring of integers in K, let h denote the class number of
K{=the order of the finite group Pic(()), and let u denote the order of the finite
group O0*/{+1}. We have u=1 unless D= —3, —4, when u=3, 2 respectively.

We say x=(E—E’) is a Heegner point of discriminant D on X if the elliptic
curves E and E’ both have complex multiplication by ¢. Such points will exist
if and only if D is congruent to a square (mod 4N). In this case, there are 2°- h
Heegner points on X, all rational over the Hilbert class field H=K(j(E)) of K.
They are permuted simply-transitively by the abelian group W x Gal(H/K). We
remark that there are also Heegner points with non-fundamental discriminants
and with discriminants not relatively prime to N on X [13], but we will not
consider them in this paper. Also, we shall assume throughout that D is odd,
hence square free and congruent to 1 (mod 4).
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Fix a Heegner point x of discriminant D; then the class of the divisor ¢
={x) —(o0) defines an element in J(H). A fundamental question, first posed by
Birch [3], 1s to determine the cyclic module spanned by c over the ring
T [Gal(H/K)], which acts as endomorphisms of J(H). Our approach to this
problem uses the theory of canonical heights, as developed by Néron and Tate,
as well as the L-series associated by Rankin to the product of two modular
forms. We will show (Theorem (6.3)) that the eigencomponent ¢, , of ¢ is non-
zero in J(H)®C if and only if the first derivative of an associated Rankin L-
series L(J, y, s) is non-zero at s=1. (Here f is an eigenform of weight 2 for the
Hecke algebra T and y a complex character of Gal(H/K).)

$4. Local and global heights

For each place v of H, let H, denote the completion and define the valuation
homomorphism ||,: H = IR} by:

o] aa=|a|> if H~C
a =
v gy if H, is non-archimedean, with prime = satisfying
v(n)=1 and finite residue field of order g,.

For any aeH” we have the product formula: []|af,=1.

Néron’s theory gives a unique local symbol (a,b>, with values in R,
defined on relatively prime divisors of degree zero on X over H, [27]. His
symbol is characterized by being bi-additive, symmetric, continuous, and equal
to

(4.1) Ca,by,=log|f(a)l,=} m,log|f(x)l,

whenever a=) m_(x) and b=div(f). One can obtain formulae for the local
symbol using potential theory when v is archimedean and intersection theory
when v is non-archimedean [14].

If a and b are relatively prime and defined over H, the local symbols
<a, by, are zero for almost all places v and the sum

(42) <a’ b> = Z <a’ b>u

depends only on the images of a and b in J(H), by (4.1) and the product
formula. The symbol <, ) defines the global height pairing on J xJ over the
global field H and the quadratic form

(4.3) h(ay={a,ay

is the canonical Néron-Tate height associated to the class of the divisor 2(@),
where © is a symmetric theta-divisor in J. Since this divisor is ample, & defines
a positive definite quadratic form on the real vector space J(H)®R [24]. This
form may be extended to a Hermitian form on J(H)®C in the usual manner.
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§5. L-series

Let f(z)= ) a,e*™™ be an element in the vector space of new forms of weight

nz1
2 on [,(N) [1,34]. Thus f is a cusp form of weight 2 and level N which is
orthogonal to any cusp form g(z)=g,(dz), where g, has level N, properly
dividing N and d is a positive divisor of N/N,. We define the Petersson inner
product on forms of weight 2 for I,(N) by

(5.1 (o= |f f'(z)—g-(—zjdxdy z=x+iy
To(N\S

where the integral is taken over any fundamental domain for the action of
I,(N) on the upper half plane $.

Let o be a fixed element in Gal(H/K). This group is canonically isomorphic
to the class group Cly of K by the Artin map of global class field theory. Let
o/ be the class corresponding to o, and define the theta-series

1 . .
(52) {)d(z)z____,{__ Z g2miNez Z rﬂ(n) p2minz
2“ aeod nz0
a integral -

1 . . .
where rM(O):Z and r,(n) for n=1 is the number of integral ideals a in the
2

class of .o/ with norm n. This series defines a modular form of weight 1 on
I'/(D), with character &:(Z/DZ)* — { + 1} associated to the quadratic extension

K/Q (see e.g., [19]).
Define the L-function associated to the newform f and the ideal class .« by

(5.3) L,fis)= Y emn'=2-% a,r,(nyn=>
(n."mgv;:1 nel

The first sum is the Dirichlet L-function of ¢ at the argument 2s—1, with the
Euler factors at all primes dividing N removed. (These factors were not
removed in our announcement [17], which is in error. Also, there we denoted
this L-series by L_(f, s), and 8,(z) by 6,(z).)

If f is an eigenform under the action of the Hecke algebra T, normalized
by the condition that @, =1, and y is a complex character of the ideal class
group of K, we define the L-function

(5.4) L(f 1, 8)=), 1) L, (£. 5).
o

This has a formal Euler product, where the terms for pfND have degree 4. The
terms where p|D or p||N have degree 2, and the terms where p?|N have
degree 0 [13].

It is not difficult to show that the series defining L_(f,s) and the Euler
product for L(f,y,s) are absolutely convergent in the right half-plane Re(s)>3.
Using “Rankin’s method”, we shall show

(5.5) Proposition. The functions L,(f,s) and L(f, x,s) have analytic conti-
nuations to the entire plane, satisfy functional equations when s is replaced by
2—s, and vanish at the point s=1.
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§ 6. The main result

We recall the notation we have established: x is a Heegner point of discrim-
inant D, which we have assumed is square free and prime to N, and c is the

class of the divisor (x)—(o0) in J(H). The quadratic field K=Q(]/D) has class
number h and contains 2u roots of unity; the element ¢ in the Galois group of
H/K corresponds to the ideal class </ under the Artin isomorphism. Finally,
{, > denotes the global height pairing on J(H)® C and (, ) the Petersson inner
product on cusp forms of weight 2 for I,(N).

(6.1) Theorem. The series g (z)= > {(c,T,c">e*™™ is a cusp form of weight
2 on I,(N) which satisfies mz1

62) g =128

“goz - La(hD)

for all f in the space of newforms of weight 2 on I';(N).

By using the bilinearity of the global height pairing, we can derive a
corresponding result for the first derivatives L(f, x, 1), when f is a normalized
eigenform and y is a complex character of the class group of K. We identify y
with a character of Gal(H/K), and define szz ¥~ (o) ¢’ in the y-eigenspace

of J(H)®C. (This is h times the standard eigencomponent.) Finally, we let ¢, ,
be the projection of ¢, to the f-isotypical component of J(H)® C under the
action of T[13]. Then we have

87°(£,f)
2|D’1/2 E( )

Here /i is the canonical height on J over H, as in (4.3). The discrepancies in
the constants of (6.2) and (6.3) from those in our announcement [17] come
from the fact that there we were considering the global height on J over Q.
The heights over H, K and @ are related by the formula

(6.3) Theorem. L(f, y, 1)—

(6.4) (a, by y=h<a, by =2h<a, by,

We remark also that the quantity 8n%(f,f) is equal to the period integral

o= {f wf/\au_f, where w,=2nif(z)dz is the eigendifferential associated to
X0
f- Thus (6.3) may be re-written in the more attractive form

2
(6.5) L% 1)=% hilc,, p)-

We recall that u=1 when |D]>4.

$§ 7. Applications to elliptic curves

Let E be an elliptic curve over Q. The L-function L(E, s} is a Dirichlet series
Y a,n~* defined by an Euler product which determines the number of points

nx1
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on E (mod p) for all primes p [35]. This product converges in the half plane

Re(s)>32, but it is generally conjectured that the function f(z)= Y a,e’™" is a
nz1

newform of weight 2 and level equal to the conductor N of E [35, 38]. In this

case, the function

o i d
PME9=] /() ¢ L =Nr2n) T LE
0 ]/N y

is entire and satisfies a functional equation

(7.1) [*(E, s)= + [*(E, 2 —s).

This conjecture may be verified for a given curve by a finite computation, and
we will assume it is true for all of the elliptic curves considered below.

The conjecture of Birch and Swinnerton-Dyer predicts that the integer r
=ord,_, L(E, s) is equal to the rank of the finitely generated abelian group
E(@) of rational points. This conjecture also gives an exact formula for the real
number I'(E, 1) of the form:

(7.2) I, 1)=0-Q-R,

where Q is the real period of a regular differential on E over @, R
=det(<F, F)) is the regulator of the global height pairing on a basis
{P,....,B> of EQ)®®, and « is a non-zero rational number (for which there
is also a conjectural description in terms of arithmetic invariants of the curve)
[35]. We will combine Theorem (6.3) with a theorem of Waldspurger to obtain
the following result, which may be viewed as a contribution to the problem of
finding rational solutions of cubic equations:

(7.3) Theorem. Assume that L(E, 1)=0. Then there is a rational point P in E(Q)
such that L(E,1)=a-Q-{P,P) with xe@Q*. In particular:

1) If L(E, 1)%0, then E(Q) contains elements of infinite order.
2) If L(E, 1)30 and rank E(Q)=1, then formula (7.2) is true for some non-
zero rational number o

If the sign in the functional equation (7.1) is —1 and the point P con-
structed in Theorem (7.3) is trivial in E(Q)®®Q, then the order r of L(E,s) at
s=1 must be at least 3. One example where this happens is the following (for a
proof that P is trivial in this case, see [17] or [39]):

{7.4) Proposition. The elliptic curve E defined by the equation
—139y?=x3+10x>—-20x+38
has ord,_, L(E, s)=rank E(Q)=3.

§8. Application to the class number problem of Gauss

As well as providing some support for the conjecture of Birch and Swinnerton-
Dyer, Proposition (7.4) furnishes the final step in Goldfeld’s attack on Gauss’s
class number problem for imaginary quadratic fields [12]. Suppose K has



232 B.H. Gross and D.B. Zagier

discriminant D and class number h=h(D); then Goldfeld’s theorem and Propo-
sition (7.4) together imply

(8.1) Theorem. For any ¢>0 there is an effectively computable constant k(g)>0
such that h{D)>x(¢)(log |D))' —*.

For the analytic details of Goldfeld’s method, see Oesterlé [287]. In fact,
Oesterlé gives a sharper final result, a slightly simplified formulation of which
is the inequality

(8.2) C(t)h(D)zlog| DI,

where C(t) is an explicitly given function of ¢, the number of prime divisors of

D, with log C(t)~4|/l—t—t as t—oo. This implies Theorem (8.1) since 27!
og

divides h(D) by genus theory and hence log C(t)<(logh(D))* <€logh(D). How-
ever, the actual value of C(¢) in (8.2) depends heavily on the particular elliptic
curve used, and the curve E of Proposition (7.4) does not give a very good
value. It has recently been shown by Mestre [26] that Proposition (7.4) is also
true for the elliptic curve y*—y=x*—7x+46, which has much smaller con-
ductor than E (5077 rather than 714877), and this gives (8.2) with a considera-
bly smaller value of C(t), but only for D prime to 5077. In particular it implies
(8.2) with C(1)=55, i.e. h(D)>Z:log|D| for D prime [28]. In combination with
previous results of Montgomery and Weinberger, this suffices to show that the
largest value of |D| with k(D)=3 is 907.

§9. The plan of proof

We will now summarize the contents of the remaining chapters, and will
indicate how these results fit together to yield a proof of Theorem (6.1).

We begin with the question of calculating the global pairings {(c, T,,¢*) for
those m which are prime to N. Set d=(x)—(0); since the cuspidal divisor
(0)—(o0) has finite order in J(Q) we have {c, T,¢">={c, T,d°). On the other
hand, it is easy to show that

(9.1) Proposition. The divisors ¢ and T,d° are relatively prime if and only if
N=>1and r,(m)=0.

In the cases where the hypotheses of (9.1) are met, we may calculate
(¢, T, d°) as the sum of Néron’s local symbols {c, T,,d,. The general case
can be treated using (4.2) and a mild extension of Néron’s local theory [14].
We will treat the case when r,(m)=+0, but will assume for simplicity that N> 1
throughout. For a detailed consideration of the case N =1, see [18].

In Chap. II the archimedean local symbols {c, T,,d°>, are expressed in
terms of a Green’s function for the Riemann surface X (C)=1I,(N)\H* with the
two distinct points co and 0 marked. In Chap. III the non-archimedean local
symbols {c, T,,d’> are determined using intersection theory on a modular
arithmetic surface with general fibre X. In both cases, there is considerabie
simplification when we consider the sum Y {c¢, T,,d°>, over all places of H
dividing a fixed place p of @. vlp
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In Chap. IV we will use Rankin’s method and the theory of holomorphic
projection to find for each k=1 a cusp form ¢ (z)= Y a, ,e*"™ of weight
2k on I,(N) which satisfies mz1

2k =2 ,
02 )= e DI Ly (K

for all f in the space of newforms of weight 2k and level N. (The function
L,(f.s) for k>1 is defined as in (5.3) but with n' =2 replaced by n2*~1-25; it
satisfies a functional equation for s> 2k —s and vanishes at s=k)} The exis-
tence of some cusp form satisfying (9.2) follows from the non-degeneracy of the
Petersson inner product on the space of new forms, which also shows that ¢,
is well determined up to the addition of an old form. We shall give explicit
formulas for the Fourier coefficients a,, , for those m=1 which are prime to N.
The computations are independent of those in Chaps. II and Il and are
carried out in more generality: not only is k arbitrary, but the condition
D =square (mod 4N) is relaxed to ¢(N)=1. These more general results are also
interesting as discussed in §§3-4 of Chap. V. In the case k=1 and D=square
(mod 4N), the formula for 4, turns out to be identical (up to a factor u?) to
the sum of the local height contributions {c, T,,d°>,, so we have the identity

©.3) (T, c"y=ua,, (mzl,(mN)=1)

for the global height pairing. A formal argument (§1 of Chap. V) shows that
the series g, (z)= Y <c, T, ¢"> ™™ is a cusp form of weight 2 on I,(N), and

mz1
(9.3) shows that g, differs from u?¢, by an old form. Theorem (6.1) then
follows from Eq. (9.2). The rest of Chap.V is devoted to the proofs of its

various corollaries and to generalizations.
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II. Archimedean local heights

In this chapter we compute the local symbols {c, T, d°), as defined in §4 of the
Introduction for archimedean places v of H. We recall the notation: c¢=
{x)—(o0), d=(x)—(0) where 0 and oo are cusps and x a Heegner point
of discriminant D=Dy on X(N), ceGal(H/K), c=g0, for some ideal class
L eClg.

§ 1. The curve X o(N) over €

In Chap. I we gave the modular description over @ of the curve X = X ,(N), its
automorphisms and correspondences, and of Heegner points. We now describe
this all over the complex numbers C€; this is of course the most classical and
familiar description.



234 B.H. Gross and D.B. Zagier

An elliptic curve E over € is determined up to isomorphism by the
homothety type of its period lattice L: E(C)=C/L. If x=(E-%>E’) is a non-
cuspidal point of X, and we write E(C)=C/L, E'(C)=C/L, then we can modify
by a homothety to obtain L'>L, ¢=identity. Then L/L~Z/NZ, so we can
choose an oriented basis {w,,w,y of L over Z (“oriented” means

1 . .
Im{w, @,)>0) such that <w1,—ﬁw2> 1s a basis for L. The point z=w,/w, then

lies in $, the complex upper half-plane, and the point xeX(€) uniquely
determines z up to the action of

r=r0(N)={(‘C’ Z) €PSL,(Z)| c=0(mod N)}.

Conversely, any zel'\$ determines a point x= ((E/(z, 1>—id—> (IZ/(z, i>) of
X(C). Thus N

(X~ {cuspsh(C)= I, (NN 9.

The compactification is given by X(C)= [L(N)\ H*, where H* = $ VP (Q) with
the usual topology. We have

({cusps})(€) =T, (N\IP'(Q)= Hv @/, Z)*
da>0

where f,=(d, N/d) and the map is given by

" m,neZ, (mn)=1) > (n/d)~ 'm(mod f)), d=(n,N)

n

(one easily checks that n/d is prime to f; and that the definition depends only
on the class of m/n modulo I'). In particular, the number of cusps is

3. ¢(fa= [T (2 +ple=112),
d{N PN
v>0
The curve X over € has the following automorphisms and correspon-
dences: The action of complex conjugation ce Gal(€/R) on X () is induced by

D)=~ (ze$%);

the minus sign arises because for a lattice L= € with oriented basis {w,, w,>
the conjugate lattice c¢(L) has oriented basis {( —®,, @,), and the formula is

compatible with the projection map — I'\H because ( ) normalizes I

1
The canonical involution wy of X is induced by the Fricke involution

wy(2)= —1/Nz  (ze$*);

more generally, for any positive divisor d of N with (d, N/d)=1 the involution
w,eW is induced by the action on $* of any matrix
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dZ Z
(.1 wde(NZ dZ)’ detw,=d.

The Hecke correspondence T, (meN, (m, N)=1) acts by

(1.2) T.2)= ) 7z
Yel\Rn
dety=m
Z Z . . .
where Ry = (NZ Z)' It is easily checked that these descriptions over € agree

with the modular interpretations of wy, w, and T, given in Chap. L.

Finally, we give the description over € of the Heegner points. Let K be an
imaginary quadratic field, D its discriminant, ¢ its ring of integers; we suppose
N is prime to D. Recall that a Heegner point on X was a non-cuspidal point x
=(E-% E) such that both E and E' have complex multiplication by ¢. Then
E(@)=C/L, E(€C)=C/L where L and L= C are rank 1 modules over ¢; we
can change by a homothety to ensure that L and L are in K, and then both
are (fractional) ideals of K. If we choose > L, ¢ =id, L/L~Z/NZ as before,
then n=LL~' is an integral ideal of norm N and is primitive (“primitive”
means O/m=Z/NZ or equivalently that n is not divisible as an ideal by any
natural number >1). Thus L=qa, L=an~"' for some fractional ideal a of K and
some primitive ideal n< @ of norm N. Conversely, given any such a and n, the
elliptic curves C/a and C/an~* over € have complex multiplication by ¢ and
the isogeny C/a— C/an~' induced by id, defines a Heegner point on X.
Clearly two choices a;, n, and a,, n, define the same Heegner point iff
a,=Aa, for some leK* and n,=mn,. Hence we have a 1:1 correspondence

Heegner points pairs («, n), L €Clg, nc O
«>
xe X (C) a primitive ideal of norm N

(€/a "% C/an~"Yen([al, n),
where Cl is the ideal class group of K. The action of ¢ on x corresponds to
(of, W)= (s, T)=(/ ", Nu~")

while Gal(H/K)~Cl, acts by multiplication on &/ and trivially on n (H
=Hilbert class field of K). The Atkin-Lehner involutions on X ,(N) permute
the possible choices of n. More specifically, let N=p''... p=* (r;>0) be the prime
factorization of N. The existence of Heegner points for K on X is equivalent to
the requirement that all p, split in K (if N were divisible by an inert prime, it
could not be the norm of a primitive ideal, and we are supposing N prime to
D), so there are precisely 2° primitive ideals n of norm N, namely the ideals
pY ... pts where p, is one of the two prime ideals of K dividing p;. The effect of
w, (d|| Ny on a Heegner point is to map it to another Heegner point with
replaced by &/ [d], where b=(d, n), and an n obtained by making the opposite
choice of p, for all p; dividing d. In particular,
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i) wy acts on Heegner points by (&, 1) — (& {1t], #);

ii) the group Gal(H/K)x W (W =(Z/2Z)° the group of Atkin-Lehner in-
volutions) acts freely and transitively on the set of all Heegner points of
discriminant D on X.

It will also be useful to have a description of Heegner points in terms of
coordinates in $. There is a 1:1 correspondence between primitive ideals nc @
of norm N and solutions f of

(1.3) BeZ/2NZ, p*=D(mod4N)

(notice that B2 is well-defined modulo 4N if B is well-defined modulo 2N)

given by N B
D
n:(N, ————~B+21/ )=ZN+Z ____ﬁ+2]/D.

The point in $ corresponding to a Heegner point x=(C/a— C/an~"') with
1

an~ ' integral is then the solution 7 of a quadratic equation
(1.4) At24+Bt+C=0, A>0, B?*—4AC=D,
' A=0(mod N), B=pf(mod2N),
with
B+yD B+1D
(15) a=Z-A+Z +21/ , an"'=Z-AN"'+Z +2l/ » Nggla)=4.

Indeed, a point te$ gives rise to an elliptic curve C/Z7+Z with complex
multiplication by ¢ iff t is the root of a quadratic equation At*+Bt+ C=0
with integral coefficients and discriminant D, and the requirement that Nt
have the same property implies that N|A4; then B’=D(mod4N) and one
checks easily that the class of B(mod 2N) is an invariant of ¢ under the action
of I,(N) on $ and that this invariant corresponds to the choice of 1 as in (1.3).
As a convention, we will always use z to denote an arbitrary point in $ or
I (N)\® and 1 for a Heegner point.

For more details on the contents of this section we refer the reader to [13].

§ 2. Archimedean heights for X ,(N)

Let S be any compact Riemann surface. Recall from §4 of Chap.I that a
height symbol on S is a real-valued function {a, b)>¢=<a, b) defined on di-
visors of degree 0 with disjoint support, and satisfying

(2.1) a) {a, b)> is additive with respect to a and b;
b) <a,2mj(yj)> is continuous on S |a| with respect to each variable y; (|al

denotes thé support of a);
) 3 ni(x), by =Y n;loglf(x)I* if b=(f), a principal divisor.
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Such a symbol is unique if it exists since for fixed a the difference of any two
symbols br—<{a,b> would define a continuous homomorphism from the com-
pact group Jac(S) to R and hence vanish identically. Now fix two distinct
points x,, yo€S and set

G, ) =AX) =(xeh W= o)) (%, ¥€S, x* Yo, yExo, XF V).
Then the biadditivity of {, ) implies the formula

(2.2) (a,b}zZniij(xi,yj) for a=y n(x), b=y my)),

at least if |a|3y,, |b|$x,. Conversely, a function G(x, y) will define via (2.2) a
symbol satisfying (2.1) if for fixed xeS§ the function y—G(x, y) is continuous
and harmonic on S~ {x, x,} and has logarithmic singularities of residue +1
and —! at y=x and y=x,, and similarly with the roles of x and y in-
terchanged. (Here the terminology “g has a logarithmic singularity of residue
C at x,” means that g(x) —Clog|p(x)|? is continuous in a neighborhood of x,,
where p(x) 1s a uniformizing parameter at x,.) To prove this, we note that the
symbol defined by (2.2) is obviously bi-additive and is continuous in all y;¢|a]
because the logarithmic singularities of G(x;, y) at y=x, cancel (since dega
=0), so (2.1a), (2.1b) are satisfied; Eq. (2.1¢) is also satisfied because the
function xr-log|f(x)|* —<{x,(f)> is harmonic and has no singularities (the
logarithmic singularities at x = y,e|(f)| cancel) and hence is a constant, and this
constant drops out in (2.1¢) because Y n,=0. Notice, however, that the axioms
we have imposed on G determine it only up to an additive constant (which of
course has no effect in formula {2.2)); to make sure that G(x, y) is exactly {(x)
—(xg), (¥)—(y,)> we must impose one extra condition, e.g. G(x,, y)=0 for
some yeS~ {x,}.

Now take S=X(NC)=T,(N\Hu{cusps} and x,= 0, y,=0 (we assume
N>1, so x,%y,). We want to construct a function G(x,y) satisfying the
properties above, i.e. a function G on § x § satisfying

(23) a) G(yz,y2V=G(z, ) Vz,2’€9, y, v elL(N);

b) G(z, 2') is continuous and harmonic for z¢ I, (N)z';

) G(z,z')=e, log|z—2z'|*+0(1) as 2’ — z, where e, is the order of the stabil-
izer of z in I(N);

d) For ze$ fixed, G(z, z')=4ny +0(1) as 2’ =x"+iy — o0 and G(z, 2')=0(1)
as z'—any cusp of I (N) other than oo; similarly, for z’' fixed G(z, 2')

~4n N|y 5 +0() as z=x-+iy=0 and Gz 2)=0(1) as z—any cusp of [,(N)
z

other than O.

The conditions in c) and d) come from noting that a uniformizing parameter
for X (N) at a point represented by ze$ has the form p(z.’)=(z’—z)"’=(.1+
O(z' —z)), while uniformizing parameters at oo and 0 are e2" and e~ 2"/Nz,
respectively. The most obvious way to obtain a function with the invariance
property a) is to average a function g(z, z') satisfying

a’} glyz yz)=g(z,z') YyePSL,(R)



238 B.H. Gross and D.B. Zagier

over I(N), ie. to set G(z,z)= ). g(z yZ'). To achieve the properties b)-c) we
would also like veloN)

b’) g(z,z) is continuous and harmonic in each variable on
9 x H~ diagonal;

¢) gz, z)=log|z—z'|?+0O(1) for z' -z

A function satisfying a’)-¢’) is given by

2
(2.4) g(z, z)—log:f 212.
Unfortunately, the sum of g(z, yz') over IL,(N) diverges (although only barely)

for this choice of g. To resolve the difficulty, we modify the condition of
2 2

harmonicity to Ag=eg with ¢>0, where A=y’ (5—2+6—7
x* dy
place operator on $, obtaining a function for which Y g(z, yz') converges and
which is an eigenfunction of the Laplacian with eigenvalue ¢, and then take the
limit as e—0, subtracting off any singularities. Condition a’) requires that g be a
function only of the hyperbolic distance between z and z/, or equivalently a
o2
function Q of the quantity 1+| 5 ‘

) denotes the La-

(which is the hyperbolic cosine of this

distance). The equation Ag=e¢g then translates into the ordinary differential
equation
((1 —1?) & -2t d +s) Q=0
de? di -
This is the Legendre differential equation of index s —1, where e=s(s —1) with
s> 1. The only solution (up to a scalar factor) which is small at infinity is the
Legendre function of the second kind Q__,(¢), given by

(2.5) Q. (= Of(l—i— —1 coshu)*du (t>1,5>0)
(4]

or
FeP (2. . 2

2.6) 0 0=57055 (ﬁ?)F(s,s,Zs,m) (t>1, se@),

where F(a, b; c¢; z) is the hypergeometric function (cf. any book on special
functions). From either of these closed formulas one easily deduces the asymp-
totic properties

2.7 Q1 ()= —3log(t=1)+0(1)  (¢\1),
(2.8) Q1 )=00"%) (t—0)
The first implies that the function

lz—z'1?

(2.9) g.(z,2)=—20,_ 1(1+ Ty ) (z2,2€$, 2472
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satisfies axiom ¢’) above and the second, that the sum

(2.10) Gy 2. 2)= Y glz,vZ) (z,2€9, 2'¢I,(N)z2)

vel'o(N)
converges absolutely for s> 1. The differential equation of Q,_, implies
Q1) 4,6y (52)=4,Gy (2 2)=s(—1) Gy (2. 2)  (Z¢T,(N)2),
while the property
(2.12) Gy (12,7 2) =Gy (2.7) (V7,7 €D (N)

is obvious from the absolute convergence of (2.10) and the property a’) of
g,(z,2).
The function Gy ((z,2') on (H/I(N))’~ (diagonal) is a well-known object
called the resolvent kernel function for I,(N); its properties are discussed
1
extensively in [20, Chaps. 6-7] (note that Hejhal’s normalization is yy times
n
ours). In particular, the series defining Gy ; converges absolutely and locally
uniformly for Re(s)>1 and defines a holomorphic function of s which can be
extended meromorphically to a neighborhood of s=1 with a simple pole of
residue

12 B -1
2.13) =tz 12 H(H;)

(independent of z, z') at s=1. We could thus “renormalize” at s=1 by forming

the limit lim [GN’S(Z, z')— KNI ] But this function would not be harmonic in z

s—1 N
or z', since
4 (lim [GN (z,7) ——KN—]]) —lim[s(s —1) Gy_,(z, 2)] =Ky *O0.
s— 1 ! S — s—1 !

To get a harmonic function of z, we should instead subtract from Gy (z, 2} a

K
I,(N)-invariant function of z having the same pole —Nl at s=1 and the same

cigenvalue s(s —1). Such a function is —4nE(z, s), where

(2.14) Ey(z, 8)= > Im(yz°®  (ze$H, Re(s)>1)
7e(g D\ To™

is the Eisenstein series of weight 0 for the cusp oo of IL(N). Since we want our
function G{(z, z') to have its singularities at z=0 and z'= oo, we should in fact
subtract —4nE(wyz,s) and —4nE(Z, s) from Gy (z, Z'), where wy: z+— —1/Nz
is the involution of X ,(N) interchanging 0 and co; we must then add back a
Kn

term K since we have subtracted off the pole of G , twice. We therefore set

(2.15) G(z,z)=lim [GN’S(Z, ZY+4nEy(wyz, s)+4nEx(2, 5)+ KN1]+C,

§s-1
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with a constant C still to be determined, and claim that it possesses all the
properties (2.3). Indeed, (2.3a) and (2.3b) are obvious from the definition of
Gy (z, Z') and the preceding discussion, and (2.3¢) follows from (2.7). It remains
only to check the behavior of the function (2.15) at the cusps, i.e. that it has the
correct logarithmic singularities as z goes to 0 or z' to oo and is bounded at all
other cusps; we would also like to choose the constant in (2.15) so that
G(z,2)—=0 as z— co. We must therefore know the expansions of Gy , and Ey
at all cusps of X,(N). For E, this is easily obtained from the elementary
identity

— ~s . p—25—1 ,Ll(d) E
2.16) Ex(z,5)=N pl[—zlv(l p~%9) d% o E(d z,s),

where p(d) is the Mobius function and E(z, s)=E,(z, s) the Eisenstein series for
SL,(Z), because for SL,(Z) all cusps are equivalent to co, where E(z, s) has the
well-known expansion

@17) E(z 9=y + () 7' +0(™)  (y=Im(2)— o),
CIOIs—Y (@s—1)
(218) PO=""F9 Tty

(By O(e™”) in (2.17) and below we mean a function which is not only O(e™") -
actually, O(e~**) for any ¢ <2n - for fixed s> 1 but is holomorphic in s at s=1
and is O(e™’) uniformly in a neighborhood of s=1) For Gy, we have the
expansion

4
(219) Gy fa.2)= =5 "7 Ey(z.9)y' 40 (y=Im(2) o)

at oo (see [20], (6.5); this expansion is obtained by calculating the Fourier-
development of Gy (z,z') with respect to z). At other cusps there is a similar
expansion, so that Gy (z,2)=a(s)Y'~*+0(e~ ") where Y=Im(yz) for some
yeSL,(R) transforming the cusp in question to cc. Hence as z tends to any
cusp other than 0, the expression in square brackets in (2.15) has the form
a(s) YIS+ B(s)+ O(e~¥), where a(s) and f(s) have at most simple poles at s=1
and a(s)+ B(s) is holomorphic there; letting s — 1, we obtain a function of the
form alog Y+ B+ O(e”¥), and the harmonicity of this requires that «=0. Hence
(2.15) is bounded as z tends to any cusp other than 0. At 0, we find from (2.16)

and (2.17)
Ey(wyz, s)=Im(wyz)'+O0(Im(wy2)' ™)  (z-0),

so the same argument shows that G(z, z') has an expansion 4nY+alog Y+ f

+0(e™ ) as Y=Im(wyz)= — 00, where again o must be 0 (by direct

_y
Nz
computation or because G is harmonic). This proves the assertions of (2.3d) for
z, and the assertions for z’' are proved similarly or by noting the symmetry

property
(2.20) G(z,2)=G(wy z', wy2).
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Finally, we must determine the constant in (2.15) so that G(z, z') vanishes as
z—o0. By (2.19) we have

1-—s5
G(z, ) =lim [47rEN(Z’, s)(l— Y )]+11m [47:12 (W 2,

KN oy
C+0(e~?
o 25— 1 —1]+ +0™)

s—1

as y— o0. Since

4n Ey(Z, s)-——

) 1ﬂzys—]:(]Ogy+2)(5—1)+0(s_1)2

as s—1, the first limit equals ~xy(logy+?2). The second limit is evaluated by
(2.16)-(2.18) (recall N>1):

Ey(wyz,8)=N~ H(l— —2s-t Z —E(d s)

pIN
=N-— H 1_ 723 l(n —2s+1 d)(S)y““‘-{-O(e‘y)),
pIN pIN

lim [47‘: Ey(wyz, 9)+*——1] =y logy+iy+0(e™)

s—-1
with
_p—2s+1
_11m[47tN d)s)l—[ p — +‘KN ]
221) = v 1P s
‘ ¢ I
[]ogN+2log2 23425 (2)-2% 2 Og”]
g pIN 1

I i
(here y=FEuler’s constant and we have used T (D= —v, a (5) = —2log2~vy,
1
(2s—1)=——=+7 —1)). ‘
{@2s—1) 2s_z—l—)+0(s 1)) Hence
G(z, 2= —2Kky+ A+ C+0(e)

as y— 00, so we must have C =2y —A4y. Summarizing, we have proved:

(2.22) Proposition. Let x, x' be distinct non-cuspidal points of X ,(N)(C). Then
x) —=(0), (x) = (0))¢

=lim [GN’S(Z, Y +a4nEylwyz, s)+4n Ey(Z, 5)+
s—1

K

- jl ] —Ay+ 2Ky,

where z, 2’€$ are points representing x and x' and Gy, Ey, Ky, Ay are defined
by (2.10), (2.14), (2.13) and (2.21), respectively.

We would also like a formula of the same kind for {(x)—{o0), T,((x"
~(0))>¢, where T, is the m™ Hecke operator (m>0 prime to N). Since 7,, maps
cach cusp to itself, we have

(x)=(0), T,,(x) = (0> =Gz, 2. T, = ; Gz, y2)
yeI'\Rn
dety=m
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(cf. (1.2)). The operator T, acts on constants by multiplication with

#{yel'\Ry, dety=m}=0,(m)= ) d,
dlm
d>0

and on E. (2, s) by multiplication with

msO'Azs_;.](m):ms Z d1—2s
d|m

(this can be seen easily from the definition or from (2.16) and the correspond-
ing statement for SL,(Z)). Finally, it is clear from the definition of G, | that

GN,S(Z’ Z’)Iz' Tm= Z gS(Z, 721)-
yeRn/{£ 1}
dety=m

Putting all this together, we obtain

(2.23) Proposition. Let mz1, (m, N)=1, x,x'eX (N)C) non-cuspidal points
with x¢ T, x'. Then

{(x) =(o0), T,.((x) —(0))¢

=lim [G%ys(z, 2)+4no,(m)Ey(wyz, $)
s> 1
o, (m) Ky

+dnm*ao, _,. (m)Ey(Z, s)+ p—

]—al(muwzal(m) x

with z, 2/, Ey, ky, Ay as in Proposition (222), o,(m)=Y, &', and

d|m
(2.24) Gr(nz)=% ¥ (z ﬁ52[’)
. N, s\% 2 o b ez gs s CZ'—!—d .

Nic,ad—-be=m

As a final remark, we observe that the functions G, ; and G} | have the
invariance property

(2.25) Gy, (w2, w2V =G (2, 2))

for any d||N, where w, are the Atkin-Lehner operators as in (1.1). This
property, which follows easily from (2.24) and the invariance of gz, z') under
z—yz, 2’ —7yz (yeSL,(R)), is compatible with the fact that the height pairing is
invariant under automorphisms.

3. Evaluation of the function G _at Heegner points
N,s g p

According to the results of § 2, in order to compute the height pairing
(¢, T,d%,, c=(xj—(o), d=(x)—(0), oeGal(H/K) (x=Heegner point)

at an archimedean place v of H, we must evaluate the functions Gy | at the
corresponding points of X(H,)=X(C). These points were described in §1 and
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shown to be parametrized by pairs (&, n), where &eCly and nc@ is a
primitive ideal of norm N, the corresponding point 1, el (N)\ H= X(C) (or
rather, a representative of it in §) being a root of a quadratic equation as in
(1.4). Since o=0,eGal(H/K) acts by 1, 1, ,-1 ., we need only consider
values

(3.1) Gﬁ,s(rﬂp"’ﬁcﬂz.")

where the arguments are Heegner points associated to the same n and to ideal
classes /|, .o/, satisfying o, o/; ' =.o/. Here we must assume r, (m)=0 since
otherwise the value (3.1) is not defined; we will discuss the modifications for
the case r,(m)=+0 in §5.

The expression (3.1) depends on the choice of n. On the other hand, the
function Gy ; is invariant under the action of the Atkin-Lehner operators w, by
(2.25), and we saw in § 1 that these act on the Heegner points by

Tt Ty 1n -1y Where D, N(D)=d.

We can therefore replace ./, and .o/, by «,[d]~}, /,[p]~! and n by nd~'d
in (3.1) without affecting the value of this expression. This substitution does not
change either .o/, o/, '(=.o/) or o/, o/,[n]~ " Hence the sum

(32) yx,s(‘d* ‘%): Z G'ﬁ.s(rdl,n”rdz,n) (r.szl(m):())
o 1,94 ,2eClg
A\ A7 =
L1821 1=B

is independent of m.-The summation here is very small: If K has prime
discriminant, so that |Cl| is odd, it reduces to a single term (i.e. we have just
re-indexed the quantities (3.1)), while in general it has 2'~' terms if { &/} ={#n}
and is empty otherwise; here t is the number of prime factors of D and {.«/}
denotes the genus of o7, i.e. the class of o in Cl,/2Cl,~(Z/2Z) " (Notice that
all ideals n with N(n)= N belong to the same genus, so the condition on &/, # is
independent of w, as it should be.) In this section we will obtain formulae for
(3.1) and for the slightly cruder invariant (3.2); the latter will be much nicer (as
can be expected since the dependence on the choice of n has been eliminated).

By summing further we obtain an even simpler expression for the yet cruder
invariant

(33 W= Y GR Ty Tay = 2 TN (L5 B).
oA, ,eClg BeClig
A A5 V=

Of course, (3.3) is all we need to compute the total contribution Y, (c, d*>, to
the global height pairing from all of the archimedean places of H| since these
places are permuted transitively by Gal (H/K)~Cl,. However, in Chap. V we
will see that some interest attaches also to the individual terms (3.1).

We now start the calculation of (3.1). In (2.24), suppose that z=1, and 2’
=1, are Heegner points with the same n, ie. that they satisfy quadratic

. . . a b
equations A4,t?+ B, 1,+ C; as in (1.4) with the same f. Then for y= (C d)eRN
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we have
lyt, —1,1° 2nN
(5T 1,)=—20, (1+~———):—2 o (1+“>
&0, ) ' 2Im(y7,) Im(t,) i |D] det(y)
with
A A
(3.4 n="12|ct,1,+dt, —at, —b|%

Since n is a rational multiple of the norm of an element of K, it is rational. In
fact, a direct calculation gives

)D—B B

1
(3.5) n=y [cz C,C,+(ad—bc —Eu—f—az C A, +d*A,C,—-cdB, C,

+accle+b2A1A2+bdAlBZ~baB1A2],

and this is integral because A, 4, and ¢ are divisible by N and B, B,=8*=D
(mod 2N). Hence

o 2nN
G (e = =23 g0, (14200

b
where p™(n) is the number of y= (f d)eRN/{il} satisfying ad —bc=m and

(3.4) or (3.5). To see what kind of an expression p™(n) is, consider the simplest
case when N=1, D=—4 and t,=1,=i,50 A, =4,=C,=C,=1, B,=B,=0.
Then (3.5) becomes
n=a*+b?+c*+d*—2(ad —bhc),
so p™(n) counts the number of 4-tuples (a, b, ¢, d)eZ* (up to sign) satisfying
(a—d)?+(b+c)*=n, (a+d)?+(b~-c)’=n+4m,

ie. (apart from a congruence condition modulo 2) p™(n) is the product of the
numbers of representations of n and of n+4m as sums of two squares. The
answer in general will be similar. However, since (3.5) is so complicated we will
stop using the language of quadratic forms and shift to that of ideals in
quadratic fields.

We start by redoing the proof that the number n defined by (3.4) is inte-

. b )
gral. Given y= C d)eRN we define two numbers o, feK by

(3.6) a=ct,T,+di,—at,~b, f=ct 1,+d1,—at, —b.
From 1,6 A7 '&,=a; ' (compare (1.5)), ce(N)=nit and n|a; we have
(3.7 aca; '@y,  Pearlazln

It follows that the two numbers

(3.8) I=A, A,N(&), n=N-'4,4,N(p)
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are in Z. Also

(39) I—Nn-——AlAzdet(% g)
=A4,A det[(m: 2)(? Z)(Tll T—ll)]
=|D| det(y)

and

(3.10) A, Aya=A4, A, f(mod D),

where bz(]/D) is the different of K {the last equation holds because 4, 7.,
A, 1, are integral and A=A(modd) for any ie@). Conversely, given any o and f
in K, we can think of the real and imaginary parts of (3.6) as a system of 4
linear equations with rational coefficients in 4 unknowns a, b, ¢, d and solve for
a, b, c, d. The simplest way is to notice that

ct, +a’~—[i——i——(/)’— )y

T,

7,5~ A
at,+b=1,(ct, +d)—/3=M:—é (T, f—1,0).

T, 1, ]/D

If o and B satisfy (3.7) and (3.10) then the right-hand sides of these two
equations are in ma;'=NZt, +Z and a;'=Zrt,+Z, respectively, so
a,b,c,deZ and N|c. If also the integers ! and n defined by (3.8) satisfy [=nN
+m|D| then (3.9) shows that det(y)=m. We have proved:

(3.11) Proposition. Let </,, o/, be two ideal classes of K, n a primitive ideal of
norm N and a; (i=1,2) an integral ideal in o, with n|a;, N(a,)=A,. Then for
meN, r, - (m)=0 we have:

2nN)

Gms(‘c n & 211:"2 mn) s— (1+
N, s(Tr om0 Ty ) "Z,lp( 0,y m|D|

where
P =P, (1)
= #{(a Be(a;'a; ' xarlagn /{+1}‘

Nn
AA

Nn+mlD|
A4,

N(p)= , A Aya=A, A B(modb)}

(The condition r, . (m)=0 is required to ensure that n in (3.8) is strictly
positive.)

To understand the expression p™(n) better, consider first the case when n=0
(mod D). Then A, A,a and A, 4, § are automatically 0 (modd), so p™(n) breaks
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l
AL A,

x #{ﬁea;l a;'n N(ﬁ):ANZ }
1 2

=201y s (D7 g1 (n=0(mod D))

up as a product

N(x)=

(3.12) p;;hdz‘“(n):%#{(xeafla;l

where u=3# of units of K, I=Nn+m|D| and, as usual, r,(n) denotes the
number of integral ideals of norm » in the class /. Another easy case is when
n#£0 (mod D) but D is prime. In this case, exactly half of the pairs «, fea7'a; "’
xartaz'n satisfying A4, 4,N(e)=nN+m|D|, A,A4,N(f)=nN satisfy
A A,a=A4, A, f(modd), namely exactly one of (x, ) and (a, —pB) for any o, f
(this is because a quadratic residue modD has exactly two square roots
mod D). Hence

(3.13)
1 Dkn

> DI (D prime).

0,55, Lm)=u? Yozt (BN +m | D) rdldz[n],1(n) X {
A formula generalizing (3.12) and (3.13) is

. .

u?omyr,mN+m|D)r (n if {AY={%n},

1) T =y el 13—
o 1,42eClg

A1 AT V=t

A2 n] " 1=R

otherwise,

where now D is arbitrary, o/ and # are any two ideal classes of K, {«/} and
{%n} denote the genera to which .7 and #[n] belong, and

(3.15) sm= [] 2

pl(n, D)

Indeed, if D is prime then the sum in (3.14) reduces to a single term (since Cl,
has odd order) and (3.14) is identical with (3.13), while if n=0 (mod D) the sum
in (3.14) has 2'~' or O terms according as {.«/}={#n} or not and these terms
are all equal to the expression in (3.12) (note that d(n)=2' in this case). To
prove (3.14) in general, we fix some «7,, &/, satisfying the conditions on the
left (if there are no such then {&/}+ {#n} and the formula is trivial). The other
classes in the sum are obtained by replacing «/, and &, by &/, % and «,%
with €? trivial, ie. by replacing representatives a,, a, of .«,, &/, by a,¢, a,¢
with ¢? principal, say ¢?=(y), yeK*. If we also replace a and § by a/N{c) and
B/y we obtain a new solution of (3.7) and (3.8). Thus the only question is how
many of the 2'~' choices of [¢] lead to «, B satisfying the congruence (3.10).
This congruence is equivalent to a congruence modulo p for each of the primes
p dividing D; each of these ¢ congruences is true if p|n (both sides are 0) and
true up to sign if pyn (both sides are non-0 and they have the same square).
But the change of a,, a,, o, f described above changes the ratio «:ff by a
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factor y/N(¢} of norm 1, i.e. by 2 number of the form r+s]/D with r and s p-
integral and *>=1 (modp) for all p|D. The 2¢~' classes of ¢ with [¢]? trivial
correspond in this way to the values +r (mod D) with r>=1 (mod D). The
formula (3.14) is now obvious. Combining it with Proposition (3.11), we find:

(3.16) Proposition. The invariant yy (o ; %) defined by (3.2) is given by

oc

N (o B)= —2u? Z omyr,(nN+miDyrg(n)Q,_, (1 +

n=

ol

(0(n) as in (3.15)) if {A}={Bn} and is 0 otherwise.
Summing over all 4, we obtain:

(3.17)  Corollary. The invariant vy (&) defined by (3.3) is given by

o

YN ()= —2u* Y S(m Ry, (Wr,(mN+m|D)Q,_, (l +

n=

2nN)
m|D|/’

where R, . (n) is the number of integral ideals of norm n in the genus {./n}.

Since a number cannot be the norm of an ideal in more than one genus,
R, (1) 1s either R(n) or 0, where

D
Ro)= 3 r,=3 ()
HeClg m|n m
is the total number of representations of n as the norm of an ideal of ¢. Which
of these two alternatives occurs depends only on valtues of genus characters. In
particular, if (n, D)=1 then R, ,(n) can be replaced by R(n) in (3.17) because

ry (1N +m|D|) 0=

(AN Ly g
p

:,(AZ\;'”>=+1 (¥ p|D)

= R, (n)=R{n).

(A=any integer prime to D which is the norm of an ideal in the genus {</}).
In general, there will be one genus condition to be satisfied for each prime
dividing (n, D), and we could replace the product

S(M Ry (M ry(N+m|D)=( [] 2)-Ry,,(n)r (nN +m|Dj)
plin, Dy

by

purn,lm (1 o (M—Z\JM)) *R(n)ry(nN +m|D)),

where £, is the homomorphism from the group of norms of fractional ideals of

K to {+1} defined by £,(Na)=1 for & principal, §,(n)= (g) for neZ, pin.
However, for later purposes we will prefer to leave the formula for Yn.s() in
the form given in (3.17).
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§4. Final formula for the height (r,(m)=0)

Let ¢c=(x) —(0), d=(x)—(0), 6 =0,€Gal(H/K), m prime to N. We still assume
that r(m)=0, so that the divisors ¢ and T,,d° have disjoint support. We want
to compute

e, T, d% =Y K¢, T,,d%,,

v}

where the sum is over the hy archimedean places of H. Since these places are
permuted simply transitively by Gal(H/K) 2 Cl, this equals

Y Ly, W) —(0), T((ty,, ) = (O
Ay, 576Clx
A\ A5 st

where 1t is any integral ideal of K of norm N and the 7, , are the points in §
described in § 1. Applying Proposition (2.23), we find

(e Tpdoy, =lim [yx,s<ﬂ)+4nal(m) T ExWyty, on9)
s—1

o 1eClg
heo (m)x
+47‘EmsO'1_2s(m) z EN(rdz’n’S)_*_K_i_)__&]
A ,2eClg S——l

~hyo,(myAiy+2hgo (m)xy.
Using (2.16), we have

Z En(Wyty o 8)= Z En(ty v )

#eClg #eClg

d N
=N—% H(l _p—Zs)~1 Z “‘gs) Z E(H‘ TM',‘,S)

pIN d|N eClg

(4.1)

where E(z,s) is the Eisenstein series for SL,(Z). Since each 7, , solves a
quadratic equation at?+4bt+c¢=0 of discriminant D with N|a, the points
7 et for d| N also satisfy quadratic equations over Z of discriminant D. It is
then easy to see that the inner sum on the right-hand side of (4.1) is inde-
pendent of d and equals ZE 14, 5), Where 1, is any point in § satisfying a

quadratic equation of dlscnmlnant D correspondmg to the ideal class .. As is
well-known (and elementary), E(z,, s) is a simple multiple of the partial zeta-
function

1
k(o 9)= =5
K( ) ainglgral N(a)
[a]=u

namely
E(ty, $)=27°|DI"? ul(25)"" {x(s4,5)

where u as usual is one-half the number of units of K. Since Z (it §) =L (5),
the Dedekind zeta-function of K, we deduce
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22 s Ds/2
Tl [+ e 53
pIN

hgo(m)xy

1 ]—hKal(m)/lN+2hKal(m)KN.

Substituting into this the expansion

L) =U(5) Lis, &) (8(”): (g))

- (Ll+y+0(b —1))(L(1, &)+ L(1,e)(s— 1)+ 0(s = 1)?)

and the formula L(1, &)=nh,/u 1/@, we obtain

(4.2) Proposition. Let xeX ((N) be a Heegner point for the full ring of integers
of an imaginary quadratic field K, ¢ =(x)—(0), d=(x)—(0), ceGal(H/K), meN
prime to N, and o/ €Cly the ideal class corresponding to o under the Artin
isomorphism. Suppose m is not the norm of an integral ideal in sf. Then

h
(¢, T,d%, =lim [yx.sw)——" o1 M) Ky ]
s—1

1
Fh [ m (logA+2Z log” 2125 @-2L ¢ e))
ke DI "5 p { L
+ Y dlog 2]
d|lm d

with yy (&) as in Corollary (3.17). Here D, hy and L(s, ¢) denote the discrim-
inant, class number and L-function of K and k the constant defined in (2.13),

§5. Modifications when r (m)=+0

Since the point x occurs with multiplicity r,(m) in the divisor T, (x°), the
divisors ¢ and T, d° are not relatively prime in the case when rg,(m)+0.
Although the global height pairing {c, T, d°> is well-defined, Néron’s theory
does not give a canonical decomposition into local terms {c, T, d*>,. We will
first discuss how a local symbol can be defined by choosing a tangent vector at
x, then calculate this symbol when v is an archimedean place of H.

We recall a procedure for defining a local symbol for two divisors a and b
of degree zero on a general curve X over H, whose common support is equal
to the point x [14]. Let g be any uniformizing parameter at x, i.e., any function
on X with ord, (g)=1, and define

(5.1) <a, by,=lim {<a,, by, —ord,(a) ord (b) log|g(y)l,},

yox
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where a, is the divisor obtained from a by replacing every occurrence of the
point x in a by a nearby point y which does not occur in b. This limit exists by
the standard properties of local heights. If g’ is another uniformizing parameter
and g/g’ has the value « at x, then

(5.2) <a, by, =(a, by, +ord,(a) ord, (b) log|a,.
In particular, the sum ) <a,b), is independent of the choice of g, by the
product formula; this sum is equal to the global height pairing of the classes a
and b [14].
d - : og
Let R be the non-zero tangent vector at x which is determined by Frin L.
Another consequence of (5.2) is that the local symbol {a, b depends only on

d
the tangent vector 3 and not on the full choice of g. By (5.2), this pairing is

unchanged if we multiply ar by a root of unity o, since |af,=1 for all v.

We now apply this procedure to the computation of the local symbols
(¢, T,d°>, on X,(N). We have ord,(c)=1 and ord, (T,d")=r,(m); if g is a
uniformizing parameter at x, then

(5.3) ¢, Tpd®y, =lim{e,, T, d%), —r,(m)loglg(¥),},

yox

where ¢, =(y) —(0). The trick is to normalize the function g at x so as to make
the computation of each local symbol as simple as possible. To do this, we
introduce the differential

5.4 w=n*2) Elezmr/“(z)dz,

1
where 7(z)=¢24 [] (1 —g" is the Dedekind eta-function. This differential is

well-defined only up to a 6th root of unity, but this will be sufficient for our
purposes by the remark above. If x is not an elliptic point on X ,(N), so u=1,

. 0
then w is non-zero at x and we may take our tangent vector 2 to be dual to
. The uniformizing parameter g then satisfies t

d
w=(g+a,g*+ag’+...) —g—g

1
in a neighborhood of x. In general, w has order ~—1 at x and we may
normalize g so that "

d
w=(g'™+higher degree terms) ?g

in a neighborhood of x. The reasons for this normalization will become clearer
when we compute the heights at non-archimedean places in the next chapter.
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Here we observe that for a complex place v we have
(5.5) loglg(y)l, —u log|2min*(z)(w ~2)[,—~ 0

as y—x, where z and w are points in the upper half-plane which map to x and
y on X ,(N)(C).
From Proposition (2.23) and the formulas (5.3), (5.5) we find

(5.6) <, T,d°>, =lim [ Y gz, vy +4no (m)Ey(wyz,$)
s—=1 LyeRn/t
)delfygrm1
vz %z

+ur, (m)lim {g (z, w) —log |2rin*(z)(w —2)|,}

w—z

o (mx
+4nmio, , (m)Ey(Z, s)+—1(—)—~N

R~ ] — 0, (m)(2y +21cy),

(z, Z points in $ mapping to x, x7)

because in the terms g (w, yz') with yz'#z and in the term E (wyw,s) we can
carry out the limit w—z simply by replacing w by z, and there are ur,(m)
values of y with y2z'=z. Formula (5.6) is identical to the formula in Proposition
(2.23) if we define G} ((z, z) (which was previously defined only if z¢ 7, 2} for
all z, 7€ by

(5.7) Gy (z,2)= Y gz v2)
yeRN/E 1
dety=m

vz ¥z

+ Y lim(gyz, w)—log2rin(z)*(z —w)|?).
yeRmit 1 w=z
dety=m

vz =z
Hence Proposition (4.2) is true without the restriction r,(m)=0, provided that
we define Yy () by (3.3) but with the new definition of G} .. In calculating
this invariant, we find that the terms in (5.7) with yz'#z give exactly the
expression in §3 and that their total contribution to yy (&) is the infinite sum
in Proposition {3.11) (the condition yz'# z translates into the condition n>0 in
this sum). The second sum in (5.7) equals ag(z), where a is the number of
yeRy/+1 of determinant m with yz'=z (for z z' as in (5.6) this number is
ur,(m)) and g.(z) is the renormalized value of gz, z) defined by the limit in
(5.7). Using the asymptotic expansion
0. (0=310g T — (1 = () +00) )
we find
r r
8.(2)= —log 2n(z =2 n(2)*F+2 = (9=2 = (1)

By Kronecker’s first limit formula, this is equivalent to

g(z)=—2log2n+2 FF (s)+2 -FF— (1)+% lim [2" {(20) E(z, o) —J‘—],

o1 oc—1
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where E(z,s) as usual denotes the Eisenstein series of weight zero on SL,(Z).
The identity 2% {(2s) E(ty, s)=u|D|"? {x(</, s) mentioned in §4 now gives

Y g(t,)=2h [F— (s)+£(1)—10g2n]+hm [wwr/z {xl0)— 2h ]

AeClg o1 -1

=2h [F’ (s)—log2n+L (1,e)+= Iongl]

The total contribution to y§ (#) of the terms with yz'=z is the product of this
with the number a=ur,(m). Summarizing, we have:

(5.8) Proposition. Proposition (4.2) remains true when m is the norm of an ideal
in o/, provided that the local symbols {c, T, d°>  in the definition of {c, T, d°)
are defined by (5.3) with the choice of g explained above and the invariant
TN, () is defined by (3.3) with GY  as in (5.7). This invariant is given by

expression in

T L 1
h — () —log2n+—(1,e)+= log|D|}.
Corollary (3.17)) T 2hgury(m) (F (5) —log N3 ¢ b)+2 og| l)

)=

III. Non-archimedean local heights

In this chapter we will compute the local symbols (¢, T,,d">, for all non-
archimedean places v of H, always under the assumption that m is prime to N.
Assume that v divides the rational prime p; let A, denote the ring of integers in
the completion H,, n a uniformizing parameter in A, and g=p’ the cardi-
nality of the residue field A,/n. Let W denote the completion of the maximal
unramified extension of A,; then = is a prime element in W and IF=W/x is an
algebraic closure of A /m.

We first reduce the calculation of Néron’s local symbols {a, b> on relative-
ly prime divisors of degree zero on X over H, to a problem in arithmetic
intersection theory. Let X be a regular model for X over A, and let A and B
be divisors on X which restrict to @ and b on the general fibre. If 4 has zero
intersection with every fibre component of X, we have the formula [14]

0.1) {a,by,= —(4-B)logqg.

In the next section we will describe a regular model X for X over Z which
has a modular interpretation; we will then discuss the reduction of Heegner
points on X and use (0.1) to obtain the intersection formula

(02) <C’ Tm du>u = —()—( : Tm_)_(.q) lOg q,

where x and x are the sections of X® A4, corresponding to the points x and x°
over H.

The rest of the chapter is devoted to a calculation of the intersection
product (x- T, x%), which is unchanged if we extend scalars to W. We first
identify the components of the divisor T,,x°, then establish the formula

m= >

(0.3) x-T,x°) =% Z Card HomW/n"(-&’ _&U)degree m

n1
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where Homy, ..(x,Xx") is a suitable group of homomorphisms between the
diagrams of elliptic curves representing x and x°.

Using (0.3) and Deuring’s results on singular liftings of ordinary elliptic
curves, we show that (x- T,,x")=0 when p is split in K. When p is non-split in
K, the curves corresponding to x and x” have supersingular reduction and the
groups Homy, ..(x, x") can be calculated using the arithmetic of certain orders
in the definite quaternion algebra over @ of discriminant p. Next we discuss
the modifications necessary in the computation of {c, T,,d”), when the divisors
¢ and T,d° are not relatively prime. Finally, we make the orders in our
quaternion algebras completely explicit and obtain a formula for ) <c, T, d"),

vl
in terms of the ideal theory of ¢. For example, when r,(m)=0 and ;; is inert in
¢, our final formula is

YL, T,d%, = —utlogp Y, ord,(pn)r,(m|D|—nN)S(n) R, (n/p)

vlp 0<n<——m|D|

n=0(mod p)

N —
where q is an ideal of ¢ with (Tq) = (Tp

Because we must treat all non-archimedean places of H, including those
dividing N, m, or D where there are some complications, the argument often
becomes fairly intricate. Here we will illustrate the main ideas in the case
where m=1 and v divides a rational prime p which is prime to ND. We shall
also assume that r,(1)=0, so 6% 1 and the points x and x” are distinct over H.

By (0.2) and (0.3) we have

) for all primes /| D.

(0.4) {(x) = (00), (x7) = (0)},=<c, d">,
= _% Z Card (IsomW/n"(lol’ L)) log qv’

The sum in (0.4) is zero unless x and x” intersect (mod n). Deuring’s theory
shows (x-x7)=0 when p splits in K: since we are assuming that (p, D)=1 we
must have p inert in K and hence logg,=2logp. The endomorphism ring R of
X (mod n) is an Eichler order of index N in the definite quaternion algebra B of
discriminant p, and the group Homy, . (x°, X) is isomorphic to the left R-module
Rof. The points x and x” will intersect (mod =) if and only if this module is
principal; if this is so, the integer Card(Isomy ,(x° x)) is the number of
generators.

Each generator gives a solution to a certain equation in ideals of ¢, as we
will now show. Let ¢ be a prime with g= —p(mod D); then (q)=q-§ splits in
the field K and B is the algebra K+ Kj with the relations jo=4&j for ae K and
J*= —pq. Using reduction theory, one can show that for some place v dividing
p the order R is given by the set of all a+ fjeB with acd™!, Bed~'q~'n, and

a—fB integral at all primes dividing d. (Here Dz(}/ﬁ) is the different of K
and n the primitive ideal of norm N corresponding to x, as in Chap. IL) If a is
an ideal in the class of <, then
(0.3) Homy, , (x°, x)=Ra

={a+pBj:acd 'a, Bed~ ' g~ ' n@, o — P integral at d}.
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This module is principal if and only if it contains an element b=a+ §j with
reduced norm Nb=Na+pgNf=Na. Assume b is a generator; if we define the
integral ideals

c=()da~"t,

©9) ¢=(f)ban-'a"",

these satisfy the identity
0.7) Ne¢+pNNcd=|D|.

Letting n=pN¢ and I=N¢, we have a solution to the equation [+nN =|D|
with n=0 (mod p) and r_(l)+0. Conversely, such solutions will yield generators
for Ra and contribute to the height in (0.4). We remark that this method is quite
similar to that used in evaluating Gy ; at Heegner points in Chap. II. Indeed
the function p™(n) introduced in Proposition (3.11) of Chap. II counts certain
elements of norm m in an Eichler order of discriminant N in the split quater-
nion algebra over Q.

§$ 1. The curve X j(N) over Z

A model X for X (N) over Z was proposed by Deligne-Rapoport {7], and
given a modular interpretation when N was square-free. The general case was
treated by Katz-Mazur [21], using ideas of Drinfeld [9]. We review this theory
below.

Let #; , be the algebraic stack classifying cyclic isogenies of degree N
between generalized elliptic curves over S

(1.1) ¢: E-E

such that the group scheme 4=Kker ¢ meets every irreducible component of
each geometric fibre. The condition that ¢ is cyclic of degree N means that
locally on § there is a point P such that

(1.2) A= }E [aP]

as Cartier divisors on E. When N is invertible on S, this hypothesis is
equivalent to the assumption that A4 is locally isomorphic to Z/NZ; when N is
square-free it is equivalent to the assumption that 4 is locally free of rank N.
Let X be the coarse moduli scheme associated to the stack .y, ([7],
234-243, [21] 407{f). The scheme X@Z[1/N] is smooth and proper over
Z[1/N]. On the other hand, if p is a prime dividing N, the scheme X® Z/pZ is
both singular and reducible over Z/pZ. We will need a modular interpretation
of its irreducible components. Write N=p"M with (p, M)=1. Then XRZ/pZ
has (n+ 1)-irreducible components %, ,, indexed by pairs of non-negative in-
tegers with a+b=n. The component %, , is isomorphic to X,(M)®Z/pZ, and
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occurs with multiplicity ¢(p°) in X® Z/pZ, where ¢c=min (a, b). In terms of the
modular equation, this decomposition of the fibre is reflected in Kronecker’s
congruence

dx( )= J1 on(P 577 )% (modp).

a+b=n
¢=min{a,b)

All of the components #, , intersect at each supersingular point of X: these
are the points x=(¢: E-E') where E and E' are supersingular elliptic curves.
The non-supersingular points of %, , correspond to diagrams where the group-
scheme A =Xker ¢ is isomorphic locally to Hpa X Z/p"Z xZ/MZ.

For a geometric point x=(¢: E~E') of X over an algebraically closed field
k, we define Aut,(x) to be the group of all isomorphisms (f, f') which make the
diagram

E-*F
(1.3) i lr

commutative. This is a finite group, which contains (+1>; it may also be
described as the automorphism group of the pair (E, 4). The strict Henseli-
zation of X at the point x is isomorphic to the quotient of the strict Henseli-
zation of .#p .y, at the corresponding point m by the group Aut, (x)/{+1) [7,
p.172]. Using this fact, and results of Drinfeld [9] and Katz-Mazur [21,
p. 1661, one obtains the following

{1.4) Proposition. X is regular over Z, except at the supersingular points x in
characteristics p|N where Aut, (x)+{ £+ 1.

The subscheme Cusps of X is finite over Z, with one irreducible component
Cusp(d) for each positive divisor d of N. The component Cusp(d) corresponds
to diagrams of Néron polygons where A4=Xker ¢ is isomorphic to p,xdZ/NZ.
It has ¢(f) geometric points, where f=g.c.d.(d, N/d), and one has an isomor-
phism Cusp (d)~SpecZ{u,]. _

The section oo of X is the component Cusp(N) and the section 0 1is the
component Cusp (1). These sections reduce to the components % oand &, in
characteristic p respectively. In general, the reduction of the multi-section
Cusp(d) lies on the component %, , (mod p), where a=ord,,(d) [21, Chap. 10].

§ 2. Homomorphisms

Let § be a complete local ring with algebraically closed residue field k, and let
Xx=(¢: E»E) and y: (y: F->F') be two S-valued points of X which are repre-
sented by diagrams of cyclic N-isogenies. Assume further that the points x and
Yy have non-cuspidal reduction. We define the group Homyg(y, x) to be set of all
homomorphisms (f, f') over § which make the diagram
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FotoF
2.1 Il lf’
E——F

¢

commutative. Addition of homomorphisms is defined using the group laws in
E and E'. Then Homy(y, X) is a left module over the ring Endg(x) = Homg (x, x),
and a right module over Endg(y); in these rings multiplication is defined by
composition of homomorphisms. Using the fact that k is algebraically closed,
one can check that the definition of Homg(y, X) is independent of the diagrams
chosen to represent the points x and y.

The ring Endg(x) is either Z, an order in an imaginary quadratic field, or
an order in a definite quaternion algebra of prime discriminant over @ {8]. We
define the degree of a non-zero element (f, /') in Homg(y, X) to be the positive
integer deg f=deg/". Then the set of elements Homg(y, X),.,,, Of 2 fixed degree
mz1 is finite, and admits a faithful action by the finite group Autg(x).

§ 3. Heights and intersection products

Let x=(¢: E->E’) be a Heegner point of discriminant D on X over H, and let
x denote the corresponding section of X® A,. We recall that A, is the ring of
integers in the completion H,, and that the place v has residual characteristic p.

Since N is prime to D"=disc(H/@Q), the special fibre X ® A, has the shape
described in §1. Since elliptic curves with complex multiplication have poten-
tially good reduction, the sections x and x° do not intersect the divisor Cusps
in the special fibre. They reduce to supersingular points if and only if the
rational prime p is not split in K [29].

Now suppose p divides N; then p is split in K and x and x° have ordinary
reduction (modn). We wish to determine the component % , of the special
fibre which contains the reduction of x. Let nc@ be the ideal annihilating
ker ¢; since this isogeny is cyclic of degree N, we have ¢/n~Z/NZ. Hence the
place v divides n or i, but not both.

(3.1) Proposition. The sections x and x° reduce to ordinary points in the
component

Fo.n I vt

Fo i vn
Proof. If v|fi the group scheme ker ¢ is étale over A,, so i1s isomorphic to
Z/NZ over IF. Hence the reduction lies in %, ,, the component containing
Cusp(1)=0. If v|n the group scheme ker ¢ is isomorphic to u,. xZ/MZ over
IF, so the reduction of x lies in the component %, , containing Cusp(N)=o0.
Since ¢ fixes K, the kernel of the isogeny {(¢°: E°—E'®) defining x° is also
annihilated by n. Hence x° reduces to the same component as x.

(3.2) Corollary. One of the divisors c=(x)—(x), d=E°)—(0) has zero in-
tersection with every fibral component %, , of X®A,.
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Proof. Indeed, ¢ has this property if v|n, and d has this property if v|f. Since v
divides n- =N, one of these possibilities must occur.

We now return to the general case, and reduce the calculation of the local
height symbol to that of an arithmetic intersection product.

(3.3) Proposition. Assume m=1 is prime to N and r (m)=0. Then we have the

formula
¢, T,d%,= —(x- T,x")logg.

Proof. By resolving the quotient singularities at the supersingular points on X
over Z, we may obtain a regular model X*®. Neither the Heegner points nor
the cusps are affected by this resolution, so by Corollary (3.2), one of the
divisors ¢ and d have zero intersection with each fibral component of
X"™t® A,. The same is true for ¢ and T, d, as the Hecke operators preserve fibral
components when m is prime to N. The general theory of heights then gives
the identity (cf. (0.1))

&, T,d%,= —(c- T,d°) logg.
We now use the additivity of the intersection product to obtain
€ T,d)=k T,x)-x 1,0 —(x T,x°)+(x-T,0.

But (x-T,00=(0 - T,x°)=0, as x and the points y in the divisor T x" have
potentially good reduction, and (w0 -T,,0)=0,(m) (0-0)=0 as we have as-
sumed that N > 1. This completes the proof.

§4. An intersection formula

In the computation of the product (x-7,x°) in Proposition (3.3), we may
extend scalars to X®, W, where W is the completion of the maximal un-
ramified extension of A,. We may then apply the considerations of §2 to the
points x and x” over the complete local rings W and W/n" for n=1, as these
have an algebraically closed residue field IF = W/x.

For example, we have

4.1) End, (x)=Endy, x)=0,
4.2) Homy, (x?, x)~«/ as a left ¢-module

where ./ is the ideal class of K which corresponds to ¢ under the Artin
isomorphism. Formula (4.2) is usually proved by embedding W into € and
using the theory of lattices [23]. A direct algebraic proof was given by Serre
{297 where the curves E? and E'? in x° are denoted Hom {(q, E) and Hom (q, E')
respectively, for an ideal a in the class of /.

If we identify the elements g, in Homy, (x°, x) with elements « in the ideal aq,
then the degree of the isogeny g, is equal to Na/Na. We have the following re-
finement of Proposition (9.1) of Chap. I. Assume as usual that m is prime to N.
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(4.3) Proposition. The multiplicity of the point x in the divisor T,,x° is equal to
Iy ().

Proof. By the definition of T,, ((2.3) of Chap. I), the multiplicity of x in T, x° is
equal to the number of isogenies g, of degree m in a~Homy (x%X)
=Homg(x°, x), modulo the left action of the group ¢ ~Aut,, (x) which iden-
tifies isogenies with the same kernel C. This number is therefore equal to the
number of integral ideals b=(a)/a of norm m in the class of &/, or equiva-
lently to the number r,(m) of integral ideals b=(&)/a of norm m in the class of
A

In the next two sections we shall establish the following intersection for-
mula (0.3).

(4.4) Proposition. Assume m is prime to N and r,(m)=0. Then

x-T,x)=% z Card (Homy,n (X7, X)gegm)-

nz1

Since the reduction of homomorphisms gives an injection [15, 30]

(4.5) Homy, -1 (1%, X) > Homy, .. (x°, x)  for n21,

and Homy, (x°, x)= () Homy,,..(x", X),
nx1

the terms in the sum (4.4) are all zero for n sufficiently large. We shall
henceforth use the notation h,(y, X)yc,,, for the integer 3 Card Homy,ul(y, X)yegm-

§5. The divisor T, x°

To prove Proposition 4.4 we need a concrete description of the components of
the divisor T,,x° over W, and some knowledge of their intersection products.
To obtain this, we will use the theory of canonical and quasi-canonical liftings,
as developed in [15].

Since m is prime to N, the points y in the divisor T, x” are all Heegner
points over H in the sense of [13] and End;(y)=0, is an order of conductor
dividing m in K. When m is prime to p, the residual characteristic of v, the
points y are all rational over W®Q, and each is the canonical lifting of its
reduction y [31, 15]. In this case, we also have the formula

(51) hn (—&a’ l)degm = Z hn (X’ é)deg 1>

ye Tmx®
as any isogeny f of degree m between x? and x over W/r" is determined by its
kernel, which lifts uniquely to an étale group scheme C of order m onx’
over W. Then f induces an isomorphism between Y=X{ and x over W/n":
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Assume now that m=p'-r, where t=1 and (r, p)=1. The points z in the
divisor T,x" are rational over W®Q, but the points y in the divisor T, x°
=ZT,(Z) are rational over ramified extensions of W®®Q, and the correspond-

mg sections y over the ring class extensions W, are quasi-canonical liftings (of
level p®, with 0<s<1t) of their reductions ([15] Prop. {5.3)). Let y(s) be the
divisor over W obtained by taking the sum of a point of level s with all of its
conjugates over W. We then have the decomposition

tos+1 if p splits in K
Z z y(s); degz(s)jzps—ps_1 521,

0<s=t j=1

(5.2) Tez= T y(s) if pis inert in K 1
55 degy(s)=p*+p*~' sz1,
y(s) if p is ramified in K
ogsst degz(s)zpS $=>0.

Eichler’s congruence [11]

(5.3) T,=F +F-'F+F-2F24+ _4+F*' (modp),

=
where F is the Frobenius correspondence and F' is its transpose, shows that

each point y in the divisor y(s) is congruent (modn,) to a canonical lifting y,
of level zero over W. The fundamental negative congruence of [15] then gives

(5.4) y*y, (modn?) when s>1.

When p 1s split or ran}ified in K, the point y, occurs in T, z.

§ 6. Deformations and intersections

(6.1) Proposition. Let x and y be sections which intersect properly on X over W
and reduce to regular, non-cuspidal points in the special fibre. Then

¥ 0= h(¥ X1 -
n21
Proof. In the case when Auty,  (x)={+1), Proposition (6.1) follows from the
fact that the completion of the local ring of X at x is the universal deformation
space for the diagram (¢: E—-E’) over W. Hence (y-x)=k if there is an
isomorphism between x and y over W/z*, but not over W/r**!. This agrees
with the right hand side of (6.1), as

1 ngk

3 Card Homy, . (y, R)geg1 = {0 H> k.

When Auty,,(x)#<{£ 1) one can modify the above using the local ring of
the stack .# . Alternatively, one can consider the pull-back of our situation
to a modular cover Y — X over W where the corresponding objects are rigid.
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For example, Y could classify data of the type (¢: E—E') together with a full
level M structure, for an integer M =3 which is prime to N and p. Here we do
have the identity

(6.2) (7-%)= Y Card(Isomy,.(F, %)

nz1

by the arguments above, where 7 and X are sections of Y. Let § be a section
with f(7)=y and write f*(x)=) (X;) on Y. By the general behavior of the

intersection pairing under finite proper morphisms,
Using (6.2) and re-arranging the sums, we find

(y - x)= Y (3 Card(Isomy (¥, X))

nzt1 i
But ) Card(Isomy,,.(¥, x;)) =% Card (Hom,, (¥, X)4e:) Which establishes the
proposition.

The case m=1 of Proposition (4.4) is an immediate Corollary of 6.1, and
the case where m is prime to p follows from Proposition (6.1) and formula (5.1).
The real miracle occurs at the places v which divide m. Write m=p’-r as in §5.
We split into three cases, depending on the behavior of p in K.

When p splits in K, Proposition (4.4) follows from the fact that both sides
of the identity are equal to zero. The right hand side vanishes because x and x°
have ordinary reduction, so Deuring’s theory [8] gives an isomorphism
Homy, (x7, x)~Homy,,.(x", X) for all n=1. Since we have assumed that r_(m)
=0, these groups contain no elements of degree m. The left hand side is zero
as every component y(s); in the decomposition (5.2) of T,,x° is congruent to a
canonical section y, of level zero in this divisor. If X intersects y(s), then x=y,
(mod ). This forces x to be equal to y,, as they are both canonical liftings of
their reductions. Hence x =y, occurs in T, x?, which contradicts our hypothesis
that r_(m)=0.

Now assume that p is inert in K, and let y(s) be the components in T,z
with s=t(2) as in (5.2). All of these components are congruent to a fixed y, of
level zero and by (5.4) we have B

t even
Z h (Z x)deg1+ h (_ )degl {

nz Yo=2Z%,
(Tyz- %)= 1 °
t+1 t odd
2 ——h L X)degp Yo :Z(P)A

Summing over all ze T, x and using (5.1) for r prime to p, we obtain
Y h,(x%, x)deg,+ By (X%, X)geer T €VEN,
nz1

1
ih 5% Xieepr t odd.

& - T,x°)=
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In the first case, an isogeny f: x"—x of degree r over W/n" yields an isogeny
p'2f of degree m over W/rn"*"2 In the second case, an isogeny f:x°—x of

t+1

degree rp over W/r yields an isogeny p 2 f of degree m over W/n 2.
Finally, assume that p is ramified in K with prime factor p. For each
ze T,x” we have the decomposition T,z= Y. y(s) as in (5.2); each y(s) is

O0=s=t
congruent (modr,) to z if ¢ is even, and to z°» if ¢ is odd. Thus

Y 12, Xgeg 1 +1h1 (2, X)geq t even,
. nz1
(T,,rZ “X)= _
Z h,(2°, l)deg R RAAVALN L)degl t odd.
nz1

Summing over all ze T,x° and using (5.1) for r prime to p, we obtain

Z hn(&a* l)degr+[hl(xgw l)degr ¢ even,
n=1
x-T,x)=
" Y (X7, Kgeg, 1 hy (X7, X)geg, ¢ 0dd.
nz1

In the first case, an isogeny f: x—x of degree r over W/n" yields an isogeny

p'f=p"2f of degree m over W/n"*". In the second case, an isogeny f: x°7*—x

of degree r over W/n" yields an isogeny p'f: x”—>x of degree m over W/n"+".
This concludes the proof of Proposition (4.4).

§ 7. Quaternionic formulae

We now turn to the calculation of the right hand side of Proposition (4.4).
First, we record an important result which was established in its proof.

(7.1)  Proposition. If p splits in K and r,(m)=0, then (x - T, x")=0.

Proof. In this case, Homy ,.(x°, x)=Hom,, (x°,x) for all n=1. This group
contains no elements of degree m, by the assumption that r_(m)=0.

Henceforth in this section, we will assume p has a unique prime factor p in
K (in particular, p does not divide N). Then x and x° have supersingular
reduction (modn) and Endy, ,(x)=R is an order in the quaternion algebra B
over @ which is ramified at o and p. The reduced discriminant of R is equal

to Np; R®Z, is maximal in B®Q,, and for all [+p R®Z, is conjugate to
the Eichler order {( Z)EMZ(Z) ¢=0(mod N)} in BRQ,=M,(Q).
c

The embedding ¢=Endy (x)—»R=End, ,(x) given by reduction of endo-
morphisms extends to a Q-linear map K —B. This in turn yields a decomposition

(72) B=B,+B_=K+Kj

where j is an element in the non-trivial coset of Ny, (K*)/K*. The decom-
position (7.2) is respected by the reduced norm: N(b)=N(b L)FNGL).
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(7.3) Proposition. 1) Endy,..(x)={beR: D-Nb_=0 modp(Np)"~ h,
2) Homy, .+(x%, X)——End,, ,..(x)-a in B, where a is any ideal in the class <.
If the isogeny ¢ x”— X corresponds to beB, then deg ¢ =Nb/Na.

Proof. Let 3=(¢: E~E') be the diagram of p-divisible groups over W corre-
sponding to x. Since x has supersingular reduction the p-divisible groups E and
E' are both formal groups of dimension 1 and height 2. Since p is prime to N,
¢ is an isomorphism and End,,..(X) =End,,.(E) for all n= 1.

The ring Endy ,(8)=R,=R®Z, is the maximal order in the quaternion
division algebra B,=B® Q, over Q,. By the results of [15] we have

Endy, . (X)={beR,: DNb_=0 mod p(Np)"~'}.
But a fundamental theorem of Serre and Tate [31, 40] states that
Endy,.»{x)=End,  (x) »Endy . (}),

which gives 1). Part 2) follows from the fact that x*—>Hom(a, x) for any ideal
a in the class &.

(7.4) Corollary. Assume r,(m)=0. 1) If p is inert in K and v is a place dividing
p in H, then q,=p* and
& T,x)= ) 3(1+ord,(Nb_)).
beRa/t 1
Nb=mNa
2) If pis ramified in K and v is a place dividing p in H, then q,=p* where k
is the order of [p] in Clg and

x-T,x)= Y ord,(DNb_).
beRa/t 1
Nb =mNa

Proof. We will use Propositions (4.4) and (7.3). Combining these results yields

x-T,x)=3% Y Card{beRa, Nb=mNa, DNb_=0 modpNp"~'}
nz1
_ 11 +ord,(Nb_)) p4D,
ord,(DNb_) p|D.

beRa/x 1
Nb=mNa

We remark that when p yD, ord (Nb _) is always odd.

§ 8. Modifications when r (my+0

In this case, the divisors ¢ and T,,d” are not relatively prime, and the computa-
tion of the local symbol {c, T,,d”) uses the tangent vector /0t at x which is
defined in §5 of Chap. II. Recall that d/0t is defined up to a 6th root of unity,

d
and is dual to the 1-form w=7n*(q) 29 4t x when u=1.
q
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We will adopt the convention that
(8.1) (x - xy=ord, (o)

where «d/0t is a basis for the free W-module T, X. Then the intersection
formula (0.2) continues to hold. The reason for our particular choice of tangent
vector is the following.

(8.2) Lemma. If v does not divide N, then

ord,(@)=% ) Card(Auty,,.(x)) —Card (Auty, (x))

nx1

Il

1Y Card(Auty. (x)).

nzt
In particular, we see that J/0t generates T, X if and only if Auty .(x)
= Aut, (x). This is a completely general fact, which like (6.1), has nothing to do

with x being a Heegner point. It only requires that x reduce to a non-cuspidal
point of the special fibre.

Proof. The differential @ is defined on a cyclic cover Y’ of degree 6 of the
curve Y =X,(1), which corresponds to the commutator subgroup of PSL,(Z).
The compositum X’ over X still is cyclic of degree 6, as it is totally ramified

over the rational cusp oo.

X/

/ \\

X Y’
/
/
N

Y

Over Z[1/6], Y' is an elliptic curve with good reduction and w is a Néron
differential. Since the covering X'—Y' is ramified only at the cusp of Y and
the fibres dividing N, we may calculate the relationship between w- W and
Ty X for primes v Y6 N via an analysis of the ramification in the cover X'—»X
over the section x. This comes from extra automorphisms (mod=), and we
recover the formula of (8.2) exactly as in (6.1).

The argument for primes dividing 2 and 3 is more involved, and we will
not give it here. We simply note that when N=1, so X=Y and X'=Y', we
have the explicit formulae

(8.3) o= j)P((x) - 1728 j(x)*0, 1728,
mod pq
=26. 34 j(x)=1728,

=2°.33 j(x)=0.
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If v does not divide m N, then Proposition (4.4) and Lemma (8.2) give

(8.4) (x-T,x)=% ) Card (Hom§ % (X%, X)gegm)-

nz1
The quaternionic formulae for the right hand side Corollary (7.4) remain true,
provided we sum over those beR with b¢ . Another way to express this
condition is to insist that b_=+0; this is necessary if the terms ord,(Nb_) in
Corollary (7.4) are to make sense!

When vjm, formula (8.4} must be modified slightly, as the ur,(m) elements
in Homy, (x?, X)4¢, /(£ 1) which do not appear on the right hand side actually
contribute to intersections of x with its quasi-canonical liftings y which occur
in T,,x°. A count of these liftings, together with their levels, as in §5 gives the
correction term.

(8.5) Proposition. Assume that v does not divide N.
1) If pis inert in K then
x-T,x)= > 3(1+ord,(Nb_) + Jur,(m)ord,(m).
e€Ra/
’;db:mNal
b-*0
2) If p is ramified in K then
x-T,x)= 3 ord,(DNb_) + wur,(m)ord,(m)
beRa/t 1
Nb=mNa
b-#+0

3) If p=p-pissplit in K and v|p then
(x-T,x%)=ur,(mk,

where k, 20 and k,+k;=ord (m).
When v|N Lemma (8.2) remains true, provided x reduces to the same
component as the cusp . In our case, this occurs when v|n. Using the action

of wy on w, one can show that the tangent vector d/0t spans the submodule
(Ny' T, X when v|fi. Hence

(8.6) Proposition. Assume that v|N. Then

0 if vjn
~ury(myord, (N) if vlit.

- Tmz")={

$ 9. Explicit quaternion algebras

We now seek a formula for the sum

©.1) (€, T,d, =¥ <, T,d*,.

vlp

The case when p splits in K can be handled immediately.
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(9.2) Proposition. If p splits in K, then
(e, T,d% = —ur (myh ord,(m/N)logp.

Proof. By Propositions (8.5) and (8.6), {c, T, d"> .= —ur,(m)j, logq, with j +j;
=ord,(m/N). On the other hand } logq,=hlogp.
vlp

We now assume that v divides a prime p which remains inert in K. Fix an
auxiliary prime g with (%)= (—_78) for all primes /|D. Such primes exist by
Dirichlet’s theorem and must split (g)=q-q in K. The quaternion algebra B
with Hilbert symbol (D, —pg) is ramified only at cc and p, and we have a
splitting: B=K + K with jZ= —pq.

We wish to find a convenient model for the order R=End, . (x) of Corolla-
ry {(7.4) as a subring of B. Recall that R has reduced discriminant Np and is
locally an Eichler order at all finite I#p. A global order S with this local
behavior is given by

S={a+pj:acd ', fed g 'n, a=P mod €}

where the congruence is for all primes | of ¢ dividing d. By a fundamental
result of Eichler [10, p. 118] there is an ideal b of @ such that Rb=bS inside
B. If a 15 an ideal in the class ./ corresponding to o (as in (7.4)), we have

(9.3) Ra={o+pfj: xed la,
Bed~ g nbb 'a, a=(~1)"%® g mod @}
The class % of the ideal b depends on the place v which divides p. If v/ = v
we find b'=bc¢, so #' =% -%. Hence the different classes of ideals which arise
are permitted simply transitively by Gal(H/K). If we sum over all primes v

dividing p, this class will drop out of the final formulas.

We now consider the local sums in Corollary (7.4). Assume b=oa+fjcRa
satisfies

04 {szNoHrqu[f:mNa.

Nb_=pgNS+0.
If we define the integral ideals of ¢
9.5) c=()da!
¢=(p)dbqn b~ 'ba!
then ¢ is in the class o/~ ! and ¢ is in the class &/ #°[qn~']. Furthermore, we
have the identity
9.6) Nc+NpNc'=m|D|.

The integer n=pN¢ is non-zero and ord,(n)=ord,(Nb_). For any integer
n define §(n)= [] 2 as in (3.15). We shall prove

H{(n. D)
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(9.7) Proposition. If p is inert in K, then
(¢, T,d°>,= —ry(mhuord (m)logp
—u*logp ) ord, (pn)r,(m|D|—nN)d(n) Ry qm(n/p).
0<n<""JNQL

n=0(mod p)

Proof. We will use Proposition (8.5) and the fact that <¢, T,d°), =
—2logp(x-T,x°, as q,=p>. The first term is clear, so it remains to calculate
the sum over b in the different Ra.

Let us start with a pair of ideals ¢ and ¢ in the classes .&/~' and
o/ [qn~ '] %? which satisfy (9.6). If n=pN¢ =p?*~'n’ then Nc=m|D|—nN.

We will try to construct elements b=a+ j in Ra satisfying (9.4) by reversing
formulas (9.5). This defines « and § up to units in @ ; whatever generators we
take, the fact that mNa=Na+pgNp is integral implies that «= + f mod @, for
all f|b. If we may adjust the signs so that a=(—1)"*I®g we will obtain an
element in Ra. But we will always get an element in R'a, at a place v’
conjugate to v by an element of order 2 in Gal(H/K). Thus each pair (c,¢')
contributes to the sum ) (x-7,,x") some elements of weight %(H—ordp(N b ).

vip
The total number of elements which arise from this pair is equal to 2 - u? - §(n)

since we only count b up to sign. This gives Proposition {9.7).

The case when v divides a prime p which is ramified in K is quite similar.
Let p be the prime which divides (p) in K and let f be the order of [p] in
Cly. There are h/f factors v of p in H, each of residual degree p/. To obtain
models for the orders R=Endy ,(x) in (7.4), we let g be a rational prime with

-1 -
(E)q—,) = (—p,-> for all p'£p which divide D and (——q> = —1. Then g=gq-q splits
p
in K and B has Hilbert symbol (D, — q). We have a splitting B=K + Kj with j*
= —q.
Here we find that

(9.8) Ra={a+pBj: aepd~'a, fepd 'q 'nbb 'a a=(—1)"® mod ¢}

where | divides d. The class of b is well defined in the quotient group
Clg/[p] by the place v. An element a+fj=beRa with Nb=mNa and
Nb_ +0 gives integral ideals

9.9) c=(0)da !,
¢=(f)dgn b 'ba !,

which lie in the classes &/ ~' and /[qn~']%? respectively. Both are
divisible by p, and their norms satisfy

(9.10) Nc+ NN =m|D|.

The integer n=Nc¢ is non-zero, and ord, (n)=ord,(DNb_). Arguing as in the
proof of Proposition (9.7), we find:
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(9.11) Proposition. If p is ramified in K, then
¢, T,,d°>,= —r,(m)huord,(m) logp
—u’logp )  ord,(n)r,(m|D|—nN)d(n)R,,,.,(n/p).

miD]

n=0(mod p)

O<n<

IV. Derivatives of Rankin L-series at the center of the critical strip

In this chapter we will study the values of a certain L-series of Rankin type
and of its first derivative. This L-series is determined by the following data:

i) An ideal class ./ in an imaginary quadratic field K. We fix the following
D

notations: D is the discriminant of K, e(n)= (~) the associated Dirichlet
H

character {an odd primitive character of conductor |Djf), Ciy the class group
and h= #Cl; the number of K, w=2u the number of units of K, r,(n) the

number of integral ideals of norm n in the class & if n=1, r,(0)=—

i) A cusp form feS5"(Ig(N)), where k is any positive integer and N is a
positive integer which we assume prime to D. Here S5V (Io(N)) is the space of
cusp forms of weight 2k and level N which are orthogonal (w.r.t. the Petersson
product) to all oldforms (=forms g(dz) with g of level M <N, dM|N); it is
spanned by newforms (Hecke eigenforms) but we do not assume that f is a

0

newform. We write Y a(n)e?*™™ for the Fourier expansion of f(z) and L(f,s)

n=1

for the Hecke L-series Y a(n)n™*.

1
Given this data, we define a Dirichlet series L,(f, s) by

0.1) L,(f,s)=LY2s—2k+1, S)Z (myry(mn=s,
ie. as the product of the Dirichlet L-function IN(Q2s—2k+1,¢)

= Y emn ?*"2*~! and the convolution of L(f,s) with the zeta-function
(n,Ny=1

Y r,(m)n=* of the ideal class «¢. We will show that L,(f, s) extends analytically
to an entire function of s (this is the reason for the inclusion of the factor
IN2s—2k+1, ¢ in (0.1)) and satisfies the functional equation

(0.2) LY (f, 5):=2m)" #* N*IDP ' (s)* L,(f, ) = —e(N) L, (f, 2k —s)

In particular, if e(N)= +1 then L,(f,s) vanishes at s=k; the main result of
this chapter will be a formula for the derivative L, (f, k) in this case. We will
also obtain a formula for the value of L,(f, k) if ¢(N)= —1 (and more general-
ly for all the values L(f,r), r=1,2,...,2k—1); this case is much simpler. The
case which is related to Heegner points on Xo(N) is k=1 and e(p)=1 for all
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primes p dividing N (i.e. D a square modulo 4 N). However, doing the com-
putations for arbitrary even weight not only involves no extra work, but
actually simplifies things, since for forms of weight 2 there are extra technical
difficulties (connected with the non-absolute convergence of Eisenstein series
and Poincaré series in this weight) which obscure the exposition, so that it is
convenient to first treat the general case and then discuss the modifications
necessary when k=1. The case when k=1 and &(N)=1 but ¢(p) is not 1 for all
p|N is also interesting, since it turns out that the formula we obtain for
L,(f,1) in that case is related to the height of a Heegner point on a modular
curve associated to a group of units in the indefinite quaternion algebra over
Q ramified at the set of primes p with ord,(N) odd and &(p)= —1. The case k
=1, &(N)= —1 is related to special points on a curve associated to a definite
quaternion algebra over Q. (For details, see § 3 of Chap. V.)

One case of the theorem is particularly striking and should be mentioned,
especially as it permits one to understand the presence of the factor
IM2s+2k—1,e) in (0.1) and the form of the functional equation (0.2). If
x: Clg—C* is an ideal class character of K, then we can form the function

0.3) Li(fiz9)= ) u()Ly(f.3),

A eClg

and clearly the properties of these functions (analytic continuation, functional
equation, derivative at s=k) can be read off from those of the functions (0.1)
and conversely. Now suppose that y is a genus character, i.e. a character with
values +1. Recall that such characters correspond to decompositions of D as a
product of two discriminants of quadratic fields (one real and one imaginary),
the character y, .5, corresponding to the decomposition D=D,-D, being
characterized by the property y(a)=ej (N(a))=¢p,(N(a)) for integral ideals a
prime to D (here ¢, is the Dirichlet character associated to (Q(]/ D,)). The L-
series Lg(s, x) of such a character is equal to the product of the two Dirichlet
L-series L(s, &p). On the other hand, if fe€S,,(I;(N)) is a Hecke eigenform, then
the L-series of f has the form

1
P =F,p7%)

and a simple calculation shows that the convolution of this with Lg(s, x) equals
IMQ2s+2k—1,g)"! times the product of the two “twisted” Hecke L-series
L(f, ep,,8)=> ep(n)a(n)n~°. Hence we have the identity

p**=' (pAN),
0 {p| N),

Lh9=11 5= ty+B,=alp). a,,/f,;{

0.4) Li(fs xp,-p,» Y=L{f, ep,, ) L(f, €p,,s)  (f an eigenform).

On the other hand, it is well-known that the twisted L-series L(f, ¢, ,s) has an
analytic continuation and a functional equation with gamma-factor
(2m)"*N¥2|DJ I'(s) and sign (—1)*e, (—N)w, where w= +1 is the eigenvalue

—1
of f with respect to the Atkin-Lehner involution W: f(z)»>N %z~ 2kf (m)
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When we multiply these two functional equations we obtain a functional
equation for Lg(f, x,s) with gamma-factor and sign as in (0.2), independent
both of the value of w and of the choice of {genus) character. (The fact that the
sign of the functional equation does not depend on the ecigenform chosen
shows that this functional equation is true for any element of S%¥(I,(N)),
unlike the situation for the Hecke L-series L(f,s) which has a functional
equation only if f is an eigenfunction of Wy.) If ¢(N)=1 then one of the two L-
series on the right-hand side of (0.4), say the first, will have a functional
equation with a minus sign and the other a functional equation with a plus
sign, and our main result will specialize to a formula for the product
L(f,ep,, W) L(f, &p,, k). If k=1 and the eigenform f has integral Fourier coef-
ficients, then the value of this product will be related to the height of a point
defined over Q on the twist by D, of the elliptic curve associated to f. This is
the situation which was studied extensively (numerically) by Birch and Ste-
phens [4, 5].

The plan of this chapter is as follows. In §1 we will apply “Rankin’s
method” to obtain a formula for L_(f, s) as the Petersson scalar product of f
with the product of a theta series and a non-holomorphic Eisenstein series.
This product is a modular form on I';(N D) and must be traced down to I;(N)
to get a (non-holomorphic) modular form &  of level N whose Petersson
product with f also gives the desired L-function. This is carried out in §2,
while §3 contains the calculation of the Fourier coefficients of <i>s. In §4 we
check that each of these Fourier coefficients satisfies a functional equation in s
and calculate their value or derivative (depending on the sign of the functional
equation) at the symmetry point. This establishes the functional equation (0.2)
and gives a formula for L_(f, k) or L(f, k) as the scalar product of f with a
certain non-holomorphic modular form & of level N. The final step, carried
out in §5, is to replace @ by a holomorphic modular form ¢ having the same
scalar product with f; this is done by means of the holomorphic projection
operator of Sturm [33]. The modifications needed to treat the case k=1 are
described in §6. It is suggested that, at least on a first perusal, the reader
mentally restrict to the case N=1, k>1, |D| prime, since the ideas of the proof
are the same here as in the general case but many of the calculations (e.g.
those of §2 and §6) can be omitted or drastically shortened. Even the case N
=1, k=1 is interesting, for even though there are no cusp forms f in this case,
the function @ still makes sense and the fact that its Fourier coefficients are
identically zero gives non-trivial information about the value of the classical
modular function j(z) at quadratic imaginary arguments; this simplest case is
discussed in [18].

Conventions. For ze $ we write x, y for the real and imaginary parts of z and g
for e*™. The functions e2™* (xe ) and e?>™*" (aeZ/nZ) will be denote e(x)
and e,(a), respectively. If a is an integer being considered modulo another
integer n to which it is prime, then a* denotes the inverse of a (modn); thus
the notation e, (a*b) implies that (a, n)=1 and means e*>™'" with ac=b (mod n).

b
If f is a function on §, keZ and y= (‘cl d) e GL4(IR), then f{,y has the usual
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meaning in the theory of modular forms: (f],7)(z)=(ad—bc)*(cz

az+b
vy (2
N, then we denote by M, (I;(N), y) the space of functions f: $—C satisfying

) If N is a natural number and y a Dirichlet character modulo

b
fly=x(d)f for all y= a4 € I,(N) and having at most polynomial growth at
k c d 0

the cusps (i.e. (fl,7)(z2)=0(*) as y— o for all yeSL,(Z) and some C>0) and
by M (I5(N), x) and S,(I5(N), x) the subspaces of holomorphic modular forms
and holomorphic cusp forms, respectively; the character y is omitted from
these notations if it is trivial.

§ 1. Rankin’s method

The assumptions are as in §0: D is a fundamental discriminant, .o/ an ideal

class of Q(]/D) and f(z2)=Y a(n)q" a cusp form in S$95¥(I(N)) for some integer
N prime to D. Let 6, denote the theta-series

L

(L) 0.,(2)= ) ry(n)q"=— Z g,

n=0 Aea
where a is any ideal in the class &/ and 4= N(a). It is known that 6, belongs
to M, (I5(D), ¢). (In §2 we will give the transformation behavior of 6, under all
of SL,(Z).) Hence we have (for Re(s) large)

r's+2k—1) i a(n)r&,(n)z i

—4nny S+ 2k-—2
(4n)s+2k—1 . ST 2k—1 a(mry(n y dy

n=

— dxd
=HfM%mf”h%¥

1 . .
where I, ={i (0 rll) nel}, acting on § by integer translation. A fundamen-
tal domain for this action can be chosen to be U v, where & is a fundamen-

tal domain for the action of I(M), M=N|D|, and y runs over a set of right
coset representatives of I3(M) modulo I . Hence the last expression can be
rewritten as

Yo ([ f@0,) T2

rel'o\[o(M) y&

) ) f f(2)8,(2)

y= i(c d)efm\Fo(M)

dxdy
~%—=2Hﬂw 0,(y2) Im(yzp+2e 22

F

dxdy
-2

&(d) y kadxdy
( —+d)2k 1 |CZ—|—d|2s y2 4
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dxd
where we have used the invariance of );zy under SL,(R) and the transfor-

mation properties of f and 0, under I (M). In the last expression we can
interchange the summation and integration. We obtain:

I(s+2k-1 0 .(z)E.(z)
'(%WT) Lo(fs s+ 2k=1)={{1(2) 0u(z) Es(2) y**

= (fa 0&4 Eg)ro(M)’

dxdy
=7

where E, denotes the Eisenstein series

Es(z)=EM,a, 21,502

—IMQ2s+2k—18) Y

i(; )ET=\To(M)

e(d) V'
(cz+d)* 1 |cz+d|*

-1 ¥ e(d) v
P (cz+dP Tl ez+d)®
¢ =0 (mod M)

@ M)=1

in M,, (I5(M), &) and ( , )y, the Petersson scalar product on I(M). (The
reason for including the factor IV (s—2k+1,¢) in the definition (0.1) is now
clear.) The process we just used to express the convolution of the L-series of
two modular forms as a scalar product involving an Eisenstein series was first
used by Rankin and Selberg in 1939 and is commonly referred to as “Rankin’s
method”.

We now use the principle (f, g)r,an =0/, T &r,m for any feS,,(I(N))
and geMZk(F (M)), where Tr¥ is the trace map

TrIA\/'I: Mzk(I:)(M))—’Mzk(EJ(N))s g Z glay-

yeLo(MNTo(N)
This gives

@r)y =2 ' I(s+2k—1) L, (f, s+2k—1)=(f, Tr¥(0,E),

where now the scalar product is taken on I(N). In the definition of E_, the
condition (d, M)=1 can be replaced by (d, N)=1 since ¢(d)=0 otherwise, and
this condition in turn can be dropped if we insert a factor Y pule) (u

= Moébius function) which vanishes if (d, N)>1. Hence el{d, N)
1 &(d) v
z) 2e%ﬂ(e) C’;z (CZ_{_d)Zk»l |CZ+dl25
Mlc,eld

N
-5 B9 o (V).

where E\V is defined like E, but with N replaced by 1 (i.e. M by D); the last
line is obtained by replacing ¢,d by ¢/N, d/e. Note that the only non-trivial
terms are those with e square-free and prime to D. Now when we form
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Tr¥ (0, E,) the terms with e>1 contribute terms of level N/e <N, because any
system of representatives of I,(M)\I;(N) is also a system of representatives for

N .
I (M)\FO (—) Since f is orthogonal to modular forms of level smaller than
e e

N, these terms contribute nothing to the scalar product and can be omitted.
{(Actually, the definition of S33" involves only the scalar products with holo-
morphic forms, but the scalar product of f with any non-holomorphic form g
is equal to its scalar product with a holomorphic form g of the same level, as
we will see in § 5, so this doesn’t matter.) We have proved:

(1.2) Proposition. Let D be a fundamental discriminant, N =1 prime to D, and
define a function ;=@ _ ,eM, (I (N)) by

®,(2)=Try"(0,,(2) EV (N 2)),

where 0, is the theta-series defined in (1.1) and

d) y

ED(z)=1 £l

SO=F 2 v dP ez e
Dlc

the non-holomorphic Eisenstein series of level |D|, weight 2k—1 and Nebentypus
. Then for any fe S5 (I,(N)) we have

(Ar)~ B INS P (s+2k— 1)L, (f, s+2k—1)=(f, ®,).

Remark. The proof used only the orthogonality of f with modular forms g of
level strictly dividing N and not the orthogonality of f with functions g(dz)
with d>1 and g a form of level dividing N/d. The effect of this second
property of feS§3%" is that in Proposition (1.2) only the Fourier coefficients of
&, with index prime to N are relevant. Thus to prove the functional equation
(0.2), for instance, it suffices to prove the corresponding functional equation for

the coefficients 4,,(s, y) defined by

(1.3) P (2)= ) Auls, yelmx)

for m prime to N, since then the difference between &, and its image under the
asserted functional equation is automatically orthogonal to f. In the same way,
in giving formulas for the values of L_(f,s) at special points or for its
derivative at s=k it will suffice to study the corresponding values or deriva-
tives of A,,(s, y) for (m, N)=1. It would not, in fact, be difficult to study the
coefficients with (m, N)>1 as well, or to retain the terms with ¢>1 which were
omitted in the proof of (1.2), and thus obtain formulas valid for all
f€8,,(I(N)), but this would complicate the notations and calculations and is
pointless since one can always reduce to the case of newforms.

§ 2. Computation of the trace

The function (I;s(z) is defined as a trace from I(ND) to I(N). To compute its
Fourier development, we will need the expansions of 0_(z) and E{"(z) at the
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various cusps of I(D). These cusps are in 1:1 correspondence with the positive
divisors of D. (This is because D is not divisible by 16 or the square of an odd
prime; in general, to describe a cusp of I;,(n) one must specify a divisor n' of n

and an element of (Z/(n’, ;ln-,) Z) ) We write  for |D|, d, for the divisor, 9,

=0/0, for the complementary divisor. The numbers §, and J, can be written
uniquely as the norms of integral ideals D, and b, of K which are products of
ramified primes. If (6,, 0,)=1, then we can uniquely write §,=|D, with D, and
D, discriminants of quadratic fields and D, D, = D; we then have the associated
Dirichlet characters ¢;=¢j, (modd;) and genus character y, ., as in §0. For
odd D this is always the case, while for even D we can also have (J,, d,)=2.
Since the latter case is more complicated, we will assume from now on that D is
odd (and hence squarefree and congruent to 1 modulo 4).

It will be most convenient for our purposes to have formulas for the
behavior of 0, and E'V for all matrices in SL,(Z), not just a system of
representatives for IL(ND)\I,(N), since later on we will need information
about the Fourier development of &, at all cusps of I;(N) rather than just at
oo. We begin with E(". For each decomposition D=D, - D, we define, with the
notations just introduced,

21 (D) () L &;{m)e,(n) ¥ :
( ) Es (Z) zmngl (mz+n)2k—l |mz+n|25
D;|m

this is compatible with the notation E!!) and belongs, as is easily checked, to

M,,_,(I;(D).¢). For y= (“ Z) € SL,(Z) with (¢, D)=3, we have
C

S

E(l)l y:l Z &(n) y
st S Imaz+b)+nlcz+d)P ! Imaz+b)+n(cz+d)?
Dim
X glan—bm) y
=2 Z (mz+n)2k—1 |mz+n|25’
m,neZ
md=nc(D)}

S

where in the second line we have replaced (m, n) by y~*(m, n). Now

md=nc (mod D)= d(an—bm)=(ad—bc)n=n,
clan—bm)=(ad—-bc)m=m (mod D)

and hence, since (¢, d)=1 and (¢, D)=4, imply (¢, D,)=(d, D,)=1,
glan—bm)=¢,(an—bm)e,(an—bm)=¢g(c)e,(m) &, (d)e,(n).

The condition md=nc(mod D) is equivalent to the two conditions D,|m and
n=c* md (mod D,), where ¢* is an inverse of ¢ (mod D,). Replacing n by c¢*md
+nd,, and choosing c* to satisfy ¢*=0(modD,), so that e,(mc*d+d,n)
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=¢,(0,)¢,(n), we find

e (0)e, (M ey(d)e,(0,)e,(n)y°
22)  EW =1 % 1(€)e1(m) e5(d)£,(0,) €,

mez Mz4+mc*d+6 n?* ' mz+me*d+ 8 n|**
Daim

z+c*d
— e, (0)op, (@3,) 572~ B2 (L)
1

a b
(y= (C d)eSLz(Z), (¢, D)=ID,, D1D2=D).
We now turn to 0. Here the corresponding formula is:

b

(23) Lemma. For y= (‘c’ d) €PSL,(Z), (c, D)=|D,|, D, - D,=D we have

) z+c*d

Ol =00, (€602, DK D) 115,00, ().
1
where k(D,) denotes 1 or i according as D, >0 or D, <0 and 9, is the ideal
class of the ideal d, with d2=(D,).
. ) b
Proof. 1t will suffice to treat the case ¢=4,. Indeed, let y= (a d) be an
c
arbitrary element of SL,(Z) with (c,D)=¢, and choose xeZ so that
cx=dd, (mod D) and (x,D,)=1. Then we can find a matrix y,= ((3 x) n
2

ax—bd, -

SL,(Z), and the matrix y,=yy;'= (cx—d(SZ > is in I3(D), so

01 7=0411 7071 =e(ax—bd,)0,1, 7,

2 5%
=6,(0)2,(0,)8,(@)&,(x) - £,() k(D)™ 67 2, ., (H) Oy, (Z“F)
1

by the special case ¢=d, of (2.3), and this proves (2.3) in general. So assume ¢
=9, and write

o fra) 0 () 2GR ) s

with A, w as in (1.1). The number N(A)/4 is integral and its value modulo ¢=39,
depends only on A (mod ab,). Hence

6, (az+b):l Y e (aﬂfl—i)) Y e(N(/H-u)%).

CZ+d w Aealady peady

On the other hand, the Poisson summation formula gives

5 N
Ze(N(i+u)z)=—|;—(§)—Z y e( (v))e(Tm)

neb veb~1p-1t z
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for any ze$ and any fractional ideal b of K (consider the left-hand side as a
periodic function of Ae €/b and compute its Fourier development), so this can
be rewritten

az+b —i(cz+d) N(,{))
0 = —= N d))e(T
& (cz+d> ol leaZmzec (a y mﬂ;ﬂb_le(A (v)clcz+d)) e(TrAv)
or, replacing v by v/§,,
—1 / d
011 V= st veu;hﬂ C(v)e (A N(v) (z+z))

with NG

cv= Y e (a f(f)

Aeajad;y

)ec(Tr/lv).

Choose Ayea so that the ideal (4,)a™ ' is prime to d,. Then as y runs over a
set of representatives for @/d, (¢ =ring of integers of K) the numbers A, u give
a system of representatives for a/ad,, so

C(v)= z es,(R N(w) ‘352(1—"/10 v i)

pne@/oz

with R=aN(1,)/A. Note that Tr(d,vu)eZ because A,vuebd;'<d !, and that
R is prime to J,. Hence, choosing an inverse R* of R(modd,) which is
divisible by D,, we find

e, (RN()+Tr(do v p) =, (RN()+ RR* Tr(Zyvpr)
=5, (RN(u+R* 1y v')) €,,(— R*N(4, V),
SO
CO)=e,(~R*N(ov)- Y e, (RN().

uel@foy

Because 8, is square-free and completely ramified, one can choose the integers
modulo §, as a system of representatives for 0/b,, so

S e RN@)= T e (Rn?)=x(D)83ep,(R)
ne@/oy neZ/o2Z

by the usual evaluation of Gauss sums. Also,

e (A N(v) <z+é>) e{—R*N(i,v)=e (A N() (Z+W))

0,
z+c*d)
0

—e (N(abl)N(v)

because d—R*N(1))/A is =0(modd,) and =d(modé,), and ¢, (R)
=¢p,(d) xp,. p,(#) because R=aN(b) with b=(4,)a™" in the class o/~ '. There-
fore

—ik(D,)
9g|1}’=—%2—
1

1
e W ) Y e (N@a)NO)

vea~lbf!

z+c*d>
0, ’

and this completes the proof of (2.3) since k(D) k(D,)=iand 0,-.,5..=0,,,.
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From (2.3) and (2.4) we find for 7= (‘C’ Z) € I,(N) with (¢, D)=3,
E(sl)(NZ) 04221y

e oo )

_—“61(6/3\;)52(5151)(S;s—2k+1 81(5/52)52(d)’<(91}_1 51_%)(914)2(&‘/)

P (Nz+(c/N)*d) 0y0 (Z+5C*d)
1

1

. z+c*d z+c*d
=51(N)K(D1)715fs*2k+2XD,~D2(&Q¢)E(sDI) (N F; )B.WM ( 5 )
1 1

where we have used ¢, (6,)¢p,(0;)=1. The trace from I (N D) to I;(N) is given
. . b
by summing over ) 0, representatives (a d> of I(ND)\I4(N), the repre-
c

511D
sentatives being characterized by the value §,={c, D) and by the residue class
of ¢*d modulo §,=46/8,. Hence

®,(2)=Try”(E{"(Nz)0,,(2))
ep, (N xp,.p,(a) z+] z+j

— 1 1D 8 E(D1) (N _ )9 (___)
D:DZI-DZ K(D,)o5+2k-t j(m;(s,) * 04 TIN 6,

_ 25, (N) 1o, .5, )
D=D;-D, k(D) o2kt

(EPY(NZ)0yg,2) U, ,

where U, (nelN) is the usual operator

1 +j
U f@ms T 1 (E) T Ab)etmo— ¥ A etns)
J{modn) n melZ meZ
on functions on $ of period 1. But for any function f on § of period 1 we
have
(f(2) 00, (DN Us, =(f(0,2) 05,6, 2)IU; = (10, 2) 0, (2D U

because 6, (9,2) and 0,(z) have the same n-th Fourier coefficient for any n
divisible by 0, (since /9, =/ Z, and any integral ideal of norm »n is b, times
an integral ideal of norm n/d,). Hence we obtain finally:

(24) Proposition. Assume (D,2N)=1. Then the function & (z) defined in Propo-
sition (1.2) is given by @ =(& (N 2)0,,(2)|U,p,, where

&p, (N) XDl-Dz(JZ/)

E(2)= 3
A= & DD,

EPY(D,)2).

Here the sum is over all decompositions of D as a product of two fundamental
discriminants D; and D,, xp, .p, is the corresponding genus character, k(D,)=1
or i according as D, >0 or D, <0, and E®V is the Eisenstein series (2.1).
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Note that &, depends on N and &7 (or at least on N modulo D and on the
genus of «&7); however, we omit this dependence in our notation. In the case
k=1, |D|=p prime and &(N)=1, £(z) is simply E(pz)—ip~ s~ *EP(2).

§ 3. Fourier expansions

Let &,(z) be the combination of Eisenstein series defined in Proposition (2.4)
and write

&)=Y edn yenx) (z=x+iye9).

neZ

Then Proposition (2.4) gives the Fourier expansion

(3.1) o ()= Y e, (n’ ﬂ) r(l)ye= 2711 ¢ (M x)
o neZ ; (S ’ (S
1z0

Nn+1=0(mod D)

(0=|D| as before). The coefficients e (n, y) are described by the following two
propositions.

(3.2) Proposition. The n'® Fourier coefficient of &,(z) is given by

e,(0,y)=L(2s+2k—1, g)(ay)wf@ V0)L(2s+2k—2, g)(3y)~ 5~ 2k+2

iy/o

if n=0and by
e(N) o o &(n, d)
=258 2k+2V y N
es(na Y) l]/(s( y) s(n-y) d%n d25+2k—2
d>0
if n4=0, where e(n, d)=¢,(n, d) is defined by
n
0 if (d,E,D>ﬁF1

g(n, d)=
e, @, (=N oot f (2.5.D) =1,

(d,D)=\D,|,D,D,=D,
and V(t) (se C, teR) is defined by
o e-lnixtdx

V)= ‘fm CFPE L) (Re(s)>1-k).

(3.3) Proposition. The function V,(t) occurring in (3.2) has the following proper-
ties:
a) V,(0)=(—1)ri2 2" 2+3 Qs 4 2k—2)/T(s) (s +2k—1).

b) For t+0 the function V,(t) continues holomorphically to all s and satisfies
a locally uniform (in s) estimate V,(t)=|t|°" e~ 2™ (|t]—> o).
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¢) For t#0, set V¥(t)=(r|t)) 5~ 2+ ' I'(s4+2k—1) V,(t). Then V*(t) is entire
in s and satisfies V¥(t)=sign(¢) V}* ,,_ (o).

d) Let r be an integer satisfying 0Zr<k—1. Then

_Jo (t<0),
Vﬁr(t)ﬁ{zni(*l)"'pk,,(4nt)e‘2’" (t>0),
where p, (1) is the polynomial (5/2)2k‘2*2’i r)__(—_z)f_~
Pur poly T (ar s

e) For t<0, the derivative with respect to s of V((t) at the symmetry point of
the functional equation is given by

0
aVS(th:l—k:—2niqk~l(4nlt])e.‘2nt (t<0)s

where
o0 (x _ 1)k~ 1

G O)=| ———e*dx (t>0).
1 X

Proof. We have
e (N A
emy)= Y M&_I’A__)egbn(n/%,(szy)’

- s+2k—-3
p-Dy-p, K(D,;)é% :
Dz|n

where e’ is defined by

EPV(z)=} e (n, y)e(nx).
nek
The computation of the Fourier development is standard. The terms with m=0
in (2.1) give 0 unless D, =1 (since |D,|>1=¢,(0)=0), while if D,=1, D,=D
they give L{2s+2k—1,¢)y". On the other hand, the Poisson summation for-
mula gives the identity

1 2 2k+2 2mi
— oy 25— V.(rv)e2™ir>
Y RN PR

with V(1) as in Proposition (3.2), so

EgD‘)(z)—{§(25+2k_l’8)ys it D,=1

otherwise
ys +Y) n ~2k+1 n —2s
=-m Z 81(m52) Z EZ(H)Z (mz+—+l> mz+A+l
62 m=1 n(mod d2) leZ 52 52

g, (8,)y s-2%%+2 = ¢ (m rn
= 1(522)s{2k—1 )y 2s1+(2k)~2 Y &an) ) Virmy)e (rmx+52-).
2

m=1 M n(mod 82) reZ

But
Y syte (5 ) =)D 5}

n(mod é3) 2
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{Gauss sum), so this equals

£,(9,5)K(D5) yos- 2kl Z &, (m)e,(r)

YT V.irmy)e(rmx).

5§s+2k-%
rel
Hence
L2s+2k—1,8)y if D,=1,D,=D,
e"(0, y)={V,(0) L2s+2k—2,e)y *~2*+2 if D,=D,D,=1,
0 otherwise,
while

£,(0,)k(D,) gy (myey(nfm)\
el (n, y)= 1(3(2s2-+—2k—%2 (Z 1(2z+§k‘/2 )y TV (ny)
2 min M
m>0

for n+0. For the coefficients of &, this gives

e 0, y)=L(2s+2k—1, 8)(5y)s+gj;-/]%) V(O)L2s+2k—2,e)dy)~*~2k+2,
i

. N ep,(mdy)ep,(n/mé,)
es(n’y)zl(s—572kJrz ( Z an(_N)XDrDz('M) Z 2 52 2sD+22k—2 2 )
D=D; D, m|n/d; (md,)
D3 |n m>0

cy STV (ny),  (n%0),

where we have used x(D,)/x(D,)=ie, (—1). The inner sum can be rewritten

Y. &p,(d)ep, (n/d)d=**~2*+2 since the only non-zero terms here are those of
0<d|n

the form d=md, (D,|n and D, must be prime to n/d). This gives the formula
stated in Proposition (3.2).

We now give the proof of Proposition (3.3). The integral defining V,(¢t) can
be found in several standard tables, where it is expressed in terms of Whittaker
functions, but the results found in various tables do not agree and we prefer to
give direct proofs of all the properties needed. We start with a). We have

(x—i)*tdx el . (Zk—l)"O x2k-20-24x
= DA S, | —1¥ S

V( ) J;O( 2+1)s+2k i~ ljgo( ) 2]+1 (j.)(x2+1)s+2k71

where we have expanded (x—i)**~! by the binomial theorem and discarded
the odd terms in the integrand. The integral occurring in the sum equals
sTk—j—Y)I(s+k+j—3)/T(s+2k—1) (beta function), so using the dupli-
cation formula for the gamma function, we find

(=1 23-2k=25 i P (254 2k—2) *2! (= 1/4) 12k —1)!
Ts+2k—)T(s+k—1) 5 Qj+D)!k—1-))!
(s+k—3...s+k+j—3).

V,0)=

That the sum equals s(s+1)...(s+k—2) can be checked by hand for small
valves of k and by a tedious induction argument in general. A different
method, which is less elementary but works directly for all k, uses the Hankel
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integral formula for 1/I'(s):
V0)=(—1)i
s( ) ( ) lﬁjw (1+ix)s(1_ix)s+2k—1

(=D 3? 1 }

CT(s4+2k—=1) 7, (1+ix) j

— 0

e--u(1¥ix)us+2k—2dudx

1+iw

(_l)k R 2u, s+ 2k 2( s - > .
= | T Syt z %e Wdzydu (z=1+ix)
I(s+2k—1) 1751'@
(= a2 (2 571)
TT(s+2k=1) ie . (r(s)“ du

_2mi(— 127222 (254 2k—2)
- I's)rs+2k—1) ‘

This proves a) and the meromorphic continuation of V,(t) when t=0.
Now suppose t >0 and define V,*(t) as in ¢). Then

w© o
Vx(t)= f (x—i)* ! (j Yt 2k=2 g x4 ”“du) o~ 2mitx
@© 0

s

o
— — / — i 2 B 1
us+2k 2 e wt(u+ 1/u) j‘ e ntu(x+i/u) (x__l)Zk H dxdu

—

Ot 8 |

In the inner integral we move the path of integration from Im(x)=0 to Im(x)

1 _ I .
= —— and make the substitution x=——+-— (veR) to obtain
u u u

Vs*(t)=ofus+k‘1 e—nt(u+ 1/u) oj") e*ntvz (l)+
0

-

dv—.
u

u%-ku‘i)z"*1 du

This integral converges for all s and is clearly an even function of s+k—1
(replace u by 1/u), so we have obtained the meromorphic continuation and
functional equation of V,(t) for > 0; the proof for t <0 is exactly similar. If we
wish, we can use the last formula to write V*(t) in terms of standard functions:

u%+u—}2— 2k-1
expanding (v+——7—~> by the trinomial theorem we obtain the ex-
i

pression

_1Yk—a _ 1 1y © e
Vs*(t):__l Z ( 1) (Zk 1) F(a+2) j‘us+k+b2 s e"ﬂt(lw };)du

abez0 2a)lb!c! (me)+®
2a4+b+c=2k~-1
2(—1)¥i Qk—1)! [—1)\@
- t% hz>0 a!b!c! (47tt) Ks+k~1+(b~c)/2(2nt) (t>0)

2a+b+c=2k—1

for V*(t) as a linear combination of K-Bessel functions, the functional equation
now following from K, (z)=K _,(z) by interchanging b and c¢. For k=1 the
formula simplifies to

-2

Vs*(t)=-]/j (K,,,Qu+K, Qnt) (k=1, t>0).
t
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In any case, we have proved the functional equation c¢). The estimate V*(¢)

=t|° e~2m in b) follows easily from the above integral representations or

from the explicit formulas in terms of K (27¢).
For d), we note that

7 (X~l)

—2mixt
—e dx
S x+l)2k

forreZ, 0<r<k—1 (for r=k—1 the integral is only conditionally convergent;
we could also treat the cases r=k,k+1,...,2k—2 by using the functional
equation). The integrand has a pole only at x= —1i, so if t <O we can move the
path of integration up to +ioo to get V_ (r)=0, while if t>>0 we can move it
down to —ioc to get

: (x-i)r —2mix
Vﬁr(t)=—27thesx:Ai ((x—_}—we 2 t)

e—2mxt
=-—27tlz )( 2LJRB.S _,((W_—l—_f;r—})
=(—1)" ’2n1.pk.r(47rt)e”2"‘.

Finally, suppose t <0 and consider the integral defining V() near s=1-—k.
The integrand is well-defined in the x-plane cut along the imaginary axis from
—ioo to —iand from +ito +ioc, and we can deform the path of integration
upwards to a path C circling the half-line [i, ioc0) in a counterclockwise direc-
tion (from —e+ioc to i—i¢ to +e+icc). The new integrand converges for all s
(this, by the way, shows that V,(¢), and not only V*(¢), is entire in s for 1 <0,
and a similar argument applies for ¢ >0 if we deform the path of integration
downwards to circle (—ioo, —i]; this completes the proof of (3.3b), which up to
now we had only established with “meromorphically” in place of “holomor-
phically”™), and we can differentiate under the integral sign to obtain

o _l)k 1
—(’g V s ik~ j )
g (&
The function log (x*+1) is continuous on C and changes by 2xi as one passes
from one side of C to the other across the branch cut [i, io0). Therefore
2 C(x—i!
g VOlioy = —2mi ! Tt
and replacing x by 2ix—i we obtain the formula given in e). This completes
the proof of Proposition (3.3).
From Eq.(3.1) and Propositions (3.2) and (3.3d) we obtain a finite formula
for the Fourier coefficients of @ (z) at arguments s=—r (r=0,1,...,k—1) as

log(x2+ 1) e 2"*dx  (t<0).

e 2mxdx  (£<0),

1
polynomials in — of degree r:
y

{3.4) Corollary. ForreZ, 0<r<k—1, we have

mé
=Nz
N

@_,,r(z)z Z ( Z en’r(y)r&{(mé_nN))eZﬂimz’
m=0 0<ns
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where
L2k—2r—1,8)(Ny)" if r<k—1,
0O [ L, 0-on - L0, o)Wt i =kt

Vo
2n

Vo

with p,, as in (3.3d), e,(n,d) as in (3.2). (We have written e, (y) for

e, ()=(=1"&(N)

Z 8&1("’ d)d2r~2k+ 2

(Nyy-2%+2p, | (
T (n>0)

47:Nny)
)

N
e—r(n, _SX)eZﬂ:Nny/é.)

In particular, ‘io,w is a holomorphic modular form; this, of course, was
clear a priori since the definition of the Eisenstein series &,(z) shows that it is
holomorphic in z at s=0.

§ 4. Functional equation; preliminary formulae for L, (f, k) and L_(f, k)

We wish to prove the functional equation for L,(f, s) given in (0.2). In view of
Proposition (1.2) and Eq. (3.1), this will follow from the identity

4.1) ef(n,y)=n0I'(s+2k—1)en, y)=—e(N)eX_,,_,(ny)
for neZ satisfying
(42) Nn+l=0(modD) forsome [=N(a), a=integral ideal in </

From the first equation of Proposition (3.2) and (a) of Proposition (3.3) we
obtain

X0, )=(+ks+k+1)...(s+2k—=2)[n" " TI'(s+k) LL2s+2k—1, &) ](0 y)*
—e(N)2—k=5)(3—=k—5)...(—3)
At AN (s+k—Y) LQ2s+2k—2,8)](6y)* ¢,
and this proves (4.1) for n=0 since the two expressions in square brackets are

interchanged under s —2—2k —s by the functional equation of L(s, ¢). For n=0
we have

e¥(n, y)=—ie(N)|nfn® 162542 yV*(ny) 3 e, (n, d)(Inl/d?p+*"
din
d>0

with V*(¢) as in (c) of Proposition (3.3). In view of the functional equation of
V*(ny), therefore, (4.1) will foliow from the identity

(4.3) &y(n, |n|/d)= —&(N) sgn (n) &, (n, d)

for n satisfying (4.2) and d a positive divisor of n. We can assume that (d, E,D)
=1 since otherwise both sides of (4.3) are zero. Then D decomposes as
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D=D,D'D". |D'|=(d,D), |D”1=(§,D)

with Dy, D', D" discriminants and D prime to n. The discriminants D, and D,
in the definition of &(n, d) are then D,D” and D', respectively, while the
corresponding discriminants for &(n, |n|/d) are D, ' and D". Hence

g) XDUD"-D'(&I),
; (n %‘) . (L;ﬂ) - (L;ﬂ) (= N sgn(n)d) 7p, . o ().

All terms in these two expressions take on values in {11}, and the product is

e(n, d)=¢ep (d) ep-(d) ey (~—N

000,413 (1, 3 = (1) e (= N 500 2,3,

which equals &ep(—N)sgn(n) because (4.2) implies that y, ,p()=¢ep (h=
£p,(— Nn). This completes the proof of the functional equation.

The functional equation suggests that we look at the symmetry point s=
t —k or, more specifically. at the value or derivative of L, s) there, depending

whether ¢(N)= —1 or &¢(N)=1. We consider first the former case. Here we can
apply Proposition (1.2) and Corollary (3.4) with r=k—1 to find:

(4.4) Proposition. Suppose ¢(N)= —1. Then the value of L,(f,s) at the sym-
metry point of the functional equation is given by

22k+1 ')Tk+1
S
(k—~1)1)/s

where €M, ,(I(N)) has the Fourier expansion

L,(f k)= S, )

‘I)(Z): Z ( Z G,g(n) FM(Wl5-—Nn) Dr_1 ( T ny) +; rﬂ(m)) yl\k elmmz

é
. m=0 0<n§l';v‘5
with

_ S (k=1 g—t)f
74l)= ¥ oyl pk,1<t>—j§0( . ) i
d>0

Note that the coefficients of @ are polynomials in y~' of degree k—1. For

k=1 the function & is a holomorphic modular form (but not a cusp form).

Now consider the case ¢(N)=1. Here we have to compute the derivative of
e,(n, y) with respect to s at s=1—~k. There are three cases, according to the sign
of n. If n=0 then the formulas at the beginning of this section give

0 gl kg1
P e N T TY R ©, W_1 s
nl-k5k~1 o
=/ ——— . —5 323 4,5 .
=2 (k—1)T és [[(s+2k—1)n*0* y" L(2s+2k—1,e)},_,_,

Y 2 ’
=211, 6)(5)1)“"[% (k)+log %er % a, s)].
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If n is positive, then the sum Y &(n, d)d~25-2*+2 in Proposition (3.2) vanishes
at s=1-—k, so din

¢ ki
25 & Wleoyg=2i07 rFy=ket Vlfk(ny);E(n» d) logd.
dln

If n is negative, then it is instead the factor V,(ny) in (3.2) which vanishes at s
=1-k, so

‘m

es(n,Y)|S=17k=—id"‘*%Y’k“ V(n We_i_v- e, d).

'S din

s

5]

0
Substituting for ¥V, _,(ny) (n>0) and s V.my)l_y_ (n<0) from parts (d) and
(e) of Proposition (3.3), and combining with (3.1) and Proposition (1.2), we find:

(4.5) Proposition. Suppose ¢(N)=1. Then the derivative of L,(f,s) at the sym-
metry point of the functional equation is given by

nk+1 ~

k—1) 1/5

where deM 2xIo(N)) has the Fourier expansion

22k+ 1

L, (k)=

0 4nnN
b= 3 [- T amnmi-Nnn, (5
me — 0 O<ngsMe

h r
+;rjﬁ,()(logy+ (k)+logNSé—logn+2 — (1,5))

4nnN )
- Z o M) r,mé+Nn)q,_ 1( 5 y)] yl =k p2uims

with o,,(n) and p, _,(t) as in Proposition (4.4), q, _, as in Proposition (3.3¢), and

n
7= 3. eyl d)log (20
din
d>0

.. N<19/5 0
(The function @ is 5 1/ 75 @Jb i In the formula for its m"™ Fourier
7 s

coefficient we have replaced n by —n in the third term; the first two terms are
absent if m<0.>

Propositions (4.4) and (4.5) are the preliminary formulas for L_(f, k) and
L (f, k) referred to in the section heading. We now make them more explicit
by giving a simple closed formula for the arithmetical functions o,(n) and
a,(n). Let {n} be the genus of any integral ideal n of K satisfying

N(n)=e(N)N (mod D)
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(this is independent of the choice of n), {&n} its product with the genus of the
ideal class <7, and (as in Chap. II)

R,y (n)=number of integral ideals of norm #» in the genus {o/n}
o(n)=2°, s=number of prime factors of (n, D).
Then we have
(4.6) Proposition. a) Let n be an integer satisfying (4.2) and e(N)n<0. Then
0,(n)=0d(n) Ry, (nl).

b) Suppose n>0 and ¢(Ny=1. Then

0,(n)= Zla,,(n) logp
pln
with

0 if e(p)=1,

o = T+ D0 Ry (g) it o()= —1,

ord, (1) 3(n) Ry (g) if e(p)=0,

where in the last two cases {c} is the genus of any integral ideal with N(c)= —p
(mod D).

Remarks. 1. The genus of ¢ in b) is well-defined, since if ¢(p)= —1 then —p is
prime to N and determines a genus by the usual correspondence

{genera of K} <5 {xe(Z/DZ)* | s(x)=1}/Z/DZ)"?,
while if e(p)=0 then the genus characters of ¢ corresponding to all prime

divi , : N()\ _ (—p
ivisors p'£p of D are determined {we must have P 7 and the

genus character corresponding to p is therefore also fixed (the product of the
genus characters corresponding to all prime divisors of D is the trivial charac-
ter). Explicitly, we could take ¢=q when &(p)=—1 and c=qp when &(p)=0,
where ¢ is a prime ideal satisfying N(q)= —p (mod D) in the first case and in
the second case p is the prime divisor of p in K and q any prime ideal with
N(g)= —1 (mod D/p).

2. The numbers a,(n) in (b) are all even, since 6(n) is even if n is divisible
by a ramified prime and ord,(n)+1 is even if n is divisible by an inert prime p
with R(n/p)+0. This is of course as it should be, because under the assump-
tions of (b) we have ) ¢,(n, d)=0, as shown at the beginning of this section,

dln
and consequently q;,(nl)-:- =2 &,(n, d)logd.
d|n

Proof. a) We assume for definiteness that ¢(N)= —1 and »n is positive (i.c. the
case needed for Proposition (4.4)); the opposite case is exactly similar. If n is
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prime to D then the formula is very easy: in this case we have ¢(n, d)=¢(d) for
all divisors d of n (since D, =1, D, =D in the definition of ¢,) and consequently

0,,(n)=Y e(d)=R(n), the total number of representations of n as the norm of
din

an integral ideal of K; from (4.2) it follows that any such representation

belongs to the genus {&fn}. In general, write n=p...plsn, with (ny, Dy=1.

Any divisor d of n with (d, g, D)=1 has the form d=py...p¥d, with d,|n,

and u;=0 or v, for each i. The function ¢, (n, d) is multiplicative in d for n fixed,
ie. ey(n,d'dN=¢,nd)eynd’) for d'd’|n, (d,d")=1. Indeed, let D=D’ - D)
=D]-Dy=D,-D, be the splittings of D occurring in the definition of ¢, for
d',d” and d'd", respectively; then D,=D’, D’ and consequently

gy(n,d)ey(n,d")
E n

=8D,l(d') Ep, (—N d’) XD}'D'Z(‘Q{)'SD'{(dN) €py <_N T) XD;'AD'Z'(LQ{)

’ 1 n 1 ’ n
=8D1D'2'(d)8D'2(d )ep, <—Nl W) ~&p,p,(d") p (d) epy (—Nl W)

(I any norm from the ideal class .« prime to D)
4 n ’ 12
=ty (dd )eDZ(—Nl W):aﬂ(n,d ).
Hence
a,m= 3 ... Y Y e PYY) - gy (n, PR £y, dg)

#1€{0,v1}  us€{0, vs} dolng
s
=[] +e,0np) Y eldy)
i=1 do|ng

The sum equals R(n,), and this in turn equals R(n) because there is a 1:1
correspondence between integral ideals of norm n, and of norm n given by
multiplication with p}'... pls, where p?=(p,). If R(n)=0 then both sides of our
identity are zero and we are done. If not, then the ideals of norm n all belong
to the same genus. To complete the proof, we must show that &,(n, p;*)=1 for
all i if and only if this genus coincides with {&/n}, i.e. if and only if the values
of every genus character y on these two genera agree. It suffices to consider y
associated to prime divisors p of D, since these generate the group of genus

—NI
characters. If pyn, then the condition to be checked is just (§)= (*) for
p

some [ prime to p representable as the norm of an ideal in <, and this follows
from (4.2). If p divides n, then p is one of the p,. Every ideal of norm n has the
form p;*m with N(m)=n/p}", and the value of y on this ideal is given by

xpi )=y (p;) x(m)=¢p (p}") &p,(n/p}"),

where D, is the prime discriminant associated to p, (ie. [D,|=p;, D;=1
{mod 4)) and D,=D/D,. But these are the same D, and D, as occur in the
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definition of ¢, (n, d) for d=p}", so

e, (n, pl)=¢p (p{") ep,(—Nn/p{") xp, . p, ()= x(p;" m) y(n.of)

and we are done.
b) This case is rather similar. By Remark 2, we have o, (n)= Za )logp

with a,(n)= =23 ¢,(n,d)ord ,{d). Write n=p”n, with pyn,. The lelsors of n
din
have the form p*d, with 0= u<v, d, |n,, so using the multiplicativity proved in
part (a) we find
a,(nj=-—2 Z ey (n,py- Y e,(ny, dy).

o= dy|ny
If e(p)= +1 then ¢, (n, p*)=¢(p")=1 for all g, so

(v+1)- z ey(n,dy)= Z e4{(n, p") Z g (n,d)=0,(n),

dy|ny dy|ny

and this was shown at the beginning of the section to be zero under the
hypotheses of (b). Hence a,(n)=0 in this case. If e(p)= —1, then the same
argument shows that 3 ¢,(n,d,)=0, and consequently a,(n)=0, if v is even,

dy|ny
since then Y e, (n, p*)= Y (—1y*+0.If v is odd, then
u=0 p=0
Y pey(n py=—1+2-34+...—v=—5(v+1),

Py

so a,(m)=(v+1) ) &,(nd,). If d, is a divisor of n, and D=D, D, the corre-
dy|ny
sponding decomposition of D, then

ey(n,d)=e,(n, p’, d1)=81)2(17v) gy, d1):XD, -Dz(c) g (—ny,dy)=ey,(—n;,d,y),

with ¢ as in the statement of the proposition. Therefore Z e,md)=0y(—ny)
dy|ny

=06(n) Ry.m(n,) by part (a), and this is what we want since 6(n;)=04(n) and

R ye(n)=R, . (n/p). Finally, suppose p|D. Then ¢,(n, p*) vanishes for

O<u<v, so

4= =296 019") T e d)= =2 T sl p'd)=2v T o (0d)
dyfny dy|nmy dy|m
where for the last equality we have used the identity e (n, d)= —¢,(n, n/d)
proved at the beginning of the section and replaced d, by n,/d,. A com-
putation like the one above gives ¢,(n,d;)=¢,.-.(—n;,d;) in this case, so
using part (a) again we find

ap(n)zzvo-ﬂcp“’ ‘(—nl)zzva(nl) RWncp"’ ‘)(nl)a

and the desired result follows in this case because d(n)=2d(n,) and
Ry nepv-1, () =R, (n/p). This completes the proof of Proposition (4.6).
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We remark that the formula in b) implies that d,(n) is always a muitiple of
the logarithm of a single prime number. (Specifically: It is 0 if » is divisible to
an odd power by more than one prime inert in K and equals (ord,(n)
+1)0(n) Ry, (p)logp if there is a unique such prime p. If there is no such
prime, then n is the norm of some ideal; let g be the norm of an ideal prime to

D lying in the genus of the product of this ideal with {&/n}; then (;q) =-—1
p

for an odd number of prime divisors p of D, and ¢,(n) equals

d(n) ord,(n) R(n) log p if there is exactly one such p and 0 if there is more than

one.) Actually, this property of ¢, can be seen a priori: under the hypothesis

of b), the sum Y ¢,(n,d)d ° vanishes at s=0 and has derivative equal to

d(n
1a.,(n) there, andlsince this sum has an Euler product (by the multiplicativity
of dr—e¢(n, d) proved above), we see that g/,(n) can be non-zero only if exactly
one Euler factor of this sum vanishes at s=0, and is then an integer multiple of
the corresponding logp.

§ 5. Holomorphic projection and final formulae for L, (f,r) and L (f, k), k> 1

In Sects. 3 and 4 we obtained formulae for special values of L,(f, s) and of its
derivative in the critical strip as the scalar products of f with certain non-
holomorphic modular forms. We would like to have instead formulae express-
ing these values as scalar products of f with something holomorphic. To do
this we will use a “holomorphic projection lemma” due to Sturm [33] which
we now state and, since our hypotheses are slightly different from Sturm’s,
prove.

(5.1) Proposition. Let #eM, (I,(N)) be a non-holomorphic modular form of

o0

weight 2k>2 and level N with the Fourier expansion ®(z)= Y a,(y)e*™™,
and suppose that (P|,, 2)(z2)=0(y*) as y=Im(z)— oo for some £>0 and every
o2€SL,(Z). Define

_(4nm)2k41 2 —damy 2k—2

Then the function @(z)= Y a,e*™™ is a holomorphic cusp form of weight 2k
m=1

and level N and satisfies (f, ®)=(f, ®) for all feS,,(I,(N)).

Proof. For m>0 define the Poincaré series B,(z) by

_ yims B _a 21“_maz+b
B.(2)= Z € i y= ) (cz+d)™e e
yela\Lo(N) @ Byera\rov)

1 Z . o
where I, =+ (O 1) as earlier. The series is absolutely convergent because

k>1, and the function B, belongs to S,,(I5(N)). Let B* be the series obtained
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by replacing every term in the series defining P, by its absolute value. Then we

have the estimate

x _2k 2mim aztb
Ei2)= Y Mez+d)y et vl

(@ Dere\sL2@

éIeZnizI_‘_ Z |CZ+d|R2k

(@ Bero\sL.@
c*0

=e "4y M (E(z, k) —y")
=0(y' " (y—>o0)

since for any s>1 the Eisenstein series E(z, s) for SL,(Z) satisfies E(z,s)=y*
+0(y* %) as y— oo. Moreover, since we have replaced I,(N) by SL,(Z) in the
above estimate, we automatically have the same estimate on Bf|,, o for any
aeSL,(Z). 1t follows that the I,(N)-invariant function PX*(z)|®(z)| y** is
bounded by O(y'~%) as y—occ and similarly for its composition with any
element of SL,(Z). Hence in the integral defining the Petersson scalar product
of P, and & it is legitimate to replace P, by its definition as a series and
interchange the summation and integration. This gives

(B B)= | )t dy= et a, )yt dy
Faol 0
by the standard unfolding trick. On the other hand, the map fi—(®,f) is an
antilinear map from S,,(I5(N)) to C, so is represented by (®,-) for some
holomorphic cusp form @=3"b, ¢". The above computation with & replaced
by @ shows that
(2k—2)!

(®.B)= {@my?-1 Om

ef4nmy bm y2k72

O §

so the equality (&, P,)=(®, P,) gives b, =a,, as desired.

As a special case of Proposition (5.1), if & is a non-holomorphic modular
form of weight 2k which is small at the cusps in the sense of the proposition
(ie. (®|a)(x+iy)=0(y~% as y—co for all «), and if the Fourier coefficients of

N ! . .
@ are polynomials of degree <2k—2 in —, then we obtain a holomorphic
y

modular form having the same scalar product with all feS,,(I;(N)) by drop-
ping any terms y~/ and replacing any term y~ie*™™ (m>0, 0<j<2k—-2) by
(2k—2—-j)!

(2k—2)!
Corollary (3.4) and Proposition (4.4).

In Corollary (3.4), the function @ _, is already holomorphic if =0, as we
remarked there, so there is nothing to do. If r=1, then k>1 (since 0<r<k—1)
and i)_, is small at the cusps in the above sense (this is clear at oo since the
constant term of 43_, is a multiple of y~" and the other terms are O(e™>™); at
the other cusps it can be seen by going back to the definition of &_, as the
trace of the product of a theta function and an Eisenstein series and looking at

(4mm) ™™ We can apply this special case to the functions of
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the expressions for their Fourier developments at the cusps). Hence Proposi-
tion (5.1) applies to show that the holomorphic projection of &_, is the
function &_,= 3 a,, ,¢" with

mz1

(47tm)2"' 1 [mé/N] i 0
am b= TA T AT r mb_nN e, , ef4nmy 2k42d )

n=0

Since e, ,(y) is a polynomial in 1/y of degree <2k—2, the integral is a sum of
ordinary gamma integrals. Performing the calculation we find

—(__1)k—r22k—lE(N)r!n:Zk—lAr 5
Gmr =Tk INT DR Tme

where
62 b= X remiDI=nN)R (NnmID) @z sl
with o
_ " r 2k-—2+]—r Jor—J
(5.3) Boolx, y)-j; )( r )(_x) Yo
_[—%e(N)L(—-2Le) if n=0,
(5.4) 021,%(")‘—{28&1("’ d)(n/d)Zl if n>0.

n|d
(We have used the functional equation of L(s, ¢).) Now Proposition (1.2) gives:

(5.5) Theorem. Let of be an ideal class in an imaginary quadratic field of
discriminant D, N an integer prime to D, and r and k two integers satisfying
0<r<k—1. For m20 define b, , by Egs. (52)-(54). Then ) b, . q" is a
mz0
modular form of weight 2k and level N (and a cusp form if r+0) and
(_1)k~r(2n)2(2k—l—r) 22k71 EN)V! i ”
(A3 by ™
(2k—2-2r)! (2k—2)! |D| i

Ly{f,2k—1—r)=

for any f in the space spanned by newforms of weight 2k and level N.

Here we have omitted the case r=k—1, since the formula is slightly
different (cf. Proposition (3.2)) and we will treat this case in a moment, but we
have included the case =0, which, as just observed, can be treated without
holomorphic projection. Note that the coefficients b,, , are rational numbers
and in fact that all summands in (5.2) except the end terms n=0 and n
=m|D|/N are integers, and even the end terms are not too far from being

. 11
integers) (we have r,(0)==—=— for any D< —4 and ¢,, ,(0)eZ for any D<
—41-3). 2u 2 "

For r=k—1, corresponding to the central point of the critical strip, the
formula is similar but there are various simplifications. We can suppose that
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g(N)= —1 since otherwise L (f, k)=0 by the functional equation. Then Propo-
sition {3.2), and consequently Theorem (5.5), are the same as before except that
the terms with n=0 must be doubled. However, the function o, ,(n) can be
evaluated by the formula in Proposition (4.6), and the polynomial B, _, is
expressible in terms of a well-known function, namely

Ec.k—- 1(x’ y):yk“ ! chl(l _2X/y),

where B,_, denotes the (k—1)st Legendre polynomial. (Actually, the poly-

nomials F, can always be expressed in terms of standard orthogonal poly-
nomials, namely
B (x,y)=y B 2201 = 2x/y),

where P/*#) are Jacobi polynomials, but these are much less familiar functions.)
Thus Theorem (5.5) for r=k ~1 takes on the form:

(5.6) Theorem. Let D, o/, N be as in the last theorem, e(N)= —1, and let k be
any integer =21, For mz0 define

h
by o =(m D [rd(mlDl) .

2N
+ Y 5(n)me(n}rd(m]D]—IzN)E‘,_1(1~ " )]

0 <ns<m|D|/N miD|

with d(n), Ry,.,(n) as in Proposition (4.6). Then Y b, q" is a modular form of
mz0

weight 2k and level N {and a cusp form if k+1) and

2 2k22k 1 k—1)!
L= (T )

Jor any f in the space spanned by newforms of weight 2k and level N.

Theorems (5.5) and (5.6) give all values of L (f, s) at integral points within
the critical strip, since the points to the left of s=k can be obtained by applying
the functional equation. Note that the expression for b, , in Theorem (5.6) can

L . h . .
be simplified by dropping the term r,(m|D|) ~ and changing the summation
u

conditions to 0 <n<m|DJ/N, since §(0)=2' (t=number of prime factors of D)

and R,,.(0)=h/2'u (each genus contains h/2'~! ideal classes, and 7,(0)=1/2u
for each ideal class).

As an example of Theorem (5.6), take N=35, k=2 and D= —p, where p is a
. o 5 .
prime satisfying p=3 (mod 4), (-)z —1, and sum over all ideal classes .of.
P

Since S,(I;(5)) is spanned by a unique eigenform f=q—4¢>+2q¢>+84* — ... we
have (f, Zb q")=b,(f,f) for any form Zb g™ in this space. Also ZL (f,s)

=L{f,s)L ([, s), where = (), and P (x}=x. Hence Theorem (5.6) gwes

p% L(f,2)L,(f,2)
e R =Y b, y=ph(=p)+ Y (p—10n)R(n)R(p—5n)

1sn<®
5
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d

where R(n)= ) (7) and h(—p) must be replaced by § for p=3. The first values
dln

of the expression on the right-hand side of this formula are

p|3 7 23 43 47 67 83 103 107 127 163 167 223 227 263 283
bIII 1 1 49 25 121 361 25 289 25 169 81 121 2025 1121’

in accordance with Waldspurger’s theorem, they are all squares.
In general, there is some simplification in Theorem (5.6) if we sum over .
Indeed, for any n, IeIN we have

LRW(n ry(l ZRW w(D=RmR{) or 0,

where R(n)= ) ¢(d) is the total number of representations of n as the norm of
din

an integral idéal of K and we must take R(n) R(/) or 0 depending whether the

genus of an ideal of norm n! (if there is one) is {n} or not. This is a question of

the values of genus characters associated to the primes p dividing N. For !

=m|D]|—nN, — N=N() (mod D) these conditions are automatic for ptn since

I=N(n)n (mod p). Hence we have

300 T Ry 117,11 =) = RO ROn DI =) T (145, (*F-2120))

pl(n. D) nN
where £, is the homorphism Q* — {+1} defined by £,(n)= (g) for pin, ¢,(p)

D
(l II)/P) (cf. remarks at the end of §3 of Chap.Il). Thus the formula for
> L, (f, k)=L(f, k) L,(f, k) is a little simpler than the formula for the individual
o

L, (f, k), as might be expected.

This completes our discussion of the values of L_(f, s) at integer points in
the critical strip. We turn now to the derivative at s=k, under the assumption
that e(N)=1, so that L,(f, k) vanishes. We must apply Proposition (5.1) to the
function & of Proposition (4.5). We assume k>1 (the case k=1 will be the
subject of the next section). Then the growth conditions at the cusps required
in Proposition (5.1) are satisfied. Indeed, at oo this follows from the Fourier
expansion given in Proposition (4.5), since (denoting by a,,(y) the coefficient of
e?™m and using the estimates p,_,()=0("""), q, (©)=0(""'e "), o,(n)
= 0(n’), r(n)=0(n") we have

O(m*+?) (m>0),

a,(y)=10(y"' " logy) (m=0),
O([m‘k+se—4n|m|y) (m<0)

and hence ®(z)=0(y' ¥logy). At the other cusps, & has an expansion of the
same type and satisfies the same estimate, as we can see by going back to the
definition of @ in terms of theta and Eisenstein series. Hence we can apply
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Proposition (5.1) to get (f, ®)=(f, > a, ¢ with

mx1
Qk—2)! s
@am)PT On *Ia (y) e 4mmy y2k=2 4y
== X oL,mr,mé~Nn)|p, (_"_"—l)yﬁ e
0<n$l"—‘5- 0
=N

h oo
| 54 log et ay
0

r Né L
(r (k)+log = =+2 (1, s)) [ le“"”"ydy]

4nnN
- Z a,(n) r‘y[(m5+nN)§)CIk~l ( 7”; Y

n=1

) ykvl e74nmy dy

The first integral is elementary and was already evaluated for the proof of
Theorem (5.6):

« 4nnNy\ , —dnmy _(k—l)! nN)
jk 1( 5 )y 4 dy_(jmﬂfl(l 2;15,

where F,_, is the (k—1)st Legendre polynomial. The values of the next two
integrals follow immediately from the definition of the gamma function:

) o T'(s) ) k=1 I )
k 1 4nmy — —
i logye dy= ds ((475m)5 —« (drm) (F (k)~log4zm),
T _(k=1)!
k—1 ,—4nmy
;Ey ¢ dy T @umy

Finally, substituting into the last integral the formula for g, , given in Propo-
sition (3.3¢), we find

@ © lk 1 41tnNyx
jqk_l(‘“”’Ny) yk—le-4nmydy=j‘yk—lc 4nm}§(‘__kl__e dxdy
o 5 X

_(k—1)! (- 1F dx

1)! T _
T

The last integral is clearly elementary, since we can write the integrand by
a partial fraction decomposition as a linear combination of terms x~’ and

nN \=/ o nN .
(H—_E x) with 1 <j<k. Explicitly, if we set z=1+2—6, then the substitu-
m _ m

tion x=1+]/"—— ¢ gives
z+1 £

(x—1f'dx ?’ dt
x"( z—1 x)k S (z+]/22—fcosht)k’
2

s ey, 8
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and this is the standard integral representation of 20, ;(z), where @, , is the

Legendre function of the second kind as in Chap. II. This function is indeed
elementary; it is defined by the properties

1
{le( )=3B_,(2) log %-{-(polynomial in z),

5.7)
( 0 1()=0E"Y (o)
! L z+1 . .
(The first values are Q,(z)=%log—-, Q,(z)=%zlog fl—l Putting all this
(4m)~ ! (k—~1)!
together, and renormalizing slightly by writing AEk——z)'—— g 1OT @, WE

obtain the following theorem; since this is the basic result of this chapter (for
k>1), we have repeated our assumptions and notations.

(5.8) Theorem. Suppose k>1, N=1, and o/ an ideal class in an imaginary
D .
quadratic field K of discriminant D with ¢(N)=1 (8= (,)) For each m>0 define

2nN>

O R A C LY CIL T T S (R

0<n§ﬂle—L

h ’ !
+-r,(m) <2F )—210g27t+10gN1D|+2£(1,£))
u m L

d 2nN
-2 o,mr,m|D|+nN)Q, _ (1+—>],
"gl o o I Qk 1 m |D|
where h, u and r,(n) are defined as usual, o,(n) and o,,(n) are the arithmetical
Sfunctions occurring in Propositions (4.4)-(4.6),

2k—2-2n

v, P

Osns(k-1)/2

is the (k—1)st Legendre polynomial, and Q, _(z) is the (k—1)st Legendre func-
tion of the second kind, defined by the properties (5.7). Then the function
Y., G, 44" is a cusp form of weight 2k and level N and we have

mz1

L, (f k=0,

4k-1 .2k
fz mdq

Lalf b= 2k—2)1Y/ID| ~ mzo

for all f in the space spanned by newforms of weight 2k and level N.

§6. The case k=1: final formula for L(f, 1)

Theorem (5.8) breaks down for forms of weight 2 for several reasons: Proposi-
tion (5.1) is not true for k=1, the function @ of Proposition (4.5) is not small at
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the cusps, and the infinite series in the definition of g, , is no longer con-

. I
vergent (because the function Q,(z)=13log Z+1 is only O(z"') as z—o0). In
-

this section we will discuss the modifications needed to take care of these
difficulties.

In the Fourier expansion of & in Proposition (4.5), all terms with m=0 are
exponentially small as y=Im(z) goes to infinity, while the m=0 term has the
form (Alogy+B)y' *+0(e~ ) for suitable constants 4, B and ¢>0. Thus
when k=1 the function & grows like 4 log y+ B rather than having the decay
behavior O(y~°) required in Proposition (5.1). The same is true at the other
cusps, as we shall see, i.e. we have

6.1) (B,0)(z)=A logy+B,+0(y %) as y—-owo
(x€SL,(Z), a(oc)=¢, &>0)

at a cusp eQuio}. A priori, for a function deM,(I,(N)) satisfying this
growth condition there are 2H constants 4, and B, to deal with, where H is
the number of cusps of I;,(N). This number is the sum over all positive divisors

N, of N of ¢((N,, N/N,)) (¢ =Euler function), the invariants of a cusp ézg
¢

being N, =(c, N) and the class of (¢/N,)”*a modulo (N,, N/N,). However, for

our partlcular function @ the coefficients A, and B, will turn out to depend
only on the first invariant N;. We now formulate the analogue of Proposition
(5.1) for functions of this type.

(6.2) Proposition. Let ®(z)= Y a,(y)e*™™ be a function in M,(I'y(N)) sat-
isfying the growth condition (6. 1)7at all cusps &, and suppose that the coefficients
A, and B, depend only on the greatest common divisor N, of N and the
denominator of &, say A.=A(N,), B.=B(N,). Let {a(M), ﬂ(M):M|N} be the
solution of the non-singular system of linear equations

2
(63) y MM My=ay) (NN,
B M
(M, N (MNP
o 3 BREL pons - }—B(Nl) (N, | N).

Then there is a holomorphic cusp form ®= Y a,e*™™eS,(I,(N)) satisfying
m=1

(D,f)=(D,f) for all feS,(I,(N)) and with a,, given by

6.5) a,=lim [41zm | an(y)e*mm ysdy+24oc(1)ol(m)s*1]

s—-0 fs)

+24(1) o ( m)+48<x(1)[o (m)—o, m)(log2m+;+%(2))]

for (m, N)=1 (6, (m)= Y. d, o', (m)=Y dlogd).

dim d|lm
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Proof. Suppose first that A(N,)=B(N,)=0 for all N, |N, ie. that & satisfies the
growth conditions of Proposition (5.1). The proof of Proposition (5.1) goes
wrong for k=1 because the series defining the majorant B* diverges (due to
the pole of E(z,s) at s=1). To get around this, we use “Hecke’s trick”: we
replace B, (m=1) by the absolutely convergent series

Pm,s(z)= Z ys eZﬂ:imzl2 y
T \[o(N)
LY e
= cz+d R >0
(a»)erz\m)(c“d)z g e (Re(9>0)
cd et o

and then continue analytically to s=0. The series P¥ =P* (o0=Re(s)) ob-
tained by replacing every term of P, ; by its absolute value is majorized by
O(y~!~9) by the same calculation as in the case k> 1, the O( )-constant being
itself O(c~') as 6—0. Hence if 0<o<e, &=0(y ) at each cusp, then the
calculation used for (5.1) is justified and gives

(&, B )= [ e "™ dz)ydy=[e *"a,(y)ydy
reo\$ 0
(we have replaced s by § in the Petersson scalar product to get a holomorphic
function of s). As before, we know a priori that there is a holomorphic cusp
form ¢= ) a,q™ having the same scalar products with holomorphic forms as

m>1

&, and replacing ¢ by @ in the last formula gives

® Irl+s)
¢,P V= —4nmy sd _ T .
( m,s) am(j;e yay (4nm)1+s am

Furthermore, the function B,=lim P,

s—0
form of weight 2 (this is proved by computing the Fourier coefficients of P, _ as
functions of s), so by the defining property of ¢ we have

is known to be a holomorphic cusp

s

a,=4nmlim(®, B, )=4nm(®, B,)=4nm(P, F,)
s—0
=4mnmlim {e *"a,(y) y*dy,
s—0 0

where the limit is taken through values of s tending to 0 with Re(s) positive.
This is equivalent with (6.5) since all «(M) and (M) are 0 in this case.

We now turn to the general case, where & satisfies (6.1). Consider the
Eisenstein series

‘ 1 Y
E@= 3 Yhr=i X (cz+d)* |cz+d|*s

yel o \SLy (@) (erd)y=1

which is absolutely convergent for Re(s)>2 and defines a non-holomorphic
modular function of weight 2 on SL,(Z). This function is orthogonal to
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holomorphic cusp forms by the calculation above (E,  is just the function B, |
for N=1 with m=0) and has the form y*+c(s)y '+ 0(e"?) as y— o0, where
¢(s) and the coefficients in the O( )-term are holomorphic near s=0. Hence the
two functions

0
E(z2)=E, (2)l;- 0, F(Z)=a EZ,S(Z)IS:O,

where |,_, is defined by holomorphic continuation or simply as the limit for
s\0, belong to M,(SL,(Z)), are orthogonal to cusp forms, and satisfy

E(z)=1+0(1>, F(z)=10gy+0(l logy)
y Yy

as y—oo. Hence if we have a function & in M,(SL,(Z)) satisfying &(z)
=Alogy+B+0(y * for some constants 4 and B, then we can subtract AF(z)
+BE(z) from & to obtain a new function having the same scalar products with
holomorphic forms as & and which is O(y~*) at infinity, so we can find the
holomorphic projection of & by applying the result already obtained to this
function. For a function of higher level satisfying (6.1) with arbitrary 4, and
B., we would in general have to subtract off the analogues of E(z) and F(z)
defined using the analogue of E, (z) for all cusps of I},(N). However, under the
hypothesis of (6.2) that A, and B, depend only on the gcd. of N and the
denominator of &, we need only work with the functions E(Mz) and F(Mz),
where M runs over the positive divisors of N. To see this, we must compute

their behaviour at the various cusps. Let 5___23 (a, ¢)=1, (¢, N)=N,. Then for

L M <1
M|N we have M %:% with a,:(M, N a, C’:(M, N, ¢, (@, cy=1. Complete
' . b "Dy .
(a) and (a) to matrices a= (a ), o = (a’ ,> in SL,(Z) and let z, z' be
c c c d ¢ d
M, N "2 +b b
related by ¢ z’+d’=(—-—i) (cz+d). Then a/ Z,+ —= art and )
(M, N,)? M c'zZ+d cz+d
=;Ml_ y, s0 as y— oo we have y'— oo also and
az+b
E, (M = d)~*E (M A——>
2,(M2)ya=(cz+d) 2,s cztd
_(M.N)? az+b
S € ()
(M, N,)? .
= MZI E, (z)
(M9N)2 1S r—1_—s
=g WTHouTY)
(M,N 2+2s . s
e

M?2+s
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Setting s=0, or differentiating in s and then setting s=0, we find

M., N,)? 1
E(M?z)|, az(—MziqLo (;)

(M, N,y ( (M, N1)2> (1 )
FM = (I log ———— O|-1
(M2)|,a e ogy+log=— + . ogy

as y—»co. It follows that the function ) {a(M)F(Mz)+ (M) E(Mz)}, which is
M|N

orthogonal to cusp forms, has the expansion A(N,)logy+ B(N,)+0(y~ ! logy)

at & if a(M) and B(M) satisfy Egs. (6.3) and (6.4), and hence that we have a

decomposition

B(z2)=D*(2)+ ), {a(M)F(Mz)+B(M)E(Mz)}
MIN
where &*eM, (I}, (N)) has the same Petersson scalar products with holomor-
phic cusp forms as & does and is small at the cusps. Hence & and &* have the
same holomorphic projection @, and, by what has already been proved, the m'®
Fourier coefficient of @ is given by

a,=4nmlim [e*™a¥(y)y*dy
s—0 0o

where &*(z)=Y a}(y) e*™™=. Let

E(Z)Z 72 e(m, y) eZnimz’ F(Z): Z f(m’ y) e2nimz

m 0 m= —

be the Fourier developments of E(z) and F(z). Then for m prime to N we have

at(y)=a (y) a(l)f(m, y)— (1) e(m, y). Hence to establish (6.5) we must show
that for m>0

[rel

6
—4nm S —
ge(m, Ve Yy dy= 0 (M) +o(1),

O 8

flm, yye ™ ysdy

6 o, 12 12 1 ¢
- o,(m)s - al(m)+n_m g, (m) (log2m+§+z (2)) +o(1)
as s—0. The first equation is trivial since e(m, y})= —240,(m) for m>0. To
prove the second we need to know the Fourier coefficients f(m, y), which we
compute by working out the Fourier expansion of E, .. The identity

1 y* _ 2i 0 ( ys+! )
(cz+d) lcz+d1*  s+1 3z \|cz+d|?*+?
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0

+1 dz
weight 0 on SL,(Z); the Well—known Fourier expansion

implies E, (z)= E(z,5+1), where E(z,s) is the Eisenstein series of

I (s—H {25 ~1)
I(9)C(2s)

1-s

E(z, )=y +

2 yz .

K 2 2nimx
NCIRE) m;OI oy MK, @nim| y)e
(where o,(m)= ) d", K,(x)=K-Bessel function) then gives

d|m

nrsT(s+3)02s+1) | | ims
2) ( y - + z ez,s(md/)ez s

Ez,s(z)zys_ r(s+ ) (25+2) m*0

2ns+1 |m|—s—%

P S 2nmy i_ .
e, (m, y)_I“(s+2)C(2s+2) 0, 1(mM)e (c’?y 2nm) (]/yKH%(anmly)).

Integration by parts gives

27r1+tm—%7t

Ir+nf2+2y

—4nmy

J ez m, y)e ™ ydy=— Oruadm)s [ 7Ky (2mmy)e™> ™ dy
0 (0]

for m=1 and 0 <t<Re(s). The integral is tabulated and equals

Fs+t+DI(s—t)n?
T(s+ Ddmmy™?

"}
Slncef(m y)'_ eZ t(m J’)|: 0> WC get

2a ' m I (s+t+ )T (s—1) (m)]
@amp TR+ ()@ +21) '+

« G,
—4nmy .8 —
(f)f(m,y)e ydy "at[

I'(s+1)

t=0

S
—-24 20+, 10 Z+1=1-27 @0+ |
5

(y=Euler’s constant), and the Laurent expansion of this near s=0 begins as
given above.
This completes the proof of Proposition (6.2), except that we still have to

verify that the system of Egs. (6.3) and (6.4) always has a solution, i.e. that the
64(N} x g,(N) matrix

CN:{CN(NlaM)}Nl,MlN’ CN(NDM):v'"—

is invertible. Since the coefficients Cy(N;, M} are multiplicative (ie.

Cupp [10%, T1p*)=I1C,., (0, p*r), the matrix Cy for N=[]p’» is the
Kronecker product of the matrices C,,,, so it suffices to check this for N=p".

p’p’
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But
1 p-2 p—4~ p76 p72v
1 1 p~2 p—4 . p-—2v+2
1 1 1 p 2. p2v+?
C,= : ,
111 p-?
1 1 1 1 1

and one sees by inspection that this is invertible with inverse given by the
tridiagonal matrix

=1 0 0 0
-p*> p*+1 -1 0 0
0 —p? L

0 0 0 . —p* pr+l =1
0 0 0 0 -p? p?

This completes the proof of (6.2). Moreover, since we know the inverse of Cy
we can solve the Egs. (6.3) and (6.4) explicitly and in particular give a formula
for the numbers a(1) and (1) occurring in (6.5):

(6.7) Proposition. Let the notations be as in Proposition (6.2). Then

sy=p ¥ ) 4,

vv N?
N, 1
py=p ' Y PO BNy — 24N log N =201y T 10BP
NiIN Ny pIND -1

where () is the Mobius function and p=[](1—p~ %)= ). ll(]\?)'
pIN Nin  Ni

Proof. We have Cy'(1, N))=p~! E](%Q by (6.6) and the multiplicativity proper-

1
ty of Cy, so the formula for «(1) follows immediately from (6.3). Rewrite (6.4)
in the form

Y ColNy, M) BON)=BN)— 3. Cy(Ny, M) a(M) log P20
M|N MIN M

=B(N,)+ ) s,(N;)logp,

where Y denotes a sum over all primes dividing N and
p

$p(Ny)= Y Cy(Ny, M) a(M)(v,(M)—2 min {v,(N,), v,(M)}).

M|N
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The formula for Cy '(1, N,) just given yields

N,
p=pt 3 £ B0+ X 5,8, o)

We must show

BN oY) 1
3 =23 A(Nl)(v,,(Nl)Jr*pz_l).

By definition of a{M) we have

s,(ND)= 3 Y Cu(N;, M) Cy Y (M, Ny)(v,(M)—2min {v,(M), v,(N1)}) A(N).
M[N N2|M
Write N=p*N' with p/N’ and N, =p* N, with N;| N'; then the multiplicativity
property of Cy and Cy? gives

s,(Ny)= N;Nr [M;N’ Cy (N, M) Cy.M(M', N3]
ngxgv
x[ Y Cphp) Cut (0" p*)(p—2min {u, A})]A(P" Ny).

1zugy

The first expression in square brackets is 51\1; ~; (Kronecker delta) by definition.
Hence

p(N,) B ﬁ@ / _L /
N;N N12 p(Nl)—‘N’Ile, N1,2 {SP(NI) p2 sp(le)}

_ o RN
= L L Nz AN

NN p=1

—

1
HCp (1P~ (1=2) pﬂ)] (0" 7).

The expression in square brackets equals 2 p~2#, and

~1
(x=0)
‘ p-t 1(p") 1
‘ZMC_VI ;1’ Ky — 1 _- <h+ )
uglp 4 (p p) ;)2—-1 (K=1) p2x pZ_l
0 (k>1)

by (6.6). This completes the proof.
To apply Propositions (6.2) and (6.7) we need the coefficients A(N;) and
B(N,) for our particular function &. They are given by the following:

(6.8) Proposition. Let @ be the function of Proposition (4.5) for k=1, ¢(N)=1.
Then & satisfies the hypotheses of Proposition (6.2) with

2

N2§ L
, B(N1)=A(N1)(log i —y+2f(1,s)) (N,|N),

h ¢(N,)N
AUVI):E? (;\; !

where h, u, ¢ have the usual meaning, y= Euler’s constant.
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Proof. The case N, =N follows directly from the Fourier expansion at infinity
given in Proposition (4.5), since, as remarked already, all terms in this expan-
Noy /

. h L :
sion except the term ” 1y (m) (log —y+2—(1, 5)) e2™mz for m=0 are expo-

L
nentially small as y— oo, To obtain the corresponding result at other cusps, we

Vo o
2n Os
=TrNP(0,(z) E(Nz)) as in Proposition (1.2), and use the formulas given in
§§2-3 for the Fourier expansions of 6, and E!! in the various cusps.

Let £elP'(Q) be a cusp, N, the greatest common divisor of N and the
denominator of £, and choose a matrix aeSL,(Z) sending oo to &£ By defini-
tion of the trace operator we have

must go back to the definition of @ as d|._, with D

dloa= Y  O,EN(N2)I,y.

yelo(NDW\ITo(N)a

For each y= (j Z) in the sum we have (¢, N)=N, since yo~'el (N). Let a'
=N,a, ¢'=c/N;, where N,=N/N,; then Z—:=Nfcl— and (@, ¢)=1. Choose a
matrix 9’ = (Ccl: Z:)ESLZ(Z) and define z° by Nyz=y'z, c’z’+d’=1—vlz(cz+d)
as in the proof of Proposition (6.2). Then

1
04(2) EP (N 2)]5 v =(0,(2); MED N2, )= (0,1, 7)(2)- A (EP], 7))
2

By Lemma (2.3) and formula (2.2) we have

c ,
O D =00, (5) 00, KDY 674 s, 5, (5) 0,2,
2
' *
(1 )& =, €, (0 0 577 BP0 (FEEE),
1
where D=D,-D, is the decomposition of D into fundamental discriminants
with (¢, D)=|D,| and 6,=|D,|. Note that (¢’, D)=(c, D) because N is prime to D.
As y— oo we have

1
6M91(2)=E+...,
L2s+1,8)y+... if D =1,
EW(z)={V(0)LQ2s,e)y*+... if D,=1,

otherwise,

(here “...” denotes exponentially small terms), the first by definition of the
theta-series and the second by the calculations in the proof of Proposition (3.2).
If D,=1 then ¢ and ¢ are divisible by D, so d=a~'=N,a' ~'=N,d’ (modD)
and ¢p,(dd)=¢(N,). If D,=1 then ¢ and ¢’ are prime to D and ¢, (cc')
=¢(c?*/N,)=¢(N;). Also &(N,)=¢(N,) since we are assuming ¢(N)=1, and (1)
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Kk(D)=1i. Hence

1 &(N, .
5 S(N ) L2541, )N, y/N)+ if Dlc,
(1) _
(0, ESV (N2, y= LL@ V.(0) L(2s, &) (N, y/N,) S+ ... if (c, D)=1,
2ui N,

otherwise.

Since the collection of left cosets I,(ND)\I,(N)x contains one coset of ele-
ments y with D|c and |D] cosets of y with (¢, D)=1, we deduce

N 1 &(N)) . iV(0)
Ba0(E)=3, T L+ L, y/Noy = Ls. )N,y 4.
ir 1
as y—oo, and the result follows by substituting V,(0)= _”_(iti)- and
I'(s+1)

computing the derivative at s=0.
Combining Propositions (6.7) and (6.8), we find

gy ENDEN)_ .
I T qv( UM

p)=x(1) (10g -7+ =

pIN P

for our function ¢. We still have to calculate the integral in (6.5). From
Proposition (4.5) we have
4nnN y)

ay0)= A, 108 V4 Byt ¥ Cputto (5
n=1

for m>0, where we have made the abbreviations

Am = ﬁ r.Jz( (m)7
u

Né L
BmzAm(logT—y—kZz(l,s))—— Y aﬁ(n)rql(mé Nn),
1sns

Hence

F/
am(y)e¥4nmy 3 dy=L(§_+_1.L (AMF (s+ 1)—Am10g4nm+Bm)
m

Ot 8

4nnNy
of

5 )e—41r,myysdy.

+3 Cunla
- 0

n=1

1
The first term has the finite limit Am (—A,y—A,logdnm+B,) as s—>0. The
n

integral in the infinite sum is given by
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g0 q _4mnNy F5+1 o —-s—1 Jx
j- (f Zoe ——-—«6 xdx) e—47rmyysdy ( S+1 j‘ ( ) iy
0 \1 nm) X

At s=0 this equals

S )d—llo(u@)
4nm 1(x x+mé/nN X anm 8 nN/)’
while as n— oo it equals

Fis+1) = U, qdx L T+
(4nm)“‘§[( x) TOmT 2)]-;_S+1(47rnN/5)”1

0(n=—"2),

the O( )-constant being uniform near s=0. On the other hand, the Legendre
function Q (x) satisfies

|
0,(1+26)=11log (1 +?),

T(s+1)?

S0 s v

(5400 *"?)] as tow,

SO we can write

Wr(2s+2)
@rm)+ I(s+2)

[

0

@ (4nnNy> e_.4nmyysdy=

0. (1+725) 209

with &,(s)=0(n"*"?) as n— o0 and ¢,(0)=0. Since C,,,=0(n) for any ¢>0, the
series Y C,.,¢,(s) converges uniformly near s=0 and vanishes at s=0. Hence

4nm | a,(yye *™™ y*dy=B, —A,(y+logdnm)
0
2r2s+2) Z 2nN)
Lo \esta) 1425 ot
A T 17) 2 C'""QS( o ) oW

as s =0, and putting this into (6.5) we obtain

a,=B,—A4,(y+logdnm)

rQs+2) 2 20N\ | 24a(1) 5, (m)
+Lo [(4nm)‘F(s+2) z Con Qs ( mé >+ ]

+245(1) 6, (m)+48a(1) &, (m) — 48 (1) &, (m )(log2m+;+i (2))

an expression which can be further simplified by multiplying the expression in

4rxm) T (s+2
(_7%%_1 to replace the lg% term by

[2§ Crn Qs (1 zn'zgl) 24“(1lal(m)]

n=1

N

square brackets by

lim
550

+240(1) o, (m)(logdnm+y—1).
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(The argument just described was already used in the case N=m=1 in [18],
p. 218.) Putting into this the expressions for a(1), (1), 4,,, B,, and C,,, given
above, and combining the resulting formula with the assertion of Proposition
(4.5), we obtain our main resuit:

(6.9) Theorem. Let D, o/, h, u, ¢ have their usual meanings, N a natural number
with &(N)=1. Then there exists a holomorphic cusp cusp form ®@,(z)

=Y a, , "™ of weight 2 and level N such that

8 2
1) L,(f,1)=0, L(f 1)-———1/% (fs @,,) for any cusp form f in the space span-

ned by newforms of weight 2 and level N, and
il) the m™ Fourier coefficient of &, for m prime to N is given by

Apg=— 3, dyn)r,(m|D|—nN)
h N|D| L
+; ij;,((m)[log P —2y+ZZ (l,s)]
. & 2nN hx 1
+£1_.Hé[ g 2, (m|D|+nN)Q, ( ]DI) —7 o, (m) E]
hx logp ' L
+ m (log 2>+ 2 42425 —2*(1,8))
uz[ 1( )( g|D| p%pz_l C() L
+ Y dlog 2]
dlm d
where g, (m)= Y d, k= —1’/N 11 ( ) o, and ¢, as in Proposition (4.6).
d|lm

V. Main identity, consequences and generalizations

In the first section of this chapter we combine the results of Chaps. II-IV to
prove the theorems stated in §6 of Chap.l. The proofs of their various
consequences for the Birch-Swinnerton-Dyer conjecture are given in §2. The
application to the problem of estimating class numbers of imaginary quadratic
fields was described in Chap. I and will not be discussed again.

These results involve only the special case of the calculations of Chap. IV
when the weight of the modular form f is 2 and its level is a norm in the
imaginary quadratic field K. The corresponding results when these assump-
tions are dropped are discussed in §3 (weight 2 but arbitrary level) and §4
(higher weight). The results described in §3, relating the values of L_(f,1) or
L,(f,1) to heights of Heegner points of more general types than those dis-
cussed so far in this paper, have been essentially proved; the proofs will be
given in a later paper. The case k>1 is discussed in §4, where we describe a
conjectural interpretation of the formula for L,(f, k) in terms of heights of
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higher-dimensional “Heegner cycles™ and state a conjecture according to which
certain combinations of special values at Heegner points of the resolvent kernel
function Gy ((z, z') of Chap. Il are logarithms of algebraic numbers belonging
to the Hilbert class field of K.

§ 1. Heights of Heegner points and derivatives of L-series

The notations and assumptions are again as in Chaps. II and III: it is assumed
that every prime divisor of N splits in our imaginary quadratic field K,
xeXo(N)(H) is one of the Heegner points associated to K (H as usual the
Hilbert class field of K), ¢ denotes the class of (x)—(00) in Jac (X ,(N))(H), « is
an ideal class of K and ¢ the corresponding element of G=Gal(H/K). The first
assertion of Theorem (6.1) of Chap.l was that the function g,(z)

=Y < T,c">q™ is a cusp form of weight 2 on I(N). This in fact has

mz1
nothing at all to do with Heegner points: if y and z are any two points of
Jo(N)(H), then Y <y, T, z)q™ is a cusp form of weight 2 and level N. In fact,

mz1
if o is any Q-linear map from the Hecke algebra T to C, then Y a(T,)g™ is
mz1
such a cusp form. The proof of this is a simple formal argument; since it may
not be familiar to all readers, we give it here.

If J is any abelian variety over @ and S its cotangent space at the origin,
then endomorphisms of J act faithfully on S. Take J to be the Jacobian of
X, (N); then S can be identified with the space of cusp forms of weight 2 and
level N having rational Fourier coefficients. Hence the map T — End(S) is
injective (recall that T is defined as the subalgebra of Endg,J spanned by the
Hecke operators T,). In particular, dimy T is finite and bounded by d*, where d
=dimy,S=dim¢S,(I,(N)). For each meN let q,:S— Q be the map sending a
cusp form to its m-th Fourier coefficient, and define a mapf: TxS—Q by
B(T.f)=a,(Tf). We claim that f8 is a perfect pairing (and hence that dimg, T
=d). Indeed, if for some feS the map fB(-,f) vanishes identically then a,(f)
=a,(T,f)=B(T,, f)=0 for all m, so f=0; conversely, if for some TeT the
map fB(T, ) vanishes identically then for any feS we have a,(Tf)=a,(T,, Tf)
=a,(TT, =BT, T, f)=0 for all m and consequently Tf=0, so the injectivity
of T —End,(S) implies T=0. The fact that f is a perfect pairing means in
particular that any axeHomgy(T, €) can be represented as B(-,f) for some
feS®C, and then ) o(T,)q"=f.

mz1

This proves that g, is a cusp form on I,(N) as claimed. To identify it, we
must look at the formulas for its Fourier coefficients. With d =(x)—(0) as usual
we have {c, T,,c*>={c, T,,d’°) because ¢ and d give the same class in J(H)@Q
by the Manin-Drinfeld theorem ([4], Cor. 3.6). For the latter symbol we have

the decomposition {c, T, d°>=Y (¢, T, d°), where if |c|n|T,,d°|+0 the local

symbols <{c, T,,d’), must be defined as in §5 of Chap. IL. The formula for the
sum of the archimedean local symbols given in Propositions (4.2) and (5.8) of
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Chap. II can be written more simply by using the first part of Proposition (4.6)
of Chap. IV as

o

(e, T, d% _hm [..2,,,2 Y a,myr,(mD|+nN)Q, _, (1 +

n=1

2nN> _Ecal(m)]
s—1

|D

+h;c[a,(m)(log (2)—7-{1 b))

‘Dt p]N C
+ Y dlog dvz]
d|m

i

L
+hur,(m) [2 7 (,&)=2y=2log2r +log |D|]

for (m, N)=1, where o,,(n)= > ¢,(n, d) with ¢,(n,d) (=0,1 or —1) as in Propo-
din

sition (3.2) of Chap. IV and
h=hg, D=Dy, u=uy

the class number, discriminant, % number of units of K;

1
K=Ky= —12/N 11 (1 +E)), o,(m)=) d, y=Euler’s constant;

pIN dim

Q,_,(t)=Legendre function of the second kind.
Similarly, we can combine the formulas for Y {c, T, d°), given in Pro-

vlp
positions (9.2, (9.7) and (9.11) of Chap. III for all p and rewrite the result using
the second part of Proposition (4.6) of Chap. IV as

N
& T, d% g0 = —u> Y aym)r,m|D|—nN) + hur,(m)log —

0 <n<m|D|/N

for (m, N)=1, where o,(n)=) ¢,(n, d)log diz Adding the last two formulae, we
din

find the identity <c, T, ¢ =u|2 a, o for (m, N)=1, where a,,_, is the m"™ Fourier
coefficient of the cusp form defined in Theorem (6.9) of Chap. IV! But this
means that g, and ) a,, ,q™ differ by an old form in S,(I,(N)), so they have
the same Petersson scalar product with any f in the space spanned by new-
forms of weight 2 and level N, which is just assertion of Theorem (6.1) of
Chap. 1.

As an aside, we mention that the function g, is not quite independent of the
choice of Heegner point x (as erroneously asserted in our announcement [17]),
but this is true up to the addition of an old form, which is all we need. That
{c, T, ¢®> is independent of the choice of x when (m, N)=1 follows from the
fact that any two choices of x are related by the action of an element of G x W,
where W is the group of Atkin-Lehner involutions, and this action commutes
with that of T, for (m, N)=1. (It also follows, of course, from our computation
of the height.)
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We now turn to the second main result of §6 of Chap. I, Theorem (6.3),
which is a consequence of the first and of the formalism at the beginning of
this section. For y a character of G set ¢, = ) x~'(0)c”; then

oeG

epp T = <ZX’1(T Y1 o) T, e
=2 1t 0){c, T, c%)
=h} x(o)<c, T,c™>

by the invariance under G of the height pairing on J(H) (which we have
extended to J(H)®@C as a hermitian pairing). Now let feS,(I,(N)) be a
normalized newform. In our basic identity L (f, )=8=*u~?|D| % (f, g,) we
can replace (f, g,) by (g,.f) because both f and g, have real Fourier coef-
ficients. Hence

8 2
LU 1 D=2 Ll D=3 s 1) 8o )

1
On the other hand, ZX(LQ{)gﬂ:ﬁ Y <, T,c,>q™ by the calculation just
K mz1

given. Extend {f} to a basis f, =f, }’2, ... fy of S,(I5(N)) consisting of the

normalized newforms together with a basis of the space of oldforms (chosen for

convenience to have real Fourier coefficients). Then the formalism at the

beginning of this section implies that ¢, (or any element of J(H)® C) can be
d

written as a sum of components transforming like the f;, say ¢, = > c‘xj’ with
. . j=1

%“nﬁcy’:am( f) e (in particular, ¢{ is the f-isotypical component ¢, , of c,).

en

(e, T = Za (e, 9,

$O Z () g, = o Z(c‘” "> f;. Combining this with the last identity and ob-
servmg that (f],f) 0 for j=+1, we find

d

hu lD]’ Z

L{f, x 1 (l) c(1)>(f*f)'

But (¢, c{!’>=0 for i+1 since ¢ and c{ are eigenvectors with different
elgenvalues of some T,, (m, N)=1, so the sum reduces to a single term
hA(cl’ A/, f). This gives Theorem (6.3) of Chap. L.

We end this section by giving three important corollaries of the main
theorem which were already mentioned in our announcement [17].

(1.1) Corollary. Let feS,(I,(N)) be any newform and y any character of
Gal(H/K). Then L(f, x, 1)=0.
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This follows immediately from the formula for L(f, x, 1) since both the
Petersson product and the global height pairing are positive definite. Notice
that Corollary (1.1) is what would be predicted by the Riemann hypothesis for
L(f, x, s), according to which the largest zero of the real function L(f, y, s} on
the real axis should occur at s=1.

(L.2) Corollary. Let feS,(I,{N)) be any newform and y any character of
Gal(H/K). Then either all conjugates L(f% y% s) (ke Gal(Q/Q)) have a simple
zero at s=1 or else all have a zero of order =3.

Indeed, each L(f% x% s) has an odd order zero at s=1 by the functional
equation, and L(f* y* 1)=0 iff the Heegner point Cy, s-€J(H)® C vanishes
(again by the formula for L(J, y, 1) together with the positive-definiteness of the
height pairing). But c,. ,. equals ¢} , and hence vanishes if and only if ¢, |
does.

A consequence of Corollary (1.2), also mentioned in [17], is the analogous
statement for the ordinary Hecke L-series:

(1.3) Corollary. Let f be any newform of weight 2 and f*(aeGal(Q/Q)) any
conjugate of f. Then

ord,_, L(f, s)=0<ord,_, L(f*% s)=0,

ord,_, L(f,s)=1<>ord,_, L(f% s)=1,

ord,_, L{f,s)=2<ord,_, L{f% 5)=2,

ord,_, L(f,s)23<ord,_, L(f* s)=3.

Indeed, L(f, 1) is known to be equal to the product of a non-vanishing
period with an algebraic number which is conjugated by o when f is, so the
first statement is clear. Since L(f,s) and L{f? s) satisfy the same functional
equation, their orders of vanishing at s=1 have the same parity. Hence all the
statements of Corollary (1.3) will follow if we show that L(f,1)=0,
LE(f, )+=0=L(f% 1)+0. The assumption implies that L(f,s) (and hence

L(f*, 5)) has a functional equation with a sign —1. Then for any K=Q(}/D) as

. . . . D

in this paper the twisted function L,(f,s)=) e(n)a(n)n*, where e(n)= (u) as
n

usual, will have an even order zero by virtue of the functional equation of
L(f,s)L(f, s)=L(f, 1, 5). According to a theorem of Waldspurger ([36], Th. 2.3,
[37], Th. 4), we can choose K so that L,(f, 1) (and hence also L,(f% 1)) is non-
zero. Then the result follows from Corollary (1.2) and the identity
L DL(f, H=L(f 1, 1).

Corollaries (1.2) and (1.3) are interesting in view of a general conjecture
that the order of vanishing of an odd-weight motivic L-function at the sym-
metry point of its functional equation should be invariant under Galois con-
jugation [6].

$2. Comparison with the conjecture of Birch and Swinnerton-Dyer

In §7 of Chap.1 we described several applications of our main theorem to the
Birch-Swinnerton-Dyer conjecture for an elliptic curve E over @, under the
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assumption that the L-series of E coincides with that of a modular form f. We
recall that this condition can be verified by a finite computation for any given
elliptic curve E/@. If it is satisfied, the modular form f is necessarily a Hecke
eigenform of weight 2 with Fourier coefficients in Z; conversely, given any

such f, the periods of the elliptic differential w,=2rif(z)dz= Y a,q" Elqﬂ define

nz1
an elliptic curve (“strong Weil curve”) E,/Q with L(E,, sy=L(f, s) [25], and by
Faltings’ isogeny theorem any elliptic curve with L(E,s)=L(/f,s) is isogenous to
E, and hence admits a covering mapn: X ,(N)—E (N =level of f) defined over
@ and sending the cusp oo to 0eE(Q). For the rest of this section we suppose
given a newform f of weight 2 and level N and an elliptic curve E over Q
related in this way.

The assertion of Theorem (7.3) of Chap.l was that, if L(E,1) van-
ishes, the quotient of L(E,1) by the real period of a regular differential of
E/Q is a non-zero rational multiple of the height of some point in E(Q). This
implied in particular that rk E(Q)>0 if L(E,1)$0 and showed that, if
L(E, 1)%0 and rk E(Q)=1, then the Birch-Swinnerton-Dyer conjectural for-
mula for L(E, 1) holds up to a non-zero rational factor. In this section we show
how to prove this by applying the results of the last section to the trivial
character y =1. Since L(J, y, s) in this case is equal to the L-series of E over the
imaginary quadratic field K, we will actually be working over K rather than Q,
and here our result will be even more precise: if ord,_, L{E/K,s)=1, then
rk E(K)z 1, and if ord,_, L(E/K, s)=1k E(K)=1 then the Birch-Swinnerton-
Dyer conjectural formula for L(E/K, 1) holds up to a non-zero rational square.
This last result will suggest a conjecture relating various arithmetical invariants
of E/K which can sometimes be verified by descent arguments.

Finally, we will give some consequences of our main identity for the Birch-
Swinnerton-Dyer conjecture for certain abelian varieties over @ of dimension
larger than 1, as stated in our announcement [17].

Let E, f, o, and 7 be as above and let w be a Néron differential on E (this
is unique up to sign). Then n*(w)=cw, for some non-zero integer ¢, and we
normalize the choice of w so that ¢>0. It is generally conjectured [25] that ¢
divides the index of n, H (X, (N),Z) in H (E, Z) (for the strong Weil para-
metrization, this is the conjecture that ¢, =1), but we will not assume this here.

Let x be a Heegner point of discriminant D on X ,(N). Then the point

R= Y )= Y ab,
aeGal(H/K) oeGal(H/K)

where the sum is taken with respect to the group law on E(H), belongs to
E(K). Up to sign, it is independent of the choice of the Heegner point x, and

we have the formula
E(PK):‘E(CI,[) -deg(n),

where the canonical heights are taken on the abelian varieties E and
Jac (X ((N)) over K. The degree of n also appears when we compare periods:

lol? = [ loadl=c?llo,|>/deg ().
E(©)

Consequently, Theorem (6.3) of Chap. I with y=1 gives the identity
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(2.1) Theorem. L(E/K, 1)= || h(B)/c* u}|DI*.

Now assume that B, has infinite order, so L(E/K, 1)#0. The conjecture of
Birch and Swinnerton-Dyer then predicts that E(K) has rank 1 over Z and
gives an exact formula for the first derivative in terms of arithmetic invariants
of E. For each place p of K which divides N, let m, be the order of the finite
group of connected components in the Néron model for E over (. Since p-p
=p is a rational prime, we have m,=m, and hence (writing m, for this
common value) mp~mﬁ=m§. Put m= ]_[mp. Finally, let || denote the order

N
of the Tate-Shafarevich group of E ol;ler K; this integer is conjecturally finite

and, if so, is a square [35]. Then the conjecture of Birch and Swinnerton-Dyer
predicts that

L(E/K, )= |o|?-m? - R(R) - | |AD* [E(K): ZRJ?
[35]. Theorem (2.1) confirms this up to a rational square and suggests:

(2.2) Conjecture. If Py has infinite order in E(K), then it generates a subgroup
of finite index and this index equals ¢ -m-uy - \UI|*.

Notice that in Conjecture (2.2) the integer m is an invariant of E over Q,
the integer u,=Card (¢*/+1) is an invariant of K, and the group Ul is an
invariant of E over K. The integer ¢ is an invariant of the parametrization = of
E over @), which also enters into the definition of the point F,. However, if =’
is another parametrization of E we have npen'=ngonm for some integers
n,n'21. Hence n'¢'=nc and n' Pg=nF;, so Conjecture (2.2) is independent of
the parametrization chosen. We henceforth assume that = is the parametri-
zation of minimal degree for E; this minimizes the index of ZF; in E(K).

Since the index of ZF, in E(K) is certainly divisible by t=|E(Q),,.|, Conjec-
ture (2.2) implies the simpler

tor

(2.3) Conjecture. If E(K) has rank 1, then the integer c-m-uy - |\ |? is divis-
ible by t.

(Notice that this makes sense even without knowing that III is finite, since
in considering the divisibility of |III| by a natural pumber n we may replace
I by its n-torsion subgroup, which is known to be finite.)

Conjecture (2.3) can be attacked using descent techniques. In many cases, t
divides the term c¢-m, which depends only on E over Q. For example, when N
=11 there are 3 curves to consider.

E c m ot
E,=J,(11) 1 5
Eo/ps=J,(11) 5 1

E /(Z/5Z) 1 1 1

However, the identity t=cm does not always hold; when N=65=5-13 we
have 2 curves, with invariants:
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E [4 m t
E=Jo(65)/(ws, w,3) 1 1 2
E Z)2Z) 1 4 2

Conjecture {2.3) for the curve E=E, predicts that if K is imaginary quadratic
where 5 and 13 are split, then either

a) K=@Q(i) (so ug=2), or
b) LI(E/K),=*0, or
¢) rank (E(K))>1.

Using results of Kramer [22], one can show that for K+ ®@(i) the 2-Selmer
group of E over K has rank =4 over Z/2Z, and then either b) or c) is true.

We now show how these results concerning the Birch-Swinnerton-Dyer
conjecture over K can be used to prove the statements concerning the same
conjecture over @ stated in Theorem (7.3) of Chap. I. This theorem is trivial if
L(E, 1)=0 (take P=0), so we can assume ord,_, L(E, s)=1. In particular, the
sign of the functional equation of L(E,s)=L(f,s) is —1, so flwy=/f As in §1
we choose a K by Waldspurger’s theorem so that L.(f, 1)#0. The function
L,.(f,s) is the L-series of E' over Q, where E’ is the twist of E by K (i.e. the
elliptic curve defined by Dy*=x3+ax+b, where y*=x>+ax+b is a Weier-
strass equation for E). By the theory of modular symbols [25], we have

L(E, )=ao'

where ' is the fundamental real period of the Néron differential o'=w/}/|D]
on E" and o is a rational number, which by our choice of K is non-zero. We
also have the identity

leo] 2
IDI*

=[E(R): E(R)"]- Q- Q.

If we take P=P,+PFecE(Q), and combine Theorem (2.1) and the last two
formulas, we obtain the desired formula L(E, 1)=oaQh(P) with ae@Q*.

Finally, we recall that the Birch-Swinnerton-Dyer conjecture applies to
abelian varieties defined over number fields, not just to elliptic curves; our
result says something about this more general case. Namely, let f=) a,q" be a
Hecke eigenform of weight 2 and level N whose Fourier coefficients do not lie
in @Q but instead generate a totally real number field M, of degree m (i.e. f lies
in an m-dimensional irreducible representation of the Hecke algebra over @Q).
Then one can associate to f an m-dimensional abelian variety A,/Q which is a
quotient of the Jacobian of X (N). The L-series of A,, or of any abelian
variety A isogenous to A, over Q, is given by

24 L(4/Q,s)= [] L(f%s).
o M,~>R

Now assume that f|wy=f, so that the sign of the functional equation of
L(f,s) is —1. Then by Corollary (1.3) we know that the order of vanishing of
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L(A4/Q, s) at s=1 is either m or =3m, depending wheter L(f, 1) is non-zero or
zero. Moreover, (2.4) gives the identity L™(4, s)=]] L(f* 1). We now imitate

the argument for the case m=1 to show that ord,_, L(4/Q, s)=m implies that
rk A(Q)=m (the space A(Q)®IR contains the m-dimensional subspace spanned
by the ¢, ,.) and that if equality holds the Birch-Swinnerton-Dyer formula for
I™(A4/@Q, 1) is true up to a non-zero rational multiple.

§ 3. Generalized Heegner points and their relation to L-series

In §1 we related the main theorem of Chap. IV, under the assumptions k=1
and

3.0 e(p)=1 forall p|N,

to the computations in Chaps. IT and III of heights of Heegner points on
X o(N). However, a glance at Theorem (6.9} of Chap. 1V shows that the formula
for L, (f,1) when k=1 and ¢(N)=1 is of essentially the same nature when (3.1)
is not fulfilled as when it is. Moreover, Theorem (5.6) of Chap. IV (for k=1),
giving L (f, 1) when ¢(N)= —1, also has a similar (though much simpler) form.
We would therefore expect that there is again a connection with the heights of
some Heegner-like points on some curve. This is indeed the case and will now
be described briefly. The detailed proofs, which follow the lines of the height
computations in this paper, will be given in a later paper; the simplest case,
when N is prime and &(N)= — 1, is worked out in detail in [16].
Let S be the finite set

S={p|p prime, ord,(N) odd, &(p)= —1}.

Then (— 1)S'=¢(N), so the parity of |S| corresponds to the sign of the function-
al equation of L,(f, s). If |S} is even, so that L (f, s) has an odd order zero at s
=1, we define B to be the indefinite quaternion algebra over Q ramified at S
(“indefinite case”), while if |S| is odd, so that ord,_, L (/. s) is even, we take
for B the definite quaternion algebra over Q ramified at Su{co} (“definite
case”). Since every prime which ramifies in B is inert in K, there is an
embedding i:: K—»B. Let R be an order in B which contains 1(¢) and has
reduced discriminant N. Such global orders exist {15]; in the indefinite case
they are unique up to conjugacy whereas in the definite case there are finitely
many conjugacy classes. The group I'=R*/{£1} embeds as a discrete sub-
group of the real Lie group G=(BQR)*/IR ~.

In the indefinite case, the group G is isomorphic to PGL,(IR) and I'*
=I'nPGLY (R) is an infinite Fuchsian group which acts discretely on 9. If
(3.1) holds then I'* = I',(N) and we are in the case studied in this paper; in any
case the quotient I'*\ 9 is an algebraic curve over € (complete iff S+@). An
important theorem of Shimura [32] states that this curve has a canonical
model X over ®. This model is characterized by the fields of rationality of its
special points and has a modular description as the coarse moduli of polarized
abelian surfaces with endomorphisms by R. The Hecke correspondences are
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rational over Q and determine the zeta-function. The embedding 1: O—R gives
rise to a Heegner point x of discriminant D on X, rational over the Hilbert
class field H of K. The group Pic(®) acts freely on the set of Heegner points of
discriminant D, the action being described via conjugation in Gal(H/K) by
Shimura’s reciprocity law. The generalization of our main identity says that the
coefficients a,, , in Theorem (6.9) of Chap. IV are given by a fixed multiple of
{x, T,,x*>, where {,) is the height pairing on Pic(X) defined using the Néron-
Tate theory. The necessary height computations are similar to those in
Chaps. II and III of this paper. For instance, the number k= —12N~!

3 -1
11 (1+ﬂ;~)) which occurs in Theorem (6.9) of Chap. IV arises (just as in

pIN
the special case, (2.13) of Chap. II) as the residue of the resolvent kernel func-
tion G, for X(C) at s=1.

In the definite case, G~SO,(R)< PGL,(C) and I is a finite group which acts
on IPY(C). The quotient I'\IP*(C) is a compact Riemann surface of genus 0, and
here one can construct a canonical model of this curve over @ simply as '\ 'Y,
where Y is the curve of genus 0 over @ which corresponds to the quaternion
algebra B. To define Hecke operators one must work with the disjoint union X

= I_[ I'\Y, where n is the class number of R and [I; is the projective unit group

of the right order of the i* left ideal class. (This union is a natural double coset
space in the adélic point of view.) The representation of the Hecke algebra on
Pic(X)=~Z" then gives rise to the classical theory of Brandt matrices [16].
Again 11 ¢ > R gives a Heegner point x of discriminant D on X, this time
defined already over K, and Pic((V) acts freely on the set of such Heegner
points. We define a height pairing {, > on Pic(X) by setting <{x, y> equal to 0
if x and y are on different components of X and to |I}] if x and y are both on
the component I\ Y. Our main identity in this case says that the coefficients
b, ., occurring in Theorem (5.6) of Chap. 1V (for k=1) are fixed multiples of

Y <xg. T, xg,>. An argument like that in § 1 of this chapter permits us to
2 in Pic (0)
deduc(e a relationship between L(f,x, 1) and <{x, ,,x, > for a newform
feS,(IL,(N)) and character y:Clg—C*, where x, , is the obvious eigencom-
ponent. Since x, , lies in a fixed 1-dimensional space as K varies, the theorem
of Waldspurger and Vignéras (cf. [36]) that L(f,1,1) is proportional to the
square of an element of M, follows immediately.

§4. The case k> 1: higher weight cycles and an algebraicity conjecture

We now return to the hypothesis (3.1), but assume that k> 1. Recall that for
seC and melN prime to N we defined an invariant y§ (/) in Chap.II by
Vi ()= Gy (X7, x*°), where
teG
x is a Heegner point of discriminant D,
o is the element of G =Gal(H/K) corresponding to o7, and
Gy =Gy I T,, Gy , the resolvent kernel function for Ij(N).
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If r,(m)=+0, then some of the terms in the sum defining 7§ (/) become infinite
and the definition of y§ ((«/) has to be modified as explained in §5 of Chap. I1.
The final formula obtained for yy (/) (Proposition (5.8) of Chap. II) can be
expressed using Proposition (4.6a) of Chap. IV as

[e4}

)= =207 § 0,0, N+ mID)Q, (14

n=1

2nN>
m|D|

’ ’

L
(s)—log2n+%log|D]+z (1, 8)).

r

2h
+2hur,(m) (F
Comparing this with the formula for q,, , in Theorem (5.8) of Chap. 1V, we see

that we have the following analogue for higher weight of the main identity
proved in §1:

(4.1) Theorem. Suppose (3.1) is satisfied, k an integer greater than 1. Then there
is a holomorphic cusp form @= 3 Ay 7 4" €S 3, (I (N)) satisfying

m=<1

4k—-1 n2k

(2k—2)1y/1D|

and with a,, , (m prime to N) given by

L, (f k)= (s @) for all feSH(IL(N)

mk—l h N
(4.2) Umt =72 V'I:'z,k(&i)‘F; r mym*—!log —
2nN
—m Y “9(")’M(m|D|“"N)R_1(1— n )
0<n§1”—lNQJ— m|D|
i 2nN 3 1 ’ : . .
Since £, (1 —m> ru(m|D|—nN) is rational and o, (n) is a rational linear

combination of logarithms of primes (indeed, by the remark following Proposi-
tion (4.6) of Chap. IV, a nonnegative even integral multiple of the logarithm of
a single prime), Eq. (4.2) expresses a,, , as a finite sum of values of G% , at
Heegner points plus a finite sum of rational multiples of logarithms of prime
numbers. This is reminiscent of the situation for k=1 and suggests that there
should be an interpretation of the right-hand side of (4.2) as some sort of a
height. In fact such an interpretation has been provided by Deligne, who found
a definition of Heegner vectors s, in the stalks above Heegner points x of the
local coefficient system Sym?*~?(H!) (H! =first cohomology group of the uni-
versal elliptic curve over X,(N)) and of a height pairing {,> such that
$seo T80 =a, . The height pairing is defined as the sum of local heights
characterized by axioms similar to those of §4 of Chap.I, and these can be
calculated using intersection theory at the finite places and values of a certain
eigenfunction of the Laplace operator (which turns out to be Gy ,) at the archi-
medean places. Moreover, the definitions can be carried over to the case when
(3.1) is not satisfied (now with X (N) replaced by the curve discussed in §3 and
Sym2*-2(H') by the local coefficient system I' "\$ x W or L[Fi\(IPI((E) x W),
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where Wis the unique (2k — 1)-dimensional irreducible representation of B* /Q *),
and one again gets a formula relating the heights of the Heegner vec-
tors to the values of L (f,k) or L (f,k) as calculated in Chap. IV. However,
the global significance of the sum of the local heights is not yet understood
(e.g.: under what circumstances does the height pairing vanish?), so that we do
not get applications of the sort given for k= 1.

However, even in the absence of a complete height theory, the identity (4.2)
is not devoid of interest. Suppose, for instance, that there are no non-zero cusp
forms of weight 2k on I (N). Then a,, , must vanish for each m, and (4.2) gives
us an explicit formula for y% (/) as a rational linear combination of logar-
ithms of rational primes. If S, ,(I5(N)) is not 0, we replace G% , by the function

PO

Gyial21.2)= 2 A7 Gy (21, 25),  A={Ap}mzs
with m=t

i) 4,€Z, A,,=0 for all but finitely many m,

ii) Y A,a,=0 for any cusp form ) a, q"€S,, (I (N)),

m21
and (for convenience)
iit) 4, =0 for m not prime to N.
We call such a 4 a relation for S,,(I;(N)). Then (4.1) implies that the invariant

VN, k. W)= 2 ot Ao vﬁ,k(&f)= Z GN,k,l(xr, x*)

€G
is a rational linear combination of logarithms of prime numbers:

(4.3) Corollary. Suppose (3.1) is satisfied, k>1. Let A be a relation S, (I5(N))
and « an ideal class of K. Then

Ik alt)=Y, A,m "' hur,(m)log %

m>0

+u? Z /1mmk 1 o,mr,(m|\D|— nN)B(_l(l._
m, nell
m|D|=znN >0

2nN>
m|D|]

Dk~1
In particular, exp( 5
u

yN,k,l(.pf)) is a rational number, and in fact a rational

square unless |D| is prime.

To prove the last statement, multiply both sides of the formula by D*~!/u%
Then the terms in the second sum with m|D|>nN >0 are even integral com-
2nN
m|D|)’
ry(m|D|—nN) and 1, are integers and o,(n) is an even multiple of the logar-
ithm of a prime. In the terms with m|D{=nN (these can occur only for N =1,
since we are assuming both m and D prime to N) we lose a factor 2u because

binations of logarithms of rational primes, because m*~!D¥~' P _ | (1 -

1 . .
r&,(O):z—l; but gain a factor of m*~! D¥~1 (cancelling at least the u) because
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B_,(—1) (=(—1y"") has no denominator. If D has more than one prime
factor, then the extra factor of 2 in these terms is gained because the numbers
a,(n) in Proposition (4.6) of Chap. IV are divisible by 4 rather than just 2 when
D|n (because 4|4(n)). Similarly, the first sum in (4.3) multiplied by D*~!/u? is

always an integral multiple of logA and this multiple is even if |D| is not
prime because 2|h.

Let us return for a moment to the case k=1, and consider the interpre-
tation of the formula for y, , ,(#) there. We know from Chap. I that the
individual terms Gy | ;(x7,x°") in the definition of yy , ,(/) are the local
height pairings at archimedean places of the divisors ) A, T, ((x)~(o0)) and

m21

(x”) —(0). On the other hand, the action of the Hecke operators on Jo(N)) is the
same as that on S,(I;(N)), so the fact that 4 is a relation for S,(I5(N)) means
that Z A, T,a is a principal divisor for any divisor a of degree 0. In particular,

Zﬂ —(00))=(¢) for some rational function ¢ on X,{N) defined over H,

and then the axioms for the local height pairings imply

¢(x7)
C 2 A T(() = (00)), (x7) = (0)), =1log
mgx $(0) |
for any place v of H. In particular, the numbers Gy , ,(x", x°%) are the logar-
ithms of the absolute values of the conjugates of an algebraic number lying in

the class field H. It is then natural to expect that the same thing happens for
k>1:

(4.4) Conjecture. Let the hypotheses be as in Corollary (4.3) and fix a Heegner
point x and an embedding H—C. Then there exists a number ae H* such that
Gy k. 2(x5 x*)=u? D' ~*log|o’| for all teG=Gal(H/K).

This conjecture is at least compatible with Corollary (4.3), which, if the
conjecture is true, gives an explicit formula for the prime decomposition of the
absolute norm of the number «. In fact, one can give a more precise version of
Conjecture (4.4), based on the form of the expression for yy, (o) in (4.3),
which predicts which ideal o generates and hence specifies « up to a unit.
Together with (4.4), which specifies the absolute values of o at archimedean
places, this determines o up to a root of unity and also allows numerical
computations to check the conjecture. We end with numerical examples to
illustrate (4.3) and (4.4). We take the simplest case: D= —p with p>3 a prime
congruent to 3 (mod4), .o/ =[0] the trivial ideal class, N=1, k=2 and 2
=(1,0,0, ...) (this is permissible since S,(SL,(Z))={0}). Then yy , ,(</) equals
Y G(z) where the sum is over all h(—p) points ze$/SL,(Z) satisfying a qua-

ciratic equation of discriminant —p over Z and G(z)=G ,{(z, z) (defined as in
§5 of Chap. I by a limiting procedure). For primes with h(—p)=1, Corollary

. 144
(4.3) gives a formula for G ( +;]/p), e.g
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o(3)

12
= —log7—2log3 - log 5,

1+i)/43 2 56729

2 223356?3719125
— _log 163+ = .
log 163+ 73 108 Sre3y 3539055138 770

G(“”M)

2

The reader can check these numerically using the Fourier expansion (whose
proof will be given in a later paper)

2 119¢(3 480 240
4.5 G(x+iy)= —iy— CZ( )y’2+ (8—_— 3 2) e~ 2™ cos2mx
3 2n ny m°y
283968 70992
_(282876+ 4 8+ 2y2) e ™ cosdnx+0(e” ™)
T

(with an O( )-constant of about 10%). For the prime p=231 with class number
h(—p)=3, Corollary (4.3) gives

1+i7/31 1+iy/31 —1+iy/31

G ~—>+G(———>+G(—#~—)
2 4 4

= —log 31 —% log 3116 118233017¢

and Conjecture (4.4) (or rather, the more precise form of it mentioned above)

predicts
G(1+z]/31>;_10gn _ilogngwgln}g,n‘;ﬂ;‘;
2 33 nido"

for some neZ, where 0~ 1.465571232 is the real root of #° —062 —1=0 and the
n, are the prime elements (of norm g)

ny=0+1, mwy=3/n,, =n,,=30-4, =m, =1l/m,,,

my,=—043, 7m,y=-30+5  n,,=30+1

1+iy31
in the field Q(6)=Q (j (if))’ the real subfield of the Hilbert class field

of Q(}/ —31). Using (4.5), the reader can check that this holds numerically to at
least 15 decimal places with n=61.
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