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I. Introduction and Historical Survey 

Let K be a number field, ~K(s) the Dedekind zeta-function of K. We can break 
up ~K into a finite sum 

{x(s) = ~ ((s, A), 
A 

where A runs over the ideal class group of K and 

1 
[ (s ,A)= ~ N(a) ~ (Re(s)>1).  

aeA 

Then ((s, A) is (after analytic continuation) a meromorphic function of s with 
a simple pole at s = 1 as its only singularity. Moreover, the residue of ((s, A) at 
s = 1 is independent of the ideal class A chosen; this fact, discovered by Dirichlet 
(for the case of quadratic fields) is at the basis of the analytic determination of 
the class number of K. 

If we consider the Laurent expansion of ((s, A) at s = 1, however, say 

~4 
¢(s, A) = - -  

s - - 1  
+Q(A)+qI(A) ( s -  1 )+ - . . ,  

then it transpires that the constant term o(A) is no longer independent of the 
choice of A. In the easiest case (apart from K = I/~), namely when K is an imaginary 
quadratic field, the evaluation of Q(A) was accomplished by Kronecker [4] (the 
so-called "first Kronecker limit formula"); we describe his result below in Section 2. 
The interest of determining Q(A) is as follows. Let X be any non-trivial character 

* The paper was written while the author  was at the Institut des Hautes I~tudes Scientifiques 
(Bures-sur-Yvene, France), and forms part of  his Habilitationsschrift (Universit~it Bonn). 
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on the ideal class group; then for the corresponding L-series, 

SO 

L(s, Z)= Y z(a) N(a) -~ 
a 

= 2 Z(A) ~(s, A) 
A 

= + e ( A ) + O ( s -  t) 

= ~ z(A) Q(A) + O(s-- 1), 
A 

L(1, Z) = ~ 7~(A) o(A) (Z 4: Z0). 
A 

Therefore knowing Q(A) permits us to find L(1, Z) for all such characteres, and 
this in turn leads to an evaluation of the residue of the zeta-function (and hence 
of the class number) of unramified abelian extensions of K, since these zeta- 
functions are the product of ~x(s) and certain L(s, Z). 

For number fields other than ~ or imaginary quadratic fields, the analysis 
of ~(s, A) is made very much harder by the presence of units of infinite order, 
and already the formula for the residue ~ is much more complicated than in these 
two specia] cases, involving a determinant in the logarithms of certain units. 
As a result, an extension of Kronecker's theorem to other fields was not attempted 
for over half a century. Then, in 19t7, Hecke [13 took up the problem again 
and showed how, by an ingenious trick, the series defining 0(A) in the case of a 
real quadratic field K (a Dirichlet series involving an indefinite quadratic form) 
could be written as an integral of a series involving a definite form, whose Laurent 
expansion at s = 1 could thus be evaluated by Kronecker's formula. This led to 
an expression for o(A) as an integral involving the transcendental function (namely 
log l~/(z)l) already occurring in Kronecker's formula for imaginary quadratic fields. 
Hecke's argument is very beautiful, and will be reproduced in § 3. Nevertheless, 
the expression he obtains is far less satisfactory than Kronecker's for the imaginary 
case, since in place of a single, universal function of the element of a basis for 
some ideal, his evaluation of o(A) requires the integration of such a function and 
thus cannot be regarded as being in closed form (the same criticism was made 
by Schoeneberg, the editor of Hecke's collected works, whose footnote to Hecke's 
assertion ,,Es ist mir nun gelungen, das genannte Problem zu 16sen..." is the 
laconic comment, ,,Diese Behauptung ist offenbar unzutreffend.'). 

The next progress was made by Meyer [63. He used the same method as 
Hecke but applied to ideal classes in the narrow, rather than in the wide sense. 
Clearly, if B is such an ideal class, then we can define if(s, B) and 0(B) by the same 
formulas as before; if K contains a unit of norm - l this brings nothing new, 
but if all units have positive norm then each wide ideal class A is the union of 
two narrow ideal classes B and B*. Clearly o(B)+ Q(B*)= 0(A); what Meyer did 
is to evaluate the difference 0(B)-0(B*) in finite terms, this difference (apart 

1 In the same paper, Hecke considers the problem of determining Q(A) for arbitrary number 
fields K and claims to have an analogous formula, based on Epstein's generalization of the Kronecker 
limit formula, in the general case; the details never appeared. 
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from a factor ~2/1//~) turns out to be a rational number, given by the so-called 
"'Dedekind sums" arising in the transformation theory of logt/(z). Meyer's for- 
mula will be given in § 4. 

It was recently observed by Hirzebruch and the author [3] that Meyer's 
result can be elegantly stated in terms of continued fractions. To each narrow 
ideal class B one can associate certain periodic continued fractions whose period 
(up to cyclic permutation) depends only on the class B. If we denote the length 
of this period by l(B), then Meyer's formula can be stated as 

;g2 

Q(B) - e (B*)  - 6 ~/D (I(B) - t(B*)).  

This naturally suggested that the actual value of the Kronecker limit Q(B) 
might be computable in terms of the continued fraction. Using Hecke's formula 
for Q(A)= 0(B)+ Q(B*) and numerical integration on a computer, the values of 
0(B) were calculated for the ideal classes of a few real quadratic fields; the results 

6 #  , 
showed a clear correlation between the values of l(B) and - - ~ - -  Q(B ), e.g. 

6 
K = ~(~/i'5): Ideal class B V~" Q(B*) I(B) g2 

B o = (1, 4 + ~-5)  1.1692194 l 
B* = (6, 9 + ~/~)  6.1692194 6 
B, = (3, 6 + }/ '~) 3.3986892 3 
B* = (2, 5 + ] , /~) 2,3986892 2 

K = t1~(~/i-05): Ideal class B n2 ~(B*) l(B) 

11 + 1/1/~05) 3.5268892 3 
Bo = 1, 2 

B* = (6, 2l +VI05-)  11.5268892 11 

B, = (2, 13 +}/105_) 4.6101810 4 

With this encouragement, it was natural to look for an expression for ~(s, B) 
involving the continued fractions associated to B; when this had been accom- 
plished, it turned out that ~(s, B) could be expressed as the sum of t(B) simpler 
Dirichlet series in which the action of the fundamental unit of K no longer ap- 
peared and whose behaviour near s = l could thus be studied by direct analytic 
means. The resulting formula is stated and proved in Sections 5 and 6. Like 
Kronecker's result, it involves a universal function of one variable, here (rather 
unoriginally) denoted F(x); since this function does not seem to occur anywhere 
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in the literature, we have also devoted a section (Section 7) to studying its prop- 
erties (asymptotic expansion, special values, functional equations). These prop- 
erties are used in Section 8 to deduce Meyer's theorem from our formula for 
o(B). In a final section, we discuss the identities arising by applying the formula 
L(1, )0 = Sx(A) o(A) to the special case of a "genus character", where the value 
of L(1, X) is known by other considerations; the corresponding identities in the 
imaginary case are known under the name of "Kronecker's solution of the Pell 
equation". 

2. Kronecker ' s  L imi t  F o r m u l a  

The basic idea for studying ((s, A) is always the same: if one picks a fixed 
ideal_b belonging to the class A- 1 then the correspondence 

a ~--a_b = some principal ideal (2) 

is a bijection between the set of ideals of A and the set of principal ideals (2) di- 
visible by b, i.e. with 2e_b. On the other hand, two numbers 21, 22 eb  define the 
same principal ideal iff )~1 = e22 for some unit ~, i.e. iff they have the same image 
in b/U (U = group of units of K). Hence 

1 
( ( s , A ) = N ~ )  ~ ~ N(ab_) ~ 

a E A  (2.1) 
1 

=U(~)  ~ Z '  
~_b/v IN(2)I ~ '  

where (here and in the sequel) the prime on the summation sign indicates that 
the value 0 is to be omitted. 

If now K is an imaginary quadratic field of discriminant D < 0, then U is 
a finite group; its order is 2 for D + - 3, - 4 .  Hence 

1 
~(s, A)= ~ N(b) s ~ '  N(2) -~ 

hel, 

(we can drop the abolute value sign since N(2) = 22' = 2 ~ =  [2[ 2 > 0). This formula 
is unchanged if we replace _b by ,_b (~ e K - {0}), so we can assume that _b has a 
basis of the form {1, w}. We also suppose that this basis is oriented, i.e. Ira(w)> 0 
(here we have fixed an embedding of K in 112). Then 

w - , ~  2 
U ~ )  = = i ] ] / ~  ~ I m ( w ) ,  

N(mw + n) = m z ]w] 2 + 2ran Re(w) + n 2 . 
Therefore 

IDI -~/2 ~,  1 (2.2) 
( ( s , A ) -  IU[ m,,~z Q(m,n) ~ 

( the '  means that m and n are not both 0), where 

Q(rn, n)= Imw + nl z (2.3) 
2 Im (w) 
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is the binary form N(m + nw), normal ized to have de te rminant  - 1. Kronecker ' s  
theorem can now be stated. 

Theorem. Let  

Q(x, y) = ax 2 + b x y  + cy 2 , a, c > O, b 2 - 4ac = - 1, 

be any positive definite quadratic form o f  discriminant - l ,  and w the solution 
with positive imaginary part o f  the quadratic equation cw 2 - bw + a = 0 ,  so that 
Q is given as in (3). Then the zeta-function o f  Q, defined by 

t 
~Q(s) = Z '  

, . , .  O(m, n) s 

/f R e ( s ) >  t, can be extended meromorphically to a neighbourhood of  s = 1 and has 
there a Laurena expansion 

2n 
~ ( s )  - s - 1 + C + 0(s  - l)  

with residue independent o f  Q and constant term 9iven by 

C = 4~(7 + ½ logc - log I~(w)lZ). (2.4) 

Here ~ denotes Euler's constant and 

rg i !4,' c~3 

rl(w)----e 12 I~  (t  - - e  2=inw) (Imw>0). 
n = t  

Dedekind's eta-function. 

Proof. The  terms with m = 0 clearly give 

~, 1 = 2c_S~(2s) ' 
. = _ ~  (cn2) ~ 

n * o  

and the others are unchanged by m-+ - m, so 

,.=1 ,,= -0o Q(m, n) s '  
Write 

dt 
I ( s ) =  J " 

- ~  Q 0 ,  t r  ' 

(2.5) 

(2.6) 

this is clearly a ho lomorph ic  function of  s for Re ( s )>  ½. Then  

~,=1 . =  - ~  Q(m, n) ~ 
= ~ ( 2 s -  1) I ( s )  

( 
m = l  n = - o o  

1 l(s)) 
m2S - 1 

(2.7) 
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The interior sum on the right equals 

Q(m, n) ~ Q(m, y)~ i~ = - c~o --  oo 

= .=  _ ~ Q ( . ~ ,  ~)~ 

.= _ ~ ; ( d ,  n)' 

(y = m t) 

n + l  ,A';,sl (2.8) 

By the mean value theorem, for n < y N n + 1 

I d  ! 1 1 < max 
Q(m,n)  ~ Q(m,y )  s =._-<r~_.+lldy Q(m,y )  ~ 

= 0  (m2+n2)S+l  , 

where the constant implied in 0( ) depends only on Q and on s, uniformly in I') the latter for ½ < s < 2. Therefore expression (8) is 0 ~ q -  , from which it follows 

that the sum over m in (7) is absolutely convergent for Re(s)> ½ and that 

exists and equals 

Since 

l im(  Z Q(m,n)  ~ ~(2s -  1) I(s) 
s ~ l  \ m =  1 n = - c ~  

.S,(.L 
¢ ( 2 s - i )  . . . . . . .  

! 
2 + y + 0 ( s -  l) ( s ~  1), 

s - - t  

¢ ( 2 s -  t) I(s) = - -  

so we obtain 

,,~:~ ~,,,=~ .=  _ ® Q(m,  n) s 

!x(~) 
z + ( 7 t ( t ) + ½ I ' ( 1 ) ) + 0 ( s - t ) ,  
s - 1  

1 t(1)).m 

(2.9) 

It remains to evaluate I(1), I'(1) and the sum. 
Now from (3) we get 

1 1 [ 1 
Q(m, n) im m~v + n 

1) 
m w + n  

(2.~ol 
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H e n c e  

and  

I ( 1 ) =  -'oo Q(1, t) i _" t + F  t + w  dt 

1 t + ~  ~ 
= - 7  log  = 2n  

t t + w  -oo 

1 _ t m ~ - +  n 
. =  _ ~  Q ( m ,  n) i m  . ~ m w  + n 

n 1 

i m 
- - -  - -  (cot  n m ~  - cotnmw),  

(2.1t) 

where  in the last  e q u a t i o n  we have  used  the s t a n d a r d  e x p a n s i o n  

(p r inc ipa l  value).  T h e r e f o r e  (9) b e c o m e s  

s ~ l  m = I  n =  - oo O(m, n) ~ s 1 

n ! 
t a n n x  ~ n + x  

oo 

= 2rt 7 + ½ I ' ( 1 ) +  7 -~__  ' t ~  ( c ° t r ~ m W m  - i) (2.12) 

n ~ 1 ( co tnmw+i) ;  
i m m = l  

the ser ies  c o n v e r g e  because ,  for  I m ( w ) > 0 ,  c o t n m w ~ - i  a n d  c o t r c m ~ - - , + i  
wi th  e x p o n e n t i a l  r a p i d i t y  as m-- ,  co. 

N o w  
t e nimw + e -nim~ 

- - -  co t  ~ m w  = 
i e = i m w -  e -=im~ 

and so 

= 1 + 2 e  - z " i m ~ + 2 e  - 4 ~ i m ~ +  ... 

--i-m~=l l ~ ( c ° t n m w -  

= 2  ~ = 

n = l  m = I  m 

= - 2  ~ l o g [ i - - e  -2~in~] 
n = l  

7~Iw 
6 2 l o g r / ( -  ~ ) ,  
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\ 
and similarly the second sum in ( 1 2 ) e q u a l s - i l ~  - 2  Iogr/(w)t. Substi tut ing 

\ - -  ? 

( this into (12) and  then into (6), we find using c t 

~Q(s) s ~ i  - = ~-c  + 4n~ + I '(1) 3 + 3 

- 4n l o g q ( -  ~) - 4n logt/(w) 

-- 4n7 + I '(1) - 4n loglt/(w)l 2 . 

This proves  the theorem,  apa r t  f rom verifying that  

IogQ( t ,  t) dt  
I ' ( t ) = - _ . ~  O( i ,  t) 

equals 2 n l o g c ;  this is easily checked by substi tut ing x = 2 c ( t +  Re(w)), which 
gives 

I(s) = 22~-1c~-1 7 dx 
-oo (x 2 + 1) ~ 

= 2n F ( 2 s -  1) c ~- 1 . 
r ( s )  z 

For  a more  comple te  exposi t ion of the Kronecke r  limit formula  and its 
applications,  the reader  is referred to Siegel [8]. 

3. Hecke's  Theorem 

Now assume that  K is a real quadra t ic  field, D > 0 its discriminant.  Let e 
be a fundamenta l  unit (the smallest  unit  > 1, where we have fixed once and for 
all an embedding  K C IR); then U = { + ~"Jn ~ •} and hence (2.1) gives 

1 
~(s, A)= ~lV~) ~ E'  

Hence 
A s 

2D s/2~(s, A) = ~ '  - ,~ (3.1) 
a~_b/: I ,! ,21 ' 

where A = N~)  Df is the discriminant of_k 
Hecke ' s  trick is as follows. Consider  the integral 

c(s) = -% (e ~ + e-v), " 

Then  clearly, for a, b real and 4=0, 

dv c(s) 
_% (aS e" + b2 e-V) ~ = labl----7; 
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indeed, the left-hand side depends  only on the absolute  values of  a and b, is homo-  
geneous of  degree - 2 s ,  and only depends  on the produc t  ab (a-+2a, b--,b/2 
corresponds  to  v--+v - 2 tog2), Therefore  

2~+lc(s)D~/2{(s,A) = Z '  ~ ( 2 A y d v  
a~bl~ - ~ ( 22 e~ + -a-'z e -  vy • (3.2) 

But replacing 2 by ~"2 reptaces 22 by ~2"22, 2 '2 by e-2"2"2, and this corresponds  
to v -+v  + 2n l o g <  that  is, the action of e by mult ipl icat ion on 2 corresponds  to 
an action on v by t ranslat ion through 2 loge. Therefore  the r ight-hand side of  
(2) equals 

1o,~ (2A)* dv 
E '  ,( (22 eV + 2,2 e -V)s  " • ~ ~b - log e 

But now the summat ion  and integrat ion can be in terchanged and then the sum 

Z' (2a)~ 
,~b ( ,t2 e ~ + 2 2 e -  ~)* 

is of  the type considered in § 2, namely  the sum over  the whole Z -modu le  b of 
a Dirichlet series with a definite quadrat ic  form. 

If we again assume that  _b has a basis of  the form { I, w}, which as before we 
assume to be oriented (this now means  w > w'), then writing 2 = raw + n we find 

A=W--W', 
~2e~ + 2 '2 e -v = m2[w2 eV + w'2 e -v] + 2mn[we v + w' e -v] 

+ n 2 [e ~ + e-  ~], 

so the posit ive definite form 

(raw + n) 2 e ~' + (raw' + n) 2 e -  ~' 
Q~(m, n) = 2A 

has de te rminant  - l, and we have 

log 

2~ +t c(s)O~/2~(s,A)= j 
- log e 

By the Kronecker limit formula, 

2~z 

(Q~(s) d r .  (3.3) 

{ t 1 { e V + e  - °  w + i w ' e - V l z  1 --+4n~7+~ og I- ~ )-tog r/(. ]~_~ /I /+0(s-l). 

Substituting this into (3) and using the easily calculated values 

we find 

7~ 
c(1)=  - ~ ,  c'(1) = - r~ l og2 ,  

2 log~ 
res~=1 ~(s' A) = l / ~  
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o(A) = lim,~ (((s, A) 
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2D-{s-t loge) 

2tog~ , t • - 
- ~ - ~ - ( -  glogO + 2y) 

) e ~ + e -  ~ . )_ log  l+ie-" /{/dv" + t,o t- 

4. Meyer's Theorem 

Let K be a real quadratic field, D > 0 its discriminant, and assume that K 
contains no unit of negative norm (this is the case, for instance, if some prime 
p = 3 (mod 4) divides D). Then each ordinary ideal class A is the disjoint union 
of two narrow ideal classes B and B* (recall that two ideals a, b are said to be- 
long to the same narrow ideal class if a = (e)_b for some principal ideal (~) with 
N(a) > 0); clearly B* = OB, where O is the narrow ideal class of principal ideals 
(at) with N(~) < 0. 

We pick as before an ideal b ~ B- ~ having an oriented basis { 1, w} (i.e. w > w'). 
Then the action of the fundamental unit ~ of K (for which e > 1, ee '= 1) with 

respect to this basis is given by some matrix M= d ~SL2Z: 

~w=aw+b, 

e=cw+d.  

Then Meyer's theorem can be stated as: 

nZ (a+d-2(d ,c)  t )  (4.1) 
o(B) - Q(B*) = - ~ -  -6c- 2 " 

where (d, c) denotes the "Dedekind sum" 

c-1 

(this is an integer; note that c > 0 and d is prime to c). 
The proof is given in Meyer's book [6] and a rather shorter exposition in 

a joint paper of Hirzebruch and the author [3]; here we only say that the same 
artifice used in Section 3 can be used to express ~(s, B ) -  ~(s, B*) as the integral 
from - loge to + loge of a complicated function of s and the variable of integra- 

tion v; the value at s = l  again involves log t / (w  + iw'e-vl but now in such a 
\ 1 + i e  - ~  ] ' 

way that the integral can be explicitly evaluated by using the transformation 
law of the Dedekind q-function. 
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Now the number w E K can (since we have fixed an embedding of K in IR) 
be expanded in a unique way as a continued fraction 

1 
W ~ a o  --  

1 a l  
1 

a 2 - - - -  
a 3 - - . "  

with a i e Z  (all i), a i > 2  ( i=  1, 2, 3 . . . .  ). By the standard theory of continued frac- 
tions, the fact that w satisfies a quadratic equation over Z implies that the sequence 
{ao, al,  a2 . . . .  } eventually becomes periodic, i.e. ai+r = a~ for all i ~ io; the smallest 
such r is called the period of w, and the corresponding r-tuple ((aio+l, . . . ,  aio+,)) 
the cycle associated to w. If we choose a different number  w with w > w' and 
__b = ~E- 1 + Z .  w, then the period is unchanged; moreover,  this is also true if we 
replace _bb by another ideal in the same narrow ideal class B. Thus to each such 
class B we have associated an integer r > 0 and a cycle ((b 1 . . . .  , b,)) of r integers 
> 2, where the double parentheses indicate that the order of the b~ is only defined 
up to cyclic permutation. We denote the length r of the cycle by l(B) and call it 
the lenath of the ideal class B. 

1 
The length of B* is the period of the continued fraction of - - -  

w 
It is then an elementary exercise to show that (1) is equivalent to the formula 

e ( B ) -  = (I(B*)-  t(B)) 
VD 

given in the introduction (cf. the paper ~3] referred to above). 

5. Statement  o f  the Main  Theorem 

If {1, w} and {1, w~} are oriented bases of fractional ideals in the same ideal 
class of an imaginary quadratic field K, then w and w 1 are points of the upper 

a w + b  (a bd)~SL2Z. half-plane related by a MSbius transformation w ~ -  c w + d '  

We therefore can, if we wish, assume that w lies in the standard fundamental 
region for the action of SLz~E on the upper half-plane, i.e. that w satisfies the 
inequalities 

- ½ < w + w' < ½, ww' > 1 (equality only if w + w' > 0). 

We call such an element w ~ K reduced. Then each ideal class of K contains a 
fractional ideal having a basis of the form { 1, w} with w reduced, and both the 
ideal and w are unique. (In other words, there is a 1 : I correspondence between 
all ideal classes in all imaginary quadratic fields and all reduced imaginary 
quadratic irrationalities.) 

For the case of a real quadratic field, we call a number  w ~ K reduced if it 
satisfies the inequalities 

w > l ,  0 < w ' < l  (5.1) 
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(always with respect to a fixed embedding K C ItL e.g. I / ~  > 0). This is equivalent 
to the condition that the continued fraction expansion of w [as in Eq. (4.2)] is 
pure periodic, i.e. satisfies a~+,=a~ for all i__>0. It follows that, if B is a narrow 
ideal class of K with length r = l(B) and cycle ((b I . . . . .  br)) (hi ~ Z, bi > 2), then 
there are exactly r numbers w ~ K which are reduced and for which {1, w} is a 
basis for some ideal in B, namely the numbers 

1 
w k = b k -  (k = 1, 2 . . . . .  r). (5.2) 

bk+ t -- 

1 

1 
b r - -  w 

b I - 

We can now state the main theorem of this paper. 

Theorem. Let B be a narrow ideal class in a real quadratic field of discriminanl 
D, and ~ > 1 the smallest unit of K of norm 1. Then 

(D ~/2 ~(s, B ) -  loge ] = 
I(B) 

lim~l \ s - ~ J  k=lZ P(Wk, W'k) (5.3) 

where the summation is over all w e K satisfying (1) for which {I, w} is a basis of 
some fractional ideal of B and P(x, y) is a universal function of two variables, 
namely 

P(x, y) = F(x) - F(y) + Li 2 6 

+ l o g y  (7_  ~ l o g ( x _ y ) +  ¼1Ogy ) (5.4) 

(x>y>0).  

Here 7 is Euler' s constant, Li2(t ) is the dilogarithm function ~ -  (0 < t < 1), and 
n = l  

1 I r'(nx) log(nx) / F(x) 
/ (5.5) 

i (  1 1) log(1 e_X,)d t 
1 - - e  - t  t 

is a function whose properties are given below (Section 7). 

In fact, we will prove more, namely that D s/2 ((s, B) can be written as a sum 
of I(B) functions each involving only s, w~ and w~, so that in the Laurent expansion 

D s/2((s,B)= ~ c . (s -1)"  

we have , = - 1 
t(B) 

C n = ~. Pn(Wk, W'k) 
k = l  

with P_ 1, Po (= P), P~ . . . .  certain universal functions of two variables. 
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6. Proof of the Main Theorem 

We define w k by (5.2) for k = 1 , . . . ,  r = l(B) and extend the definition to all 
k e Z  by requiring w k to depend only on k(modr).  We also fix the ideal b = Z .  1 
+ Z .  womB. 

Now define a sequence of numbers  

0 <  ..- < A 2 < A  ~ < A o =  1 < A _  1 < A _ 2 <  ... 
by 

1 
A~- (k->_ l) 

W 1 • . .  W k 

A0 = 1 (6.t) 

A_k=WoW-~...w-k+~ (k>=t), 

so that Ak+ ~ = A~/wk+ ~. From the cont inued fraction expansion we have 

1 
Wk = bk w k + t ' (6.2) 

from which it follows that  

Ak+l = bkAk-- Ak-I  

and this implies that  Z A k +  l + Z A k = Z A k + Z A k_ 1, i.e. { A  k_ t ,  Ak} from a basis 
o fb  for each integer k. Moreover ,  the periodicity of the w~ implies 

A, Ak=Ak+ r (Vk~Z) ,  (6.3) 

and this means that multiplication by A, is an au tomorphism of b. It follows 
1 

that A r is a unit; also Ar > 0 and A', = > 0, so A, is a (negative) power 
wl... w; 

of the unit e (which was defined as the smallest unit > 1 of norm + 1). In fact, 
it can be shown that 

Ar = ~- 1. (6.4) 

Now any number  ), Cb can be written (for each k ~ Z) in the form 

2 = pAk-  t + qAk (6.5) 

with p, q ~ Z, and it is clear that, if p, q ~ 0 (and not  both  are 0), then 2 is totally 
positive (i.e. 2 > 0, 2' > 0; we write 2 >> 0). Conversely;  one can show that, if 2 E_b 
is totally positive, then 2 can always be written as PAk-1 +qAk with p ,q>O 
for some k. Moreover ,  this representat ion is unique unless 2=nA~ (n~lN) in 
which case we can take k = l ,  p = 0 ,  q = n  or k = l +  t, p=n ,  q = 0 .  Thus, if we 
make the restriction p > 1, then to each 2 is associated a triple (k; p, q) of  integers 
with p > I, q > 0 and 2 as in (5). This sets up a 1 : t correspondence between 
{4 ~b l2  ~> 0} and {(k; p, q) lk, p, q ~ Z, p > 1, q > 0}. Moreover ,  it is clear from (3) 
and (4) that  if 2 corresponds to the triple (k; p, q), then the triple corresponding 
to he" is (k - nr; p, q); hence there is a 1 : t correspondence between principal 
ideals (4) with 2 ~ 0 ,  2~_b and triples (k(modr) ;  p,q). (A reference for all of  this 
is [2], § 2.3.) 
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Fur thermore ,  2 = Ak(q + pwk), so 

N O )  = N ( & )  (q + p w O  (q + pw'~). 

Also, f rom wk = b k -  t/Wk+I we obta in  

1 1 w~+t - % + 1  
w k - w ~ =  - - -  + - -  = 

wk+l w;,+l w~+lw;,+l 
or  

(wk - W'k) AkA'k = (wk+ 1 - W'k+ 1) Ak+ 1A'k+ 1 ; 

this c o m m o n  value is found, by taking k = 0 ,  to be w o - w ~ .  Therefore,  for 2 
as in (5), 

N(.~,) = (w o -- w3) Qk(P, q) (6.6) 
with 

1 
Qk(X, Y) = - - ,  (y + xwk) (y + xw'k) . (6.7) 

w k -- w k 
Hence  

1 
D~/2 ((s, B- I)= D ~/2 

o ~ - ,  N ( a )  ~ 

1 
= D~/2 N ~ )  ~ Z N(2)s 

:.eb_lU + 
2,>0 

(where we have set a b = (2) with 2 ,> 0) 

1 
=(Wo--W'o) s ~ ~ ~ N ( p A k _ l + q A k )  s 

k = l  p = l  q = 0  

k = t ~ = 1 q = o Qk(P, q)S 

We notice that  Qk(X, y) is an indefinite b inary  quadrat ic  form with posit ive 
coefficients, normal ized  to have de te rminant  + 1. Thus  what  we have proved 
so far can be summar ized  as: 

T h e o r e m .  For 

Q ( x , y ) = a x 2 + b x y + c y  2, a ,b , c>O,  b 2 - 4 a c =  1 

an indefinite binary quadratic form with positive real coefficients and discrimi- 
nant 1, we define 

Zo(s ) = Q(p, q)~ ' 
p = l  q=O 

then for the zeta-function of a narrow ideal class B of a real quadratic field of 
discriminant D, we have the decomposition 

O sj2 ((s, B -1) = Z Zek(s), 
k = l  

where r = I(B) is the length of B and the quadratic forms Qk are as in (7), w k being 
the elements of K whose continued fractions correspond to the various cyclic per- 
mutations of the cycle ((bl . . . . . .  br)) associated to B. 
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The main theorem follows immediately from this result and the following. 

Theorem. Let Q(p, q) be as in the last theorem, and w, w' the roots o f  the quadratic 
equation cw 2 - bw + a = O, labelled so that w > w' > O. Then the function ZQ(s) 
has an analytic continuation to the half-plane Re(s)> ½, with a single pole at s = 1, 
and its Laurent expansion there is 

½1ogw/w' 
Ze(s)  = s - t + P(w, w') + O(s - t) 

with P as in Eq. (5.4). 

This theorem is the exact analogue of Kronecker's theorem as stated in Sec- 
tion 2 (with the added complication that the sum is over p, q positive rather 
than over all p, q), and the proof will follow the same lines. Before giving it, we 
make two remarks about the deduction of the main theorem. First, the fact that 
~(B,s) appears there in place of ((B -~, s) does not matter since these functions 
are identically equal (since B - ~ =  B ' =  class of conjugates of ideals of B, and an 
ideal and its conjugate have the same norms). Secondly, the stated formula for 
the residue is deduced by noting that, because of (4), 

~, log wk = log-wy,-'"~W,~ = log A; 
k=l W--~k WI... W, ~ = 1ogE2 " 

To prove the theorem, we define, in a manner completely analogous to the 
procedure of Section 2, a holomorphic function 

write 

dt 
I(s) = ~ (Re s > ½), 

o Q 0 ,  t) s 

Z o ( s ) - ~ ( 2 s - 1 ) I ( s ) =  ~ . [ ~  
1 

p=l q=0 Q(p,q)~ ' 1 p2S-1 l ( s ) ,  

and observe that the series is now absolutely convergent for Re(s)> ½, so that 
we have proved the analytic continuability of ZQ(s) and the equation 

lim (ZQCs)-++t -½1(I)-I s - l /  

:..,>++r.>+ i (  
p = l  q '7) Q ( p ,  q )  - . 

(6.8) 

Again, to evaluate I(i) and ~ t +=o Q(P, q ) '  we write 

t _ t = 1 (  t t ) (6.9) 
Q(x, y) c(y + xw)  (y + xw') x y + xw '  y + x w  
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the normalization of Q to have determinant 1 implies 

I(0 = ~ dt 
o Q(1, t) 

,, ,) 
= -t+w t+w dt 

0 

. t + w ' t  ~ 

= log ~ W ~ o  

and 

W 
= l o g - -  

W' 

q=o Q(p, q) 

= ~- (~(pw)- v(pw')). 

, )  
w - w' ; hence 

(6.10) 

(6.11) 

Here we have used the (standard) notation 

h '~eo  q=O 

r'(x) 
r(x) 

for the logarithmic derivative of the gamma-function. Therefore 

(6.12) 

q=0 Q(,P, q) p p 

= 1 (tp(pW)p - log(pw))-  t(tp(pw')- log(pw')), 

and both terms areO(~-z ) for p~oo (because ~p(x)-logx=O(1)) and so can 

be summed over p. Putting this into (8), we obtain 

( , w) 
½ o g - ~  

= 7 log 5 + ½I'(1) + F(w)- F(w'), 

where F(x) is the function appearing in Eq. (5.5). If we compare this with Eq. (5.4) 
for P(x, y), we see that it remains to prove that 

i,(1) = 2Li2 (~_)  - -3-~2 w/ l ,  wW w' 1 (6.13) + log--~- |~ l o g - - :  - log(w - . 
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Now 
I'(1) = - i logQ(1, t) 

0(1, t) at 

0y-w'] 
w2 .~ log{Q(1, w~ldt, 

= - I(t)  log w' 
w - o Q(~, t) 

1 
and if we substitute x = - -  t and note 

!4/ 

this yields 

Q(1,t). w - w '  1 ( t+w)( t+w,)=(x+t) (x+ w-~-w) 
W 2  - -  W 2  - , 

(, ,) ( ,  ,) dt - t-(- w' dt = dx QO, t) t + w x + w'/w x + l  ' 

w w 2 

with g defined by 

9 ( ~ ) = i (  lx~-~ x+ l l  ) l°g[(x+l)(x+~)]dx" 

Comparing this with (13), we see that it remains only to show 

7~ 2 
g(a) = - 2 Liz(a ) + -~ 

By means of the functional equation 

~2 

Liz(e)+ L i z ( 1 - a ) =  6 

- - 2 loga log(l - ~ )  - ½(loga) 2 

(0<~_-< 1). 

- -  - l o g a  l o g ( l  - ~ )  ( 0  < ~ < 1 )  

(6.14) 

(6.t5) 

(cf. [5], formula (1.t 1)), this can be written in the form 

g(a) = 2Li2(1 - ~ ) -  l(loga)2 (0 < a < 1). (6.t6) 

Now it is clear that the two sides of (16) agree for a = 1 (both 
so it suffices to prove (16) after differentiation, i.e. to show 

2 log~ loga 
g ' ( ~ ) =  1 - ~  ~ ( 0 < a < l )  

plainly vanish), 

(6.17) 

( d ~ t "-1 l o g ( l - t ) )  But 
we have used - ~  Li:(t) . . . .  

n = l  ~ t 

1 1 dx 
x + ~  x + l  x + a  
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and integration by parts gives 

SO 

( ')  _ .~ logf(x+ 1)(x+~)] dx=  ~ log[(x+ 1 ) ( x + a ) ]  d x ~  
b (x + ~)2 o 

log~ ~ I / 1 1 

logs dx 
g'(~)= 2 J ~ (x+l ) (x+~)  

logs 2 log x + a  ® 
ct 1 -c~ x ~ ] -  o 

logs 21oge 
1 - - ~  

This proves (I 7) and completes the proof of the main theorem. 

7. Properties of  the Function F (x) 

Of the terms entering the formula for the Kronecker limit P(w, w'), all are 
familiar functions except Li z and F. The dilogarithm function Li 2 has been 
studied extensively, and there is a whole book ([-5]) devoted to its properties; 

~2 
moreover, for 0 < t_< 1 Liz(t) increases monotonously from 0 to -~- and thus 

affects the behaviour of P(w, w') very little. The function F(x) appears to be new, 
however, and gives also by far the largest contribution to P(w, w') when w is large 
or w' small; we therefore devote a section to describing its main properties. 

First of all, for ~p(x)- log x we have the integral representation 

~p(x)- logx= - ~ (-0 1 - e  - t l  tt) e-~tdt (7.t) 

(for this and all other facts used about the gamma-function and its derivatives, 
we refer the reader to [7] or other standard textbooks). If we replace x by px, 
divide by p, and sum, we immediately get 

~, = ~ (  1 1)log(t-e-~')dt  (7.2) F(x) = vj(px) - log(px) I - e - '  
v=l P o t 

(a formula already quoted in § 5); an alternate form for the integral is 

dy 
F(x)= ~ + log(1 _yX) 

o Y 
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Secondly, for x large we have an asymptot ic  expansion 

t B 2 B 4 
~ ( x ) - l o g x ~ -  2 - ~ -  2x - - - ~  - 4x  - - z -  

(B  2 = ~ ,  B 4 = -3-&6, ' ' '  the Bernoulli numbers), and this immediately implies for 
F(x)  the asymptot ic  expansion 

~ B2 ~(3) B4 ~(5) 
F ( x ) ~  12x 2 x z 4 x 6 (7.3) 

a s  X---~ 00. 

To obtain the asymptot ic  behaviour  of  F(x) near x = 0, we use the functional 
equation 

f ( x ) + F  - 6 x -  ~6x + ½ ( l ° g x ) Z + C t  (7.4) 

(C1 = 1.45738783...). We prove this as follows. Define 

A(x ,  s) = 
tSdt 

o ( e t -  1)(e x t -  t) ' 
(7.5) 

The integral converges for Re(s) > I. Then 

_ _  ( t ) : - l d t  A(x , s ) -  r(s)~(s) _ ]~ e ' -  1 ~ - - ~  
x s ~ 1 

with the integral on the right convergent  for Re(s) > 0; hence A(x, s) is meromorph ic  
around s = 1 and has there a Laurent  expansion 

with 

X - I  
A(x ,  s) - + a(x) + O(s - 1) (7.6) 

s - 1  

a ( x ) = - l o g x + .  - t e ~ - 1  
o e~ 1 

= - logx  6X 2 q- 1 0 1 -- e - t  e x t -  1 

2[ 2 

= - l o g x -  6x 2 + F' (x ) .  (7.7) 

~ t d t  _ ( (2)  / 
using ! e ~ Z 1  x2 ] 

Now the substitution t ~  t / x  in (5) immediately yields 

s) : : l  A(x s, 
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and inserting the Laurent  expansion from (6) and (7) we immediately get 

1 F'  [ 1 ]  rc z rt e logx  
F'(x)-  x2 k x / = 6x 2 6 + x ' 

which on integration yields (4). 
Another  functional equat ion for F(x) can be deduced from (5)-(7) by writing 

A(x, s) = o (e(~- t)t _ 1) (d -- 1) - (e (~- TM - i) (e x' - 1) e ~' - 1 

= A ( x - l ' s ) - - x - S - l A (  x - I  ) x  , s -- r(s+l)((s+l)x ~+1 , 

f rom which we get 

a(x)=a(x-- 1) x ( x -  1) x2 a 6x 2 

or, on  substituting in (7) and integrating, 

F ( x ) - F ( x - 1 ) + F ( ~ x l ) = - L i 2 ( 1 )  + C  2 (7.8) 

(C 2 = -0 .91624015 ...). This equat ion will be used in Section 8 to derive Meyer's 
theorem on Q(B) - Q(B*) from our  formula for 0(B). 

Yet a third applicat ion of (6) is to observe that  (by integration by parts) 

A(1 , s )=  ~ t 'dt - ~ t ' e - ' d ( ~ _ ~ )  
o ( e ' -  1) 2 = o 

= ~ e t ~ ( s t ~ - t e - ' - t ~ e - ' ) d t  
o 

= r ( s  + J) (~(s + 1) - ~(s));  
this yields re 2 

a(l)  = 1 6 

o r  
F'(1) = 1. (7.9) 

To  evaluate the constants in the functional  Eq. (4) and (8), we first set x = 1 
in (4), obtaining rt 2 

C1 = T + 2F(1) (7.t0) 

and then set x = 2 in (8) and use (4) to get 

C z = F(2) - F(1) + F(½) + Liz (½) 

= - F ( 1 ) + ( ½ 1 0 g 2 2 + C ,  ~z2t2±~-~-/r:2 - ½ 1 o g 2 2 )  
-- 6 t z T T ~ l  2 (7.tl)  

7~ 2 
= CI  - - ~ -  - F ( 1 )  

= F ( 1 ) .  
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In view of this, it seems interesting to calculate the value of F(1). By definition, 
2F(I) = lim Ss, where 

N-+oD 

SN = 2 ~ tp(k) - log k 
k = l  k 

N 1 + ½ + . . . + - - -  

= 2  k 
k = l  

+k=1 ~ ( ~ ( N + I )  

1) 
k - 1  ?_ 

1 1 

k k + l  

1 
N N 

- 2 ~  
k = l  

logk 

k 

= E kn ~ 1 + ½ +  + 
l<n<k__<N 

+ ~ ( N + I )  1 + ½ + . . . +  -- l + ¼ + . . . + ~ -  

1 ~ logk 
- Z k-h - - 2  

l<_k<a<__N k = l  k 

The first two sums cancel, and we get 

- + 0  --2k= 1 

- - -  - 2  
6 k=1 k 

Hence 
71:2 

F(1) = - ½7 2 - 12 )'1 

where ,im(  ) 
N~x~ k= 1 k ½(l°gN)2 

= - 0.07281588 ... 

(7.12) 

(7.13) 

is the higher analogue of Euler's constant. One can also prove (12) starting from 
the integral representation, in which case one obtains 

V(1) = F(s) ((s)- ~ - 1  

and must use the Laurent expansion 

1 
((s)-  + ~-71(s -  1)+ .-. 

s- -1  
of ((s) at s = 1 to two terms. 

A table and a graph of the values of F(x) are included. 
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Tab l e  o f  the  funct ion  F(x) 

x F(x) x F(x) 

0.02 - 7 3 , 1 5 3 7 6 2 7 8  t.02 -0 .896660251 

0.04 - 34.51812148 1.04 - 0 . 8 7 7 8 8 6 4 4 0  

0.06 -22 .04952753  1,06 -0 .859870568  

0.08 -15 .97979203  1,08 -0 .842568209  

0 , f 0  - 12.42224963 t , t 0  - 0 . 825938309  

0.12 - t 0 . 0 9 9 8 9 2 6 8  1,t2 -0 ,809942873  

0 , t4  - 8.472526648 1,14 -0 .794546691 

0,16 - 7.273308608 1.16 -0 .779717085  

0.18 - 6.355675387 1,18 -0 .765423692  

0.20 - 5.632637433 1.20 -0 .751638258  

0,22 - 5.049408063 1.22 -0 .738334465  

0,24 - 4.569823726 t,24 -0 .725487765  

0.26 - 4.169086118 1,26 -0 .713075237  

0.28 - 3.829644539 1.28 -0 .701075455  

0.30 - 3.538742462 1,30 -0 .689468367  

0.32 - 3.286894484 1,32 --0.678235191 

0,34 - 3.066907290 1,34 -0 .667358312  

0.36 - 2.873231140 1,36 -0 .656821199  

0,38 - 2.701518919 t.38 - 0 . 6 4 6 6 0 8 3 1 6  

0.40 - 2.548319358 1,40 -0 .636705058  

0,42 - 2.410859210 1,42 -0 .627097672  

0.44 - 2.286885766 1,44 -0 .617773207  

0.46 - 2.174551113 l~46 -0 .608719449  

0.48 - 2.072325819 t.48 -0 .599924872  

0.50 - 1.978933690 1.50 -0 .591378592  

0.52 - 1.893301864 1.52 -0 .583070320  

0,54 - 1.814522189 1,54 -0 .574990326  

0.56 - t .741821043 1.56 -0 .567129399  

0.58 - t .674535519 t,58 -0 ,559478813  

0.60 - t .612094467 1.60 -0 .552030297  

0.62 - 1.554003284 1.62 -0 .544776005  

0,64 - 1.499831613 1.64 -0 .537708492  

0,66 - 1.449203328 t.66 -0 .530820682  

0.68 - 1.40t788327 t,68 -0 .524105854  

0.70 - 1.357295756 1 ~ 7 0  -0 .517557613  

0.72 - 1.315468402 1.72 -0 .511169876  

0,74 - 1.276078000 1.74 -0 .504936849  

0.76 - 1.23892t309 t.76 -0 .498853013  

0.78 - t .203816805 1.78 -0 .492913107  

0.80 - 1.t70601879 1.80 -0 .487112113  

0.82 - 1.139130455 1.82 -0 .481445242  

0.84 - t .109270962 1.84 - 0 . 4 7 5 9 0 7 9 2 3  

0.86 - t .080904589 1.86 -0 ,470495787  

0.88 - 1.053923788 1,88 -0 .465204660  

0.90 - 1.028230984 1,90 -0 .460030550  

0.92 - 1.003737450 i .92 -0 .454969638  

0.94 - 0.980362340 1.94 - ~ 4 5 0 0 1 8 2 6 8  

0.96 - 0.958031834 t.96 - 0 . 4 4 5 1 7 2 9 4 0  

0.98 - 0.936678402 1.98 -0 .440430301  

1.00 - 0.916240150 2.00 - 0 . 4 3 5 7 8 7 1 3 6  

Note: For  x > 2 the va lues  o f  F(x) can be deduced  us ing  the  

funct ional  equat ion  (7.4). 
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8. Deduction of Meyer's Theorem 

We begin with a rather complicated identity involving the functions F(x) 
and Li 2 (x) appearing in the Kronecker limit formula. 

Lemma. For x, y > O, define 

(8.~) 
~ (  , 1 )  

+ ~  x + - - - - y - - - - - - 1  . 
x y 

This function has the symmetry properties 

R(y, x) = - R(x, y). (8.3) 

Furthermore, for w > 1 > w' > 0, we have 

R ( w - l ' l - w ' ) - R (  1 1 1  w' 1 

=F(w)-F(w')+Li2(W~w)+¼1og2(W-~-w)+½1og(W~w)log(w-w ') 

~2( ' w' ') + ~ w + - - - w  -- ~ " 

(8.4) 

Proof. Equations (2) and (3) follow easily from the identities 

F(x)+F - 6 x + - - - 2 x  +½1°g2x+2F(1)  (8.5t 
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[proved in the last section, Eq. (7.4)] and 

L i 2 ( - x ) + L i 2  - = - ½ 1 o g 2 x  - Y  (x>0)  (8.6) 

([5], Eq. (1.7); we recall that Liz(x ) is defined by the integral - j '~log(l  - t ) d t / t  
for all x e ( -oo ,  1)). To prove the crucial identity (4), one must apply the identity 

F ( x ) - F ( x - l ) + F ( f - ~ ) =  - L i 2 ( 1 - )  +F(1) ( x > l )  

1 
of § 7 [Eq. (7.8)] with x = w and with x = - -  and the identity 

W' 

(0<0, u,< t) 
1 

([5], Eq. (1.24)) with 0 = - - ,  q~ = w', as well as making repeated use of (5) and 
w 

(6). The details are tedious but straightforward. 
Therefore the function P(w, w') appearing in the Kronecker limit formula 

and defined by Eq. (5.4) can be written in the form 

P(w' w') = R(w - l' l - w') - R ( 1 1 1  ' w' 1 

+ylog  w' t2 w+  + - ~ -  W ' + w -  - - - -  

~2 

6 

Therefore for the Kronecker limit o(B) of a narrow ideal class B in a real quadratic 
field, we have 

,-, % n 2 I 
o(B)= QL(B) + j = w~ t 2 wi + 

(8.7) 

+ S~j__E ~ w~+ - -g-j=1 
with 

j= ~ wj wj 

We consider each term in (7) separately. 
wj 

The term 2; log---;-was already considered in § 6, where we showed that 
w )  

~ l o g  2 log e 
wj 

j= 1 wj 

e being the smallest totally positive unit > t. 
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[ 1 \  
As to S / w ~ +  ~-~-t, if we recall the definition of wj as a continued fraction 

\ , , ) !  

(5.2), then we see that  w.~ = b j -  1/wj+ 1, and hence (using the periodicity proper ty  
Wr + 1 ---~ W1)  

w j +  = w j + - - -  = bj.  
j=l  j=t  wj+l 1=1 

By taking the conjugate  of  this equation,  we find that  

w) + = bj 
j= l  j=l  

also. Finally, of  course, 

1 = t (a) ,  
j = l  

since I(B) is defined as the length of  the cycle ((b 1 . . . . .  br)). Substi tut ing the last 
four equat ions into (7), we find 

7-C 2 
~(B) = Q,(B) + 27 log e - -~-- l(B). (8.91 

It remains consider q~(B). We first discuss the relat ionship between wide 
ideal classes and cont inued fractions. For  na r row ideal classes B, we know that  
there is a lways a (fractional) ideal in B with a basis {1, w} such that  w > 1 > w' > 0, 
and that  the number  w then has a cont inued fraction expansion 
w = bl - 1/(b 2 - l / . . . )  which is purely periodic. Similarly, in any  wide ideal class A 
there is an ideal having a basis of  the form {t ,x} with 

x > l ,  O > x ' > - l ,  (8.10) 

and such x are character ised as being those quadra t ic  irrationalities whose ordinary  
continued fract ion expansion 

1 
x = a 1 +  1 (ai=> 1) (8.11) 

a2 + - -  
a3 +. . .  

(with plus signs) is pure  periodic. A different choice of ideal leads to an x with the 
same period up to cyclic permuta t ion .  Thus  to A there corresponds  a cycle of  
integers [ [ a l  . . . . .  a, ,]]  with ai > 1 (the cycle is defined only up to cyclical permuta-  
tion) in just  the same way as a cycle ((bl . . . . .  br)) with bi ~ 2 was assigned to a 
narrow ideal class. 

Now,  clearly, if x satisfies (t0), then w =  t + x  is reduced in the old sense 
(w > t > w' > 0) and w > 2, so w has a purely periodic "minus"  cont inued fraction 

t 
b~ - b2 _ with b~ >_ 3. The  cor responding  na r row ideal class B then lies in the 

wide ideal class A cor responding  to x (since bo th  contain the ideal 7/- 1 + Z .  x 
--:E- 1 + 7/. w). One  can easily check that  the expansion (11) of  x is related to the 
expansion 1 

w = b l  I (8.12) 

b2 b3 - . .  
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of w by 
b l = a 1 + 2 ,  b 2 = b  3 . . . . .  b , 2 = 2  , ba2+i = a 3 + 2  . . . . .  

Tha t  is, 

( (b , ,b2 ,  b3 . . . .  )) = ((a, + 2 , 2 ,  . . . ,  2,a3 + 2, 2 . . . . .  2 . . . .  )). (8.t3) 
a z -  1 a 4 -  1 

x, we use the cyclic pe rmuta t ion  [[a2, a3 . . . .  ] ]  (cor responding If instead o f  to 

' /  - , we get instead ((a 2 + 2, 2 . . . . .  2, a 4 + 2, ...)). This  cycle corresponds to  
a 1 - -X  a a - I  
the oppos i te  nar row ideal class OB. If  we start  with [[a3, a,~ . . . .  ] ] ,  we get a cycle 
which is the same as (t 3) (up to cyclic permutat ion) .  

If the primit ive period [ [ a l  . . . . .  atoll cor responding  to A has odd length  m, 
then we deduce that  B and  O B  are the same na r row ideal class. This is the case 
when the quadra t ic  field K under  s tudy has a unit of  negat ive norm. In this case 
A = B and e = eo z (e as above,  eo the fundamenta l  unit). If, on the other  hand,  m is 
even, then the above procedure  generates two cycles ((bl . . . . .  br)) s tart ing from 
the given cycle [ [ a l  . . . . .  am]], A is the disjoint union of two na r row ideal classes B 
and O B ,  and e = e o. Fo r  convenience,  in the first case we write the per iod twice, 
so that  we always study the min imal  even period [ [ a l ,  . . . ,  a2k]]. Then we have 
2k numbers  xi ~ K (i = 1 . . . . .  2k) satisfying (10) namely  

1 
xl = al + t (8.t 4) 

a i + l  + . . .  + 
t 

a 2 k +  
a l + . . .  

For  B we have r = a 2 + a 4 + -.. +a2k  numbers  wi [r is the length of the cycle (13)], 
namely  

1 
wl  = l + x t  = a t  + 2 - -  - - ,  

W2 

1 
w z = 2 -  - - ,  

W 3 

t 
w 3 = 2 - -  - - ,  

W4 (8.15) 

1 
Wa2 ~ 2 

Wa2 + 1 

1 
w,2+1 = 1 + x 3 = a a  + 2  

Wa2 + 2 

etc. N o w  observe that  the expression s u m m e d  in (8) is contr ived in such a way that 
1 

the a rgument  t - of  the second R( ,  ) is ob ta ined  f rom the a rgument  w - I of 
wj 

the first by substi tut ing 2 _  __1 for w. Therefore,  in comput ing  the sum (8) for a 
W 
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1 
string o fwfs  as in (15) each related to the previous one by w ~ 2  - - - ,  we find that 

w 
all intermediate terms cancel and we are left with only two terms. Explicitly, this 
means 

j w j  w j  

= R(w,,~+ t - 1, I -  w"~+ 0 - -  R ( ` wzl, w2l' l )  

(8.16) 
= R(x3,  - x'a) -- R(Xl - a t, a t - x])  

= R ( X 3 ,  - -  X'3) + R(x2,  - x'2), 

1 
where in the last line we have used x ~ = a I + - -  [cf. (14)] and Eq. (2) of  the Lemma. 

xz 
Summing this over all a 2 + ,.. + a2~ values of w: (rather than just 1 < j  < a2 + t), 
we obtain QI(B)= zz=kl R(x i , -x~) .  We have proved:  

Theorem. Let B be a narrow ideal class in a real quadratic field K = ~ ( ] ~ )  
and A the wide ideal class containing it. Set z = 1 or 2 according as the fundamental 
unit eo > I o f  K has norm + 1 or - 1 (so that the unit e defined above is ~o), and let 
[[al  . . . . .  a2k]] be z times the smallest period o f  the (positive) continued fraction 
associated to A. Define x l ,  ... , X2k by (14). Then the Kronecker limit o(B) is given by 

7~ 2 
o(B) = Rixi ,  - x~) + 27 log e - --6- I(B), 

i=1 
(8.17) 

where R(x,  y) is the function defined by (1). 

Corollary 1 (Meyer 's theorem). Let  0 be the narrow ideal class of  the ideal 
(VD). Then 

7~ 2 

e ( B )  - ~ ( O  B)  = - - - (  (I(B) - I (O B))  . 

Proof. Immediate  from (17), since the first two terms on the right only depend 
on the wide ideal class A. 

Corollary 2 (Kronecke r  limit formula for wide ideal classes). Let  A be a wide 
ideal class in a real quadratic f ield K,  eo > t the fundamental unit o f  K,  x~ . . . . .  x,, 
the elements o f  K satisfying (I0) and such that {1, xi} is a basis for some ideal in A 
(thus m = 2k/z  in the nota t ion  of  the theorem), and ((al . . . . .  a,,)) the corresponding 
cycle o f  integers. Then 

i=, (8.18) ~2 

+ 47 log e o - --6-- ~ at. 
i = l  

Proof. If z =  t, then A = B • O B  and ~ ( s , A ) = ~ ( s , B ) + ( ( s ,  OB), so the 
residue is 2 log e --- 2 log Co. If r = 2, then A = B, ~(s, A) = ((s, B), so the residue of  
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~(s, A) is l o g e = 2  log eo. For the constant term, we have, using (17), 

21ogeo ] 
3. ! ~  ~(s, A ) -  ~ -  1 / = o(B) + o(OB) 

2k 

= 2  ~ R ( x ~ , - x ' i ) + 4 y l o g e - -  
i=1 

(8.t9) 
7[ 2 
6- It(B) + t(OB)], 

and, since I(B) = a 2 + a 4 + - "  n t- aEk and I ( O B )  = a~ + a 3 -t.- " ' "  + a 2 , _  1, the term 
[I(B)+ l ( O B ) ]  is just E~* '=laz. Now m = 2 k i f z = l ,  but if 1:=2 t h e n r n = k  and 
a,,,+i = al, x,,,+i = xi  (i = 1, . . . ,  m). Therefore the right-hand side of (19) is 

r ;r/72 
2"c R ( x l , - x i ) + 4 y z l o g e o -  --6-  ~ a i ,  

i = 1  i = 1  

and on dividing by r we obtain the corollary. 
Notice, that by arguments like those already used, 

and 
ai = Xi - -  7 

i = 1  i = l  

! , 
log e o = __1 log e = ~1 log wj  

"C Z - - j =  

= z-  j~l log (wj - !) - log ! 1 

2k 

! ~ log xi 
~ i = 1  

= ~ logx~, 
i = l  

and so the right-hand side of (18) can be replaced by Ei% 1 Q(x i ,  - x~) with 

In this form, Corollary 2 is the exact analogue of the main theorem of § 5 for 
narrow ideal classes. 

9. On "Kronecker's Solution of PeH's Equation" 

As was explained in the introduction, a knowledge of the Kronecker limits 
Q(B) leads to the evaluation of L(1, ~) in the form 

L(1, Z)= ~ z(B)•(B) (9.t) 
B 
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(sum over narrow ideal classes) for any character X (4 = )C0) on the narrow ideal 
class group. For  one type of character, the so-called genus characters, however, 
the left-hand side is explicitly known, and this leads to interesting identities. 

A genus character is simply a real character on the narrow ideal class group, 
i.e. a character which assumes only the values + t and is hence trivial on the 
squares of ideals, If D is the determinant of K, then there are 2 t- t genus characters, 
where t is the number of distinct primes dividing D. They are in l : I correspondence 
with all possible sptittings D = D t "D2 with D 1, D2 both discriminants of quadratic 
fields (and where one does not distinguish between the decompositions D = D~ • D 2 
and D =D2-D1). If )( is the genus character corresponding to D = D a - D  e, then 

where 

It is a classical result that 

L(s, X)= Lol(s)Lo2(S) 

n=l  

(9.2) 

2hloge if D > 0 ,  

Lo(1)= ~/~ (9.3) 
2nh 

if D < 0 ,  wL/¢  
where h, e, w denote the class number, fundamental unit, and order of the group of 
units o f~( ] /~ ) ,  respectively. 

If K = ~ ( V D  ) is pure imaginary and D =DID 2, then one of D 1, O 2, say D 1, 
is positive and the other negative. Denoting by a subscript i invariants of the field 
~(V-~),  we have 

L(t, Z) = Lv,(1)Lo2(1) 
4~hl h2 logel 

wz tV~ 

Comparing this with (l) and the Kronecker limit formula for ~o(B) (Section 2), 
we find 

2hlh2 logel = - ~ x(B)q~(B) 
W2 B 

with q'(B) defined by 

w - ~  
• (B) = 2----i--Iq(w)[2 

(where, as usual, w such that {1, w} is an oriented basis for some ideal in B-  1). Thus 

n (9,4) 
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h l = h 2 =  1, w 2 = 2 )  one 
1 \ 

For  instance, with D I = 5 ,  D 2 = - 4  so e l -  2 ' 

finds 

Ir/(iV~)[" (9.5) 
-~- q -  1/6(1 .~ q)4 (1 + q3)4 (1 + q5)4 ... 

(q = e - ~  = 0.00087 ...)2. 
Clearly it is something of a cheat to call (4) a solution of PelFs equation,  since 

to really solve Pell 's equat ion  would mean  to find the least solution of  x z - D l y  2 

x+yV-D-1 itself, ra ther  than the power  = + 4 ,  i.e. the fundamenta l  unit  e 1 = 2 

e]~, which in any  case is given by the analogous ,  but much  simpler formula  

~ = sin 
k=l 

In any case, it seems more  sensible to regard an equat ion like (5) as a surprising 
identity for t/(z) ra ther  than  as a " fo rmula"  for 1 + V~- 

I f K  is totally real, so that  our  formula  ra ther  than Kronecker ' s  is needed in (l), 
then there are two very different cases, according as D 1 and D 2 are both negative 
or  bo th  positive. 

If D 1, D 2 < 0, then the cor responding  genus character  Z satisfies Z ( O ) = -  t 
(where @, as in Section 4, denotes  the na r row  ideal class containing the principal  
ideals (~) with a s ' <  0). Then on the one hand  

LO, z) = ~ Z(B)~(B) 
B 

= ½ ~ [z(B)Q(B) + z(B*)Q(B*)] 
B 

= ½ E Z(B) (e(B) - Q(~*)) 
B 
7[ 2 

--  t 2 1 ~ - ~  z ( B )  ( l (B*)  - I(n)) 
Y 

by Meyer ' s  theorem in the form given in Section 4; on the other  hand, f rom (2) 
and (3) we get 

4r~ 2 h~h2 
L(I,Z)= 1/~ w~w2" 

Hence  
h(D 0 h(D2) 1 

= - 2---~..ff z(B)I(B). (9.6) 
w(D1) w(O2) 

z The discussion and example are taken from Siegel [8], pp. 93--96. 
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For 'nstance, if p > 3 is a prime congruent  to 3 (mod 4), then (taking D 1 = - p ,  
D2 = - 4 )  we find 

h ( -  p) = -- ½ ~ )~(B)I(B). 
B 

If we assume for simplicity that h(p)= I, so that the only terms of  the sum are the 
principal ideal class and the class O, we find: 

T h e o r e m .  Let p > 3 be a prime -= 3 (mod 4) such that h(p) = 1. Let l~ and 1_ be 
the lengths of the periods of the continued fractions of I/~ and of - ]//p. Then 

l_ - l+ = 3 h ( - p ) .  (9.7) 

For  example, with p = 7 we find 

I 
l / T =  3 1 

3 
6 1 

p e r i o d ~ , , ~  1 - .  

1 
- 1 / ~ =  - 2  1 

2 - -  - -  ! 
3 

t 
2 

_ _ _ _  1 
1 

2 

3- 3 t 

2 

- ... 

so l_ - t+ = 5 - 2 = 3 With p = t63 one has l_ = 21, t+ = 18, h ( - p )  = 1. It is not  
a priori clear either that  l_ > l+ or  that  I+ - I_ (rood 3). For  a further discussion 
of (6) and related formulas we refer the reader to [2] or  [3]. 

Finally, consider the case when D t, D 2 > 0. In this case Z(O) = + 1, so we cannot  
use Meyer 's  theorem to simplify (1). Combin ing  equations (1), (2) and (3), we find 

~ z(B)Q(B) = 4hl h2 lOgellOge2, (9.8) 
B 

and this in conjunct ion with the main theorem of this paper  should give identities 
for F(x) similar to the identities for ~/(x) discussed above, but now involving a 
product  of  two logari thms of  algebraic numbers  rather than only one such number.  

For  example, with D = 40, D 1 = 5, D 2 = 8, the r ight-hand side is 
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and the left-hand side is 

F(4 + 1/1-0' 4 - 1 / / ~ )  + F ( - 4 + V ~ 6  , 4 - 1 / 1 0  ) + F  ( 8 + ] /~9  

10 ' 10 + F  - 9 ' - -  

+ F ( 8 + I / ] - 0  8 - ~ ) ( 4 + 1 / ~  4 - ] / t 0 )  
" 6 ' - - F  2 ' - . . . . .  

_ F ( 4 + ~ q - 0 ,  4 -  ]/i-0)3 - F  ( 5  + ]/qO5 , 5 ~1~ 1 / ~ )  

(corresponding to the two ideal classes of ~ ( ] / ~ ) ,  with cycles ((8, 2, 2, 2, 2, 2)) 
and ((4, 2, 3, 2)), respectively), and the equali ty between these two expressions 
represents a ce r t a in -admi t t ed ly  very compl ica ted- iden t i ty  for the function F(x). 

Remark. Since writing this paper, the author has discovered that the same problem has been 
studied and a similar result obtained by G. Herglotz, ,,Ober die Kroneckersche Grenzformel fiir 
reelle, quadratische K6rper. I, II" (Berichte fiber die Verhandl. d. S~iehsischen Akad. der Wiss. zu 
Leipzig, 75 (1923) 3--14, 31--37). 

The formula Herglotz obtains is related to Dedekind sums rather than continued fractions and 
also involves the function F(x). 
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