
Appendix
Curious and Exotic Identities for Bernoulli
Numbers

Don Zagier

Bernoulli numbers, which are ubiquitous in mathematics, typically appear either as
the Taylor coefficients of x= tanx or else, very closely related to this, as special
values of the Riemann zeta function. But they also sometimes appear in other guises
and in other combinations. In this appendix we want to describe some of the less
standard properties of these fascinating numbers.

In Sect. A.1, which is the foundation for most of the rest, we show that, as well
as the familiar (and convergent) exponential generating series1
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defining the Bernoulli numbers, the less familiar (and divergent) ordinary generat-
ing series
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also has many virtues and is often just as useful as, or even more useful than, its
better-known counterpart (A.1). As a first application, in Sect. A.2 we discuss the
“modified Bernoulli numbers”
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1Here, and throughout this appendix, we use the convention B1 D �1=2, rather than the
convention B1 D 1=2 used in the main text of the book.
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240 Appendix: Curious and Exotic Identities for Bernoulli Numbers

These numbers, which arose in connection with the trace formula for the Hecke
operators acting on modular forms on SL.2;Z/, have several unexpected properties,
including the surprising periodicity

B�nC12 D B�n (n odd) (A.4)

and a modified form of the classical von Staudt–Clausen formula for the value
of Bn modulo 1. The following section is devoted to an identity discovered by
Miki [A10] (and a generalization due to Gessel [A4]) which has the striking
property of involving Bernoulli sums both of type

P
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r
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BrBn�r ,

i.e., sums related to both the generating functions (A.1) and (A.2). In Sect. A.4 we
look at products of Bernoulli numbers and Bernoulli polynomials in more detail.
In particular, we prove the result (discovered by Nielsen) that when a product
of two Bernoulli polynomials is expressed as a linear combination of Bernoulli
polynomials, then the coefficients are themselves multiples of Bernoulli numbers.
This generalizes to a formula for the product of two Bernoulli polynomials in two
different arguments, and leads to a further proof, due to I. Artamkin, of the Miki–
Gessel identities. Finally, in Sect. A.5 we discuss the continued fraction expansions
of various power series related to both (A.1) and (A.2) and, as an extra titbit,
describe an unexpected appearance of one of these continued fraction expansions
in connection with some recent and amazing discoveries of Yu. Matiyasevich
concerning the non-trivial zeros of the Riemann zeta function.

This appendix can be read independently of the main text and we will recall
all facts and notations needed. We should also add a warning: if you don’t like
generating functions, don’t read this appendix!

A.1 The “Other” Generating Function(s)
for the Bernoulli Numbers

Given a sequence of interesting numbers fangn�0, one often tries to understand
them by using the properties of the corresponding generating functions. The two
most popular choices for these generating functions are

P1
nD0 anxn (“ordinary

generating function”) and
P1

nD0 anxn=nŠ (“exponential generating function”).
Usually, of course, at most one of these turns out to have useful properties. For the
Bernoulli numbers the standard choice is the exponential generating function (A.1)
because it has an expression “in closed form.” What is not so well known is that the
ordinary generating function of the Bernoulli numbers, i.e., the power series (A.2),
even though it is divergent for all non-zero complex values of x, also has extremely
attractive properties and many nice applications. The key property that makes it
useful, despite its being divergent and not being expressible as an elementary
function, is the following functional equation:
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Proposition A.1. The power series (A.2) is the unique solution in QŒŒx�� of the
equation

1
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�
� ˇ.x/ D x : (A.5)

Proof. Let fBng be unspecified numbers and define ˇ.x/ by the first equality
in (A.2). Then comparing the coefficients of xm in both sides of (A.5) gives
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This is the same as the standard recursion for the Bernoulli numbers obtained by
multiplying both sides of (A.1) by ex � 1 and comparing the coefficients of xm=mŠ
on both sides. ut

The functional equation (A.5) can be rewritten in a slightly prettier form by
setting
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1X

nD0
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nC1 ;

in which case it becomes simply
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A generalization of this is given by the following proposition.

Proposition A.2. For each integer r � 1, the power series
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satisfies the functional equation

ˇr
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and is the unique power series having this property.

Proof. Equation (A.9) for any fixed value of r � 1 is equivalent to the recur-
sion (A.6), by the calculation
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Alternatively, we can deduce (A.9) from (A.7) by induction on r by using the easily
checked identity

x2 ˇ0r .x/ D r ˇrC1.x/ .r � 1/ (A.10)

and the fact that
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for any power series F.x/. ut
We observe next that the definition (A.8) makes sense for any r in Z,2 and that

the properties (A.9) and (A.10) still hold. But this extension is not particularly
interesting since ˇ�k.x/ for k 2 Z�0 is just a known polynomial in 1=x :
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where Bk.X/ is the kth Bernoulli polynomial. (One can also prove these identities
by induction on k, using either (A.10) or else (A.9) together with the uniqueness
statement in Proposition A.2 and the corresponding well-known functional equation
for the Bernoulli polynomials.) However, there is a different and more interesting
way to extend the definition of ˇr to non-positive integral values of r . For k 2 Z,
define

�k.x/ D
X

n�max.1;�k/

.n � 1/Š
.nC k/Š

BnCk xn 2 xQŒŒx�� :

Then one easily checks that ��r .x/ D .r � 1/Š ˇr.x/ for r > 0, so that the
negative-index power series �k are just renormalized versions of the positive-index
power series ˇr . But now we do get interesting power series (rather than merely
polynomials) when k � 0, e.g.

2Or even in C if we work formally in xr QŒŒx��.
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The properties of these new functions corresponding to (A.10) and (A.9) are
given by:

Proposition A.3. The power series �k.x/ satisfy the differential recursion
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where Pk�1.X/ is a polynomial of degree k � 1, the first few values of which are
P0.X/ D 1, P1.X/ D X � 1
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Proof. Equation (A.13) follows directly from the definitions, and then Eqs. (A.14)
and (A.15) (by induction over k) follow successively from (A.7) using the general
identity (A.11). ut

We end this section with the observation that, although ˇ.x/ and the related
power series ˇr.x/ and �k.x/ that we have discussed are divergent and do not give
the Taylor or Laurent expansion of any elementary functions, they are related to
the asymptotic expansions of very familiar, “nearly elementary” functions. Indeed,
Stirling’s formula in its logarithmic form says that the logarithm of Euler’s Gamma
function has the asymptotic expansion
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asX ! 1, with �0.x/ defined as in Eq. (A.12), and the functions ˇr.x/ correspond
similarly to the derivatives of  .x/ (“polygamma functions”). The transformation
x 7! x=.1�x/ occurring in the functional equations (A.5), (A.9), (A.14) and (A.15)
corresponds under the substitutionX D �1=x to the translationX 7! XC1, and the
compatibility equation (A.11) simply to the fact that this translation commutes with
the differential operator d=dX , while the functional equations themselves reflect
the defining functional equation 	 .X C 1/ D X	 .X/ of the Gamma function.

A.2 An Application: Periodicity of Modified Bernoulli
Numbers

The “modified Bernoulli numbers” defined by (A.3) were introduced in [A14].
These numbers, as already mentioned in the introduction, occurred naturally in a
certain elementary derivation of the formula for the traces of Hecke operators acting
on modular forms for the full modular group [A15]. They have two surprising
properties which are parallel to the two following well-known properties of the
ordinary Bernoulli numbers:

n > 1 odd ) Bn D 0 ; (A.16)

n > 0 even ) Bn� �
X
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.p�1/jn
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p
.mod 1/ (A.17)

(von Staudt–Clausen theorem). These properties are given by:

Proposition A.4. Let B�n .n > 0/ be the numbers defined by (A.3). Then for n odd
we have

B�n D
{

˙3=4 if n� ˙ 1 .mod 12/,

1=4 if n� ˙ 3 or ˙5 .mod 12/,
(A.18)

and for n even we have the modified von Staudt–Clausen formula

2nB�n � Bn�
X

p prime
.pC1/jn

1

p
.mod 1/ : (A.19)

Remark. The modulo 12 periodicity in (A.18) is related, via the above-mentioned
connection with modular forms on the full modular group SL.2;Z/, with the well-
known fact that the space of these modular forms of even weight k > 2 is the sum
of k=12 and a number that depends only on k .mod 12/.
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Proof. The second assertion is an easy consequence of the corresponding
property (A.17) of the ordinary Bernoulli numbers and we omit the proof. (It is
given in [A15].) To prove the first, we use the generating functions for Bernoulli
numbers introduced in Sect. A.1. Specifically, for  2 Q we define a power series
g.t/ 2 QŒŒt �� by the formula

g.t/ D �0

� t

1 � t C t2

�
� log.1 � t C t2/ ;

where �0.x/ D P
n>0 Bnx

n=n is the power series defined in (A.12). For  D 2 this
specializes to
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with B�n as in (A.3). On the other hand, the functional equation (A.14) applied to
x D t=.1� t C t2/, together with the parity property �0.x/C x D �0.�x/, which
is a restatement of (A.16), implies the two functional equations

gC1.t/ D g.t/C t

1 � t C t2
D g�.�t/

for the power series g. From this we deduce
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1 � t12 ;

and comparing this with (A.20) immediately gives the desired formula (A.18) for
B�n , n odd. ut

We mention one further result about the modified Bernoulli numbers from [A15].
The ordinary Bernoulli numbers satisfy the asymptotic formula

Bn
.�1/.n�2/=2 2 nŠ

.2�/n
(n ! 1, n even). (A.21)

As one might expect, the modified ones have asymptotics given by a very similar
formula:

B�n
.�1/.n�2/=2 .n� 1/Š

.2�/n
(n ! 1, n even). (A.22)

The (small) surprise is that, while the asymptotic formula (A.21) holds to all orders
in 1=n (because the ratio of the two sides equals �.n/ D 1 C O.2�n/), this is not
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true of the new formula (A.22), which only acquires this property if the right-hand
side is replaced by .�1/n=2� Yn.4�/, where Yn.x/ is the nth Bessel function of the
second kind.

Here is a small table of the numbers B�n and QBn D 2nB�n � Bn for n even:

n 2 4 6 8 10 12 14 16 18 20 22

B�

n
1
24
� 27
80
� 29
1260

451
1120

� 65
264
� 6571
12012

571
312
� 181613

38080
23663513
1220940

� 10188203
83600

564133
552

QBn 0 � 8
3
� 3
10

136
21

�5 � 4249
330

651
13
� 3056

21
109269
170

� 247700
57

38775

A.3 Miki’s Identity

The surprising identity described in this section was found and proved by
Miki [A10] in an indirect and non-elementary way, using p-adic methods. In
this section we describe two direct proofs of it, or rather, of it and of a very similar
identity discovered by Faber and Pandharipande in connection with Chern numbers
of moduli spaces of curves. The first, which is short but not very enlightening,
is a variant of a proof I gave of the latter identity [A2] (but which with a slight
modification works for Miki’s original identity as well). The second one, which
is more natural, is a slight reworking of the proof given by Gessel [A4] based on
properties of Stirling numbers of the second kind. In fact, Gessel gives a more
general one-parameter family of identities, provable by the same methods, of which
both the Miki and the Faber–Pandharipande identities are special cases. In Sect. A.4
we will give yet a third proof of these identities, following I. Artamkin [A1].

Proposition A.5 (Miki). Write Bn D .�1/nBn=n for n > 0. Then for all n > 2 we
have
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First proof. We prove (A.24), following [A2]. Write the identity as a.g/ D b.g/C
c.g/ in the obvious way, and let A.x/ D
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and hence, symmetrizing the integral giving C.x/ with respect to t ! x � t ,
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A similar proof can be given for Miki’s original identity (A.23), with “sinh” replaced
by “tanh”. ut
Second proof. Now we prove (A.23), following the method in [A4]. Recall that the
Stirling number of the second kind S.k;m/ is defined as the number of partitions
of a set of k elements into m non-empty subsets or, equivalently, as 1=mŠ times the
number of surjective maps from the set f1; 2; : : : ; kg to the set f1; 2; : : : ; mg. It can
be given either by the closed formula
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S.k;m/ D 1

mŠ

mX

`D0
.�1/m�`

 
m

`

!
`k (A.25)

(this follows immediately from the second definition and the inclusion-exclusion
principle, since `k is the number of maps from f1; 2; : : : ; kg to a given set of `
elements) or else by either of the two generating functions

1X

kD0
S.k;m/ xk D xm

.1� x/.1 � 2x/ � � � .1 �mx/ ;

1X

kD0
S.k;m/

xk

kŠ
D .ex � 1/m

mŠ
;

(A.26)

both of which can be deduced easily from (A.25). (Of course all of these formulas
are standard and can be found in many books, including Chap. 2 of this one, where
S.k;m/ is denoted using Knuth’s notation

{
k
m

}
.) From either generating function one

finds easily that S.k;m/ vanishes for k < m, S.m;m/ D 1, S.mC 1;m/ D m2Cm
2

,
and more generally that S.m C n;m/ for a fixed value of n is a polynomial in m
(of degree 2n, and without constant term if n > 0). Gessel’s beautiful and very
natural idea was to compute the first few coefficients of this polynomial using each
of the generating functions in (A.26) and to equate the two expressions obtained. It
turned out that this gives nothing for the coefficients ofm0 andm1 (which are found
from either point of view to be 0 and Bn, respectively), but that the equality of the
coefficients of m2 obtained from the two generating functions coincides precisely
with the identity that Miki had discovered!

More precisely, from the first formula in (A.26) we obtain

log

� 1X

nD0
S.mC n;m/ xn

�
D

mX

jD1
log

� 1

1 � jx
�

D
1X

rD1

1r C 2r C � � �mr

r
xr

D
1X

rD1

�Br
r
mC .�1/r�1Br�1

2
m2 C � � �

�
xr

(the last line by the Bernoulli–Seki formula) and hence, exponentiating,
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while from the second formula in (A.26) and the expansion log
�
.ex � 1/=x
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n>0

Bnxn=nŠ we get
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Comparing the coefficients of m2=2 in (A.27) and (A.28) gives Eq. (A.23). ut
Finally, we state the one-parameter generalization of (A.23) and (A.24) given

in [A4]. For n > 0 denote by Bn.x/ the polynomial Bn.x/=n.

Proposition A.6 (Gessel). For all n > 0 one has

n
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�
Bn�1.x/C

n�1X

iD1
Bi .x/Bn�i .x/

�
D

nX

iD1

 
n

i

!
BiBn�i .x/CHn�1Bn.x/ : (A.29)

Gessel does not actually write out the proof of this identity, saying only that it can
be obtained in the same way as his proof of (A.23) and pointing out that, because
Bn.1/ D Bn and 22gB2g.1=2/ D .2g � 1/Š bg, it implies (A.23) and (A.24) by
specializing to x D 1 and x D 1=2, respectively.

A.4 Products and Scalar Products of Bernoulli Polynomials

If A is any algebra over Q and e0; e1; : : : is an additive basis of A, then each
product ei ej can be written uniquely as a (finite) linear combination

P
k c

k
ij ek for

certain numbers ckij 2 Q and the algebra structure on A is completely determined

by specifying the “structure constants” ckij . If we apply this to the algebraA D QŒx�

and the standard basis ei D xi , then the structure constants are completely trivial,
being simply 1 if i C j D k and 0 otherwise. But the Bernoulli polynomials also
form a basis of QŒx�, since there is one of every degree, and we can ask what the
structure constants defined byBi.x/Bj .x/ D P

k c
k
ij Bk.x/ are. It is easy to see that

ckij can only be non-zero if the difference r WDi C j � k is non-negative (because
Bi.x/Bj .x/ is a polynomial of degree i C j ) and even (because the nth Bernoulli
polynomial is .�1/n-symmetric with respect to x 7! 1 � x). The surprise is that,
up to an elementary factor, ckij is equal simply to the kth Bernoulli number, except
when k D 0. This fact, which was discovered long ago by Nielsen [A11, p. 75]
(although I was not aware of this reference at the time when Igor Artamkin and I
had the discussions that led to the formulas and proofs described below), is stated in
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a precise form in the following proposition. The formula turns out to be somewhat
simpler if we use the renormalized Bernoulli polynomials Bn.x/ D Bn.x/

n
rather

than the Bn.x/ themselves when n > 0. (For n D 0 there is nothing to be calculated
since the product of any Bi.x/ with B0.x/ D 1 is just Bi .x/.)

Proposition A.7. Let i and j be strictly positive integers. Then

Bi .x/Bj .x/ D
X

0�`< iCj
2

�
1

i

 
i

2`

!
C 1

j

 
j

2`

!	
B2` BiCj�2`.x/

C .�1/i�1.i � 1/Š .j � 1/Š
.i C j /Š

BiCj :

(A.30)

Note that, despite appearances, the (constant) second term in this formula is
symmetric in i and j , because if BiCj ¤ 0 then i and j have the same parity.

Proof. Write Bi;j .x/ for the right-hand side of (A.30). We first show that the
difference between Bi;j .x/ and Bi .x/Bj .x/ is constant. This can be done in two
different ways. First of all, using Bn.x C 1/� Bn.x/ D xn�1 we find

Bi;j .x C 1/ � Bi;j .x/ D
X

0�`< iCj
2

�
1

i

 
i

2`

!
C 1

j

 
j

2`

!	
B2` x

iCj�2`�1

D xj�1
�
Bi .x/C 1

2
xi�1

�
C xi�1

�
Bj .x/C 1

2
xj�1

�

D Bi .x C 1/Bj .x C 1/ � Bi .x/Bj .x/ :
It follows that the Bi;j .x/ � Bi .x/Bj .x/ is periodic and hence, since it is also
polynomial, constant. Alternatively, we can use that B0n.x/ equals 1 for n D 1 and
.n�1/Bn�1.x/ for n > 1 to show by induction on iCj that Bi;j .x/ and Bi .x/Bj .x/
have the same derivative (we omit the easy computation) and hence again that their
difference is constant. To show that this constant vanishes, it suffices to show that the
integrals of the two sides of (A.30) over the interval [0,1] agree. Since the integral
of Bn.x/ over this interval vanishes for any n > 0, this reduces to the following
statement, in which to avoid confusion with i D p�1 we have changed i and j to
r and s. ut
Proposition A.8. Let r and s be positive integers. Then

Z 1

0

Br.x/Bs.x/ dx D .�1/r�1 rŠ sŠ

.r C s/Š
BrCs : (A.31)

Proof. Here again we give two proofs. The first uses the Fourier development

Bk.x/ D � kŠ

.2�i/k

X

n2Z
n¤0

e2�inx

nk
.0 < x < 1; k � 1/ (A.32)



A.4 Products and Scalar Products of Bernoulli Polynomials 251

discussed in Chap. 4, Theorem 4.11 of this book. (For k D 1 the sum converges
only conditionally and one has to be a little careful.) Since the integral

R 1
0
e2�ikx dx

equals ık;0, this gives

Z 1

0

Br .x/Bs.x/ dx D .�1/r rŠ sŠ

.2�i/rCs
X

n2Z
n¤0

1

nrCs
D .�1/r�1 rŠ sŠ

.r C s/Š
BrCs

as desired. (The second equality, giving the well-known connection between
Bernoulli numbers and the values at positive even integers of the Riemann zeta
function, is just the case k D r C s, x ! 0 of (A.32).) The second proof, using
generating functions, is just as short. Denote the left-hand side of (A.31), also for r
or s equal to 0, by Ir;s . Then we have

X

r; s�0
Ir;s

t r�1

rŠ

us�1

sŠ
D
Z 1

0

ext

et � 1
exu

eu � 1
dx D 1

et � 1

1

eu � 1
etCu � 1

t C u

D 1

t C u

�
1

et � 1
� 1

e�u � 1
	

D
1X

kD0

Bk

kŠ

tk�1 � .�u/k�1

t C u

D 1

tu
C
X

k�2

Bk

kŠ

X

r; s�1
rCsDk

t r�1 .�u/s�1 ;

and Eq. (A.31) follows by equating the coefficients of t r�1us�1.

Before continuing, we show that Proposition A.7 immediately yields another
proof of the identities of Miki and Gessel discussed in the preceding section. This
method is due to I. Artamkin [A1] (whose proof, up to a few small modifications,
we have followed here). Indeed, summing (A.30) over all i; j � 1 with i C j D n,
and using the easy identities

n�1X

iD1

1

i

 
i

r

!
D 1

r

 
n � 1
r

!
.r > 0/

and

X

i; j�1
iCjDn

.�1/i�1 .i � 1/Š .j � 1/Š

.n � 1/Š
D

n�1X

iD1

Z 1

0

.�x/i�1.1 � x/n�i�1dx

D
Z 1

0



.1 � x/n�1 � .�x/n�1�dx D 1C .�1/n

n
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(where the first equation is the beta integral again), we obtain

1

2

X

i; j�1
iCjDn

Bi .x/Bj .x/ D Hn�1 Bn.x/C
n�1X

rD2

 
n � 1
r

!
Br .0/Bn�r.x/C Bn.0/

n
;

(A.33)

which is equivalent to Gessel’s identity (A.29).
Proposition A.8 describes the scalar products among the Bernoulli polynomials

with respect to the scalar product .f; g/ D R 1
0
f .x/g.x/dx. It is more natural to

replace the Bernoulli polynomials Bk.x/ by their periodic versions Bk.x/ (defined
for x … Z as Bk.x � Œx�/ or by the right-hand side of (A.32), and for x 2 Z by
continuity if k ¤ 1 and as zero if k D 1), since then the scalar product is simply the
integral of Br.x/Bs.x/ over the whole domain of definition R=Z. The first proof
just given then carries over almost unchanged to give the following more general
result:

Proposition A.9. Let r and s be integers � 1 and ˛, ˇ two real numbers. Then

Z 1

0

Br.x C ˛/Bs.x C ˇ/ dx D .�1/r�1 rŠ sŠ

.r C s/Š
BrCs.˛ � ˇ/ : (A.34)

Using this, one finds, with almost the same proof as before, the following
generalization of Proposition A.7:

Proposition A.10. Let i and j be positive integers. Then for any two variables x
and y we have

Bi .x/Bj .y/ D
max.i;j /X

mD0

�
1

i

 
i

m

!
BiCj�m.y/C .�1/m

j

 
j

m

!
BiCj�m.x/

	
BCm .x � y/

C .�1/j�1 .i � 1/Š .j � 1/Š

.i C j /Š
BCiCj .x � y/ ; (A.35)

where BCm .x/ denotes the symmetrized Bernoulli polynomial

BCm .x/ D Bm.x/C .�1/mBm.�x/
2

D Bm.x C 1/C Bm.x/

2
D Bm.x/C m

2
xm�1:

The same calculation as was used above to deduce (A.33) from (A.30), but now
applied to (A.35) instead of (A.30), gives the following generalization of Gessel’s
identity (A.29):
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X

i; j�1
iCjDn

Bi .x/Bj .y/�Hn�1
�
Bn.x/C Bn.y/

�

D
n�1X

mD1

 
n � 1

m

!�
Bn�m.y/C .�1/m Bn�m.x/

� BCm .x � y/
m

C1C .�1/n
n2

BCn .x � y/ : (A.36)

We observe that Eq. (A.36) was also found by Hao Pan and Zhi-Wei Sun [A12] in a
slightly different form, the right-hand side in their formula being

nX

mD1

 
n � 1

m � 1

!�
Bn�m.y/

Bm.x � y/
m2

C Bn�m.x/
Bm.y � x/

m2

�

C 1

n

Bn.x/ � Bn.y/
x � y ; (A.37)

which is easily checked to be equal to the right-hand side of (A.36); their formula
has the advantage of being more visibly symmetric in x and y and of using only the
Bernoulli polynomials Bm.x/ rather than the symmetrized Bernoulli polynomials
BCm .x/, but the disadvantage of having a denominator x � y (which of course
disappears after division into the numeratorBn.x/�Bn.y/) rather than being written
in an explicitly polynomial form.

We end this section by giving a beautifully symmetric version of the multiplica-
tion law for Bernoulli polynomials given by the same authors in [A13].

Proposition A.11 (Sun–Pan). For each integer n � 0 define a polynomial�
r s

x y

	

n

in four variables r , s, x and y by

�
r s

x y

	

n

D
X

i; j�0
iCjDn

.�1/i
 
r

i

! 
s

j

!
Bj .x/ Bi .y/ : (A.38)

Then for any six variables r , s, t , x, y and z satisfying rCsCt D n and xCyCz D 1

we have

t

�
r s

x y

	

n

Cr
�
s t

y z

	

n

Cs
�
t r

z x

	

n

D 0 : (A.39)

First proof (sketch). We can prove (A.39) in the same way as (A.36) was proved
above, replacing the product Bj .x/Bi .y/ in (A.38) for i and j positive using
formula (A.35) (with x and y replaced by 1 � y and x) and then using elementary
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binomial coefficient identities to simplify the result. We do not give the full
calculation, which is straightforward but tedious. ut
Second proof. An alternative, and easier, approach is to notice that, since the left-
hand side of (A.39) is a polynomial in the variables x, y and z D 1 � x � y, it is
enough to prove the identity for x; y; z > 0 with x C y C z D 1. But for x and y
between 0 and 1 we have from (A.32)

.2�i/n
�
r s

x y

	

n

D
X

a; b2Z
Cn.r; sI a; b/ e2�i.bx�ay/

with

Cn.r; sI a; b/ D

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P
i; j�1; iCjDn.r/i .s/j a�i b�j if a ¤ 0, b ¤ 0

� .r/na�n if a ¤ 0, b D 0

� .s/nb�n if a D 0, b ¤ 0

0 if a D 0, b D 0

where .x/m D x.x � 1/ � � � .x � m C 1/ is the descending Pochhammer symbol.
Equation (A.39) then follows from the identity

t Cn.r; sI a; b/Cr Cn.s; t I b; c/Cs Cn.t; r I c; a/ D 0 .aCbCc D 0; rCsCt D n/ :

whose elementary proof (using partial fractions if abc ¤ 0) we omit. ut
We end by remarking on a certain formal similarity between the cyclic iden-

tity (A.39) and a reciprocity law for generalized Dedekind sums proved in [A5].
The classical Dedekind sums, introduced by Dedekind while posthumously editing
some unpublished calculations of Riemann’s, are defined by

s.b; c/ D
X

h .mod c/

B1

�h
c

�
B1

�bh
c

�
(b; c 2 N coprime),

whereB1.x/ as usual is the periodic version of the first Bernoulli polynomial (equal
to x � 1

2
if 0 < x < 1, to 0 if x D 0, and periodic with period 1), and satisfy the

famous Dedekind reciprocity relation

s.b; c/C s.c; b/ D b2 C c2 C 1

12bc
� 1

4
:

This was generalized by Rademacher, who discovered that if a, b and c are pairwise
coprime integers then the sum

s.a; bI c/ D
X

h .mod c/

B1

�ah
c

�
B1

�bh
c

�
(A.40)
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which equals s.a0; c/ for any a0 with aa0�b .mod c/ or ba0�a .mod c/, satisfies
the identity

s.a; bI c/C s.b; cI a/C s.c; aI b/ D a2 C b2 C c2

12abc
� 1

4
: (A.41)

A number of further generalizations, in which the functions B1 in (A.40) are
replaced by periodic Bernoulli polynomials with other indices and/or the arguments
of these polynomials are shifted by suitable rational numbers, were discovered later.
The one given in [A5] concerns the sums

Sm;n

�
a b c

x y z

�
D

X

h .mod c/

Bm

�
a
hC z

c
� x

�
Bn

�
b
hC z

c
� y

�
; (A.42)

where m and n are non-negative integers, a, b and c natural numbers with no
common factor, and x, y and z elements of TWDR=Z. (The hth summand in (A.42)
depends on z modulo c, not just modulo 1, but the whole sum has period 1 in z.)
For fixed m and n these sums do not satisfy any relation similar to the 3-term
relation (A.41) for the case m D n D 1, but if we assemble all of the functions
Sm;n (m; n � 0) into a single generating function

S

0

@
a b c

x y z
X Y Z

1

A D
X

m; n�0

1

mŠ nŠ
Sm;n

�
a b c

x y z

� �X
a

�m�1 �Y
b

�n�1
; (A.43)

in which X , Y and Z (which does not appear explicitly on the right) are formal
variables satisfying X C Y CZ D 0, then we have the following relation:

Proposition A.12 ([A5]). Let a; b; c be three natural numbers with no common
factor, x; y; z three elements of T, and X; Y; Z three formal variables satisfying
X C Y CZ D 0. Then

S

0

@
a b c

x y z
X Y Z

1

AC S

0

@
b c a

y z x

Y Z X

1

AC S

0

@
c a b

z x y

Z X Y

1

A D
{
1=4 if .x; y; z/ 2 .a; b; c/T ;
0 otherwise.

We do not give the proof of this relation, since three different proofs (all similar
in spirit to various of the proofs that have been given in this appendix) are given
in [A5], but we wanted to at least mention this generalized Dedekind–Rademacher
reciprocity law because of its formal resemblance, and perhaps actual relationship,
to the Sun–Pan reciprocity law (A.39).
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A.5 Continued Fraction Expansions for Generating
Functions of Bernoulli Numbers

There are several classical formulas expressing various versions of the standard
(exponential) generating functions of the Bernoulli numbers as continued fractions.
A simple example is

tanhx

�
D
X

n�2

2n.2n � 1/Bn
nŠ

xn�1
�

D x

1C x2

3C x2

5C x2

: : :

; (A.44)

whose proof is recalled below, and a somewhat more complicated one, whose proof
we omit, is

x=2

tanhx=2

�
D
X

n�0

B2n

.2n/Š
x2n

�
D 1

1C a1x
2

1C a2x
2

: : :

(A.45)

with an defined by

an D

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� 1

12
if n D 1 ,

.nC 1/.nC 2/

.2n � 2/.2n� 1/.2n/.2nC 1/
if n is even ,

.n � 2/.n� 1/

.2n � 1/.2n/.2nC 1/.2nC 2/
if n > 1 is odd .

It was discovered by M. Kaneko that the convergentsPn.x/=Qn.x/ of the continued
fraction (A.45) could be given in a simple closed form, namely

Pn.x/ D
n=2X

iD0

 
n

2i

! 
2nC 1

2i

!�1
xi

.2i C 1/Š

Qn.x/ D
n=2X

iD0

 
nC 1

2i

! 
2nC 2

2i

!�1
xi

.2i/Š
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if n is even and a similar but slightly more complicated expression if n is odd.
(It was in connection with this discovery that he found the short recursion formula
for Bernoulli numbers discussed in Sect. 1.2 of the book.) Again we omit the proof,
which is given in [A6].

What is perhaps more surprising is that there are also nice continued fraction
expansions for certain non-standard (ordinary) generating functions of Bernoulli
numbers of the type considered in Sect. A.1, and these are in some sense of even
more interest because the continued fractions, unlike the power series themselves,
converge for positive real values of the argument (and give the appropriate deriva-
tives of  .X/ as discussed in the last paragraph of Sect. A.1). For instance, on the
cover of the Russian original of Lando’s beautiful book on generating functions [A7]
one finds the pair of formulas3

1 � x C 2 � x
3

3Š
C 16 � x

5

5Š
C 272 � x

7

7Š
C � � � D tan x

1 � x C 2 � x3 C 16 � x5 C 272 � x7 C � � � D x

1 � 1 � 2 x2

1 � 2 � 3 x2

1 � 3 � 4 x2
1� � � �

The numbers 1, 2, 16, 272, . . . defined by the first of these two formulas are just
the numbers .4n � 2n/jBnj=n, so the second formula gives a continued fraction
expansion for the non-exponential generating function for essentially the Bernoulli
numbers. Again we omit the proof, referring for this to the book cited, mentioning
only the following alternative and in some ways prettier form of the formula:

1

X
� 2

X3
C 16

X5
� 272

X7
C � � � D 1

X C 1

X

2
C 1

X

3
C � � �

(A.46)

in which the continued fraction is convergent and equal to 1�X
2

�
 
�
XC4
4

�� �XC2
4

��

for all X > 0.
Other continued fraction expansions for non-exponential Bernoulli number

generating functions that can be found in the literature include the formulas

3In the English translation [A8] (which we highly recommend to the reader) this formula has been
relegated to the exercises: Chapter 5, Problem 5.6, page 85.
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1X

nD1
B2n.4x/

n D x

1C 1

2
C x

1

2
C 1

3
C x

1

3
C 1

4
C x

: : :

;

or the equivalent but less appealing identity

1X

nD0
Bnx

n D 1

1C x

2

1
� x

3C 2x

2

2
� 2x

5C 3x

2

3
� 3x

7C 4x

2

4
� 4x

9C 5x

: : :

;

and

1X

nD1
.2nC 1/B2n x

n D x

1C 1C x

1C 1

2
C x

1

2
C 1

2
C x

1

2
C 1

3
C x

1

3
C 1

3
C x

: : :

all given by J. Frame [A3] in connection with a statistical problem on curve fitting.
For good conscience’s sake we give the proofs of one continued fraction of each

of the two above types, choosing for this purpose the two simplest ones (A.44)
and (A.46). We look at (A.44) first. Define functions I0; I1; : : : on .0;1/ by

In.a/ D
Z a

0

tn.1 � t=a/n
nŠ

et dt
�
n 2 Z�0 ; a 2 R>0

�
:
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Integrating by parts twice, we find that

InC1.a/ D
Z a

0

et
d 2

dt2

�
tnC1.1 � t=a/nC1

.nC 1/Š

	
dt

D
Z a

0

et
�
tn�1.1 � t=a/n�1

.n � 1/Š
� 4nC 2

a

tn.1 � t=a/n

nŠ

	
dt

D In�1.a/ � 4nC 2

a
In.a/

for n > 0. Rewriting this as
In�1.a/
In.a/

D 4nC 2

a
C InC1.a/

In.a/
and noting that

I0.a/ D ea � 1 ; I1.a/ D ea
�
1 � 2

a

�
C
�
1C 2

a

�

by direct calculation, we obtain

1

tanhx
D e2x C 1

e2x � 1 D 1

x
C I1.2x/

I0.2x/
D 1

x
C 1

3

x
C 1

5

x
C 1

: : :

;

which is equivalent to (A.44). Similarly, for (A.46), we define functions J0; J1; : : :
on .0;1/ by

Jn.X/ D
Z 1

0

�
tanh .t=X/

�n
e�t dt

�
n 2 Z�0 ; X 2 R>0

�
:

This time J0.X/ is simply the constant function 1, while J1.X/ has the exact
evaluation

J1.X/ D 1 � X

2
 
�X
4

C 1
�

C X

2
 
�X
4

C 1

2

�
; (A.47)

as is easily deduced from Euler’s integral representation

 .x/ D �� C
Z 1

0

1 � tx�1

1 � t
dt ;

as well as the asymptotic expansion

J1.X/

Z 1

0

� 1
X
t � 2

X3

t3

3Š
C 16

X5

t5

5Š
� 272

X7

t7

7Š
C � � �

�
e�t dt


 1

X
� 2

X3
C 16

X5
� 272

X7
C � � �
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as X ! 1. (This last expression can be written as 1 � X�0.2=X/ C X�0.4=X/

with �0 as in (A.12), in accordance with (A.47) and the relationship between �0.X/
and  .X/ given at the end of Sect. A.1.) On the other hand, integrating by parts and
using tanh.x/0 D 1 � tanh.x/2, we find

Jn.X/ D
Z 1

0

e�t
d

dt

��
tanh.t=X/

�n�
dt

D n

X

Z 1

0

e�t
�

tanh.t=X/
�n�1 �

1 � �
tanh.t=X/

�2�
dt

D n

X

�
Jn�1.X/ � JnC1.X/

�

for n > 0, and rewriting this as
Jn�1.X/
Jn.X/

D X

n
C JnC1.X/

Jn.X/
we obtain that J1.X/ D

J1.X/

J0.X/
has the continued fraction expansion given by the right-hand side of (A.46),

as claimed. ut
We end this appendix by describing an appearance of the continued frac-

tion (A.46) in connection with the fantastic discovery of Yuri Matiyasevich that
“the zeros of the Riemann zeta function know about each other.” Denote the zeros
of �.s/ on the critical line <.s/ D 1

2
by �n and �n with 0 < =.�1/ � =.�2/ � � � �

and for M � 1 consider the finite Dirichlet series �M.s/ defined as the N � N

determinant4

�M.s/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 1 � � � 1 1 1
:::

:::
: : :

:::
:::

:::

n��1 n��1 � � � n��M n��M n�s
:::

:::
: : :

:::
:::

:::

N��1 N��1 � � � N��M N��M N�s

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

;

where N D 2M C 1. This function clearly vanishes when s D �n or �n for 1 �
n � M , but Matiyasevich’s discovery (for which we refer to [A9] and the other
papers and talks listed on his website) was that its subsequent zeros are incredibly
close to the following zeros of the Riemann zeta function, e.g., the first zero of
�50 on 1

2
C R>0 following �50 differs in absolute value from �51 by less than 4 �

10�15, the first zero of �1500 after �1500 differs in absolute value from �1501 by less
than 5�10�1113, and even the 300th zero of�1500 after �1500 differs in absolute value
from �1801 by less than 5�10�766! Moreover, if we write the Dirichlet series�M.s/

as cM
PN

nD1 aM;nn�s with the normalizing constant cM chosen to make aM;1 D 1,

4We have changed Matiyasevich’s notations slightly for convenience of exposition.
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then it turns out that the function c�1M �M.s/ not only has almost the same zeros,
but is itself a very close approximation to .1 � 21�s/�.s/ over a long interval of the
critical line.

In studying this latter function, Matiyasevich was led to consider the real
numbers �M defined by �M D 4M

P2M
nD1 �M;n=n, where �M;n denotes the

coefficient of n�s in the Dirichlet series c�1M �M.s/=�.s/. Since by the nature
of his investigation he was working to very high precision, he obtained very
precise decimal expansions of these numbers, and in an attempt to recognize
them, he computed the beginning of their continued fraction expansions. (Recall
that rational numbers and real quadratic irrationalities can be recognized
numerically by the fact that they have terminating or periodic continued
fraction expansions.) To his surprise, when M was highly composite these
numbers had very exceptional continued fraction expansions. For instance, for
2M D l.c.m.f1; 2; : : : ; 10g D 2520, the number �M has a decimal expansion
beginning 0:9998015873172093 � � � and a continued fraction expansion beginning
Œ0; 1; 5039; 2520; 1680; 1260; 1008; 840; 720; 630; 560; 504�. In view of the
fact that nearly all real numbers (in a very precise metrical sense) have continued
fraction expansions with almost all partial quotients very small, this is certainly
not a coincidence, and it is even more obviously not one when we notice that
the numbers 5040, 2520, . . . 504 are 5040=n for n D 1; 2; : : : ; 10. This leads
one immediately to the continued fraction (A.46) with X D 4M and hence, in
view of the evaluation of that continued fraction given above, to the (conjectural)
approximation �M � 1

2
 
�
M C 1

� � 1
2
 
�
M C 1

2

�
, which turns out indeed to be a

very good one for M large, the two numbers differing only by one part in 10108 in
the above-named case 2M D 2520. We take this somewhat unusual story as a fitting
place to end our survey of curious and exotic identities connected with Bernoulli
numbers.
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